JP6549248B2 - 狭帯域化レーザ装置及びスペクトル線幅計測装置 - Google Patents

狭帯域化レーザ装置及びスペクトル線幅計測装置 Download PDF

Info

Publication number
JP6549248B2
JP6549248B2 JP2017554731A JP2017554731A JP6549248B2 JP 6549248 B2 JP6549248 B2 JP 6549248B2 JP 2017554731 A JP2017554731 A JP 2017554731A JP 2017554731 A JP2017554731 A JP 2017554731A JP 6549248 B2 JP6549248 B2 JP 6549248B2
Authority
JP
Japan
Prior art keywords
wavelength
spectral
line width
unit
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017554731A
Other languages
English (en)
Other versions
JPWO2017098625A1 (ja
Inventor
貴仁 熊▲崎▼
貴仁 熊▲崎▼
石田 啓介
啓介 石田
博志 古里
博志 古里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Publication of JPWO2017098625A1 publication Critical patent/JPWO2017098625A1/ja
Application granted granted Critical
Publication of JP6549248B2 publication Critical patent/JP6549248B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2859Peak detecting in spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2251ArF, i.e. argon fluoride is comprised for lasing around 193 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2256KrF, i.e. krypton fluoride is comprised for lasing around 248 nm

Description

本開示は、狭帯域化レーザ装置及びスペクトル線幅計測装置に関する。
半導体集積回路の微細化、高集積化につれて、半導体露光装置においては解像力の向上が要請されている。半導体露光装置を以下、単に「露光装置」という。このため露光用光源から出力される光の短波長化が進められている。露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられている。現在、露光用のガスレーザ装置としては、波長248nmの紫外線を出力するKrFエキシマレーザ装置ならびに、波長193nmの紫外線を出力するArFエキシマレーザ装置が用いられている。
現在の露光技術としては、露光装置側の投影レンズとウエハ間の間隙を液体で満たして、当該間隙の屈折率を変えることによって、露光用光源の見かけ上の波長を短波長化する液浸露光が実用化されている。ArFエキシマレーザ装置を露光用光源として用いて液浸露光が行われた場合は、ウエハには水中における波長134nmの紫外光が照射される。この技術をArF液浸露光という。ArF液浸露光はArF液浸リソグラフィーとも呼ばれる。
KrF、ArFエキシマレーザ装置の自然発振におけるスペクトル線幅は約350〜400pmと広いため、露光装置側の投影レンズによってウエハ上に縮小投影されるレーザ光(紫外線光)の色収差が発生して解像力が低下する。そこで色収差が無視できる程度となるまでガスレーザ装置から出力されるレーザ光のスペクトル線幅を狭帯域化する必要がある。このためガスレーザ装置のレーザ共振器内には、狭帯域化素子を有する狭帯域化モジュール(Line Narrowing Module)が設けられている。この狭帯域化モジュールによりスペクトル線幅の狭帯域化が実現されている。狭帯域化素子は、エタロンやグレーティング等であってもよい。このようにスペクトル線幅が狭帯域化されたレーザ装置を狭帯域化レーザ装置という。
特許4094307号 特開平8−210915号公報 特開平5−007031号公報
概要
本開示の1つの観点に係る狭帯域化レーザ装置は、スペクトル線幅を狭帯域化する光学素子を含むレーザ共振器と、レーザ共振器から出力されるパルスレーザ光に含まれる複数のパルスについて分光強度分布を検出する分光器と、複数のパルスの分光強度分布が加算されてなるスペクトル波形を生成するスペクトル波形生成部と、分光器の装置関数を記憶する装置関数記憶部と、複数のパルスの中心波長の頻度分布を表す波長頻度関数を生成する波長頻度関数生成部と、スペクトル波形に対して、装置関数と波長頻度関数とを用いてデコンボリューション処理するデコンボリューション処理部と、を備えてもよい。
本開示の他の1つの観点に係る狭帯域化レーザ装置は、スペクトル線幅を狭帯域化する光学素子を含むレーザ共振器と、レーザ共振器から出力されるパルスレーザ光に含まれる複数のパルスについて分光強度分布を検出する分光器と、複数のパルスのそれぞれについて、分光強度分布に基づいてスペクトル波形を生成するスペクトル波形生成部と、分光器の装置関数を記憶する装置関数記憶部と、スペクトル波形生成部により生成された各スペクトル波形を、中心波長がほぼ一致するように波長をシフトさせる波長シフト処理部と、波長シフト処理部により波長がシフトされた複数のスペクトル波形を平均化する波形平均化処理部と、波形平均化処理部により平均化されたスペクトル波形に対して、装置関数を用いてデコンボリューション処理するデコンボリューション処理部と、を備えてもよい。
本開示の1つの観点に係るスペクトル線幅計測装置は、レーザ共振器から出力されるパルスレーザ光に含まれる複数のパルスについて分光強度分布を検出する分光器と、複数のパルスの分光強度分布が加算されてなるスペクトル波形を生成するスペクトル波形生成部と、分光器の装置関数を記憶する装置関数記憶部と、複数のパルスの中心波長の頻度分布を表す波長頻度関数を生成する波長頻度関数生成部と、スペクトル波形に対して、装置関数と波長頻度関数とを用いてデコンボリューション処理するデコンボリューション処理部と、を備えてもよい。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例に係る狭帯域化レーザ装置の構成を模式的に示す。 図2は、図1に示される第1のエタロン分光器18及び第2のエタロン分光器19の具体的構成を示す。 図3Aは、中心波長の定義の例を説明する図である。 図3Bは、干渉縞のデータの例を示す図である。 図4は、装置関数I(λ)を説明する図である。 図5は、演算処理部22cの構成を示す図である。 図6は、スペクトル線幅の定義の例を説明する図である。 図7は、狭帯域化レーザ装置によるパルスレーザ光PLの出力パターンの例を示す図である。 図8は、図1に示される波長制御部21による波長制御の処理を示すフローチャートである。 図9は、図8に示される回転ステージ14dを制御する処理の詳細を示すフローチャートである。 図10は、図1に示されるスペクトル線幅制御部20aによるスペクトル線幅制御の処理を示すフローチャートである。 図11は、図1に示されるスペクトル線幅算出部22によるスペクトル線幅算出処理を示すフローチャートである。 図12は、図11に示されるフローチャートの一部について、そのサブルーチンを示すフローチャートである。 図13は、本開示の課題を説明する図であり、(A)は、第1のスペクトル波形T(λ−x)を例示する図であり、(B)は、第2のスペクトル波形T’(λ−x)を例示する図であり、(C)は、観測スペクトル波形O(λ)及び復元スペクトル波形Q(λ)を例示する図である。 図14は、本開示の第1の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す図である。 図15は、波長頻度関数生成部22dにより生成される波長頻度関数R(λ)の例を示す図である。 図16は、本開示の第1の実施形態におけるスペクトル線幅算出処理を示すサブルーチンである。 図17は、図14に示される波長頻度関数生成部22dによる波長頻度関数の生成処理を示すフローチャートである。 図18は、第1の変形例に係る波長頻度関数の生成処理を示すフローチャートである。 図19は、本開示の第2の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す図である。 図20は、図19に示される波長頻度関数生成部22dによる波長頻度関数の生成処理を示すフローチャートである。 図21は、本開示の第2の実施形態における波長頻度関数R(λ)のカウントアップを説明する図である。 図22は、本開示の第3の実施形態における演算処理部22cの構成を示す図である。 図23は、本開示の第3の実施形態のスペクトル線幅算出部22によるスペクトル線幅算出の処理を示すフローチャートである。 図24は、図23に示されるフローチャートの一部について、そのサブルーチンを示すフローチャートである。 図25は、第3の実施形態に係る狭帯域化レーザ装置の効果を説明する図であり、(A)は、第1のスペクトル波形T(λ−x)を例示する図であり、(B)は、第2のスペクトル波形T’(λ−x)を例示する図であり、(C)は、観測スペクトル波形O(λ)及び復元スペクトル波形Q(λ)を例示する図である。 図26は、本開示の第4の実施形態に係る狭帯域化レーザ装置において用いられる第2のエタロン分光器19の構成を示す図である。 図27は、本開示の第5実施形態に係る狭帯域化レーザ装置の構成を概略的に示す図である。 図28は、MOPO方式のレーザ装置におけるマスターオシレータとパワーオシレータの放電タイミングの遅延時間と、パルスエネルギ及びスペクトル線幅との関係を示す図である。 図29は、制御部の概略構成を示すブロック図である。
