KR101302244B1 - 노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템 - Google Patents

노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템 Download PDF

Info

Publication number
KR101302244B1
KR101302244B1 KR1020077011649A KR20077011649A KR101302244B1 KR 101302244 B1 KR101302244 B1 KR 101302244B1 KR 1020077011649 A KR1020077011649 A KR 1020077011649A KR 20077011649 A KR20077011649 A KR 20077011649A KR 101302244 B1 KR101302244 B1 KR 101302244B1
Authority
KR
South Korea
Prior art keywords
information
spectral width
pattern
laser light
laser
Prior art date
Application number
KR1020077011649A
Other languages
English (en)
Other versions
KR20080031660A (ko
Inventor
마사요시 아라이
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20080031660A publication Critical patent/KR20080031660A/ko
Application granted granted Critical
Publication of KR101302244B1 publication Critical patent/KR101302244B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70458Mix-and-match, i.e. multiple exposures of the same area using a similar type of exposure apparatus, e.g. multiple exposures using a UV apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/08Generation of pulses with special temporal shape or frequency spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1394Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length by using an active reference, e.g. second laser, klystron or other standard frequency source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Abstract

노광 장치(10)는 레이저 광을 사출하는 레이저 장치(16)와, 웨이퍼 위에 형성되는 패턴의 선폭 오차와 레이저 장치로부터 사출되는 레이저 광의 스펙트럼 특성과의 관계를 나타내는 제 1 정보가 기억된 메모리(51)와, 제 1 정보와, 사용하는 레티클에 관한 정보에 근거하여, 레이저 제어 장치(16e)를 통하여 레이저 광의 스펙트럼 폭을 제어하는 메인 제어 장치(50)를 구비하고 있다. 메인 제어 장치(50)는 제 1 정보와, 사용하는 레티클에 관한 정보에 근거하여, 선폭 오차가 억제되는 레이저 광의 스펙트럼 폭 제어를 실행한다.