実施形態
<内容>
1.比較例に係る狭帯域化レーザ装置の全体説明
1.1 レーザチャンバ
1.2 狭帯域化モジュール
1.3 スペクトル線幅可変部
1.4 エネルギセンサ
1.5 第1のエタロン分光器
1.6 第2のエタロン分光器
1.7 露光装置
1.8 レーザ制御部
1.9 波長制御部
1.10 中心波長の定義
1.11 スペクトル線幅算出部
1.12 スペクトル線幅の定義
1.13 スペクトル線幅制御部
1.14 パルスレーザ光の出力パターン
1.15 動作
1.15.1 波長制御
1.15.2 スペクトル線幅制御
1.15.3 スペクトル線幅の算出処理
2. 課題
3.各パルスの中心波長を考慮してスペクトル線幅を計測する狭帯域化レーザ装置(第1の実施形態)
3.1 構成
3.2 動作
3.2.1 スペクトル線幅の算出処理
3.2.2 波長頻度関数の生成処理
3.3 効果
3.4 波長頻度関数の生成に関する変形例
3.4.1 第1の変形例
3.4.2 第2の変形例
3.5 積算回数及び平均回数に関する変形例
3.6 観測スペクトル波形の生成に関する変形例
4.各パルスの中心波長及びパルスエネルギを考慮してスペクトル線幅を計測する狭帯域化レーザ装置(第2の実施形態)
4.1 構成
4.2 動作
4.2.1 波長頻度関数の生成処理
4.3 効果
4.4 変形例
5.各スペクトル波形の波長をシフトさせることにより計測スペクトル線幅を算出する狭帯域化レーザ装置(第3の実施形態)
5.1 動作
5.1.1 スペクトル線幅の算出処理
5.2 効果
5.3 波長シフト処理で用いる中心波長のバリエーション
6.第2のエタロン分光器のバリエーション(第4の実施形態)
7.MOPO間の同期によりスペクトル線幅を制御する狭帯域化レーザ装置(第5実施形態)
8.制御部の構成
8.1 構成
8.2 動作
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.比較例に係る狭帯域化レーザ装置の全体説明
図1は、比較例に係る狭帯域化レーザ装置の構成を模式的に示す。図2は、図1に示される第1のエタロン分光器18及び第2のエタロン分光器19の具体的構成を示す。
図1に示される狭帯域化レーザ装置は、レーザチャンバ10と、一対の放電電極11a及び11bと、電源12と、狭帯域化モジュール14と、スペクトル線幅可変部15とで構成され得るレーザ共振器を含んでもよい。
また、狭帯域化レーザ装置は、第1のビームスプリッタ16aと、第2のビームスプリッタ16bと、第3のビームスプリッタ16cと、高反射ミラー16dと、エネルギセンサ17と、を含んでもよい。さらに、狭帯域化レーザ装置は、第1のエタロン分光器18と、第2のエタロン分光器19と、レーザ制御部20と、波長制御部21と、スペクトル線幅算出部22と、第1のドライバ23と、第2のドライバ24と、を含んでもよい。狭帯域化レーザ装置は、図示しない増幅器に入射させるシード光をレーザ発振して出力するマスターオシレータであってもよい。
スペクトル線幅可変部15から出力されるレーザ光の進行方向は、Z方向であってよい。一対の放電電極11a及び11bの間の放電方向は、V方向又は−V方向であってよい。これらの両方に垂直な方向は、H方向であってよい。−V方向は、重力の方向とほぼ一致していてもよい。
1.1 レーザチャンバ
レーザチャンバ10は、例えば、レアガスとしてアルゴンガスやクリプトンガス、ハロゲンガスとしてフッ素ガスや塩素ガス、バッファガスとしてネオンガスやヘリュームガスを含むレーザガスが封入されるチャンバでもよい。レーザチャンバ10の両端にはウインドウ10a及び10bが設けられていてもよい。
一対の放電電極11a及び11bは、レーザ媒質を放電により励起するための電極として、レーザチャンバ10内に配置されてもよい。一対の放電電極11a及び11b間には、電源12からパルス状の高電圧が印加されてもよい。電源12は、図示しない充電器と、図示しないパルスパワーモジュールと、を含んでもよい。パルスパワーモジュールは、スイッチ12aを含んでもよい。電源12は、レーザ制御部20からスイッチ12aに発振トリガ信号が入力されると、一対の放電電極11a及び11b間に印加される上述のパルス状の高電圧を生成してもよい。
一対の放電電極11a及び11b間に高電圧が印加されると、一対の放電電極11a及び11b間に放電が起こり得る。この放電のエネルギにより、レーザチャンバ10内のレーザ媒質が励起されて高エネルギ準位に移行し得る。励起されたレーザ媒質が、その後低エネルギ準位に移行するとき、そのエネルギ準位差に応じた光を放出し得る。
ウインドウ10a及び10bは、これらのウインドウに対する光の入射面とHZ平面とが略一致し、かつ、この光の入射角度が略ブリュースター角となるように配置されてもよい。レーザチャンバ10内で発生した光は、ウインドウ10a及び10bを介して、パルスレーザ光PLとしてレーザチャンバ10の外部に出射してもよい。パルスレーザ光PLには、複数のパルスPが含まれてもよい。パルスPは、1つの発振トリガ信号に応じてレーザチャンバ10により生成されるレーザ光であってもよい。
1.2 狭帯域化モジュール
狭帯域化モジュール14は、2つのプリズム14a及び14bと、グレーティング14cと、回転ステージ14dと、を含んでもよい。プリズム14a及び14bは、レーザチャンバ10のウインドウ10aから出射された光のH方向のビーム幅を拡大させて、その光をグレーティング14cに入射させてもよい。また、プリズム14a及び14bは、グレーティング14cからの反射光のH方向のビーム幅を縮小させるとともに、その光を、ウインドウ10aを介して、レーザチャンバ10内の放電空間に戻してもよい。
グレーティング14cは、表面の物質が高反射率の材料によって構成され、表面に多数の溝が所定間隔で形成されていてもよい。グレーティング14cは、分散光学素子であり得る。各溝は、例えば直角三角形の溝であってもよい。プリズム14a及び14bからグレーティング14cに入射した光は、これらの溝によって反射されるとともに、光の波長に応じた方向に回折させられてもよい。グレーティング14cは、プリズム14a及び14bからグレーティング14cに入射する光の入射角と、所望波長の回折光の回折角とが一致するようにリトロー配置されてもよい。これにより、所望の波長付近の光がプリズム14a及び14bを介してレーザチャンバ10に戻され得る。
回転ステージ14dは、プリズム14bを支持しており、V軸と平行な軸周りにプリズム14bを回転させる。プリズム14bを回転させることにより、グレーティング14cに対する光の入射角度が変更され得る。従って、プリズム14bを回転させることにより、グレーティング14cからプリズム14a及び14bを介してレーザチャンバ10に戻る光の波長を選択し得る。
狭帯域化モジュール14により生成されるレーザ光のスペクトル線幅は、200fm以上400fm以下の範囲内であって、好ましくは、300fmであってもよい。
1.3 スペクトル線幅可変部
スペクトル線幅可変部15は、平凹シリンドリカルレンズ15aと、平凸シリンドリカルレンズ15bとを含んでもよい。平凹シリンドリカルレンズ15aは、平凸シリンドリカルレンズ15bよりもレーザチャンバ10に近い位置に配置されてもよい。平凹シリンドリカルレンズ15aの凹面と、平凸シリンドリカルレンズ15bの凸面とが向き合うように、これらのレンズが配置されてもよい。平凹シリンドリカルレンズ15aは、リニアステージ15cによって、Z方向又は−Z方向に移動可能とされていてもよい。リニアステージ15cは、第2のドライバ24によって駆動されてもよい。
平凸シリンドリカルレンズ15bの平面には、部分反射膜がコーティングされていてもよい。従って、平凸シリンドリカルレンズ15bを含むスペクトル線幅可変部15は、レーザチャンバ10のウインドウ10bから出力される光のうちの一部を透過させて出力し、他の一部を反射させてレーザチャンバ10内に戻してもよい。
平凹シリンドリカルレンズ15aをZ方向又は−Z方向に移動させることにより、レーザチャンバ10からスペクトル線幅可変部15に入射してレーザチャンバ10に戻される光の波面が調節されてもよい。波面が調節されることにより、狭帯域化モジュール14によって選択される光のスペクトル線幅が変更されてもよい。
狭帯域化モジュール14とスペクトル線幅可変部15とが、光共振器を構成してもよい。レーザチャンバ10から出射した光は、狭帯域化モジュール14とスペクトル線幅可変部15との間で往復し、放電電極11a及び11bの間の放電空間を通過するたびに増幅されレーザ発振し得る。レーザ光は、狭帯域化モジュール14で折り返されるたびにスペクトル線幅が狭帯域化され得る。さらに、上述したウインドウ10a及び10bの配置によって、H方向の偏光成分が選択され得る。こうして増幅された光が、パルスレーザ光PLとして、スペクトル線幅可変部15から露光装置4に向けて出力され得る。