Description

노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템{EXPOSURE APPARATUS, EXPOSURE METHOD, DEVICE MANUFACTURING METHOD, AND SYSTEM}
본 발명은 노광(露光) 장치, 노광 방법 및 디바이스 제조 방법 및 시스템에 관한 것이고, 더욱 상세하게는, 레이저 장치를 노광 광원으로서 구비하는 노광 장치, 이 노광 장치로 행해지는 노광 방법 및 이 노광 방법을 이용하는 디바이스 제조 방법 및 복수대의 레이저 장치를 포함하는 시스템에 관한 것이다.
최근, 스텝퍼(stepper)나 스캐닝·스텝퍼(스캐너라고도 불린다) 등의 축차(逐次) 이동형 노광 장치에서는, 광원으로서 방전 여기(勵起)형의 스펙트럼 협대역(狹帶域)화 펄스 발진(發振) 엑시머 레이저(excimer laser)가 이용되고 있다. 이 엑시머 레이저로부터 발진된 펄스 빔이, 노광 장치 본체의 조명광학계를 통과하여, 웨이퍼(wafer) 스테이지 위에 실어 놓인 웨이퍼 표면에 도포된 감광제(減光劑)에 조사되고, 감광제가 감광되어 웨이퍼가 노광된다.
레이저 광의 스펙트럼 폭에 대해서는 노광 장치의 광학계 설계, 특히 색수차 허용량으로부터 협대역화가 요구된다. 이 협대역화 품위에 대해서, 종래, 스펙트럼 폭에 특정 상한값을 마련하는 것이 일반적으로 행해지고, 노광 장치의 광원에 이용되는 레이저로서는, 여러 가지의 요인에 의한 변동을 포함하여 상기한 특정 상한값 이하로 스펙트럼 폭을 유지하는 것이 요구되고 있었다. 소망되는 스펙트럼 폭에서의 협대역화는, 그레이팅(grating), 에타론(Fabry-Perot etalon) 등의 광학 소자에 의해 달성된다.
또, 종래는, 레이저 광의 스펙트럼 폭의 변동량에 대한, 노광 장치 결상(結像) 성능의 감도(sensitivity)도 무시할 수 있는 레벨이었다.
축차 이동형 노광 장치는, 반도체 소자 등의 고집적화에 대응한 결상 대상의 패턴의 한층 더 미세화에 수반하여, 투영 광학계(투영 렌즈)의 개구수의 증대화(고NA화)가 진행되고, 그 결과 레이저 스펙트럼의 협대역화도 극한까지 진행되고 있는 것이 현상이다. 또, 오늘날에는, 결상 대상(해상(解像) 대상)의 패턴의 미세화의 진행에 수반하는 디바이스 룰(rule)의 미세화에 의해, 스펙트럼 변동에 대한 결상의 감도도 무시할 수 없는 레벨이 되어 오고 있다.
특히, 레이저 광의 스펙트럼 폭 변동이 고립선(孤立線) 선폭에 주는 영향이 무시할 수 없게 되고 있다.
또, 최근, 광 근접 효과(OPE ; Optical Proximity Efeet)를 사전에 예상하여 래티클(reticle)·패턴을 보정함으로써, 웨이퍼 위에서의 소망한 패턴을 얻는 광 근접 효과 보정(OPC ; Optical Proximity Correction)으로 불리는 마스크 보정(레티클·패턴의 보정)이 적극적으로 실행되고 있다. 이 OPC 후의 선폭 오차의 요인으로서, 레이저 광원으로부터 발진되는 레이저 광의 스펙트럼 특성을 변동시키는 여러 가지의 요인도 무시할 수 없는 요인이 되고 있다. 레이저 광의 스펙트럼 특성을 변동시키는 요인으로서는 협대역화 소자의 제조 오차, 게인 제네레이터(gain generator)의 에너지 상태, 공진기의 발광 각도 특성 및 발진 조건(듀티(duty)) 등을 대표적으로 들 수 있다.
따라서, 노광 장치의 광원으로서 이용하는 레이저 장치에서는, 레이저 광의 스펙트럼 폭에 대해 지금까지 이상으로 관리 또는 제어를 할 필요가 있고, 동시에 스펙트럼의 모니터에 대해서는 종래보다 계측 정도를 향상하는 한편 모니터의 교정 오차도 최소한으로 억제할 필요가 있다.
또, 반도체 소자를 제조할 때는, 복수대의 노광 장치가 이용되므로, 동일 제조 라인 내의 호기(號機) 사이에서는 광원으로부터 발진되는 레이저 광의 스펙트럼 특성에 극력(極力) 오차가 없는 것이 바람직하다.
<과제를 해결하기 위한 수단>
본 발명은, 제 1 관점에 의하면, 에너지 빔에 의해 물체를 노광하여 상기 물체 위에 패턴을 형성하는 노광 장치로서, 상기 에너지 빔으로서 레이저 광을 사출하는 레이저 장치와; 물체 위에 형성되는 패턴의 사이즈 오차와 상기 레이저 장치로부터 사출되는 레이저 광의 스펙트럼 특성과의 관계를 나타내는 패턴 사이즈 오차-스펙트럼 특성 정보가 기억된 기억 장치와; 상기 패턴 사이즈 오차-스펙트럼 특성 정보와 사용하는 패턴에 관한 정보에 근거하여 상기 레이저 광의 스펙트럼 폭을 제어하는 스펙트럼 제어 장치를 구비하는 노광 장치이다.
이것에 의하면, 스펙트럼 제어 장치에 의해, 물체 위에 형성되는 패턴의 사이즈 오차와 레이저 장치로부터 사출되는 레이저 광의 스펙트럼 특성과의 관계를 나타내는 패턴 사이즈 오차-스펙트럼 특성 정보와 사용하는 패턴에 관한 정보에 근거하여 사이즈 오차가 억제되도록 한 레이저 광의 스펙트럼 폭 제어가 실행된다.
본 발명은, 제 2 관점에 의하면, 레이저 광원으로부터 사출되는 레이저 광에 의해 물체를 노광하고, 이 물체 위에 패턴을 형성하는 노광 방법으로서, 사용하는 패턴에 관한 정보를 입력하는 공정과; 상기 입력된 정보와 상기 물체 위에 형성되는 패턴의 사이즈 오차와 상기 레이저 광원으로부터 사출되는 레이저 광의 스펙트럼 특성과의 관계를 나타내는 패턴 사이즈 오차-스펙트럼 특성 정보에 근거하여 상기 레이저 광의 스펙트럼 폭을 제어하는 공정을 포함하는 제 1 노광 방법이다.
이것에 의하면, 사용하는 패턴에 관한 정보를 입력하고, 그 입력된 정보와 물체 위에 형성되는 패턴의 사이즈 오차와 레이저 광원으로부터 사출되는 레이저 광의 스펙트럼 특성과의 관계를 나타내는 패턴 사이즈 오차-스펙트럼 특성 정보에 근거하여, 레이저 광의 스펙트럼 폭을 제어한다. 따라서, 사이즈 오차가 억제되도록 한 레이저 광의 스펙트럼 폭 제어를 행하여 이 상태에서 노광을 함으로써, 물체 위에는 패턴이 사이즈 오차 없이 형성된다.
본 발명은, 제 3 관점에 의하면, 레이저 광원으로부터 사출되는 레이저 광에 의해 물체를 노광하고, 상기 물체 위에 패턴을 형성하는 노광 방법으로서, 레이저 광원으로부터 사출되는 레이저 광의 적산(積算) 노광량의 정보를 취득하는 공정과; 취득한 적산 노광량의 정보에 근거하여 스펙트럼 폭 보정치를 결정하는 공정을 포함하는 제 2 노광 방법이다.
이것에 의하면, 레이저 광원으로부터 사출되는 레이저 광의 적산 노광량의 정보를 취득하고, 그 취득한 적산 노광량의 정보에 근거하여 스펙트럼 폭 보정치를 결정한다. 이 경우, 예를 들면 패턴의 사이즈 오차가 생기지 않도록 레이저 광의 스펙트럼 폭 보정치를 결정할 수 있다. 따라서, 이 산출한 스펙트럼 폭에 레이저 광원으로부터 출력되는 레이저 광의 스펙트럼 폭을 조정하여 물체의 노광을 행함으로써, 그 물체 위에는 패턴이 사이즈 오차 없이 형성되게 된다.
또, 리소그래피(lithography) 공정에 있어서, 본 발명의 제 1, 제 2 노광 방법 중 어느 하나를 이용하여 감응 물체의 노광을 실시함으로써, 이 감응 물체 위에 디바이스 패턴을 정밀도 좋게 형성하는 것이 가능하게 된다. 따라서, 본 발명은, 제 4 관점에 의하면, 본 발명의 제 1, 제 2 노광 방법 중 어느 하나를 이용하는 디바이스 제조 방법이다 라고도 말할 수 있다.
본 발명은, 제 5 관점에 의하면, 복수대의 레이저 장치를 포함하는 시스템으로서, 상기 복수대의 레이저 장치로부터 출력되는 레이저 광의 스펙트럼 폭 측정에 공통으로 이용되는 분광기와; 상기 분광기의 교정용 기준 광원을 구비하는 시스템이다.
이것에 의하면, 기준 광원을 이용하여 분광기의 교정을 실시하고, 이 교정된 분광기를 이용하여 복수대의 레이저 장치로부터 출력되는 레이저 광의 스펙트럼 폭 측정을 실시하는 것에 의해, 각각의 레이저 장치로부터 출력되는 레이저 광의 스펙트럼 폭을 정밀도 좋게 계측하는 것이 가능하게 된다. 또, 각각의 레이저 장치가 스펙트럼 모니터를 가지고 있는 경우에는 교정된 분광기와 각각의 스펙트럼 모니터를 이용하여 레이저 광의 스펙트럼 폭의 동시 계측을 실시함으로써, 각각의 스펙트럼 모니터를 정밀도 좋게, 용이하게 교정하는 것이 가능하게 된다.
도 1은 제 1 실시 형태에 관한 노광 장치의 구성을 개략적으로 나타내는 도이다.
도 2(A)는 피크·바이어스(peak·bias)에 대해 설명하기 위한 도로서, 레티클 위에 형성된 동일 선폭에서 간격이 다른 n개의 라인 패턴의 일례를 나타내는 도, 도 2(B)는 도 2(A)의 패턴을 웨이퍼 위에 전사(傳寫)한 결과 얻어진 레지스트(resist)상을 나타내는 도이다.
도 3은 스펙트럼 폭(예를 들면, FWHM)과 피크·바이어스와의 관계를 나타내는 함수 곡선의 일례를 나타내는 도이다.
도 4는 어느 노광 조건에 대한 스펙트럼 폭(예를 들면, FWHM)과 피크·바이어스와의 관계를 나타내는 함수 곡선 C1과, 래티클(R)1 ~ R3에 관한 피크·바이어스 정보를 나타내는 도이다.
도 5는 마스크 바이어스 함수 fm(P)와 대(對)스펙트럼 BIAS 함수 fj(P)(j = 1,2, …,n)를 나타내는 도이다.
도 6은 Dose-CD곡선 및 스펙트럼 폭-CD곡선을 나타내는 도이다.
도 7은 웨이퍼 위에 매트릭스 모양의 배열로 형성된 레지스트상을 모식적으로 나타내는 도이다.
도 8은 제 2 실시 형태에 관한 시스템 구성의 일례를 나타내는 도이다.
<발명을 실시하기 위한 바람직한 형태>
《제 1 실시 형태》
이하, 본 발명의 제 1 실시 형태를 도 1 ~ 도 7에 근거하여 설명한다.
도 1에는 제 1 실시 형태에 관한 노광 장치(10)의 구성이 개략적으로 나타나 있다. 이 노광 장치(10)는 노광용 광원에 레이저 장치를 이용한 스텝·엔드·스캔 방식의 주사형 노광 장치이다.
이 노광 장치(10)는 레이저 장치(16) 및 조명광학계(12)를 포함하는 조명계, 이 조명계에 의해 조명되는 래티클(R)을 유지하여 소정의 주사 방향(여기서는 도 1의 지면(紙面) 내 좌우 방향인 Y축 방향으로 한다)으로 이동하는 레티클 스테이지(RST), 래티클(R)의 패턴의 상(像)을 웨이퍼(W) 위에 투영하는 투영 광학계(PL), 웨이퍼(W)를 유지하여 수평면(XY평면) 내를 이동하는 XY스테이지(14) 및 이러한 제어계 등을 구비하고 있다.
상기 레이저 장치(16)로서는 일례로서, KrF 엑시머 레이저(발진 파장 248.385nm)가 이용되고 있는 것으로 한다. 또한, 레이저 장치(16)로서 KrF 엑시머 레이저에 대신하여, ArF 엑시머 레이저(발진 파장 193nm)나 F2 레이저(발진 파장 157nm)는 물론, 금속 증기 레이저나 YAG 레이저 혹은 반도체 레이저의 고주파 발생 장치 등의 펄스 광원을 사용하는 것도 가능하다.
레이저 장치(16)는, 도 1에 나타내는 바와 같이, 레이저 공진기(16a), 이 레 이저 공진기(16a)로부터 사출되는 레이저 빔(LB)의 광로 위에 배치된 투과율이 97% 정도의 빔 스플리터(16b), 이 빔 스플리터(16b)의 반사 광로 위에 차례차례 배치된 하프 미러(half mirror)(또는 빔 스플리터)(16g) 및 빔 모니터 기구(16c), 기준 광원(16h), 상기 빔 모니터 기구(16c)로부터의 출력 신호가 입력되는 레이저 제어 장치(16e) 및 이 레이저 제어 장치(16e)에 의해서 전원 전압 등이 제어되는 레이저 전원부(16d) 등을 구비하고 있다. 이 도 1에 나타내는 바와 같이, 레이저 장치(16)의 상기 구성 각부(16a ~ 16e, 16g, 16h 등)는 하우징(17) 내에 수납되어 있다. 레이저 공진기(16a)로부터 사출되어 빔 스플리터(16b)를 투과한 레이저 빔(LB)이 하우징(17)의 광 투과부 및 도시하지 않은 송광(送光) 광학계를 통하여 조명광학계(12)에 입사한다.
또한, 레이저 제어 장치(16e) 및 레이저 전원부(16d) 중 어느 하나 혹은 양쪽 모두를 하우징(17)의 외부에 배치하는 것은 가능하다.
상기 레이저 공진기(16a)는 방전 전극을 포함하는 엑시머 레이저 튜브(레이저 챔버)(64), 이 엑시머 레이저 튜브(64)의 뒤쪽(도 1에 있어서의 지면 내 좌측)에 배치된 전(全)반사 미러(리어 미러)(66), 엑시머 레이저 튜브(64)의 앞쪽(도 1에 있어서의 지면 내 우측)에 배치된 저반사율 미러(프런트 미러)(68) 및 엑시머 레이저 튜브(64)와 프런트 미러(68)와의 사이에 배치된 협대역화 모듈(70) 등을 포함한다.
이 경우, 리어 미러(66)와 프런트 미러(68)에 의해서 공진기가 구성되어, 코히런스(coherence)를 조금 높이도록 되어 있다.
협대역화 모듈(70)은 일례로서 엑시머 레이저 튜브(64)와 프런트 미러(68)와의 사이의 레이저 빔(LB)의 광로 위에 차례차례 배치되는 고정의 페브리·페롯·에타론(Fabry-Perot-etalon)과 가변 경각(傾角)의 페브리·페롯·에타론을 포함한다.
파브리·페롯·에타론(이하, 「에타론」이라고 약술한다)은 2매의 석영판을 소정의 공극(空隙)(에어 갭)을 두고 평행하게 대향시킨 것으로 일종의 밴드패스 필터(band pass filter)로서 작동한다. 고정 에타론은 대략 조정용이고, 가변 경각의 에타론은 미세 조종용이다. 이러한 에타론은 레이저 공진기(16a)로부터 사출되는 레이저 빔(LB)의 스펙트럼 폭을, 여기서는 자연 발진 스펙트럼 폭의 약 1/100 ~ 1/300정도로 좁혀 출력한다. 또, 가변 경각의 에타론의 경각을 조정하는 것에 의해 레이저 공진기(16a)로부터 사출되는 레이저 빔(LB)의 파장(중심 파장)을 소정 범위에서 전환할 수 있다.
이 외, 예를 들면 상기의 대략 조정용의 에타론을 제거하고, 리어 미러(66) 대신에 파장 선택 소자의 일종인 반사형 회절격자(그레이팅)를 경사 가능하게 설치하는 것에 의해 레이저 공진기를 구성하여도 좋다. 이 경우, 그레이팅과 프런트 미러(68)로 공진기가 구성된다. 또, 그레이팅과 미세 조종용의 에타론에 의해서 전술과 동일한 기능의 협대역화 모듈이 구성된다. 이 경우, 그레이팅은 파장 설정시의 대략 조정에 이용되고, 에타론은 미세 조정에 이용된다. 에타론 및 그레이팅 중 어느 하나의 경사각을 변경하면, 레이저 공진기로부터 사출되는 레이저 빔(LB)의 파장(발진파장)을 소정 범위에서 변화시킬 수 있다.
또한, 협대역화 모듈을 예를 들면 프리즘과 회절격자(그레이팅)를 조합한 것 으로 구성하는 것도 가능하다.
상기 엑시머 레이저 튜브(64) 내에는, 소정의 혼합비의 레이저 가스(이것은 매체 가스인 크립톤(krypton : Kr), 불소(F2) 및 버퍼(buffer) 가스인 헬륨(He)으로 이루어진다)가 충전되어 있다. 이 엑시머 레이저 튜브(64)에는 도시하지 않은 배기 밸브를 통하여 예를 들면 플렉서블한 튜브로 이루어지는 배기관이 접속되어 있다. 이 배기관에는, 불소를 트랩(trap)하는 제해용 필터나 배기용 펌프 등이 설치되어 있다. 이것은, 불소의 독성을 고려하여, 제외용 필터에 의해 배기 가스를 무해화한 후 배기용 펌프에 의해 장치의 외부로 배출하게 한 것이다.
또, 엑시머 레이저 튜브(64)에는 도시하지 않은 급기(給氣) 밸브를 통하여 플렉서블한 가스 공급관의 일단이 접속되고, 이 가스 공급관의 타단은 Ar, F2, He 등의 가스 봄브(bombe)(도시 생략)에 접속되어 있다.
상기 각 밸브는 메인 제어 장치(50)에 의해서 개폐 제어된다. 메인 제어 장치(50)는 예를 들면 가스 교환시 등에 엑시머 레이저 튜브(64) 내의 레이저 가스가 소정의 혼합비 및 압력이 되도록 조정한다. 또, 엑시머 레이저 튜브(64) 내부에서는, 레이저의 발진시에는 도시하지 않은 팬에 의해서 상시 레이저 가스가 순환된다.
그런데, 상기 엑시머 레이저 튜브(64)는 방전부이기 때문에 그 온도는 매우 고온으로 된다. 이 때문에, 본 실시 형태에서는, 이 엘시머 레이저 튜브(64)는 충분히 열적으로 주위와 격리한 다음, 물 등의 냉매로 일정 온도로 온도제어를 행한 다. 즉, 이 엑시머 레이저 튜브(64)의 주위에는 도시하지 않은 냉각수 배관이 둘러져 있고, 이 냉각수 배관도 또한 도시하지 않은 플렉서블 튜브로 외부와 접속되어 있다. 이 냉각수 배관 내에는 외부의 냉각 장치로부터 물 혹은 그 외의 냉매가 순환 공급되고 있고, 그 냉매의 온도가 냉각 장치의 제어계에 의해서 제어되고 있다.
상기 하프 미러(16g)는 기준 광원(16h)으로부터의 광의 광로 위에 위치하고 있다. 또한, 빔 스플리터(16b)와 하프 미러(16g)와의 사이의 광로 위에는 도 1에 있어서의 지면 내 좌우 방향(Y축 방향)으로 이동하여 이 광로를 개폐하는 제 1 셔터(21)가 설치되고, 또, 기준 광원(16h)과 하프 미러(16g)와의 사이의 광로 위에는, 도 1에 있어서의 지면 직교 방향(X축 방향)으로 이동하여 이 광로를 개폐하는 제 2 셔터(23)가 설치되고 있다.
따라서, 빔 모니터 기구(16c)에는, 빔 스플리터(16b)에서 반사된 레이저 빔(LB) 및 기준 광원(16h)으로부터의 광이 입사 가능한 구성으로 되어 있다. 이 경우, 제 1 셔터(21) 및 제 2 셔터(23)의 개폐가 메인 제어 장치(50)에 의해서 도시하지 않은 셔터 구동 기구를 통하여 제어되고, 레이저 빔(LB) 및 기준 광원(16h)으로부터의 광이 하프 미러(16g)를 통하여 택일적으로 빔 모니터 기구(16c)에 입사 한다. 메인 제어 장치(50)는, 통상은 도 1에 나타내는 바와 같이 제 1 셔터(21)를 열린 상태로 하고, 제 2 셔터(23)를 닫힌 상태로 하고 있지만, 후술하는 빔 모니터 기구(16c) 내의 빔 모니터의 절대 파장 캘리브레이션(calibration) 등에는, 제 1 셔터(21)를 닫힌 상태로 하고, 제 2 셔터(23)를 열린 상태로 한다.
상기 빔 모니터 기구(16c)는, 도시하지 않지만, 에너지 모니터와 빔 모니터 (스펙트럼 모니터)를 포함한다. 에너지 모니터는, 예를 들면 하프 미러(16g)의 투과 광로 위에 배치된 도시하지 않은 하프 미러의 반사 광로 위에 배치되어 있다. 이 에너지 모니터로서는 예를 들면 원자외역(遠紫外域)의 펄스 광을 검출하기 위해서 높은 응답 주파수를 가지는 PIN형 포토 다이오드 등의 수광 소자가 이용된다. 이 에너지 모니터로부터의 광전 변환 신호(광량 신호)는 레이저 제어 장치(16e)로 출력된다.
빔 모니터로서는, 예를 들면 하프 미러(16g)의 투과 광로 위에 차례차례 배치된 집광 렌즈, 콜리메이터(collimator) 렌즈, 에타론, 텔레미터(telemeter) 렌즈 및 라인 센서 등을 포함하는 파브리 페롯 간섭계가 이용되고 있다. 이 경우, 에타론으로서는, 전술과 마찬가지로, 2매의 부분 반사 미러(석영판 등)가 소정의 공극(에어 갭)을 두고 대향 배치된 것이 이용되고 있다. 지금, 이 에타론에 레이저 빔(LB)이 입사하면, 부분 반사면에서의 회절광(호이겐스(Huygens)의 원리에 의한 이차파)은 에어 갭 사이에서 반사와 투과를 반복한다. 이 때, 다음 식(1)을 만족하는 입사각 θ 방향의 광만이 에타론을 투과하여 강화하고, 이것에 의해 텔레미터 렌즈의 초점면에 간섭 줄무늬(프린지(fringe) 패턴)가 형성되며, 이 프린지 패턴이 텔레미터 렌즈의 초점면에 배치된 라인 센서에 의해서 검출된다.
2·n·d·cosθ = mλ ……(1)
여기서, d는 에어 갭이고, n는 에어 갭의 굴절율, m은 차수이다.
위의 식(1)에서, n, d, m이 일정하면, 파장 λ의 차이에 의해 초점면에 형성되는 프린지 패턴이 다른 것을 알 수 있다.
텔레미터 렌즈의 초점면에 배치된 라인 센서에서 검출되는 광 강도의 분포는, 텔레미터 렌즈의 초점면에 있어서의 라인 센서 길이 방향에 관하여 소정 간격에서 간섭 줄무늬에 대응하는 산이 나타난다. 각 광 강도 분포의 산의 높이 1/2에 상당하는 부분의 폭이 레이저 빔(LB)의 스펙트럼 선 폭(반값 전폭(FWHM))에 대응한다. 또, 각 광 강도 분포의 산의 피크에 대응하는 라인 센서 길이 방향의 위치는, 중심 파장에 따라서 정해진다. 즉, 상술한 프린지 패턴은, 입사광의 중심 파장, 스펙트럼 선폭(FWHM)에 대응한 것으로 되어 있고, 빔 모니터 기구(16c) 내부의 빔 모니터로부터 이 프린지 패턴의 촬상(撮像) 신호가 레이저 제어 장치(16e)로 출력된다.
상기 레이저 전원부(16d)는 고압 전원과, 이 고압 전원을 이용하여 엑시머 레이저 튜브(64) 내부의 도시하지 않은 방전 전극을 소정의 타이밍에서 방전시키는 펄스 압축 회로(스위칭 회로) 등을 포함한다.
상기 레이저 제어 장치(16e)는 상술한 프린지 패턴의 촬상 신호 및 에너지 모니터의 출력 신호에 소정의 신호 처리를 실시하는 화상 처리 회로(AD 컨버터나 피크 홀드 회로 등을 포함한다) 및 소정의 연산을 행하는 마이크로 컴퓨터 등을 포함한다. 레이저 제어 장치(16e)는 프린지 패턴의 촬상 신호에 소정의 신호 처리를 실시하는 것에 의해 빔 모니터 기구(16c)에 대한 입사광(레이저 빔)(LB)의 광학 특성에 관한 정보, 예를 들면 중심 파장(또는 무게 중심 파장)(λ), 스펙트럼 선폭(FWHM) 등의 정보를 얻는다.
레이저 제어 장치(16e)는, 레이저 빔(LB)의 중심 파장(λ)을 이용하여, 메인 제어 장치(50)에 의해서 설정되는 설정 파장(λ0)에 대한 중심 파장(λ)의 편차량(파장 편차량)(Δλ)를 다음 식(2)에 근거하여 연산한다.
Δλ = |λ0 - λ| ……(2)
또, 레이저 제어 장치(16e)는 상기의 스펙트럼 선폭과 스펙트럼 선폭의 기준치, 예를 들면 초기의 스펙트럼 선폭과의 차이에 근거하여 스펙트럼 선폭의 변동량을 연산한다.
또한, 본 실시 형태에 있어서는, 레이저 장치(16)에는 상기 레이저 공진기(16a)를 구성하는 가변 경각의 에타론(또는 그레이팅 및 가변 경각의 에타론 혹은 그레이팅이나 프리즘) 등의 분광 소자의 구동 기구(19)가 설치되어 있다. 그리고, 이 구동 기구(19)가 상술한 파장 편차량(Δλ)에 근거하여 레이저 제어 장치(16e)에 의해 제어되어, 중심 파장(λ)이 소망한 범위 내에서 제어된다.
또, 레이저 제어 장치(16e)에서는, 통상의 노광시에는 상기 에너지 모니터의 출력에 근거하여 검출한 에너지 파워에 근거하여 레이저 공진기(16a)로부터 출력되는 레이저 빔(LB)의 1펄스당 에너지가 메인 제어 장치(50)로부터의 제어 정보에 의해 주어지는 1펄스당 에너지의 목표치에 대응한 값이 되도록, 레이저 전원부(16d)내부의 고압 전원에서의 전원 전압을 피드백 제어한다.
또, 레이저 제어 장치(16e)는 메인 제어 장치(50)로부터의 제어 정보에 근거하여 레이저 전원부(16d) 내부의 펄스 압축 회로에 대한 트리거 신호의 인가 타이밍 혹은 인가 간격을 제어하는 것에 의해, 웨이퍼(W) 위의 1샷(shot) 영역에 대한 노광 중의 펄스 수 혹은 펄스 발진의 반복 주파수(발진 주파수)도 제어한다.
상기 기준 광원(16h)은 빔 모니터 기구(16c) 내부의 빔 모니터의 절대 파장 캘리브레이션을 실시할 때의 기준 광원으로서, 고체 협대(狹帶) 레이저가 이용된다. 본 실시 형태에서는 기준 광원(16h)으로서 Ar배파(倍波) 레이저 광원(아르곤 이온 2배 고주파 레이저, 광원)이 이용되고 있다. 이 Ar배파 레이저 광원의 중심 파장은 248.253nm와, KrF 엑시머 레이저 장치의 중심 파장 λ0 = 248.385nm에 매우 가까워 그 레퍼런스(reference)로서 바람직하고, 게다가 그 스펙트럼 반값 폭이 0.01pm 이하로 매우 좁기 때문에, 후술하는 디컨벌루션(deconvolution) 처리를 정밀도 좋게 실시할 수 있기 때문에, 이것을 채용한 것이다.
이 외, 레이저 장치(16)의 하우징(17) 내에 있어서의 빔 스플리터(16b)의 조명광학계 측에는, 메인 제어 장치(50)로부터의 제어 정보에 따라 레이저 빔(LB)을 차광하기 위한 셔터(16f)도 배치되어 있다.
상기 조명광학계(12)는, 빔 정형(整形) 광학계(18), 에너지 대략 조정기(20), 옵티컬 인테그레이터(optical integrator)(플라이 아이(fly eye) 렌즈, 내면 반사형 인테그레이터, 또는 회절 광학 소자 등이고, 도 1에서는 플라이 아이 렌즈를 이용하고 있으므로, 이하에서는 「플라이 아이 렌즈」라고도 부른다)(22), 조명계 개구 조리개 판(24), 빔 스플리터(26), 제 1 릴레이 렌즈(28A), 제 2 릴레이 렌즈(28B), 고정 레티클 블라인드(30A), 가동 레티클 블라인드(30B), 광로 접어 구부림 용의 미러(M) 및 컨덴서 렌즈(32) 등을 구비하고 있다.
에너지 대략 조정기(20)는 엑시머 레이저(16)로부터 펄스 발광된 레이저 빔(LB)의 단면 형상을 정형(整形)하는 빔 정형 광학계(18) 후방의 레이저 빔(LB)의 광로 위에 배치되어 있다. 이 에너지 대략 조정기(20)는 투과율(= 1 - 감광율)이 다른 복수 개(예를 들면 6개)의 ND 필터(본 실시 형태에서는 감광 필터이고, 도 1에서는 그 안의 2개의 ND 필터(36A, 36D)가 나타나 있다)가 원주 방향을 따라서 배치된 회전판(34)을 포함하고, 그 회전판(34)을 구동 모터(38)로 회전하는 것에 의해, 입사하는 레이저 빔(LB)에 대한 투과율을 100%로부터 등비급수적으로 복수 단계로 전환할 수 있다. 구동 모터(38)는 메인 제어 장치(50)에 의해서 제어된다. 또한, 에너지 대략 조정기(20)는, 레이저 빔(LB)에 대한 투과율(레이저 빔(LB)의 펄스 에너지)을 단계적이 아니고 연속적으로 가변으로 하는 것이라도 좋다.
에너지 대략 조정기(20) 후방의 레이저 빔(LB)의 광로 위에 플라이 아이 렌즈(22)를 통하여 원판 모양 부재로 이루어지는 조명계 개구 조리개 판(24)이 배치 되어 있다. 이 조명계 개구 조리개 판(24)에는 등 각도 간격으로 예를 들면 통상의 원형 개구로 이루어지는 개구 조리개, 작은 원형 개구로 이루어지는 코히어런스 팩터(factor)인 σ값을 작게 하기 위한 개구 조리개, 고리 띠 조명용의 고리 띠 모양의 개구 조리개 및 변형 광원법용에 복수의 개구를 편심시켜 배치하여 완성되는 변형 개구 조리개(도 1에서는 이 중의 2 종류의 개구 조리개만 도시되어 있다) 등이 배치되어 있다. 조명계 개구 조리개 판(24)은 플라이 아이 렌즈(22)의 사출면 근방, 즉 본 실시 형태에서는 조명광학계의 동면(瞳面)과 대략 일치하는 그 사출 측 초점면에 배치되고 있다.
조명계 개구 조리개 판(24)은 메인 제어 장치(50)에 의해 제어되는 모터 등의 구동 장치(40)에 의해 회전되고, 어느 하나의 개구 조리개가 조명광(IL)의 광로 위에 선택적으로 설정된다. 이것에 의해, 플라이 아이 렌즈(22)에 의해서 조명광학계(12)의 동면에 형성되는 다수의 점광원으로 형성되는 면광원, 즉 2차 광원의 형상 및/또는 크기가 변경된다. 또한, 본 실시 형태예에 있어서는, 조명계 개구 조리개 판(24)을 이용하여 조명광학계(12)의 동면 위에서의 조명광(IL)의 강도 분포, 즉 조명 조건을 변경하고 있지만, 조명 조건을 변경하는 광학 소자(광학계)는 이것에 한정되지 않는다. 예를 들면 미국 특허 제6,563,567호, 6,710,855호 명세서에 개시되어 있는 바와 같이, 교환 가능한 광학 소자(회절 광학 소자 등)와 가동 광학 소자(줌 렌즈 및/또는 프리즘 등)를 가지는 광학계를 이용하여 조명 조건을 변경하여도 좋다. 또한, 본 국제출원에서 지정한 지정국(또는 선택한 선택국)의 국내법령이 허락하는 한에 있어서, 그 개시를 원용하여 본 명세서의 기재의 일부로 한다.
조명계 개구 조리개 판(24)으로부터 사출되는 레이저 빔(LB), 즉 조명광(IL)의 광로 위에, 반사율이 작고 투과율의 큰 빔 스플리터(26)가 배치되고, 또한 이 후방의 광로 위에 고정 레티클 블라인드(30A) 및 가동 레티클 블라인드(30B)를 개재시켜 제 1 릴레이 렌즈(28A) 및 제 2 릴레이 렌즈(28B)를 포함하는 릴레이 광학계가 배치되어 있다.
고정 레티클 블라인드(30A)는 래티클(R)의 패턴 면에 대한 공역면(公役面)으로부터 약간 디포커스한 면에 배치되고, 래티클(R) 위의 조명 영역(42R)을 규정하는 직사각형 개구가 형성되어 있다. 또, 이 고정 레티클 블라인드(30A)의 근방에 가변 개구부를 가지는 가동 레티클 블라인드(30B)가 배치되고, 주사 노광의 개시시 및 종료시에 그 가동 레티클 블라인드(30B)를 통하여 조명 영역(42R)을 더욱 제한 함으로써, 불필요한 노광이 방지된다.