第1のビームスプリッタ16aは、スペクトル線幅可変部15と露光装置4との間のパルスレーザ光PLの光路に配置されていてもよい。第1のビームスプリッタ16aは、スペクトル線幅可変部15から出力されたパルスレーザ光PLを高い透過率で透過させ、スペクトル線幅可変部15から出力されたパルスレーザ光PLの一部を反射してもよい。第1のビームスプリッタ16aによって反射されたパルスレーザ光PLの光路に、第2のビームスプリッタ16bが配置されていてもよい。第2のビームスプリッタ16bは、第1のビームスプリッタ16aによって反射されたパルスレーザ光PLの一部を透過させ、第1のビームスプリッタ16aによって反射されたパルスレーザ光PLの他の一部を反射してもよい。
1.4 エネルギセンサ
エネルギセンサ17は、第2のビームスプリッタ16bによって反射されたパルスレーザ光PLの光路に配置されてもよい。エネルギセンサ17は、第2のビームスプリッタ16bによって反射されたパルスレーザ光PLの各パルスPのパルスエネルギを計測してもよい。エネルギセンサ17は、計測したパルスエネルギのデータを、レーザ制御部20に出力してもよい。また、エネルギセンサ17は、パルスエネルギを検出した場合に、1つのパルスPを検出したことを表す検出信号を、波長制御部21とスペクトル線幅算出部22とに出力してもよい。エネルギセンサ17は、フォトダイオード、光電管、あるいは焦電素子であってもよい。
1.5 第1のエタロン分光器
第3のビームスプリッタ16cは、ビームスプリッタ16bを透過したパルスレーザ光PLの光路に配置されていてもよい。第3のビームスプリッタ16cは、第2のビームスプリッタ16bを透過したパルスレーザ光PLの一部を透過させ、第2のビームスプリッタ16bを透過したパルスレーザ光PLの他の一部を反射してもよい。第3のビームスプリッタ16cを透過するパルスレーザ光PLの光量は、第3のビームスプリッタ16cによって反射されるパルスレーザ光PLの光量より高くてもよい。
第3のビームスプリッタ16cを透過したパルスレーザ光PLの光路には、第1のエタロン分光器18が配置されてもよい。図2を参照し、第1のエタロン分光器18は、拡散プレート18aと、エタロン18bと、集光レンズ18cと、ラインセンサ18dと、を含んでもよい。第1のエタロン分光器18は、パルスレーザ光PLの各パルスPの波長計測に用いられ得る。
拡散プレート18aは、表面に多数の凹凸を有する透過型の光学素子であってもよい。拡散プレート18aは、入射したパルスレーザ光PLを散乱光として透過させてもよい。拡散プレート18aを透過した散乱光は、エタロン18bに入射してもよい。
エタロン18bは、2枚の所定の反射率Rの部分反射ミラーを含むエアギャップエタロンであってもよい。このエアギャップエタロンにおいては、2枚の部分反射ミラーが、所定距離のエアギャップを有して対向し、スペーサを介して貼りあわせられていてもよい。
エタロン18bに入射した光の入射角θに応じて、2枚の部分反射ミラーの間で往復せずにエタロン18bを透過する光と、2枚の部分反射ミラーの間で往復した後でエタロン18bを透過する光との光路差が異なり得る。エタロン18bに入射した光は、上記の光路差が波長λの整数m倍である場合に高い透過率でエタロン18bを透過し得る。
エタロン18bの基本式を以下に示す。
Figure 0006549248
ここで、dは、エアギャップ間の距離であり得る。nは、エアギャップ間における屈折率であり得る。
エタロン18bに入射した波長λの光は、式(1)を満たす入射角θにおいて、高い透過率でエタロンを通過し得る。従って、エタロン18bに入射する光の波長に応じて、エタロン18bを高い透過率で透過する光の入射角θが異なり得る。エタロン18bを透過した光は、集光レンズ18cに入射してもよい。
集光レンズ18cは、集光性能を有する光学素子であってもよい。集光レンズ18cを透過した光は、集光レンズ18cから焦点距離に相当する位置に配置されたラインセンサ18dに入射してもよい。集光レンズ18cを透過した光は、ラインセンサ18dにおいて干渉縞を形成し得る。
ラインセンサ18dは、フォトダイオードなどの受光素子が1次元状に配列されて構成されていてもよい。ラインセンサ18dは、集光レンズ18cを透過した光を受光し、干渉縞の光強度分布を検出してもよい。ラインセンサ18dは、波長制御部21からデータ出力トリガを受信してもよい。ラインセンサ18dは、データ出力トリガを受信した場合に、干渉縞の光強度分布の検出データを波長制御部21に出力してもよい。以下において、干渉縞の光強度分布の検出データが、干渉縞のデータと称されてもよい。なお、ラインセンサ18dの代わりに、図示しない受光素子が2次元状に配列された、図示しないエリアセンサが用いられてもよい。
特許文献3に記載されているように、式(1)から、ラインセンサ18dにより検出される干渉縞の半径の2乗は、パルスレーザ光PLの波長と比例関係となり得る。パルスレーザ光PLの波長λは、下式(2)で表され得る。
Figure 0006549248
ここで、rは、干渉縞の半径であってもよい。αは、比例定数であってもよい。ラインセンサ18dにより検出された干渉縞から、式(2)に基づき、光強度と波長との関係を表すスペクトル波形が算出され得る。
1.6 第2のエタロン分光器
高反射ミラー16dは、上述の第3のビームスプリッタ16cによって反射されたパルスレーザ光PLの光路に配置されてもよい。高反射ミラー16dは、第3のビームスプリッタ16cによって反射されたパルスレーザ光PLを高い反射率で反射してもよい。高反射ミラー16dによって反射されたパルスレーザ光PLの光路には、第2のエタロン分光器19が配置されてもよい。
第2のエタロン分光器19は、拡散プレート19aと、エタロン19bと、集光レンズ19cと、ラインセンサ19dと、を含んでもよい。拡散プレート19a、エタロン19b、集光レンズ19c、及びラインセンサ19dの構成は、第1のエタロン分光器18に含まれ得る拡散プレート18a、エタロン18b、集光レンズ18c、及びラインセンサ18dと、それぞれ同様の構成であり得る。第2のエタロン分光器19は、パルスレーザ光PLのスペクトル線幅の計測に用いられ得る。
拡散プレート19aは、入射したパルスレーザ光PLを散乱光として透過させてもよい。拡散プレート19aを透過した散乱光は、エタロン19bに入射してもよい。エタロン19bに入射した波長λの光は、前述の式(1)を満たす入射角θにおいて、高い透過率でエタロンを通過し得る。この場合、dは、エタロン19bに含まれる2枚の部分反射ミラーのエアギャップ間の距離であってもよい。nは、このエアギャップ間における屈折率であってもよい。
エタロン19bを透過した光は、集光レンズ19cに入射してもよい。集光レンズ19cを透過した光は、集光レンズ19cから焦点距離に相当する位置に配置されたラインセンサ19dに入射してもよい。集光レンズ19cを透過した光は、ラインセンサ19dにおいて干渉縞を形成し得る。
ラインセンサ19dは、集光レンズ19cを透過した光を受光し、干渉縞の光強度分布を検出してもよい。ラインセンサ19dは、スペクトル線幅算出部22からデータ出力トリガを受信してもよい。ラインセンサ19dは、データ出力トリガを受信した場合に、干渉縞のデータをスペクトル線幅算出部22に出力してもよい。なお、ラインセンサ19dの代わりに、受光素子が2次元状に配列された、図示しないエリアセンサが用いられてもよい。
第2のエタロン分光器19の分解能は、第1のエタロン分光器18の分解能よりも高くてもよい。具体的なエタロンの仕様としては、第1のエタロン分光器18と第2のエタロン分光器19のフリースペクトラルレンジをそれぞれFSR1とFSR2とすると、FSR1がFSR2より大きいことが好ましい。さらに好ましくは、FSR1/FSR2の値が5以上7以下の範囲内であってもよい。さらに、集光レンズ19cの焦点距離は、集光レンズ18cの焦点距離よりも長くてもよい。
また、ラインセンサ19dの受光素子の個数は、ラインセンサ18dの受光素子の個数よりも多くてもよい。また、ラインセンサ19dの受光素子のサイズ及び配列ピッチは、ラインセンサ18dの受光素子のサイズ及び配列ピッチよりもそれぞれ小さいか、または同じであってもよい。
第2のエタロン分光器19の分解能が、第1のエタロン分光器18の分解能よりも高いことにより、ラインセンサ19dにより検出される干渉縞の解像度が、ラインセンサ18dにより検出される干渉縞の解像度よりも高くなり得る。ラインセンサ19dにより検出される干渉縞のデータを用いることにより、パルスレーザ光PLのスペクトル線幅を高精度に算出することが可能となり得る。
第1のエタロン分光器18と第2のエタロン分光器19とは、それぞれ固有の特性を表す装置関数を有し得る。エタロン分光器18及び19に入射したパルスレーザ光PLのスペクトル波形には、それぞれ装置関数がコンボリューションされ得る。従って、ラインセンサ18d及び19dは、装置関数がコンボリューションされることによりスペクトル線幅が広がったスペクトル波形に対応する干渉縞の光強度分布を検出し得る。