제 2 릴레이 렌즈(28B) 후방의 조명광(IL)의 광로 위에는, 제 2 릴레이 렌즈(28B)를 통과한 조명광(IL)을 래티클(R)을 향하여 반사하는 접어 구부림 미러(M)가 배치되고, 이 미러(M) 후방의 조명광(IL)의 광로 위에 콘덴서 렌즈(32)가 배치되어 있다.
한편, 빔 스플리터(26)에서 반사된 조명광(IL)은 집광 렌즈(44)를 통하여 인테그레이터 센서(46)로 수광되고, 인테그레이터 센서(46)의 광전 변환 신호가, 도시하지 않은 홀드 회로 및 A/D 변환기 등을 통하여 출력(DS)(digit/pulse)로서 메인 제어 장치(50)에 공급된다. 인테그레이터 센서(46)로서는 예를 들면 원자외역에서 감도가 있고, 또한 레이저 장치(16)로부터 사출되는 펄스 광을 검출하기 위해서 높은 응답 주파수를 가지는 PIN형의 포토 다이오드 등을 사용할 수 있다.
상기 레티클 스테이지(RST) 위에 래티클(R)이 실어 놓이고, 도시하지 않은 배큠 지퍼(vacuum zipper) 등을 통하여 흡착 유지되고 있다. 레티클 스테이지(RST)는 수평면(XY 평면) 내에서 미소 이동 가능함과 동시에, 레티클 스테이지 구동계(48)에 의해서 주사 방향(Y축 방향)으로 소정 스트로크 범위에서 주사된다. 레티클 스테이지(RST)의 위치는 레티클 스테이지(RST) 위에 고정된 이동 거울(52R)에 측장(測長) 빔을 조사하는 레이저 간섭계(54R)에 의해서 계측되고, 이 레이저 간섭계(54R)의 계측치가 메인 제어 장치(50)에 공급된다.
상기 투영 광학계(PL)로서는 예를 들면 양측 텔레센트릭(telecentric)한 축소계이고, 공통의 Z축 방향의 광축 AX를 가지는 복수 매의 렌즈 엘리먼트를 포함하는 굴절계가 이용되고 있다. 또, 이 투영 광학계(PL)의 투영 배율(δ)은 예를 들면 1/4 또는 1/5이다. 이 때문에 상기와 같이 하여 조명광(IL)에 의해 래티클(R) 위의 조명 영역(42R)이 조명되면, 그 래티클(R)에 형성된 패턴이 투영 광학계(PL)에 의해서 투영 배율(δ)로 축소된 상(부분상)이 표면에 레지스트(감광제)가 도포된 웨이퍼(W) 위의 슬릿 모양의 노광 영역(조명 영역(42R)에 공역인 영역)(42W)에 형성된다.
상기 XY 스테이지(14)는 웨이퍼 스테이지 구동계(56)에 의해서 XY면 내에서 주사 방향인 Y축 방향 및 이것에 직교하는 X축 방향(도 1에 있어서의 지면 직교 방향)으로 2차원 이동된다. 이 XY 스테이지(14) 위에 Z 틸트(tilt) 스테이지(58)가 탑재되고, 이 Z 틸트 스테이지(58) 위에 도시하지 않은 웨이퍼 홀더를 통하여 웨이퍼(W)가 진공 흡착 시스템 등에 의해 유지되고 있다. Z 틸트 스테이지(58)는 웨이퍼(W)의 Z축 방향의 위치(포커스 위치)를 조정함과 동시에 XY평면에 대한 웨이퍼(W)의 경사각을 조정하는 기능을 가진다. 또, XY 스테이지(14)의 위치는, Z 틸트 스테이지(58) 위에 고정된 이동 거울(52W)에 측장 빔을 조사하는 레이저 간섭계(54W)에 의해 계측되고, 이 레이저 간섭계(54W)의 계측치가 메인 제어 장치(50)에 공급된다.
또한, 도시는 생략 되고 있지만, 래티클(R)의 위쪽에는 예를 들면 일본국 특개평7-176468호 공보 및 이것에 대응하는 미국 특허 제5,646,413호 명세서 등에 개시되는 노광 파장의 광(본 실시 형태에서는 조명광(IL))을 얼라이먼트용 조명광으로 하는 화상 처리 방식의 한 쌍의 레티클 얼라이먼트계가 배치되어 있다. 이 경우, 한 쌍의 레티클 얼라이먼트계는, 투영 광학계(PL)의 광축 AX를 포함하는 YZ평면에 관하여 대칭(좌우 대칭)인 배치로 설치되어 있다. 본 국제출원에서 지정한 지정국(또는 선택한 선택국)의 국내법령이 허락하는 한에 있어서, 상기 공보 및 대응 미국 특허 명세서에서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
제어계는 도 1중, 메인 제어 장치(50)를 포함하고, 메인 제어 장치(50)는 CPU(중앙연산 처리장치), R0M(리드·온리·메모리), RAM(랜덤·액세스·메모리) 등으로 이루어지는 이른바 마이크로 컴퓨터(또는 미니 컴퓨터)를 포함한다. 메인 제어 장치(50)는 노광 동작이 적확하게 행해지도록 예를 들면 래티클(R)과 웨이퍼(W)의 동기 주사, 웨이퍼(W)의 스텝핑, 노광 타이밍 등을 통괄해 제어한다.
구체적으로는, 메인 제어 장치(50)는 예를 들면 주사 노광시에는 래티클(R)이 레티클 스테이지(RST)를 통하여 +Y방향(또는 -Y방향)에 속도 VR로 주사되는데 동기하고, XY 스테이지(14)를 통하여 웨이퍼(W)가 노광 영역(42W)에 대해서 -Y방향(또는 +Y방향)으로 속도 δ·VR(δ은 래티클(R)로부터 웨이퍼(W)에 대한 투영 배율)로 주사되도록 레이저 간섭계(54R, 54W)의 계측치에 근거하여 레티클 스테이지 구동계(48), 웨이퍼 스테이지 구동계(56)를 각각 통하여 레티클 스테이지(RST), XY 스테이지(14)의 위치 및 속도를 각각 제어한다. 또, 스텝핑시에는 메인 제어 장치(50)는 레이저 간섭계(54W)의 계측치에 근거하여 웨이퍼 스테이지 구동계(56)를 통하여 XY 스테이지(14)의 위치를 제어한다.
또, 메인 제어 장치(50)는, 제어 정보를 레이저 장치(16)에 공급함으로써, 상술한 바와 같이 레이저 장치(16)의 발광 타이밍, 및 발광 파워 등을 제어한다. 또, 메인 제어 장치(50)는 에너지 대략 조정기(20), 조명계 개구 조리개 판(24)을 모터(38), 구동 장치(40)를 각각 통하여 제어하고, 또한 스테이지계의 동작 정보에 동기하여 가동 레티클 블라인드(30B)의 개폐 동작을 제어한다.
메인 제어 장치(50)에는 도 1에 나타내는 바와 같이 메모리(51) 및 입출력 장치(62)가 병설되어 있다. 메모리(51) 내에는 인테그레이터 센서(46)의 출력(DS)과 웨이퍼(W)의 표면 위에서의 조명광(IL)의 조도(照度)(강도)와의 상관계수(또는 상관함수)나 에너지 모니터의 출력과 인테그레이터 센서(46)의 출력(DS)과의 상관계수(또는 상관함수) 등의 정보 등이나 스펙트럼 폭의 제어를 위해서 이용되는 여러 가지의 정보(자세한 것은 후술) 등이 기억되고 있다.
여기서, 메인 제어 장치(50)에 의해서 행해지는 빔 모니터 기구(16c) 내부의 빔 모니터의 절대 파장 캘리브레이션에 대해 간단하게 설명한다. 이 절대 파장 캘리브레이션할 때는, 메인 제어 장치(50)는 제 1 셔터(21)를 열고, 제 2 셔터(23)를 닫은 상태에서 빔 모니터로부터의 그 때의 레이저 빔(LB)에 대응하는 프린지 패턴의 정보를 얻고, 그 정보를 메모리(51)에 기억한다.
다음에, 메인 제어 장치(50)는 제 1 셔터(21)를 닫아 빔 모니터 기구(16c)에 대한 레이저 빔(LB)의 입사를 차단함과 동시에 제 2 셔터(23)를 열어 기준 광원(16h)으로부터의 광을 빔 모니터 기구(16c)에 입사시킨다. 그리고, 이 때 빔 모 니터로부터 얻을 수 있는 프린지 패턴과 화상 메모리 내의 프린지 패턴(그 직전까지 입사하고 있던 레이저 빔(LB)의 프린지 패턴)을 비교하는 것에 의해, 레이저 빔(LB)의 파장의 기준 파장으로부터의 차이를 구하고, 이 구한 차이를 보정하도록 협대역화 모듈(70)를 조정하는 것에 의해 레이저 빔(LB)의 절대 파장 캘리브레이션을 실시한다.
그런데, 상기의 프린지 패턴의 비교할 때, 디컨벌루션 처리를 실시할 필요가 있지만, 이 디컨벌루션 처리의 대상이 되는 컨벌루션(실측 스펙트럼의 프린지 패턴의 실(實)스펙트럼에 대응하는 프린지 패턴에 대한 커지는 방법)은 각 노광 장치에 고유의 것이며, 장치 함수로 불리는 양이다. 본 실시 형태에서는 기준 광원으로서 Ar배파 레이저를 이용하고 있고, 이 Ar배파 레이저의 스펙트럼 폭(FWHM)은 매우 좁게 0.01pm 이하인 것에서부터 대역폭이 무한히 가는 광으로 간주하여, Ar배파 레이저의 실측 파형을 장치 함수로서 디컨벌루션 처리를 실시할 수 있다.
다음에, 디컨벌루션 처리(취득한 장치 함수에 의한 스펙트럼 계산 처리)에 대해 설명한다. 이하에서는, 장치 함수를 mi(λ)라고 기술한다. 이 mi(λ)를 정기적으로 다시 취득하는 것이 빔 모니터의 교정으로 연결된다.
실측 스펙트럼을 s(λ)로 하면, 이 실측 스펙트럼은 실스펙트럼 f(λ)와 장치 함수 mi(λ)와의 컨벌루션으로 고려되므로, 다음 식(3)이 성립한다.
s(λ) = f(λ) * mi(λ) ……(3)
여기서, 표준적인 디컨벌루션은 「측정 데이터의 푸리에 변환」을 「장치 함 수의 푸리에 변환」으로 나누어, 더욱 역(逆)푸리에 변환한다고 하는 순서의 계산을 의미한다.
따라서, 다음 식(4a)의 계산을 실시한 후에 그 계산결과를 다음 식(4b)에서 나타내는 바와 같이 역푸리에 변환하면, 실스펙트럼 신호 f(λ)를 취득할 수 있다.
F(ω) = S(ω) / M(ω) ……(4a)
F-1〔F(ω)〕= f(λ) ……(4b)
이와 같이 하여, 본 실시 형태에서는 메인 제어 장치(50)가 실스펙트럼 신호를 얻기 위한 디컨벌루션을 실시할 수 있고, 실스펙트럼 신호에 기초하여, 정확한 스펙트럼 폭(예를 들면 FWHM 또는 95% 에너지 순도 폭)의 정보를 얻을 수 있다. 또, 메인 제어 장치(50)는, 디컨벌루션의 결과에 기초하여, 레이저 빔(LB)의 절대 파장 캘리브레이션 처리를 정확하게 즉 설계 파장에 거의 정확하게 조정할 수 있다.
다음에, 레이저 장치(16)로부터 사출되는 레이저 빔(LB)의 스펙트럼의 관리, 제어 방법에 대해 설명한다.
우선, 피크·바이어스(Peak BIAS)를 이용한 레이저 빔(LB)의 스펙트럼의 관리, 제어 방법에 대해 설명한다.
여기서, 피크·바이어스에 대해 설명한다.
도 2(A)에 나타내는 바와 같이, 동일 선폭에서 간격이 다른(P, 2 P,……) n개의 라인 패턴이 형성된 레티클을 레티클 스테이지(RST)에 탑재하고, 소정의 노광 조건하에서 노광을 실시한 결과, 도 2(B)와 같은 선폭 L1, L2,……Ln의 레지스트 상을 얻을 수 있는 경우를 생각한다.
실제의 노광에서는, 광 근접 효과에 의해서, 선폭 L1, L2, L3, ……, Ln-1, Ln는 다르다. 예를 들면, 포지티브형 레지스트 및 잔여 패턴을 조합하게 하는 경우에는 광 근접 효과에 의해서, 선폭 L1 > L2 > L3 > …… > Ln-1 > Ln이 된다. 설계상의 선폭을 L로 하면, ΔLi = |Li - L|(i = 1, 2,…n)가, 각 라인 패턴의 BIAS(바이어스)이다. 즉, 바이어스란 웨이퍼 위에 있어서의 설계상의 선폭에 대한 실제의 레지스트 상의 선폭의 오차이며, 이 바이어스에 따라 OPC에 있어서의 패턴 선폭의 보정량이 결정된다.
또, 선폭 L1 ~ Ln 가운데, 최대의 것을 Lmax, 최소의 것을 Lmin으로 하면, Lmax - Lmin가 피크·바이어스(Peak BIAS)이다.
이 피크·바이어스는 노광에 이용되는 레이저 빔의 스펙트럼 폭에 의해서 변화한다. 그래서, 본 실시 형태에서는 시뮬레이션에 의해 도 3에 나타내는 바와 같이 스펙트럼 폭(예를 들면, FWHM)과 피크·바이어스와의 관계를 나타내는 함수 곡선의 데이터를 여러 가지의 노광 조건(조명 조건, 투영 광학계의 개구수 등)에 대해 구하고, 이 구한 함수 곡선의 데이터가 메모리(51) 내에 기억되어 있다. 또한, 스펙트럼 폭의 지표로서는 예를 들면 FWHM에 대신하여 95% 에너지 순도 폭 등을 이용하여도 좋다.
그래서, 오퍼레이터에 의해 입출력 장치(62)를 통하여, 사용하는 레티클(마스크)에 관한 피크·바이어스(Peak BIAS) 정보가 입력되면, 메인 제어 장치(50)는 그 사용하는 레티클에 적절한 레이저 빔의 스펙트럼 폭을 구하고, 스펙트럼 폭 설정 요구치로서 레이저 제어 장치(16e)에 송신한다.
이하, 이 사용하는 래티클(노광 대상의 패턴)에 적절한 레이저 빔의 스펙트럼 폭, 즉 스펙트럼 폭 설정 요구치의 구하는 방법에 대해서 더 설명한다.
도 4에는 메모리(51) 내에 기억된 어느 노광 조건에 대한 스펙트럼 폭(예를 들면, FWHM)과 피크·바이어스와의 관계를 나타내는 함수 곡선 C1이 나타나 있다. 또, 이 도 4에는, 래티클 R1, 래티클 R2, 래티클 R3에 관한 피크·바이어스 정보가, 각각 부호 R1, R2, R3를 부여한 봉으로 나타나 있다. 각각의 봉의 횡축 방향의 위치는, 미리 시뮬레이션에 의해 취득된 각각의 레티클에 대한 스펙트럼 폭과 선폭 오차와의 관계에 기초하여, 선폭 오차가 허용한계로 될 때의 스펙트럼 폭의 값에 상당한다.
예를 들면, 래티클 R3의 경우, 도 4 중에 나타내는 바와 같이, 입력된 피크·바이어스 정보에서 주어지는 스펙트럼 폭을 최대치로 하고, 이 최대치에 대응하는 피크·바이어스로부터 소정의 ΔBIAS의 범위 내의 하한에 대응하는 스펙트럼 폭을 최소치로 하는 Δ3의 범위를 그 래티클 R3에 적절한 레이저 빔의 스펙트럼 폭(스펙트럼 폭 설정 요구치)으로서 구한다.
또, 래티클 R1의 경우, 도 4 중에 나타내는 바와 같이, 입력된 피크·바이어스 정보에서 주어지는 피크·편중치가 곡선 C1에 이르지 않기 때문에, 입력된 피크 ·바이어스 정보에서 주어지는 스펙트럼 폭을 설정할 수 없다. 그래서, 이 경우, 입력된 피크·바이어스 정보에서 주어지는 피크·편중치에 대응하는 곡선 C1상의 점에 대응하는 스펙트럼 폭의 값을 최대치로 하고, 이 최대치에 대응하는 피크·바이어스로부터 소정의 ΔBIAS의 범위 내의 하한에 대응하는 스펙트럼 폭을 최소치로 한다, Δ1의 범위를 그 래티클 R1에 적절한 레이저 빔의 스펙트럼 폭(스펙트럼 폭 설정 요구치)으로서 구한다.
나머지 래티클 R2, 그 외의 레티클에 대해서도, 입력된 피크·바이어스 정보에 의거하여, 상술한 래티클 R3 또는 래티클 R1의 경우와 동일하게 하여, 그 레티클에 적절한 레이저 빔의 스펙트럼 폭(스펙트럼 폭 설정 요구치)을 구한다.