例えば、第2のエタロン分光器19の装置関数をI(λ)、第2のエタロン分光器19に入射するパルスレーザ光PLのスペクトル波形をT(λ)としてもよい。この場合、下式(3)に示されるように、スペクトル波形T(λ)と装置関数I(λ)とのコンボリューション積分で表されるスペクトル波形T’(λ)に対応する干渉縞の光強度分布が、ラインセンサ19dにより検出され得る。
Figure 0006549248
以下において、スペクトル波形T(λ)が、第1のスペクトル波形T(λ)と称されてもよい。また、スペクトル波形T’(λ)が、第2のスペクトル波形T’(λ)と称されてもよい。
一般に、エタロン分光器が高精度であれば、第1のスペクトル波形と第2のスペクトル波形とはほぼ等しくなり得る。しかし、高精度なエタロン分光器は大型かつ高額であり、これをエタロン分光器18及び19として用いることは現実的ではないので、第2のスペクトル波形は、第1のスペクトル波形よりスペクトル線幅が広がることが現実であり得る。
第1のエタロン分光器18は中心波長の計測に用いられるが、第2のエタロン分光器19はスペクトル線幅の計測に用いられるので、第2のエタロン分光器19の装置関数の半値全幅は、第1のエタロン分光器18の装置関数の半値全幅よりも小さくてもよい。
1.7 露光装置
再び図1を参照し、露光装置4は、露光装置制御部40を含んでいてもよい。露光装置制御部40は、図示しないウエハステージの移動などの制御を行ってもよい。露光装置制御部40は、レーザ制御部20に対し、目標スペクトル線幅Wのデータと、目標中心波長λのデータと、目標パルスエネルギのデータと、発振トリガ信号とを出力してもよい。目標中心波長λのデータは、発振トリガ信号と同期して、1パルスP毎にレーザ制御部20に入力されてもよい。
1.8 レーザ制御部
レーザ制御部20は、露光装置制御部40から受信した目標中心波長λのデータを、波長制御部21に送信してもよい。レーザ制御部20は、露光装置制御部40から受信した目標パルスエネルギのデータと、エネルギセンサ17から受信したパルスエネルギのデータとを参照して、電源12における充電電圧の設定値を制御してもよい。レーザ制御部20が電源12における充電電圧の設定値を制御することにより、パルスレーザ光PLの各パルスPのパルスエネルギが制御されてもよい。
レーザ制御部20は、露光装置制御部40から受信した発振トリガ信号に基づいて、電源12に含まれるスイッチ12aに発振トリガ信号を出力してもよい。
また、レーザ制御部20は、露光装置制御部40から受信した発振トリガ信号に基づいて、図示しないタイマーにより発振インターバルを計測してもよい。発振インターバルは、1つの発振トリガ信号を受信してから次の発振トリガ信号を受信するまでの期間であってもよい。レーザ制御部20は、タイマーにより計測された発振インターバルが、所定値以下となった場合に、後述するパルスレーザ光PLのバースト発振が開始したと判定してもよい。また、レーザ制御部20は、タイマーにより計測された発振インターバルが、所定値未満となった場合に、バースト発振が休止したと判定してもよい。
1.9 波長制御部
波長制御部21は、エネルギセンサ17から検出信号を受信した場合に、第1のエタロン分光器18に含まれるラインセンサ18dに上述のデータ出力トリガを出力してもよい。すなわち、第1のエタロン分光器18は、パルスレーザ光PLの各パルスPを受光する毎に、干渉縞のデータを波長制御部21に出力してもよい。
波長制御部21は、中心波長算出部21aを含んでいてもよい。中心波長算出部21aは、第1のエタロン分光器18から干渉縞のデータを受信し、FSR1内における干渉縞の半径を算出することにより、中心波長λを算出し得る。このように、第1のエタロン分光器18と中心波長算出部21aとが、パルスレーザ光PLの各パルスPから中心波長λを計測する「中心波長計測部」を構成し得る。
以下において、中心波長算出部21aにより算出される中心波長λが、計測中心波長λと称されてもよい。なお、中心波長算出部21aは、波長制御部21に限定されず、レーザ制御部20等の他の構成部内に設けられていてもよい。
波長制御部21は、計測中心波長λと、レーザ制御部20から入力された目標中心波長λとの差Δλを算出してもよい。波長制御部21は、差Δλに基づき、計測中心波長λが目標中心波長λに近づくように、プリズム14bを支持する回転ステージ14dを制御してもよい。回転ステージ14dの制御は、回転ステージ14dに接続された第1のドライバ23に、波長制御部21が制御信号を送信することによって行われてもよい。
1.10 中心波長の定義
図3Aは、中心波長の定義の例を説明する図である。図3Aには、パルスレーザ光PLのスペクトル波形が示されている。図3Aに示されるλHAは、スペクトル波形の2つの半値波長λH1及びλH2の平均値である。半値波長λH1及びλH2は、光強度のピーク値の半分の光強度が得られる波長である。
本開示では、半値波長の平均値λHAを、中心波長とする。なお、本開示において、中心波長は、半値波長の平均値に限定されない。中心波長は、スペクトル波形の中心に位置する波長を表す指標であればよく、半値波長の平均値に代えて、ピーク波長、重心波長などであってもよい。ピーク波長とは、光強度が最大となる波長である。重心波長とは、光強度分布の重心位置の波長である。
図3Aは、中心波長の定義を説明するための概念図であり、実際には、中心波長算出部21aは、干渉縞のデータを、光強度と波長との関係を表すスペクトル波形に変換することなく、干渉縞のデータから中心波長を算出し得る。例えば、図3Bは、干渉縞のデータの例を示している。中心波長算出部21aは、干渉縞のデータから、光強度のピーク値の半分の光強度が得られる内側の半径rと外側の半径rとを算出し、下式(4)の関係に基づいて、干渉縞の半径rを算出し得る。
Figure 0006549248
この干渉縞の半径rが、中心波長の一例である上述の半値波長の平均値λHAに対応し得る。中心波長算出部21aは、式(2)に基づいて半径rを波長に変換することで、計測中心波長λを算出し得る。
1.11 スペクトル線幅算出部
スペクトル線幅算出部22は、装置関数記憶部22aと、カウンタ22bと、演算処理部22cと、を含んでもよい。装置関数記憶部22aは、第2のエタロン分光器19の装置関数I(λ)を記憶している。図4に示されるように、装置関数I(λ)は、仮に、スペクトル波形がデルタ関数δ(λ)である光が、第2のエタロン分光器19に入射された場合に計測されるスペクトル波形の関数であり得る。
実際には、デルタ関数δ(λ)である光を発する光源は存在し得ないが、レーザ光に対して十分に狭いスペクトル線幅を有する光源であれば、装置関数I(λ)を測定することが可能であり得る。この光源として、コヒーレント光源を用いてもよい。例えば、スペクトル線幅が300fm以下のスペクトル波形を計測する場合には、スペクトル線幅が10fm以下のコヒーレント光を用いてもよい。コヒーレント光の具体例として、狭帯域化KrFエキシマレーザの場合は、シングル縦モードで発振するArイオンレーザから出力されたレーザ光の第2高調波光を使用してもよい。狭帯域化ArFレーザの場合は、シングル縦モードで発振するチタンサファイヤレーザから出力されたレーザ光の第4高調波光を使用してもよい。なお、装置関数I(λ)の測定が困難である場合には、第2のエタロン分光器19の設計仕様値に基づいて理論的な装置関数I(λ)を推定し、これを装置関数記憶部22aに記憶させてもよい。
カウンタ22bは、エネルギセンサ17から検出信号を受信し、検出信号の受信回数をカウントしてもよい。カウンタ22bは、検出信号のカウント数Nが第1の回数N1の倍数となる毎に、第2のエタロン分光器19に含まれるラインセンサ19dに上述のデータ出力トリガを出力してもよい。すなわち、ラインセンサ19dには、第1の回数N1だけ干渉縞が多重露光され、干渉縞のデータが積算され得る。第2のエタロン分光器19は、パルスレーザ光PLのパルスPを、第1の回数N1だけ受光する毎に、干渉縞の積算データを、スペクトル線幅算出部22の演算処理部22cに出力してもよい。
例えば、1回の干渉縞の露光によりラインセンサ19dに蓄積されて得られる干渉縞のデータをF(r)とすると、干渉縞の積算データSF(r)は、下式(5)により表され得る。
Figure 0006549248
図5において、演算処理部22cは、平均化処理部30と、スペクトル波形算出部31と、デコンボリューション処理部32と、E95算出部33と、を含んでもよい。平均化処理部30は、ラインセンサ19dから、干渉縞の積算データSF(r)が第2の回数N2だけ入力される毎に、入力されたN2個の干渉縞の積算データSF(r)を平均化してもよい。平均化処理部30により平均化された干渉縞の積算データAF(r)は、下式(6)により表され得る。
Figure 0006549248
以下において、平均化処理部30により平均化された干渉縞の積算データAF(r)が、積算平均データAF(r)と称されてもよい。
スペクトル波形算出部31は、平均化処理部30により生成された積算平均データAF(r)から、例えば。図3Bに示されるようなパルスレーザ光PLのスペクトル波形に対応する干渉縞を抽出し、式(2)に基づく演算を行うことにより、スペクトル波形O(λ)を生成し得る。以下において、スペクトル波形算出部31により生成されるスペクトル波形O(λ)が、観測スペクトル波形O(λ)と称されてもよい。
このように、干渉縞のデータF(r)を積算及び平均することで、ノイズ成分が低減された観測スペクトル波形O(λ)が生成され得る。観測スペクトル波形O(λ)は、第2のエタロン分光器19により装置関数I(λ)がコンボリューションされた、前述の第2のスペクトル波形とT’(λ)に対応し得る。