상술한 스펙트럼 폭(예를 들면, FWHM)과 피크·바이어스와의 관계를 이용하는 경우와는 별도로, 레티클 위의 패턴의 특정 소밀(疏密) 상태에 주목하는 경우에는, 도 5에 나타내는 바와 같이, 횡축을 Pitch(패턴 간격)로 하고, 종축을 바이어스(BIAS)로 하는 2 차원 좌표계상으로 나타내는 마스크 바이어스 함수 fm(P)와, 복수의 스펙트럼에 대한 대(對)스펙트럼 BIAS 함수 fj(P)(j = 1,2,…,n) 각각과의 상관계수에 의해 스펙트럼의 선정(즉 스펙트럼 폭의 선정)을 실시하여도 좋다.
즉, 각각의 대스펙트럼 BIAS 함수 fj(P)에 대해서, 다음 식의 상관계수 φ(P)를 산출하고, 상관도가 최대가 되는 대스펙트럼 BIAS 함수에 대응하는 스펙트럼에 기초하여, 사용하는 레티클에 적절한 스펙트럼 폭(레이저 빔의 스펙트럼 폭(스펙트럼 폭 설정 요구치))을 결정하여도 좋다.
Figure 112007037572858-pct00001
어느 것으로도, 레이저 제어 장치(16e)는 메인 제어 장치(50)로부터 송신된 스펙트럼 폭 설정 요구치에 근거하여, 엑시머 레이저 튜브(64) 내부의 레이저 가스의 혼합비, 충전압, 협대역화 모듈(70) 및 레이저 전원부(16d) 내의 펄스 압축 회로(스위칭 회로)에 의한 엑시머 레이저 튜브(64) 내부의 도시하지 않은 방전 전극의 방전 타이밍 등의 조정에 의해 스펙트럼 폭을 최적화한다. 이와 같이, 레티클(R)의 패턴(Peak BIAS 정보 등)이나 노광 조건(조명 조건 등) 등에 따른 스펙트럼 폭이 최적화된 조명광(노광광)(IL)을 이용하는 것에 의해서, 웨이퍼(W) 위에 소망한 선폭의 패턴을 형성할 수 있다.
다음에, Dose와 스펙트럼과의 관계를 이용한 레이저 빔(LB)의 스펙트럼의 관리 제어 방법에 대해 설명한다.
미리 시뮬레이션 또는 실험을 실시하여, 도 6에 나타내는 바와 같은 Dose-CD 곡선 C2 및 스펙트럼 폭-CD곡선 C3를 구한다. 도 6에 있어서, 횡축은 Dose, 즉 투영 광학계(PL)의 상면(像面)(웨이퍼면) 위에 있어서의 적산(積算) 노광량(mJ/cm2) 또는 스펙트럼 폭(예를 들면 FWHM)이며, 종축은 CD(크리티컬·디멘젼(critical dimension)), 즉 선폭(웨이퍼 위에 형성되는 레지스트 상의 선폭)이다.
곡선 C2, C3를 실험으로 구하는 경우에는 이하와 같은 처리를 실시하면 좋 다.
a. 소정의 테스트 노광용의 레티클을 레티클 스테이지(RST) 위에 탑재하고, 스펙트럼 폭(예를 들면 FWHM)을 어느 값으로 설정한 상태에서 Dose를 소정량씩 변경하면서 테스트 레티클의 패턴을 웨이퍼 위의 가상적인 매트릭스의 제 1 행의 복수의 영역에 차례차례 전사(轉寫)한다. 또한, 여기에서의 테스트 레티클의 패턴을 전사하는 것은 웨이퍼를 투영 광학계(PL)의 베스트 포커스 위치에 설정한 상태에서 행해진다. 베스트 포커스 위치의 검출 방법 등은 인화에 의한 방법과 공간상(空間像) 계측에 의한 방법 등이 있지만, 어느 방법도 공지하고 있기 때문에 상세 설명은 생략 한다.
b. 다음에, 스펙트럼 폭(예를 들면 FWHM)을 소정량만 증가시키도록 변경한다.
c. 그리고, 변경 후의 스펙트럼 폭에서 상기 a.와 동일하게 하여, 테스트 레티클의 패턴을 웨이퍼 위의 가상적인 매트릭스의 인접하는 행의 복수의 영역에 차례차례 전사한다. 또한, 여기에서도 테스트 레티클의 패턴의 전사는 웨이퍼를 투영 광학계(PL)의 베스트 포커스 위치에 설정한 상태에서 행해진다.
d. 이후, 상기 b.와 c.와 동일한 동작을 교대로 반복한다.
이와 같이 하여, 예정수의 스펙트럼 폭의 스텝에 대한 예정수의 Dose 스텝에서의 테스트 레티클의 패턴의 전사가 종료하면, 그 웨이퍼를 현상한다. 이것에 의해, 웨이퍼 위에는 도 7에 모식적으로 나타내는 바와 같은 매트릭스 모양의 배열로 레지스트 상이 형성된다.
e. 다음에, SEM 등을 이용하여, 각 레지스트 상의 선폭 계측 등을 실시하고, 그 계측 결과에 근거하여, 도 6의 Dose-CD곡선 C2, 및 스펙트럼 폭-CD곡선 C3를 작성한다.
이와 같이 해 얻어진 도 6에 나타내는 바와 같은 Dose-CD곡선 C2 및 스펙트럼 폭-CD곡선 C3에 근거하여, Dose와 스펙트럼 폭과의 관계, 예를 들면 ΔDose / Δ스펙트럼 폭을 구한다. 이 「ΔDose / Δ스펙트럼 폭」은, 예를 들면, 스펙트럼 폭의 변화가 생겼을 때에 그 스펙트럼 폭의 변화에 기인하는 패턴 선폭의 오차를 보상하는 적산 노광량(Dose)의 보정량을 구하기 위해서 사용할 수 있다. 혹은, 이 「ΔDose / Δ스펙트럼 폭」은 웨이퍼(W)에 대한 적산 노광량(Dose)의 제어 오차가 생길 가능성이 있을 때 그 적산 노광량의 제어 오차에 기인하는 패턴 선폭의 오차를 보상하는 스펙트럼 폭의 보정량을 요구하기 위해서 사용할 수 있다.
이와 같이 하여 구한 Dose와 스펙트럼 폭과의 관계를 나타내는 정보가 메모리(51) 내에 미리 기억되고 있다.
그래서, 메인 제어 장치(50)는 실제의 노광시에는 상기의 메모리(51) 내에 미리 기억되어 있는 Dose와 스펙트럼 폭과의 관계를 나타내는 정보에 기초하여, 스펙트럼 폭의 변동에 기인하는 선폭 오차가 생기지 않도록 그 선폭 오차에 상당하는 스펙트럼 폭의 변동에 대응하는 만큼 적산 노광량을 변경한다. 즉, 노광량의 조정에 의해 레이저 빔(LB)의 스펙트럼 폭의 변동이 패턴 선폭의 오차 요인이 되는 것을 방지한다.
예를 들면, 레이저 장치(16)로부터 사출되는 레이저 빔(LB)의 스펙트럼 폭은 레이저 장치(16)의 운전 상태에 의해 미소하면서 변동을 가지지만, 메인 제어 장치(50)가 빔 모니터 기구(16c) 또는 레이저 제어 장치(16e)로부터 축차 스펙트럼 폭의 정보를 취득할 수 있으므로, 그 취득한 스펙트럼 폭 정보와 메모리(51)에 기억되어 있는 Dose와 스펙트럼 폭과의 관계에 근거하여, 스펙트럼 폭 변동에 기인하는 잔류 선폭 오차가 생기지 않도록 노광량 보정량을 계산하고, 노광량 제어에 반영시키는 것으로도 할 수도 있다.
또, 메인 제어 장치(50)는 상기와는 반대로, 노광량에 제어 오차가 생길 가능성이 있는 경우에 그 오차에 기인하는 선폭 오차가 생기지 않도록 그 선폭 오차에 상당하는 Dose의 변동에 대응하는 만큼 스펙트럼 폭을 변경하는 것으로, 노광량의 제어 오차가 패턴 선폭의 오차 요인이 되는 것을 방지하는 것으로 하여도 좋다.
예를 들면, 메인 제어 장치(50)는 인테그레이터 센서(46)의 계측치에 근거하여, 레이저 장치(16)로부터 사출되는 레이저 빔(LB)의 적산 노광량(Dose량)의 정보를 취득할 수 있으므로, 그 취득한 적산 노광량의 정보 및 메모리(51)에 기억된 Dose와 스펙트럼 폭과의 관계에 근거하여, 적산 노광량의 제어 오차에 기인하는 선폭 오차가 생기지 않도록 스펙트럼 폭 보정량을 구하고, 스펙트럼 폭을 조정하도록 하여도 좋다.
물론, 패턴의 선폭 오차가 생기지 않도록 스펙트럼 폭과 Dose 중 어느 하나만을 변경하여도 좋고, 양쪽 모두를 변경하여도 좋다. 따라서, 스펙트럼 폭의 변동이 생겼을 경우에는 스펙트럼 폭과 Dose의 적어도 한쪽을 조정(변경)할 수 있다. 또, 적산 노광량의 제어 오차가 생길 가능성이 있는 경우에 스펙트럼 폭과 Dose의 적어도 한쪽을 조정(변경)할 수 있다.
또, 적산 노광량과 스펙트럼 폭과의 관계를 기억 장치(51)에 기억하는 대신에 Dose-CD곡선 C2에 나타나는 적산 노광량과 선폭 오차와의 관계 및 스펙트럼 폭-CD곡선 C3에 나타내는 바와 같은 스펙트럼 폭과 선폭 오차와의 관계를 메모리(51)에 기억하여도 좋다. 이 경우, 상술의 취득된 스펙트럼 폭 정보 및 취득된 적산 노광량의 정보의 적어도 한쪽과 메모리(51)에 기억된 정보에 근거하여, 패턴의 선폭의 오차가 생기지 않도록 노광량 제어 및 스펙트럼 폭 제어의 적어도 한쪽을 실행할 수 있다.
또, Dose-CD곡선 C2에 나타내는 적산 노광량과 선폭 오차와의 관계 및 스펙트럼 폭-CD곡선 C3에 나타나는 스펙트럼 폭과 선폭 오차와의 관계를 구하기 위해서 테스트 레티클을 사용하지 않고, 디바이스 제조시에 사용되는 디바이스 패턴이 형성된 레티클을 사용하여도 좋다.
이상 설명한 바와 같이, 본 실시 형태에 관한 노광 장치(10)에 의하면, 메인 제어 장치(50)에 의해 웨이퍼(W) 위에 형성되는 패턴의 사이즈 오차(예를 들면 BIAS 또는 peak BIAS)와 레이저 장치(16)로부터 사출되는 레이저 빔(LB)의 스펙트럼 특성(예를 들면 FWHM 또는 95% 에너지 순도 폭)과의 관계를 나타내는 패턴 사이즈 오차-스펙트럼 특성 정보(예를 들면, 도 3에 나타나는 스펙트럼 폭(예를 들면, FWHM)과 피크·바이어스와의 관계를 나타내는 함수 곡선)과 사용하는 패턴에 관한 정보(예를 들면 도 4에 나타나는 래티클(마스크)에 관한 피크·바이어스(Peak BIAS) 정보)에 근거하여, 노광시에 웨이퍼(W) 위에 형성된 레티클의 패턴의 상의 사이즈 오차(예를 들면 선폭 오차)가 잔존하지 않게 되도록 레이저 빔(LB)의 스펙트럼 폭 제어가 레이저 제어 장치(16e)를 통하여 실행된다. 여기서 사용하는 레티클에 관한 정보는 상술한 바와 같이 오퍼레이터가 입출력 장치(62)를 통하여 입력해도 좋지만, 예를 들면 래티클(R)에 그 레티클에 관한 피크·바이어스(Peak BIAS) 정보 등을 바코드(또는 2차원 코드) 정보로서 부여해 두고, 메인 제어 장치(50)는 그 래티클(R)을 로드(load)할 때에 바코드 리더 등으로 바코드 정보를 읽어내는 것으로 취득하도록 하여도 좋다.
또, 본 실시 형태에 관한 노광 장치(10)에 의하면, 메인 제어 장치(50)는 예를 들면 인테그레이터 센서(46)의 계측치에 근거하여 레이저 장치(16)로부터 사출되는 레이저 빔(LB)의 적산 에너지량(웨이퍼면에 있어서의 도스량에 대응)의 정보를 취득하고, 그 취득한 적산 에너지량의 정보에 근거하여 스펙트럼 폭 보정치를 결정한다. 이 경우, 노광시에 웨이퍼(W) 위에 형성된 레티클의 패턴의 상의 사이즈 오차가 생기지 않도록 레이저 빔(LB)의 스펙트럼 폭 보정치가 결정된다. 그리고, 메인 제어 장치(50)는 이 산출한 스펙트럼 폭에 레이저 장치(16)로부터 출력되는 레이저 빔의 스펙트럼 폭을 조정한다.
상술한 바와 같은 스펙트럼 폭의 제어 또는 조정에 의해 레이저 빔(LB)의 스펙트럼 폭이 최적인 해상 성능을 얻을 수 있도록 제어된다. 따라서, 스펙트럼 폭의 제어 또는 조정을 한 레이저 광으로 웨이퍼(W)의 노광을 실시함으로써, 래티클(R)에 형성된 패턴이 웨이퍼(W) 위에 전사되고, 그 웨이퍼(W) 위에는 패턴의 전사상(轉寫像)(예를 들면 레지스트 상)이 사이즈 오차 없이 형성되게 된다.
또, 상기 실시 형태에서는 예를 들면 빔 모니터 기구(16c) 내부의 빔 모니터의 출력을 메인 제어 장치(50)가 상시 모니터하고, 레이저 빔(LB)의 스펙트럼 폭의 변화에 따라 웨이퍼(W)의 노광량 제어를 최적화하는 것에 의해, 레이저 빔(LB)의 스펙트럼 폭 변화에도 영향을 받지 않고, 항상 최적인 해상 성능으로 노광을 실시하는 것도 가능하다.
또한, 레이저 빔(LB)의 중심 파장의 변동에 의해서, 웨이퍼(W) 위에 형성되는 패턴에 선폭 오차가 생기는 경우에는 빔 모니터 기구(16c)를 사용하여 레이저 빔(LB)의 중심 파장을 상시 모니터하고, 그 결과에 근거하여 스펙트럼 폭과 적산 노광량과의 적어도 한쪽을 조정(제어)하여도 좋다.
또한, 상술한 제 1 실시 형태에 있어서, 상술의 취득된 정보(스펙트럼 폭 및 적산 노광량 중 적어도 한쪽의 정보)에 기초하여 스펙트럼 폭 및 적산 노광량 중 적어도 한쪽의 제어(조정)는 웨이퍼(W) 위의 하나의 샷 영역에 대한 노광중에 실행하여도 좋고, 웨이퍼(W) 위의 하나의 샷 영역의 노광 종료 후, 다음의 샷 영역의 노광 개시 전에 행하여도 좋으며, 1매의 웨이퍼의 노광 종료 후, 다음의 웨이퍼의 노광 개시 전에 행하여도 좋다.
또, 상술한 취득된 정보(스펙트럼 폭 및 적산 노광량 중 적어도 한쪽의 정보)로부터 구해지는 선폭 오차의 제어량(조정량)에 따라, 스펙트럼 폭의 제어(조정) 또는 노광량의 제어(조정)를 실행하도록 하여도 좋다. 예를 들면, 선폭 오차의 제어량이 소정의 문턱값보다 큰 경우에는 스펙트럼 폭의 조정(제어)을 실시하고, 선폭 오차의 제어량이 소정의 문턱값보다 작은 경우에는 적산 노광량의 제어(조정) 를 실시하도록 할 수 있다.
또, 상술한 취득된 정보(스펙트럼 폭 및 적산 노광량 중 적어도 한쪽의 정보)에 근거하여, 스펙트럼 폭의 제어(조정)와 적산 노광량의 제어(조정)의 양쪽 모두를 실행하는 경우에는 각 제어를 다른 타이밍으로 실행하여도 좋다. 예를 들면, 적산 노광량의 제어(조정)는 1개의 샷 영역의 노광중에 실행하고, 스펙트럼 폭의 제어(조정)는 웨이퍼(W) 위에 레이저 광이 조사되어 있지 않은 기간, 예를 들면 2개의 샷 영역의 노광의 사이에서 행해지는 스텝핑 중, 웨이퍼 교환 중 등에 실행하도록 하여도 좋다.
따라서, 메인 제어 장치(50)는 빔 모니터 기구(16c) 내부의 빔 모니터의 출력을 상시 취입하지 않아도 좋고, 미리 정해진 간격, 구체적으로는 웨이퍼 교환의 때마다 취입하는 것으로 하여도 좋으며, 혹은 소정 매수, 예를 들면 1로트(lot)의 웨이퍼의 노광의 종료마다 취입하는 것으로 하여도 좋다.
또, 상기 실시 형태의 노광 장치에 있어서, 스펙트럼 폭과 선폭 오차와의 관계 및 적산 노광량과 선폭 오차와의 관계 혹은 스펙트럼 선폭의 변화량과 Dose의 변화량과의 관계(예를 들면 ΔDose / Δ스펙트럼 폭) 등은, 노광 조건마다, 예를 들면 레지스트의 종류나 웨이퍼 위에 형성하는 패턴마다, 혹은 조명 조건마다, 미리 설정해 두도록 하여도 좋다.
그런데, 상기 실시 형태에서는 노광량의 조정(변화)을 하는 경우, 노광 필드(상술한 노광 영역(42W)) 내에서, 그 필드 내의 장소에 의하지 않고 노광량을 균일하게 증감시켜도 좋고, 필드 내의 일부만을 다른 부분과 다르도록 증감시켜도 좋 다.