デコンボリューション処理部32は、観測スペクトル波形O(λ)に対して、装置関数記憶部22aに記憶された装置関数I(λ)を用いて、デコンボリューション処理を行ってもよい。例えば、デコンボリューション処理部32は、下式(7)を満たすスペクトル波形Q(λ)を求めるデコンボリューション処理を行い得る。
Figure 0006549248
以下において、デコンボリューション処理部32により求められるスペクトル波形Q(λ)が、復元スペクトル波形Q(λ)と称されてもよい。
このデコンボリューション処理には、ヤコビ法、ガウス・ザイデル法等の反復法を用いてもよい。デコンボリューション処理部32により求められる復元スペクトル波形Q(λ)は、第2のエタロン分光器19により装置関数I(λ)がコンボリューションされる前の第1のスペクトル波形T(λ)に対応し得る。
従って、カウンタ22bのカウント数Nが、第1の回数N1と第2の回数N2との積である第3の回数N3となる毎に、デコンボリューション処理部32により復元スペクトル波形Q(λ)が生成され得る。
第1の回数N1及び第2の回数N2は、レーザ制御部20に含まれる図示しないメモリに記憶されていてもよい。第1の回数N1及び第2の回数N2は、レーザ制御部20のメモリから読み出されてカウンタ22bに設定されてもよい。例えば、第1の回数N1及び第2の回数N2の値は、それぞれ「N1=8」及び「N2=5」であってもよい。また、第1の回数N1及び第2の回数N2の値は、それぞれ「N1=5」及び「N2=8」であってもよい。
E95算出部33は、デコンボリューション処理部32により生成された復元スペクトル波形Q(λ)から、後述するスペクトル純度E95を、スペクトル線幅Wとして算出してもよい。E95算出部33は、算出したスペクトル線幅Wのデータを、レーザ制御部20に出力してもよい。以下において、E95算出部33により算出されるスペクトル線幅Wが、計測スペクトル線幅Wと称されてもよい。
以上のように、第2のエタロン分光器19とスペクトル線幅算出部22とが、パルスレーザ光PLのスペクトル線幅Wを計測する「スペクトル線幅計測装置」を構成し得る。
1.12 スペクトル線幅の定義
図6は、スペクトル線幅の定義の例を説明する図である。図6には、パルスレーザ光PLのスペクトル波形が示されている。図6に示されるように、スペクトル波形の全エネルギのうち、ピーク波長λを中心として95%を占める部分の全幅は、スペクトル純度E95と称される。スペクトル純度E95は、下式(8)を満たすΔλに相当する。
Figure 0006549248
本開示では、上式(8)により求められるスペクトル純度E95の算出値を、計測スペクトル線幅Wとする。なお、本開示において、計測スペクトル線幅Wは、スペクトル純度E95に限定されない。計測スペクトル線幅Wは、スペクトル波形の線幅を表す指標であればよく、スペクトル純度に代えて、半値全幅などであってもよい。
1.13 スペクトル線幅制御部
再び図1を参照し、レーザ制御部20は、スペクトル線幅制御部20aを含んでいてもよい。スペクトル線幅制御部20aは、レーザ制御部20に含まれる図示しないメモリにロードされたプログラムモジュールとして構成されていてもよい。
スペクトル線幅制御部20aは、スペクトル線幅算出部22のE95算出部33から受信した計測スペクトル線幅Wと、露光装置制御部40から受信した目標スペクトル線幅Wとの差ΔWを算出してもよい。スペクトル線幅制御部20aは、差ΔWに基づき、計測スペクトル線幅Wが目標スペクトル線幅Wに近づくように、第2のドライバ24を介してスペクトル線幅可変部15を制御してもよい。これにより、狭帯域化レーザ装置から出力されるパルスレーザ光PLのスペクトル線幅が目標スペクトル線幅Wに近づけられてもよい。目標スペクトル線幅Wは、200fm以上400fm以下の範囲内であって、好ましくは、300fmであり得る。
1.14 パルスレーザ光の出力パターン
図7は、狭帯域化レーザ装置によるパルスレーザ光PLの出力パターンの例を示す図である。狭帯域化レーザ装置は、露光装置4から入力される発振トリガ信号に応じてパルスレーザ光PLを発振する。狭帯域化レーザ装置は、所定の閾値以上の繰り返し周波数でパルスレーザ光PLの各パルスPを出力するバースト発振と、バースト発振の休止とを交互に繰り返してもよい。
バースト発振期間Tbは、露光装置4において、半導体ウエハ上の1つの露光エリアに露光が行われる期間であってもよい。休止期間Trは、1つの露光エリアの露光が終了した後、別の露光エリアの露光が開始される期間であって、例えば、0.1秒以上10秒以下の範囲内の時間であり得る。休止期間Trには、図示しないウエハステージの移動が行われてもよい。
バースト発振期間Tbにおいては、例えば1kHz以上6kHz以下の高い繰り返し周波数でパルスレーザ光PLの発振が行われ得る。バースト発振期間Tb内において狭帯域化レーザ装置から出力されるパルスPの数は、100以上2000以下の範囲内であり得る。
1.15 動作
1.15.1 波長制御
図8は、図1に示される波長制御部21による波長制御の処理を示すフローチャートである。波長制御部21は、以下の処理により、目標中心波長λに基づいて、狭帯域化レーザ装置の発振波長を制御してもよい。図9のS100を参照しながら後述するように、図8に示される波長制御の処理は、バースト発振期間Tbにおけるパルスレーザ光PLの1パルスP毎に実行されてもよい。
波長制御部21は、以下の処理を実行してもよい。まず、S90において、露光装置制御部40からレーザ制御部20を介して、目標中心波長λのデータを読込んでもよい。そして、S100において、波長制御部21は、目標中心波長λに基づいて、プリズム14bを支持する回転ステージ14dを制御してもよい。この処理の詳細については、図9を参照しながら後述する。
次に、S107において、波長制御部21は、波長制御を中止するか否かを判定してもよい。例えば、波長制御よりも波長制御以外のレーザの制御を優先させることが必要な場合には、波長制御部21は、波長制御を中止すると判定してもよい。波長制御を中止しない場合(S107;NO)、波長制御部21は、処理を上述のS90に戻してもよい。波長制御を中止する場合(S107;YES)、波長制御部21は、本フローチャートの処理を終了してもよい。
図9は、図8に示される回転ステージ14dを制御する処理の詳細を示すフローチャートである。図9に示される処理は、図8に示されるS100のサブルーチンとして、波長制御部21によって行われてもよい。
まず、S101において、波長制御部21は、狭帯域化レーザ装置がレーザ発振したか否かを判定してもよい。例えば、波長制御部21は、エネルギセンサ17から検出信号を1回受信した場合に、狭帯域化レーザ装置がレーザ発振したと判定してもよい。狭帯域化レーザ装置がレーザ発振していない場合(S101;NO)、波長制御部21は、狭帯域化レーザ装置がレーザ発振するまで待機してもよい。狭帯域化レーザ装置がレーザ発振した場合(S101;YES)、波長制御部21は、処理をS102に進めてもよい。
S102において、波長制御部21は、第1のエタロン分光器18に含まれるラインセンサ18dにデータ出力トリガを出力してもよい。次に、S103において、波長制御部21は、データ出力トリガの入力に応じてラインセンサ18dから出力される干渉縞のデータを受信してもよい。
次に、S104において、波長制御部21に含まれる中心波長算出部21aは、ラインセンサ18dから受信した干渉縞のデータに基づいて、各パルスPの計測中心波長λを算出してもよい。
次に、S105において、波長制御部21は、中心波長算出部21aにより算出された計測中心波長λと、目標中心波長λとの差Δλを、下式(9)によって算出してもよい。
Figure 0006549248
次に、S106において、波長制御部21は、計測中心波長λと目標中心波長λとの差Δλが0に近づくように、プリズム14bを支持する回転ステージ14dを制御してもよい。
以上の処理により、波長制御部21は、計測中心波長λが目標中心波長λに基づく制御を行ってもよい。
1.15.2 スペクトル線幅制御
図10は、図1に示されるスペクトル線幅制御部20aによるスペクトル線幅制御の処理を示すフローチャートである。スペクトル線幅制御部20aは、以下の処理により、狭帯域化レーザ装置で生成されるパルスレーザ光PLのスペクトル線幅を制御してもよい。
まず、S200において、スペクトル線幅制御部20aは、露光装置制御部40からレーザ制御部20に入力された目標スペクトル線幅Wのデータを読み込んでもよい。次に、S210において、スペクトル線幅制御部20aは、スペクトル線幅算出部22から計測スペクトル線幅Wのデータを受信したか否かを判定してもよい。スペクトル線幅制御部20aは、計測スペクトル線幅Wのデータを受信していない場合(S210;NO)、計測スペクトル線幅Wのデータを受信するまで待機してもよい。スペクトル線幅制御部20aが計測スペクトル線幅Wのデータを受信した場合(S210;YES)、スペクトル線幅制御部20aは、処理をS220に進めてもよい。
S220において、スペクトル線幅制御部20aは、計測スペクトル線幅Wと目標スペクトル線幅Wとの差ΔWを、下式(10)によって算出してもよい。
Figure 0006549248
次に、S230において、スペクトル線幅制御部20aは、計測スペクトル線幅Wと目標スペクトル線幅Wとの差ΔWが0に近づくように、第2のドライバ24を介してスペクトル線幅可変部15を制御してもよい。