또한, 상기 실시 형태에 있어서의 스펙트럼 제어에 관한 메인 제어 장치(50)의 기능의 일부를 레이저 장치(16) 내부의 레이저 제어 장치(16e)가 실시하도록 하여도 좋다. 또, 레이저 제어 장치(16e) 및 메인 제어 장치(50) 중 적어도 한쪽의 적어도 일부의 기능을 복수의 하드웨어, 예를 들면 기억 장치, 연산 장치, 제어 장치 등의 편성에 의해 실행하는 것으로 하여도 물론 좋다.
또한, 상술한 제 1 실시 형태에 있어서는 사용하는 레티클의 정보(피크·바이어스 정보 등)에 근거하는 스펙트럼 폭의 조정(제어)과, 상술한 취득된 정보(스펙트럼 폭, 적산 노광량의 정보 등)에 근거하는 스펙트럼 폭 및 적산 노광량 중 적어도 한쪽의 제어와의 양쪽 모두를 실행하고 있지만, 어느 한쪽만을 실행하여도 좋다. 또, 상기 실시 형태에서는, 「선폭 오차가 생기지 않도록」이라는 표현을 이용하고 있지만, 이것은 오차가 영인 경우로 한정되는 것이 아니고, 오차가 허용범위 내에 들어가는 경우도 포함한다.
《제 2 실시 형태》
다음에, 본 발명의 제 2 실시 형태를 도 8에 근거하여 설명한다. 이 제 2 실시 형태의 시스템은 복수대의 노광 장치 각각의 노광 광원인 복수대의 레이저 장치를 구비하고 있으나, 이하에서는 복잡화를 피하는 관점으로부터, 2대의 레이저 장치(16A, 16B)에 대해서만 설명한다. 또, 상술한 제 1 실시 형태와 동일 또는 동등한 구성 부분에 대해서는 동일한 부호를 부여하고, 그 설명을 간략 혹은 생략한다.
도 8에 나타나는 레이저 장치(16A, 16B)의 각각은 기준 광원(16h), 하프 미 러(16g), 셔터(21, 23)가 설치되어 있지 않은 점을 제외하고, 상술한 레이저 장치(16)와 동일하게 구성되어 있다. 레이저 장치(16A)의 레이저 공진기(16a)로부터 사출되는 레이저 빔(LB1)의 광로 위에는 투과율이 97% 정도의 빔 스플리터(72)가 배치되어 있다. 이 빔 스플리터(72)의 반사 광로 위에 하프 미러(76, 77)가 차례차례 배치되어 있다.
빔 스플리터(72)에 있어서의 레이저 빔(LB1)의 투과 광로의 후방에는 도시하지 않은 송광 광학계를 통하여 상술한 노광 장치(10)와 동일하게 구성된 노광 장치(이하, 제 1 노광 장치라고 부른다)의 조명 광학계가 배치되어 있다. 즉, 레이저 장치(16A)는 그 제 1 노광 장치의 노광 광원이다.
상기 레이저 장치(16B)의 레이저 공진기(16a)로부터 사출되는 레이저 빔(LB2)의 광로 위에는, 투과율이 97% 정도의 빔 스플리터(74)가 배치되어 있다. 이 빔 스플리터(74)의 반사 광로 위에는 광로를 90°로 접어 구부리는 미러(78)가 배치되고, 이 미러에서 접어 구부러진 레이저 빔(LB2)의 광로 위에 상술한 하프 미러(77)가 배치되어 있다.
빔 스플리터(74)에 있어서의 레이저 빔(LB2)의 투과 광로의 후방에는 도시하지 않은 송광 광학계를 통하여 상술한 노광 장치(10)와 동일하게 구성된 노광 장치(이하, 제 2 노광 장치라고 부른다)의 조명 광학계가 배치되어 있다. 즉, 레이저 장치(16B)는 그 제 2 노광 장치의 노광 광원이다.
상기 하프 미러(76)는 빔 스플리터(72)에 의한 레이저 빔(LB1)의 반사 광로 위에서 또한 기준 광원(82)으로부터의 광의 광로 위에 위치하고 있다. 기준 광원 82로서는 기준 광원 16h와 같이, Ar배파 레이저 광원(아르곤 이온 2배 고주파 레이저 광원)이 이용되고 있다.
기준 광원(82)으로부터 하프 미러(76)에 사출되는 광의 광로 위에 셔터(80)가 배치되어 있다. 이 셔터(80)는, 통상시는 광로를 닫고 있다. 이 셔터(80)는 제 1 노광 장치 및 제 2 노광 장치로부터의 정보에 근거하여, 제어 장치(86)가 어느 노광 장치의 셔터(16f)도 닫혀져 있다고 판단했을 때에 제어 장치(86)에 의해서 필요에 따라서 열린다. 이 셔터가 열린 상태에서는, 기준 광원(82)으로부터의 광이 하프 미러(76, 77)를 통하여 분광기(84)에 입사한다. 이 때의 분광기(84)의 출력 신호가 장치 함수로서 제어 장치(86)에 취입된다. 제어 장치(86)는 이 장치 함수의 갱신을 소정의 인터벌(interval)에서 실행한다.
또, 제어 장치(86)는 각각의 노광 장치의 메인 제어 장치와의 사이에서 통신을 실시하여, 셔터(80)를 닫은 상태에서 레이저 장치(16A, 16B)의 각각으로부터의 레이저 빔(LB1, LB2)을 분광기(84)에 택일적으로 취입하고, 그 분광기(84)의 출력 신호에 상술한 디컨벌루션 처리를 실시하여, 레이저 빔(LB1, LB2)의 실스펙트럼 신호를 얻고, 이 얻어진 실스펙트럼 신호에 근거하여, 정확한 스펙트럼 폭(예를 들면 FWHM 또는 95% 에너지 순도 폭)의 정보를 얻는다. 이 레이저 빔(LB1, LB2)의 스펙트럼의 계측도 정기적 또는 필요에 따라서 실행된다.
또, 제어 장치(86)가 레이저 장치(16A)로부터의 레이저 빔(LB1)(또는 레이저 장치(16B)로부터의 레이저 빔(LB2))를 분광기(84)에 취입할 때는, 제 1 노광 장치(또는 제 2 노광 장치)의 메인 제어 장치에 대해서 레이저 장치(16A)(또는 레이저 장치(16B)) 내부의 빔 모니터 기구(16c)로의 레이저 빔(LB1)(또는 레이저 빔(LB2)) 의 취입을 지시한다. 그리고, 제어 장치(86)는 그 빔 모니터 기구(16c) 내부의 빔 모니터의 출력, 즉 빔 모니터에 의한 스펙트럼 폭의 계측치를 제 1 노광 장치(또는 제 2 노광 장치)의 메인 제어 장치로부터 얻고, 이 계측치와 분광기(84)의 출력 신호에 근거하여 산출한 레이저 빔(LB1)(또는 레이저 빔(LB2))의 스펙트럼 폭을 비교 하여, 빔 모니터 기구(16c) 내의 빔 모니터의 계측치를 교정하기 위한 계수를 제 1 노광 장치(또는 제 2 노광 장치)의 메인 제어 장치에 송신하여도 좋다.
또한, 도 8에서는 레이저 장치(16A, 16B)의 셔터(16f)가 열려 있는 상태에서 레이저 공진기(16a)로부터 레이저 빔(LB1)(또는 LB2)이 발진되고 있을 때는 항상 레이저 빔(LB1)(또는 LB2)이 분광기(84)에 입사하도록 도시되어 있으나, 실제로는 빔 스플리터 72에 의한 레이저 빔(LB1)의 반사 광로, 빔 스플리터 74에 의한 레이저 빔(LB2)의 반사 광로를 각각 개폐하는 셔터가 설치되어 있다. 이러한 셔터는 레이저 빔(LB1, LB2)을 분광기(84)에 입사시킬 필요가 없을 때에는 제어 장치(86)에 의해서 닫혀져 있다.
이상 설명한 본 제 2 실시 형태의 시스템에 의하면, 기준 광원(82)을 이용하여 분광기(84)의 교정을 실시하고, 이 교정된 분광기(84)를 이용하여 복수대의 레이저 장치(16A, 16B) 등에서부터 출력되는 레이저 빔(LB1, LB2) 등의 스펙트럼 폭 측정을 실시하는 것에 의해, 각각의 레이저 장치로부터 출력되는 레이저 빔의 스펙트럼 폭을 정밀도 좋게 계측하는 것이 가능해진다. 또, 각각의 레이저 장치(16A, 16B)의 빔 모니터 기구(16c) 내의 빔 모니터(스펙트럼 모니터)와 교정된 분광 기(84)를 이용하여 레이저 빔(LB1 또는 LB2)의 스펙트럼 폭의 동시 계측을 실시함으로써, 각각의 빔 모니터(스펙트럼 모니터)를 정밀도 좋고 용이하게 교정하는 것이 가능해진다.
또, 본 제 2 실시 형태에서는 레이저 장치(16A, 16B)의 각각이 다른 노광 장치의 광원이기 때문에, 그러한 노광 장치를 이용한 믹스·엔드·매치 노광을 실시하는 경우에 노광 장치 사이의 CD매칭의 향상, 레티클을 공유했을 때의 플렉서빌러티의 향상이 기대된다.
또한, 상기 제 2 실시 형태에 있어서, 레이저 장치(16A, 16B) 등의 교정을 레이저 장치를 노광에 사용하고 있지 않을 때, 예를 들면 소위 레이저 품위를 유지하기 위한 자기 발진(Self lock 발진)시에 실시하여도 좋다. 이 경우, 각 레이저 장치로부터의 Sync out 신호 등을 장치군(群) 공유의 인터페이스로 전환하고, 스펙트럼 계측을 실시하는 것으로 하여도 좋다. 단, 이와 같이 하는 경우에는, 셔터(16f)를 닫은 상태에서 자기 발진시의 레이저 빔을 분광기에 입사시킬 수 있도록 시스템의 일부의 구성의 변경을 실시할 필요가 있다.
또한, 상기 실시 형태에서는 본 발명이 스텝·엔드·주사방법의 주사형 노광 장치에 적용되었을 경우에 대해 설명하였으나, 이것에 한정하지 않고, 본 발명은 스텝·엔드-리피트 방식의 노광 장치(이른바 스텝퍼) 혹은 스텝·엔드·스티치 방식의 노광 장치에도 바람직하게 적용할 수 있다. 스텝퍼 등에 본 발명을 적용하는 경우, 레이저 장치로부터 출력되는 펄스마다의 에너지 값을 일정하게 하여 웨이퍼 위의 1점으로 조사되는 레이저 펄스 수를 조정하는 방법, 조사 펄스 수를 고정치로 서 펄스마다의 에너지 값을 바꾸는 방법, 혹은 이것들을 조합하여 제어하는 방법 중 어느 하나를 채용하여, 웨이퍼에 대한 노광량을 제어하는 것으로 하면 좋다.
이 외, 예를 들면 국제공개 제2004/053955호 팜플렛 및 이것에 대응하는 미국 특허 출원 공개 제2005/0259234호 명세서 등에 개시되는 투영 광학계(PL)와 웨이퍼와의 사이에 액체가 채워지는 액침(液浸)형 노광 장치 등에도 본 발명을 적용하여도 좋다. 이 외, 본 발명은 특개평6-124873호 공보, 특개평10-303114호 공보, 미국 특허 제5,825,043호 명세서 등에 개시되어 있는 바와 같은 노광 대상의 웨이퍼 등의 표면 전체가 액체 중에 잠겨 있는 상태에서 노광을 실시하는 액침 노광 장치에도 적용 가능하다. 또, 예를 들면 국제 공개 제 2001/035168호 팜플렛에 개시되어 있는 바와 같이, 간섭 줄무늬를 기판 위에 형성함으로써 기판 위에 라인·엔드·스페이스 패턴을 형성하는 노광 장치(리소그래피 시스템)에도 본 발명을 적용할 수 있다. 또한, 예를 들면 특표2004-519850호 공보(대응 미국 특허 제6,611,316호 명세서)에 개시되어 있는 바와 같이, 2개의 레티클의 패턴을 투영 광학계를 통하여 기판 위에서 합성하고, 1회의 주사 노광에 의해서 기판 위의 하나의 샷 영역을 거의 동시에 이중 노광하는 노광 장치 등에도 본 발명을 적용할 수 있다. 본 국제출원에서 지정한 지정국(또는 선택한 선택국)의 국내법령이 허락하는 한에 있어서, 상기 국제 공개 팜플렛 및 상기 각 공보 및 이것들에 대응하는 미국 특허 출원 공개 명세서 또는 미국 특허 명세서에 있어서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
또한, 상술한 실시 형태에 있어서는 광투과성의 기판 위에 소정의 차광 패 턴(또는 위상 패턴·감광 패턴)을 형성한 광투과형 마스크를 이용하였으나, 이 마스크에 대신하여, 예를 들면 미국 특허 제6,778,257호 명세서에 개시되어 있는 바와 같이, 노광해야 할 패턴의 전자 데이터에 근거하여, 투과 패턴 또는 반사 패턴 혹은 발광 패턴을 형성하는 전자 마스크(가변 성형 마스크라고도 불리고, 예를 들면 비발광형 화상 표시 소자(공간 광변조기)의 일종인 DMD(Digital Micro-mirror Device) 등을 포함한다)를 이용하여도 좋다. 본 국제출원에서 지정한 지정국(또는 선택한 선택국)의 국내법령이 허락하는 한에 있어서, 상기 미국 특허 명세서에 있어서의 개시를 원용하여 본 명세서의 기재의 일부로 한다.
또, 상기 실시 형태에 있어서, 레이저 광으로서 예를 들면 국제 공개 제1999/46835호 팜플렛(대응 미국 특허 제7,023,610호 명세서)에 개시되어 있는 바와 같이, DFB 반도체 레이저 또는 섬유 레이저로부터 발진되는 적외역 또는 가시역의 단일 파장 레이저 광을 예를 들면 에르븀(erbium)(또는 에르븀과 이테르븀(ytterbium)의 양쪽 모두)이 도프(dope)된 화이버 엠프(fiber amp)에서 증폭하고, 비선형 광학 결정을 이용하여 자외광으로 파장 변환한 고주파를 이용하여도 좋다.
또, 레이저 광원으로서는 파장 146nm의 Kr2 레이저(클립톤(krypton)·다이머 레이저(dimer laser)), 파장 126 nm의 Ar2 레이저(아르곤·다이머 레이저) 등의 진공 자외광을 발생하는 광원을 사용하여도 좋다.
또, 투영 광학계는 축소계 뿐만 아니라 등배 및 확대계 중 어느 하나로도 좋 다. 투영 광학계는 굴절계 뿐만 아니라, 반사계 및 반사 굴절계 중 하나로도 좋으며, 그 투영상은 도립상(道立像) 및 정립상(正立像) 중 하나로도 좋다.
또, 노광 장치의 용도로서는 반도체 제조용의 노광 장치로 한정되지 않고, 예를 들면, 각형(角形)의 유리 플레이트에 액정 표시 소자 패턴을 전사하는 액정 용의 노광 장치나, 박막 자기 헤드, 마이크로 머신 및 DNA 칩 등을 제조하기 위한 노광 장치에도 넓게 적용할 수 있다. 또, 반도체 소자 등의 마이크로 디바이스 뿐만 아니라, 광 노광 장치, EUV 노광 장치, X선 노광 장치 및 전자선 노광 장치 등에서 사용되는 레티클 또는 마스크를 제조하기 위해서, 유리 기판 또는 실리콘 웨이퍼 등에 회로 패턴을 전사하는 노광 장치에도 본 발명을 적용할 수 있다.
또한, 반도체 디바이스는, 디바이스의 기능·성능 설계를 실시하는 스텝, 이 설계 스텝에 기초한 레티클을 제작하는 스텝, 실리콘 재료로부터 웨이퍼를 제작하는 스텝, 웨이퍼 등의 물체 위에 레지스트 등의 감응재를 도포하는 코팅 처리, 상기 실시 형태의 노광 장치에서 레티클에 형성된 패턴을 상술한 액침 노광에 의해 감응재가 도포된 웨이퍼 등의 물체 위에 전사하는 노광 처리 및 노광 후의 웨이퍼를 현상하는 현상 처리를 포함하는 리소그래피 스텝, 디바이스 조립 스텝(다이싱 공정, 본딩(bonding) 공정, 패키지 공정을 포함한다), 검사 스텝 등을 거쳐 제조된다. 이 경우, 리소그래피 스텝으로 상기 실시 형태의 노광 장치 및 그 노광 방법이 이용되므로, 고집적도의 디바이스를 제품 수율(收率) 좋게 제조할 수 있다.
이상 설명한 바와 같이, 본 발명의 노광 장치 및 노광 방법 및 디바이스 제 조 방법은 반도체 소자 등의 전자 장치를 제조하는데 적합하다. 또, 본 발명의 시스템은 복수의 레이저 장치의 광학 특성의 교정에 적합하다.

Claims (24)

  1. 에너지 빔에 의해 물체를 노광(露光)하여 상기 물체 위에 패턴을 형성하는 노광 장치로서,
    상기 에너지 빔으로서 레이저 광을 사출하는 레이저 장치와;
    물체 위에 형성되는 패턴의 사이즈 오차와 상기 레이저 장치로부터 사출되는 레이저 광의 스펙트럼 특성과의 관계를 나타내는 패턴 사이즈 오차-스펙트럼 특성 정보가 기억된 기억 장치와;
    상기 패턴 사이즈 오차-스펙트럼 특성 정보와 사용하는 패턴에 관한 정보에 근거하여, 상기 레이저 광의 스펙트럼 폭을 제어하는 스펙트럼 제어 장치를 구비하고,
    상기 패턴 사이즈 오차-스펙트럼 특성 정보는 스펙트럼 폭과 피크·바이어스(peak bias)와의 관계를 나타내는 정보이고,
    상기 사용하는 패턴에 관한 정보는 마스크에 관한 피크·바이어스 정보이고,상기 마스크에 관한 피크·바이어스 정보는 최대 선폭과 최소 선폭의 차이로 정의되는 노광 장치.
  2. 청구항 1에 있어서,
    상기 스펙트럼 제어 장치는 상기 패턴 사이즈 오차-스펙트럼 특성 정보와 사용하는 패턴에 관한 정보에 근거하여, 상기 사이즈 오차를 억제하기 위한 상기 레이저 광의 스펙트럼 폭을 산출하고, 그 산출 결과에 근거하여 상기 스펙트럼 폭을 제어하는 노광 장치.
  3. 청구항 2에 있어서,
    상기 사용하는 패턴이 형성된 마스크가 실어 놓인 마스크 테이블을 더 구비 하고,
    상기 사용하는 패턴에 관한 정보로서 상기 마스크에 관한 정보가 이용되는 노광 장치.
  4. 청구항 3에 있어서,
    상기 패턴 사이즈 오차-스펙트럼 특성 정보는 노광 장치에 고유의 스펙트럼 바이어스 함수를 포함하고, 상기 마스크에 관한 정보는 마스크 바이어스 함수를 포함하며,
    상기 스펙트럼 제어 장치는 상기 스펙트럼 바이어스 함수와 상기 마스크 바이어스 함수와의 상관 계수에 근거하여, 상기 사이즈 오차를 억제하기 위한 상기 레이저 광의 스펙트럼 폭을 산출하는 노광 장치.
  5. 청구항 1에 있어서,
    상기 스펙트럼 제어 장치 중 적어도 일부는 상기 레이저 장치에 설치되어 있는 노광 장치.
  6. 청구항 1에 있어서,
    상기 스펙트럼 폭에 따라 상기 물체에 대한 적산(積算) 노광량을 제어하는 노광량 제어 장치를 더 구비하는 노광 장치.
  7. 청구항 6에 있어서,
    상기 기억 장치에는 레이저 광의 스펙트럼 폭과 적산 노광량과의 관계를 나타내는 제 2 정보가 더 기억되고,
    상기 노광량 제어 장치는 상기 레이저 장치로부터 사출되는 레이저 광의 스펙트럼 폭 정보를 취득하며, 그 취득한 스펙트럼 폭의 정보와 상기 제 2 정보에 근거하여 상기 물체에 대한 적산 노광량을 제어하는 노광 장치.
  8. 청구항 7에 있어서,
    상기 제 2 정보는 레이저 광의 스펙트럼 폭과 패턴의 사이즈 오차와의 관계 및 적산 노광량과 패턴의 사이즈 오차와의 관계를 포함하는 노광 장치.
  9. 청구항 1에 있어서,
    상기 스펙트럼 제어 장치는 상기 물체에 대한 적산 노광량에 따라, 상기 레이저 광의 스펙트럼 폭을 제어하는 노광 장치.
  10. 청구항 9에 있어서,
    상기 기억 장치에는 레이저 광의 스펙트럼 폭과 적산 노광량과의 관계를 나타내는 스펙트럼 폭-적산 노광량 정보가 더 기억되고,
    상기 스펙트럼 제어 장치는 상기 레이저 장치로부터 사출되는 레이저 광의 상기 적산 노광량의 정보를 취득하며, 그 취득한 적산 노광량의 정보와 상기 스펙 트럼 폭-적산 노광량 정보에 근거하여, 상기 레이저 광의 스펙트럼 폭을 제어하는 노광 장치.
  11. 청구항 10에 있어서,
    상기 스펙트럼 폭-적산 노광량 정보는 레이저 광의 스펙트럼 폭과 패턴의 사이즈 오차와의 관계 및 적산 노광량과 패턴의 사이즈 오차와의 관계를 포함하는 노광 장치.
  12. 레이저 광원으로부터 사출되는 레이저 광에 의해 물체를 노광하여, 이 물체 위에 패턴을 형성하는 노광 방법으로서,
    사용하는 패턴에 관한 정보를 입력하는 공정과;
    상기 입력된 정보와 상기 물체 위에 형성되는 패턴의 사이즈 오차와 상기 레이저 광원으로부터 사출되는 레이저 광의 스펙트럼 특성과의 관계를 나타내는 패턴 사이즈 오차-스펙트럼 특성 정보에 근거하여, 상기 레이저 광의 스펙트럼 폭을 제어하는 공정을 포함하고,
    상기 정보를 입력하는 공정에서, 상기 사용하는 패턴에 관한 정보로서, 마스크에 관한 피크·바이어스 정보가 입력되고, 상기 마스크에 관한 피크·바이어스 정보는 최대 선폭과 최소 선폭의 차이로 정의되고,
    상기 스펙트럼 폭을 제어하는 공정에서, 상기 레이저 광의 스펙트럼 폭은, 상기 정보를 입력하는 공정에서 입력된 정보, 및 상기 패턴 사이즈 오차-스펙트럼 특성 정보로서 역할하는 스펙트럼 폭과 피크·바이어스와의 관계를 나타내는 정보에 근거하여 제어되는 노광 방법.
  13. 청구항 12에 있어서,
    상기 스펙트럼 폭을 제어하는 공정에서는 상기 패턴 사이즈 오차-스펙트럼 특성 정보와 사용하는 패턴에 관한 정보에 근거하여, 상기 사이즈 오차를 억제하기 위한 상기 레이저 광의 스펙트럼 폭을 산출하며, 그 산출 결과에 근거하여 상기 스 펙트럼 폭을 제어하는 노광 방법.
  14. 청구항 13에 있어서,
    상기 사용하는 패턴은 마스크에 형성되고,
    상기 사용하는 패턴에 관한 정보로서 상기 마스크에 관한 정보가 이용되는 노광 방법.
  15. 청구항 14에 있어서,
    상기 패턴 사이즈 오차 스펙트럼 특성 정보는 노광 장치에 고유의 스펙트럼 바이어스(bias) 함수를 포함하고, 상기 마스크에 관한 정보는 마스크 바이어스 함수를 포함하며,
    상기 제어하는 공정에서는, 상기 스펙트럼 바이어스 함수와 상기 마스크 바이어스 함수와의 상관 계수에 근거하여, 상기 사이즈 오차를 억제하기 위한 상기 레이저 광의 스펙트럼 폭을 산출하는 노광 방법.
  16. 청구항 12에 있어서,
    상기 스펙트럼 폭에 따라 상기 물체에 대한 적산 노광량을 제어하는 공정을 더 포함하는 노광 방법.
  17. 청구항 16에 있어서,
    레이저 광의 스펙트럼 폭과 적산 노광량과의 관계를 나타내는 스펙트럼 폭- 적산 노광량 정보를 취득하는 공정을 더 포함하고,
    상기 적산 노광량을 제어하는 공정에서는 상기 레이저 광원으로부터 사출되는 레이저 광의 스펙트럼 폭 정보를 취득하며, 그 취득한 스펙트럼 폭의 정보와 상기 스펙트럼 폭-적산 노광량 정보에 근거하여 상기 물체에 대한 적산 노광량을 제어하는 노광 방법.
  18. 청구항 17에 있어서,
    상기 스펙트럼 폭-적산 노광량 정보는 레이저 광의 스펙트럼 폭과 패턴의 사이즈 오차와의 관계 및 적산 노광량과 패턴의 사이즈 오차와의 관계를 포함하는 노광 방법.
  19. 청구항 12에 있어서,
    레이저 광의 스펙트럼 폭과 적산 노광량과의 관계를 나타내는 스펙트럼 폭-적산 노광량 정보를 취득하는 공정을 더 포함하고,
    상기 스펙트럼 폭을 제어하는 공정에서는 상기 레이저 광원으로부터 사출되는 레이저 광의 상기 적산 노광량의 정보를 취득하고, 그 취득한 적산 노광량의 정보와 상기 스펙트럼 폭-적산 노광량 정보에 근거하여, 상기 레이저 광의 스펙트럼 폭을 제어하는 노광 방법.
  20. 청구항 19에 있어서,
    상기 스펙트럼 폭-적산 노광량 정보는 레이저 광의 스펙트럼 폭과 패턴의 사이즈 오차와의 관계 및 적산 노광량과 패턴의 사이즈 오차와의 관계를 포함하는 노광 방법.
  21. 삭제
  22. 삭제
  23. 리소그래피(lithography) 공정을 포함하는 디바이스 제조 방법으로서,
    상기 리소그래피 공정에서는, 청구항 12 내지 20 중 어느 한 항에 기재한 노광 방법을 이용하여 감응 물체 위에 패턴을 형성하는 디바이스 제조 방법.
  24. 삭제
KR1020077011649A 2005-07-01 2006-06-30 노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템 KR101302244B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00194373 2005-07-01
JP2005194373 2005-07-01
US78173506P 2006-03-14 2006-03-14
US60/781,735 2006-03-14
PCT/JP2006/313104 WO2007004567A1 (ja) 2005-07-01 2006-06-30 露光装置、露光方法及びデバイス製造方法、並びにシステム