次に、S240において、スペクトル線幅制御部20aは、スペクトル線幅制御を中止するか否かを判定してもよい。例えば、スペクトル線幅制御よりもスペクトル線幅制御以外のレーザの制御を優先させることが必要な場合には、スペクトル線幅制御部20aは、スペクトル線幅制御を中止すると判定してもよい。スペクトル線幅制御を中止しない場合(S240;NO)、スペクトル線幅制御部20aは、処理を上述のS210に戻してもよい。スペクトル線幅制御を中止する場合(S240;YES)、スペクトル線幅制御部20aは、本フローチャートの処理を終了してもよい。
1.15.3 スペクトル線幅算出処理
図11は、図1に示されるスペクトル線幅算出部22によるスペクトル線幅算出処理を示すフローチャートである。スペクトル線幅算出部22は、以下の処理により、狭帯域化レーザ装置で生成されるパルスレーザ光PLのスペクトル線幅を算出してもよい。
まず、S300において、スペクトル線幅算出部22は、レーザ制御部20のメモリから第1の回数N1及び第2の回数N2のデータを読み込んでもよい。以下の処理は、パルスレーザ光PLのバースト発振中に行われてもよい。
S310において、スペクトル線幅算出部22に含まれるカウンタ22bは、カウント数Nをリセットし、「N=0」としてもよい。次に、S320において、カウンタ22bは、狭帯域化レーザ装置がレーザ発振したか否かを判定してもよい。例えば、カウンタ22bは、エネルギセンサ17から検出信号を1回受信した場合に、狭帯域化レーザ装置がレーザ発振したと判定してもよい。狭帯域化レーザ装置がレーザ発振していない場合(S320;NO)、カウンタ22bは、狭帯域化レーザ装置がレーザ発振するまで待機してもよい。狭帯域化レーザ装置がレーザ発振した場合(S320;YES)、カウンタ22bは、処理をS330に進めてもよい。
S330において、カウンタ22bは、カウント数Nをインクリメントしてもよい。例えば、現在のカウント数Nに「1」を加算してもよい。このとき、パルスレーザ光PLの一部が第2のエタロン分光器19に入射し、エタロン19bを介してラインセンサ19dに干渉縞が露光され得る。これにより、ラインセンサ19dには、干渉縞のデータF(r)が積算され得る。
次に、S340において、スペクトル線幅算出部22は、カウント数Nが、第1の回数N1の倍数であるか否かを判定してもよい。カウント数Nが、第1の回数N1の倍数でない場合(S340;NO)、スペクトル線幅算出部22は、処理を上述のS320に戻してもよい。カウント数Nが、第1の回数N1の倍数となった場合(S340;YES)、スペクトル線幅算出部22は、処理をS350に進めてもよい。処理がS350に進む場合、ラインセンサ19dには、上述の式(5)に示されるように、N1個の干渉縞のデータF(r)〜FN1(r)が積算されてなる積算データSF(r)が蓄積され得る。
S350において、スペクトル線幅算出部22は、第2のエタロン分光器19のラインセンサ19dに、データ出力トリガを出力してもよい。次に、S360において、スペクトル線幅算出部22は、データ出力トリガの入力に応じてラインセンサ19dから出力される干渉縞の積算データSF(r)を受信してもよい。スペクトル線幅算出部22が受信した積算データSF(r)は、演算処理部22cに含まれる平均化処理部30に記憶されてもよい。
次に、S370において、スペクトル線幅算出部22は、カウント数Nが、第3の回数N3であるか否かを判定してもよい。第3の回数N3は、第1の回数N1と第2の回数N2との積であり得る。カウント数Nが、第3の回数N3でない場合(S370;NO)、スペクトル線幅算出部22は、処理を上述のS320に戻してもよい。カウント数Nが、第3の回数N3となった場合(S370;YES)、スペクトル線幅算出部22は、処理をS380に進めてもよい。処理がS380に進む場合、平均化処理部30には、ラインセンサ19dから入力されたN2個の干渉縞の積算データSF(r)〜SFN2(r)が記憶され得る。
S380において、平均化処理部30は、上述の式(6)により、N2個の干渉縞の積算データSF(r)〜SFN2(r)を平均化し、積算平均データAF(r)を生成してもよい。次に、S390において、図12に示されるサブルーチンを参照してもよい。図12に示されるS391において、演算処理部22cに含まれるスペクトル波形算出部31は、平均化処理部30により生成された積算平均データAF(r)から観測スペクトル波形O(λ)を生成してもよい。
次に、S392において、演算処理部22cに含まれるデコンボリューション処理部32は、装置関数記憶部22aに記憶された装置関数I(λ)を読み込んでもよい。次に、S393において、デコンボリューション処理部32は、観測スペクトル波形O(λ)に対して、装置関数I(λ)を用いてデコンボリューション処理し、上述の式(7)を満たす復元スペクトル波形Q(λ)を求めてもよい。
次に、S394において、E95算出部33は、復元スペクトル波形Q(λ)から計測スペクトル線幅Wを算出してもよい。次に、図11に示されるフローチャートに戻り、S395において、スペクトル線幅算出部22は、E95算出部33により算出された計測スペクトル線幅Wのデータを、スペクトル線幅制御部20aに出力してもよい。この計測スペクトル線幅Wのデータは、上述の図10に示されるフローチャートにおけるS210で、スペクトル線幅制御部20aにより受信され得る。
次に、処理を上述のS310に戻してもよい。以上のスペクトル線幅計測の処理は、バースト発振期間Tb中に繰り返し行われてもよい。
2. 課題
図13は、本開示の課題を説明する図である。上述の比較例では、第2のエタロン分光器19とスペクトル線幅算出部22で構成されたスペクトル線幅計測装置は、干渉縞のデータF(r)を積算及び平均した積算平均データAF(r)に基づいて計測スペクトル線幅Wを算出し得る。すなわち、スペクトル線幅計測装置は、パルスレーザ光PLに含まれる複数のパルスPに基づいて、計測スペクトル線幅Wを求め得る。
しかし、露光装置制御部40から狭帯域化レーザ装置に入力される目標中心波長λは、バースト発振期間Tb中に、1パルスP毎に変更されることがあり得る。これは、例えば、露光装置4に含まれる縮小投影レンズの焦点の位置を補正するためであり得る。
このように、目標中心波長λが変更されると、狭帯域化レーザ装置から出力されるパルスレーザ光PLの第1のスペクトル波形の中心波長は、上述の波長制御部21の制御によって、図13(A)に示されるように、1パルスP毎に変化し得る。
図13(A)は、目標中心波長λの変更量を表すパラメータを「x」とした場合の第1のスペクトル波形T(λ−x)が示している。簡便化のため、目標中心波長λが変更されない「x=0」の場合と、目標中心波長λが「+δ」だけ変更された「x=+δ」の場合と、目標中心波長λが「−δ」だけ変更された「x=−δ」の場合との3種のスペクトル波形T(λ−x)が示されていてもよい。
図13(B)は、第1のスペクトル波形T(λ−x)を有するパルスPが、第2のエタロン分光器19に入射した後の第2のスペクトル波形T’(λ−x)を示している。第2のスペクトル波形T’(λ−x)は、第1のスペクトル波形T(λ−x)に装置関数I(λ)がコンボリューションされたものであり得る。スペクトル線幅計測装置は、第2のスペクトル波形T’(λ−x)を有する複数のパルスPにより生じる複数の干渉縞のデータF(r)を積算及び平均することで、観測スペクトル波形O(λ)を生成し得る。
図13(C)は、スペクトル線幅計測装置により生成される観測スペクトル波形O(λ)と、装置関数I(λ)を用いたデコンボリューション処理により求められる復元スペクトル波形Q(λ)とを示している。スペクトル線幅計測装置は、中心波長が異なった複数のパルスPに基づいて復元スペクトル波形Q(λ)を求め得る。復元スペクトル波形Q(λ)は、中心波長が異なる複数の第1のスペクトル波形T(λ−x)が重ね合わせられた波形に相当し得る。
従って、比較例では、目標中心波長λが1パルスP毎に変更されることにより、復元スペクトル波形Q(λ)に基づいて算出される計測スペクトル線幅Wは、図13(A)に示されるパルスレーザ光PLの真のスペクトル線幅Wよりも大きくなり得る。
以下に説明される実施形態においては、この課題を解決するために、パルスレーザ光PLの各パルスPの中心波長のデータを取得し、取得した中心波長のデータと、装置関数I(λ)とを考慮して計測スペクトル線幅Wを算出し得る。
3.各パルスの中心波長を考慮してスペクトル線幅を計測する狭帯域化レーザ装置(第1の実施形態)
3.1 構成
図14は、本開示の第1の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す。第1の実施形態において、狭帯域化レーザ装置は、図1を参照しながら説明した比較例の構成に加えて、スペクトル線幅算出部22内に、波長頻度関数生成部22dを備えていてもよい。また、狭帯域化レーザ装置は、波長制御部21から波長頻度関数生成部22dに、パルスP毎の計測中心波長λのデータを送信する信号ラインを備えていてもよい。
波長制御部21は、各パルスPについて、中心波長算出部21aにより計測中心波長λが算出されるたびに、計測中心波長λのデータを、波長頻度関数生成部22dに出力してもよい。波長頻度関数生成部22dは、1パルスP毎に、波長制御部21から計測中心波長λのデータを受信してもよい。
波長頻度関数生成部22dは、波長を複数の区間に分け、1区間毎に計測中心波長λの出現頻度を集計することにより、中心波長の頻度分布を表す波長頻度関数R(λ)を生成してもよい。波長頻度関数生成部22dは、カウンタ22bのカウント数Nが第3の回数N3となる毎に、N3個の計測中心波長λのデータからなる波長頻度関数R(λ)を生成してもよい。
例えば、実際の計測中心波長λと目標中心波長λが殆ど同じとなるように波長制御された場合、波長頻度関数R(λ)は、露光装置制御部40から狭帯域化レーザ装置に入力される目標中心波長λが1パルスP毎に変更された場合の目標中心波長λの頻度分布に対応し得る。
図15は、波長頻度関数生成部22dにより生成される波長頻度関数R(λ)の例を示す。図15に示される1つの区間幅Sは、第2のエタロン分光器19のラインセンサ19dに起因する量子化単位Δの整数倍であってもよい。上述の装置関数I(λ)及び観測スペクトル波形O(λ)は、ラインセンサ19dの分解能に基づいた離散データで構成され得る。この離散データの最小波長間隔が、量子化単位Δであり得る。
区間幅Sは、「0<S≦7fm」を満たす範囲内であって、好ましくは、「5fm≦S≦6fm」を満たす範囲内であり得る。
また、図15において、露光装置制御部40により変更される目標中心波長λの波長変更量CRが示されている。例えば、波長変更量CRは、1つのバースト発振期間Tb内に変更される最大の波長変更量であり得る。この波長変更量CRは、少なくとも区間幅Sの2倍以上の値であり得る。また、波長変更量CRは、パルスレーザ光PLの真のスペクトル線幅Wよりも小さい値であり得る。例えば、波長変更量CRは、100fmであってもよい。
また、波長頻度関数生成部22dは、全体の積分値が「1」となるように波長頻度関数R(λ)を規格化してもよい。この規格化は、波長頻度関数R(λ)の全体の積分値を求め、求めた積分値の逆数を波長頻度関数R(λ)に乗ずることにより行われる。
第1の実施形態では、デコンボリューション処理部32は、平均化処理部30により生成された観測スペクトル波形O(λ)に対して、装置関数I(λ)と、波長頻度関数R(λ)とを用いて、デコンボリューション処理を行ってもよい。例えば、デコンボリューション処理部32は、下式(11)を満たす復元スペクトル波形Q(λ)を求めるデコンボリューション処理を行い得る。
Figure 0006549248
ここで、IR(λ)は、下式(12)に示すように、装置関数I(λ)と波長頻度関数R(λ)とのコンボリューション積分で表される合成関数であり得る。
Figure 0006549248
デコンボリューション処理部32は、上式(12)に基づくコンボリューション処理を行い、合成関数IR(λ)を算出した後、算出した合成関数IR(λ)を用いて、上式(11)を満たす復元スペクトル波形Q(λ)を求め得る。このデコンボリューション処理には、ヤコビ法、ガウス・ザイデル法等の反復法を用いてもよい。
デコンボリューション処理部32が行うコンボリューション処理及びデコンボリューション処理は、実際には離散データを用いた数値演算であり得る。上述のように、波長頻度関数R(λ)の区間幅Sが、装置関数I(λ)及び観測スペクトル波形O(λ)の最小データ間隔を表す量子化単位Δの整数倍であるので、デコンボリューション処理部32は、効率よく高速に演算処理を行い得る。
E95算出部33は、上式(12)に基づくデコンボリューション処理により生成された復元スペクトル波形Q(λ)から、スペクトル線幅Wを算出してもよい。
第1の実施形態に係る狭帯域化レーザ装置のその他の構成は、上述の比較例に係る狭帯域化レーザ装置の構成と同様であってよい。
3.2 動作
3.2.1 スペクトル線幅の算出処理
図16は、第1の実施形態におけるスペクトル線幅算出処理を示すサブルーチンである。第1の実施形態において、図14に示されるスペクトル線幅算出部22は、図11に示されるフローチャート中のS390として、比較例の図12に示されるサブルーチンに代えて、図16に示されるサブルーチンを実行してもよい。
図16に示されるS400において、演算処理部22cに含まれるスペクトル波形算出部31は、平均化処理部30により生成された積算平均データAF(r)から観測スペクトル波形O(λ)を生成してもよい。次に、S401において、演算処理部22cに含まれるデコンボリューション処理部32は、装置関数記憶部22aに記憶された装置関数I(λ)を読み込んでもよい。
次に、S402において、デコンボリューション処理部32は、波長頻度関数生成部22dから出力された波長頻度関数R(λ)を読み込んでもよい。次に、S403において、デコンボリューション処理部32は、上式(12)に基づいて、装置関数I(λ)と波長頻度関数R(λ)とをコンボリューション処理し、合成関数IR(λ)を算出してもよい。
次に、S404において、デコンボリューション処理部32は、観測スペクトル波形O(λ)を、合成関数IR(λ)を用いてデコンボリューション処理し、上式(11)を満たす復元スペクトル波形Q(λ)を求めてもよい。そして、S405において、E95算出部33は、復元スペクトル波形Q(λ)から計測スペクトル線幅Wを算出してもよい。
3.2.2 波長頻度関数の生成処理
図17は、図14に示されるスペクトル線幅算出部22に含まれる波長頻度関数生成部22dによる波長頻度関数の生成処理を示すフローチャートである。波長頻度関数生成部22dは、以下の処理により、波長頻度関数R(λ)を生成してもよい。
波長頻度関数生成部22dは、上述のカウンタ22bによるカウント数Nを参照し、カウント数Nと同期して動作を行い得る。まず、S410において、波長頻度関数生成部22dは、カウンタ22bがカウント数Nをリセットし、「N=0」とすることに応じて、波長頻度関数R(λ)をリセットして、「R(λ)=0」としてもよい。
次に、S411において、波長頻度関数生成部22dは、カウンタ22bが、現在のカウント数Nに「1」を加算し、カウント数Nをインクリメントしたことに応じて、波長制御部21から送信される計測中心波長λのデータを取得してもよい。
次に、S412において、波長頻度関数生成部22dは、取得した計測中心波長λについて、波長頻度関数R(λ)をカウントアップしてもよい。例えば、カウントアップは、波長頻度関数R(λ)の複数の区間のうち、取得した計測中心波長λが属する区間の度数に「1」を加算する、「R(λ)=R(λ)+1」で表される処理を行うことにより実行され得る。
次に、S413において、波長頻度関数生成部22dは、カウント数Nが、第3の回数N3であるか否かを判定してもよい。カウント数Nが、第3の回数N3でない場合(S413;NO)、波長頻度関数生成部22dは、処理を上述のS411に戻してもよい。カウント数Nが、第3の回数N3となった場合(S413;YES)、波長頻度関数生成部22dは、処理をS414に進めてもよい。処理がS414に進む場合、N3個の計測中心波長λからなるデータにより、波長頻度関数R(λ)が生成され得る。
S414において、波長頻度関数生成部22dは、全体の積分値が「1」となるように波長頻度関数R(λ)を規格化してもよい。次に、S415において、波長頻度関数生成部22dは、規格化した波長頻度関数R(λ)をデコンボリューション処理部32に出力してもよい。この波長頻度関数R(λ)は、上述の図16に示されるサブルーチン中のS402において、デコンボリューション処理部32に読み込まれ得る。
次に、処理を上述のS410に戻してもよい。以上の波長頻度関数の生成処理は、バースト発振期間Tb中に繰り返し行われてもよい。
第1の実施形態に係る狭帯域化レーザ装置のその他の動作は、上述の比較例に係る狭帯域化レーザ装置の動作と同様であってよい。
3.3 効果
以下、第1の実施形態に係る狭帯域化レーザ装置の効果を説明する。上述の課題において説明したように、目標中心波長λが1パルスP毎に変更される場合には、観測スペクトル波形O(λ)は、図13に例示されるように、複数の第2のスペクトル波形T’(λ−x)が重ね合わせられた波形となり得る。この複数の第2のスペクトル波形T’(λ−x)の重ね合わせは、波長頻度関数R(λ)を用いて、下式(13)で表され得る。
Figure 0006549248
上式(13)は、コンボリューション積分であるので、下式(14)に示すように変形され得る。
Figure 0006549248
さらに、上式(14)は、上述の合成関数IR(λ)を用いて、下式(15)に示すように変形され得る。
Figure 0006549248
第1の実施形態では、合成関数IR(λ)を用いて、上式(11)に基づくデコンボリューション処理が行われるので、デコンボリューション処理により求められる復元スペクトル波形Q(λ)は、第1のスペクトル波形T(λ)とほぼ等しくなり得る。すなわち、第1の実施形態では、復元スペクトル波形Q(λ)は、露光装置制御部40により目標中心波長λが変更されることによる影響が除去され得る。従って、復元スペクトル波形Q(λ)に基づいて算出される計測スペクトル線幅Wは、パルスレーザ光PLの真のスペクトル線幅Wとほぼ等しくなり得る。
第1の実施形態では、デコンボリューション処理部32は、装置関数I(λ)と波長頻度関数R(λ)とをコンボリューション処理することにより得られる合成関数IR(λ)を用いてデコンボリューション処理を行っているが、これに限定されない。デコンボリューション処理部32は、観測スペクトル波形O(λ)に対して、装置関数I(λ)と波長頻度関数R(λ)とを用いてデコンボリューション処理を行う、いかなる態様でもあり得る。