Publications (2)

Publication Number Publication Date
KR20080031660A KR20080031660A (ko) 2008-04-10
KR101302244B1 true KR101302244B1 (ko) 2013-09-02

Family

ID=37604432

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077011649A KR101302244B1 (ko) 2005-07-01 2006-06-30 노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템

Country Status (6)

Country Link
US (1) US7701555B2 (ko)
EP (1) EP1901339A4 (ko)
JP (1) JP5104305B2 (ko)
KR (1) KR101302244B1 (ko)
CN (1) CN100526992C (ko)
WO (1) WO2007004567A1 (ko)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719676B2 (en) * 2007-02-15 2010-05-18 Baker Hughes Incorporated Downhole laser measurement system and method of use therefor
US7460237B1 (en) 2007-08-02 2008-12-02 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
CN101681123B (zh) 2007-10-16 2013-06-12 株式会社尼康 照明光学系统、曝光装置以及元件制造方法
KR101546987B1 (ko) * 2007-10-16 2015-08-24 가부시키가이샤 니콘 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) * 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP5360057B2 (ja) * 2008-05-28 2013-12-04 株式会社ニコン 空間光変調器の検査装置および検査方法、照明光学系、照明光学系の調整方法、露光装置、およびデバイス製造方法
WO2010003157A1 (en) * 2008-07-03 2010-01-07 All Protect, Llc System and method for non-invasive spectroscopic detection for blood alcohol concentration
US8520186B2 (en) 2009-08-25 2013-08-27 Cymer, Llc Active spectral control of optical source
NL2006073A (en) * 2010-02-12 2011-08-15 Asml Netherlands Bv Lithographic apparatus and method.
JP5441795B2 (ja) * 2010-03-31 2014-03-12 キヤノン株式会社 イメージング装置及びイメージング方法
JP2012253298A (ja) * 2011-06-07 2012-12-20 Disco Abrasive Syst Ltd 加工装置
JP5828683B2 (ja) * 2011-06-07 2015-12-09 株式会社ディスコ 加工装置
CN103782240A (zh) * 2011-07-11 2014-05-07 迈普尔平版印刷Ip有限公司 用于存储目标的位置数据的光刻系统和方法
EP2838689A1 (de) * 2012-04-18 2015-02-25 SMS Meer GmbH Verfahren und vorrichtung zum längsnahtschweissen von profilrohren auf einer rohrschweissanlage
JP6151054B2 (ja) * 2013-03-22 2017-06-21 ギガフォトン株式会社 レーザ装置及び極端紫外光生成装置
WO2014156407A1 (ja) * 2013-03-27 2014-10-02 ギガフォトン株式会社 レーザ光の波長を制御する方法およびレーザ装置
US9715180B2 (en) 2013-06-11 2017-07-25 Cymer, Llc Wafer-based light source parameter control
US9429849B2 (en) * 2014-03-07 2016-08-30 Kabushiki Kaisha Toshiba Adjusting method of pattern transferring plate, laser application machine and pattern transferring plate
JP2015233064A (ja) * 2014-06-09 2015-12-24 東京エレクトロン株式会社 エッチング処理方法及びベベルエッチング装置
CN104181777B (zh) * 2014-07-31 2016-03-09 中国科学院微电子研究所 一种调焦调平传感器测量装置
WO2016035842A1 (ja) * 2014-09-04 2016-03-10 株式会社ニコン 処理システムおよびデバイス製造方法
US9261794B1 (en) * 2014-12-09 2016-02-16 Cymer, Llc Compensation for a disturbance in an optical source
CN107735914B (zh) * 2015-07-14 2020-06-26 极光先进雷射株式会社 准分子激光装置
WO2017094099A1 (ja) * 2015-12-01 2017-06-08 ギガフォトン株式会社 エキシマレーザ装置
JP6549248B2 (ja) 2015-12-10 2019-07-24 ギガフォトン株式会社 狭帯域化レーザ装置及びスペクトル線幅計測装置
KR102350572B1 (ko) * 2016-02-22 2022-01-11 에이에스엠엘 네델란즈 비.브이. 계측 데이터에 대한 기여도들의 분리
CN108628109B (zh) * 2018-05-04 2021-06-15 上海华力集成电路制造有限公司 光刻曝光设备及光刻曝光方法
WO2021072136A2 (en) * 2019-10-08 2021-04-15 Bayer Healthcare Llc Laser etched capsules and methods of making them
KR20220064412A (ko) * 2019-11-07 2022-05-18 사이머 엘엘씨 광학 소스에 의해 생성된 출력 광 빔의 스펙트럼 특성 제어
CN115023657A (zh) * 2020-03-19 2022-09-06 极光先进雷射株式会社 曝光系统、激光控制参数的生成方法和电子器件的制造方法
JP7454038B2 (ja) 2020-03-19 2024-03-21 ギガフォトン株式会社 露光システム、レーザ制御パラメータの作成方法、及び電子デバイスの製造方法
US11796917B2 (en) * 2021-05-07 2023-10-24 Taiwan Semiconductor Manufacturing Company, Ltd. Width adjustment of EUV radiation beam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010026448A1 (en) * 2000-03-30 2001-10-04 Ryo Koizumi Projection exposure apparatus
JP2004271498A (ja) 2003-02-20 2004-09-30 Gigaphoton Inc レーザ光のスペクトル指標値演算方法、レーザ光のスペクトル指標値演算装置及びスペクトル波形計測装置
JP2004537176A (ja) 2001-07-27 2004-12-09 サイマー インコーポレイテッド リソグラフィ処理のためのレーザスペクトルエンジニアリング
JP2005033104A (ja) 2003-07-10 2005-02-03 Gigaphoton Inc 2ステージレーザ用波長検出装置及びその校正装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194648A (ja) * 1987-10-06 1989-04-13 Mitsubishi Electric Corp 半導体装置
JP2619419B2 (ja) * 1987-10-07 1997-06-11 株式会社日立製作所 縮小投影露光装置
US6710855B2 (en) 1990-11-15 2004-03-23 Nikon Corporation Projection exposure apparatus and method
JPH04262588A (ja) * 1991-02-18 1992-09-17 Toshiba Corp レ−ザ装置およびレ−ザ露光装置
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP3412704B2 (ja) 1993-02-26 2003-06-03 株式会社ニコン 投影露光方法及び装置、並びに露光装置
US6420819B1 (en) 1994-01-27 2002-07-16 Active Control Experts, Inc. Packaged strain actuator
JP3175515B2 (ja) * 1994-12-26 2001-06-11 キヤノン株式会社 露光装置及びそれを用いたデバイスの製造方法
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
US5848089A (en) 1997-07-11 1998-12-08 Cymer, Inc. Excimer laser with magnetic bearings supporting fan
US5763930A (en) 1997-05-12 1998-06-09 Cymer, Inc. Plasma focus high energy photon source
US6141081A (en) * 1997-08-08 2000-10-31 Cymer, Inc. Stepper or scanner having two energy monitors for a laser
WO1999046807A1 (fr) 1998-03-09 1999-09-16 Nikon Corporation Procede et appareil d'exposition par balayage, procede de fabrication associe, dispositif et procede de fabrication associe
IL138374A (en) 1998-03-11 2004-07-25 Nikon Corp An ultraviolet laser device and an exposure device that includes such a device
US6563567B1 (en) 1998-12-17 2003-05-13 Nikon Corporation Method and apparatus for illuminating a surface using a projection imaging apparatus
JP2001083472A (ja) * 1999-09-10 2001-03-30 Nikon Corp 光変調装置、光源装置、及び露光装置
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US6807205B1 (en) * 2000-07-14 2004-10-19 Lambda Physik Ag Precise monitor etalon calibration technique
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
JP2004022916A (ja) * 2002-06-19 2004-01-22 Nikon Corp レーザ光源制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
EP1571697A4 (en) 2002-12-10 2007-07-04 Nikon Corp EXPOSURE SYSTEM AND DEVICE PRODUCTION METHOD
EP1510869A3 (en) * 2003-08-29 2009-07-29 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP4580338B2 (ja) 2004-12-23 2010-11-10 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、エキシマ・レーザ、およびデバイス製造方法
US20060139607A1 (en) 2004-12-23 2006-06-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7256870B2 (en) * 2005-02-01 2007-08-14 Asml Netherlands B.V. Method and apparatus for controlling iso-dense bias in lithography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010026448A1 (en) * 2000-03-30 2001-10-04 Ryo Koizumi Projection exposure apparatus
JP2004537176A (ja) 2001-07-27 2004-12-09 サイマー インコーポレイテッド リソグラフィ処理のためのレーザスペクトルエンジニアリング
JP2004271498A (ja) 2003-02-20 2004-09-30 Gigaphoton Inc レーザ光のスペクトル指標値演算方法、レーザ光のスペクトル指標値演算装置及びスペクトル波形計測装置
JP2005033104A (ja) 2003-07-10 2005-02-03 Gigaphoton Inc 2ステージレーザ用波長検出装置及びその校正装置

Also Published As

Publication number Publication date
JPWO2007004567A1 (ja) 2009-01-29
JP5104305B2 (ja) 2012-12-19
EP1901339A4 (en) 2010-05-05
KR20080031660A (ko) 2008-04-10
EP1901339A1 (en) 2008-03-19
US7701555B2 (en) 2010-04-20
CN101080807A (zh) 2007-11-28
CN100526992C (zh) 2009-08-12
WO2007004567A1 (ja) 2007-01-11
US20070273852A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
KR101302244B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템
JP3235078B2 (ja) 走査露光方法、露光制御装置、走査型露光装置、及びデバイス製造方法
TWI427878B (zh) 光源之主動光譜控制技術
US7154922B2 (en) Laser beam source control method and unit, exposure method and apparatus, and device manufacturing method
JP2004537176A (ja) リソグラフィ処理のためのレーザスペクトルエンジニアリング
US11467502B2 (en) Wavelength control method of laser apparatus and electronic device manufacturing method
US4922290A (en) Semiconductor exposing system having apparatus for correcting change in wavelength of light source
JPWO2007066700A1 (ja) レーザ光源装置、並びに露光方法及び装置
JP2007142052A (ja) 露光装置、レーザ光源、露光方法、及びデバイス製造方法
JP4343559B2 (ja) 収差測定装置
JP3414476B2 (ja) 投影露光装置
JP2011171521A (ja) レーザ光源の評価方法、並びに露光方法及び装置
JP2007294550A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2008171961A (ja) レーザ装置、露光方法及び装置、並びにデバイス製造方法
JP2008166612A (ja) レーザ装置、露光装置、並びに制御方法、露光方法及びデバイス製造方法
EP1548501A2 (en) Laser unit, exposure apparatus for micro-lithiographie and associated method
TW200412616A (en) Exposure device, exposure method, method of making devices, measuring method and measuring device
JP2003282430A (ja) 露光装置及び露光方法、デバイス製造方法、並びに測定方法及び測定装置
JPH01239923A (ja) 露光装置
US20240111219A1 (en) Wavelength control method, laser apparatus, and method for manufacturing electronic devices
KR19980080158A (ko) 주사 노광 방법 및 주사형 노광 장치
JP3296484B2 (ja) 走査露光方法、走査型露光装置、及びデバイス製造方法
JP3344477B2 (ja) 走査露光方法、レーザ装置、走査型露光装置、及びデバイス製造方法
JP2001118784A (ja) 露光装置及びその露光装置における疎密線幅差の補正方法並びに露光方法
JP2000021717A (ja) 露光量制御方法及び露光装置

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160727

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 5