例えば、デコンボリューション処理部32は、観測スペクトル波形O(λ)に対して、装置関数I(λ)を用いて第1のコンボリューション処理を行い、さらに波長頻度関数R(λ)を用いて第2のデコンボリューション処理を行うことも可能であり得る。また、デコンボリューション処理部32は、観測スペクトル波形O(λ)に対して、波長頻度関数R(λ)を用いて第1のコンボリューション処理を行い、さらに装置関数I(λ)を用いて第2のデコンボリューション処理を行うことも可能であり得る。
しかし、一般的に、デコンボリューション処理は、コンボリューション処理よりも処理時間が長くなり得る。このため、2回のデコンボリューション処理を行う場合に比べて、第1の実施形態のように、コンボリューション処理により得た合成関数IR(λ)を用いてデコンボリューション処理を行うことは、処理の高速化の面で有利であり得る。
3.4 波長頻度関数の生成に関する変形例
3.4.1 第1の変形例
第1の実施形態では、波長頻度関数生成部22dは、波長制御部21から計測中心波長λのデータを取得しているが、第1の変形例として、波長頻度関数生成部22dは、波長制御部21から目標中心波長λのデータを取得してもよい。
図18は、第1の変形例に係る波長頻度関数の生成処理を示すフローチャートである。図18に示されるフローチャートは、S411及びS412のみが、図17に示される第1の実施形態のフローチャートと異なる。
第1の変形例では、図18に示されるS411において、波長頻度関数生成部22dは、カウント数Nのインクリメントに応じて、狭帯域化レーザ装置から出力されるパルスPに対応する目標中心波長λのデータを波長制御部21から取得してもよい。
次に、図18に示されるS412において、波長頻度関数生成部22dは、取得した目標中心波長λについて、波長頻度関数R(λ)をカウントアップしてもよい。例えば、波長頻度関数R(λ)の複数の区間のうち、取得した目標中心波長λが属する区間の度数に「1」を加算することによりカウントアップが行われ得る。すなわち、カウントアップ時に、「R(λ)=R(λ)+1」で表される処理が行われ得る。このように、第1の変形例では、目標中心波長λのデータに基づいて波長頻度関数R(λ)が生成され得る。
第1の変形例のその他の構成及び動作は、第1の実施形態と同様である。なお、目標中心波長λのデータは、レーザ制御部20から波長頻度関数生成部22dに、図示しない信号ラインを介して送信されてもよい。
3.4.2 第2の変形例
第1の実施形態では、目標中心波長λのデータは、発振トリガ信号と同期して、1パルスP毎にレーザ制御部20に入力されているが、複数の目標中心波長λのデータが、予めレーザ制御部20に入力され、図示しないメモリに記憶されることもあり得る。例えば、図7に示される休止期間Tr中に、続くバースト発振期間Tbの各パルスPに対応する目標中心波長λが予めレーザ制御部20に入力され得る。
この場合、第2の変形例における波長頻度関数生成部22dは、休止期間Tr中に、続くバースト発振期間Tbで用いる複数の波長頻度関数R(λ)を予め生成し、記憶しておいてもよい。
第2の変形例のその他の構成及び動作は、第1の変形例と同様である。
3.5 積算回数及び平均回数に関する変形例
第1の実施形態では、積算回数を表す第1の回数N1と、平均回数を表す第2の回数N2とをいずれも2以上の値としているが、少なくとも、第1の回数N1と第2の回数N2との積である第3の回数N3が2以上であればよい。すなわち、第1の回数N1と第2の回数N2とのいずれか一方は、「1」であってもよい。
例えば、「N1=1」である場合には、ラインセンサ19dでは、干渉縞のデータF(r)の積算は行われ得ない。このため、ラインセンサ19dからは、干渉縞の積算データSF(r)ではなく、干渉縞のデータF(r)が出力され得る。
一方、「N2=1」である場合には、平均化処理部30では、実質的に平均化処理は行われ得ない。従って、平均化処理部30は、必須の構成部ではなく、省略可能であり得る。
また、本開示では、積算とは、ラインセンサ19dにおいて、干渉縞のデータF(r)が複数蓄積されて加算されることを意味し得る。本開示では、平均とは、演算処理部22cにおいて、複数の積算データSF(r)或いは複数の干渉縞のデータF(r)を加算して加算回数で除算することを意味し得る。従って、本開示における積算及び平均は、いずれも複数の干渉縞のデータF(r)を加算することを含む概念であり得る。
3.6 観測スペクトル波形の生成に関する変形例
第1の実施形態では、平均化処理部30が、複数の積算データSF(r)を平均化して積算平均データAF(r)を生成した後、スペクトル波形算出部31が、積算平均データAF(r)に基づいて観測スペクトル波形O(λ)を生成し得る。この平均化処理とスペクトル波形生成処理とは、順序を逆とすることが可能であり得る。
例えば、まず、ラインセンサ19dから入力されたN2個の干渉縞の積算データSF(r)のそれぞれを、スペクトル波形算出部31がスペクトル波形に変換してもよい。そして、平均化処理部30が、スペクトル波形算出部31により生成された複数のスペクトル波形を平均化することにより、観測スペクトル波形O(λ)が生成されて得る。
もちろん、「N1=1」の場合には、スペクトル波形算出部31は、ラインセンサ19dから入力される干渉縞のデータF(r)をスペクトル波形に変換し得る。また、「N2=1」の場合には、平均化処理部30を省略し得る。
なお、干渉縞とは、分光強度の分布を、分光器の光軸からの半径をパラメータとして表したものであり、スペクトル波形とは、分光強度の分布を、波長をパラメータとして表したものであり得る。このため、干渉縞とスペクトル波形とは、いずれもパルスレーザ光の「分光強度分布」を表すデータであり得る。
従って、第1の実施形態では、平均化処理部30及びスペクトル波形算出部31は、分光強度分布が加算されてなる観測スペクトル波形O(λ)を生成する「観測スペクトル波形生成部」を構成している。平均化処理部30及びスペクトル波形算出部31は、観測スペクトル波形生成部の1つの構成例である。
4.各パルスの中心波長及びパルスエネルギを考慮してスペクトル線幅を計測する狭帯域化レーザ装置(第2の実施形態)
狭帯域化レーザ装置から出力されるパルスレーザ光PLのパルスエネルギは、1パルスP毎に変動することがあり得る。このように、1パルスP毎にパルスエネルギが変動する場合には、比較例により求められる復元スペクトル波形Q(λ)は、中心波長及びパルスエネルギが異なる複数の第1のスペクトル波形T(λ−x)が重ね合わせられたものに相当する。
第1の実施形態では、中心波長の出現頻度を表す波長頻度関数R(λ)を用いてデコンボリューション処理を行っているので、復元スペクトル波形Q(λ)からは、1パルスP毎の中心波長の差異による影響が除去され得る。しかし、第1の実施形態では、復元スペクトル波形Q(λ)からは、1パルスP毎のパルスエネルギの差異による影響は除去され得ない。
4.1 構成
図19は、本開示の第2の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す。第2の実施形態において、狭帯域化レーザ装置は、図14に示される第1の実施形態の構成に加えて、エネルギセンサ17から波長頻度関数生成部22dに、パルスP毎のパルスエネルギEのデータを送信する信号ラインを備えていてもよい。
波長制御部21は、各パルスPについて、中心波長算出部21aにより計測中心波長λが算出されるたびに、計測中心波長λのデータを、波長頻度関数生成部22dに出力してもよい。エネルギセンサ17は、各パルスPについて、パルスエネルギEを計測するたびに、パルスエネルギEのデータを、波長頻度関数生成部22dに出力してもよい。波長頻度関数生成部22dは、1パルスP毎に、波長制御部21から計測中心波長λのデータを受信し、エネルギセンサ17からパルスエネルギEのデータを受信してもよい。
第2の実施形態では、波長頻度関数生成部22dは、波長範囲を複数の区間に分け、パルスPのパルスエネルギEの和を区間毎に算出することにより、波長頻度関数R(λ)を生成してもよい。波長頻度関数生成部22dは、カウンタ22bのカウント数Nが第3の回数N3となる毎に、N3個の計測中心波長λ及びパルスエネルギEのデータからなる波長頻度関数R(λ)を生成してもよい。
4.2 動作
4.2.1 波長頻度関数の生成処理
図20は、図19に示されるスペクトル線幅算出部22に含まれる波長頻度関数生成部22dによる波長頻度関数の生成処理を示すフローチャートである。図20に示されるフローチャートは、S411及びS412のみが、図17に示される第1の実施形態のフローチャートと異なる。
第2の実施形態では、図20に示されるS411において、波長頻度関数生成部22dは、カウント数Nのインクリメントに応じて、狭帯域化レーザ装置から出力されるパルスPに対応する計測中心波長λのデータと、パルスエネルギEのデータとを取得してもよい。波長頻度関数生成部22dは、計測中心波長λのデータを中心波長算出部21aから取得し、パルスエネルギEのデータをエネルギセンサ17から取得し得る。
次に、図20に示されるS412において、波長頻度関数生成部22dは、取得した計測中心波長λについて、波長頻度関数R(λ)を、パルスエネルギEの値よりカウントアップしてもよい。例えば、図21に示されるように、波長頻度関数R(λ)の複数の区間のうち、取得した計測中心波長λが属する区間の度数に、パルスエネルギEの値を加算することにより、カウントアップが行われ得る。すなわち、カウントアップ時には、「R(λ)=R(λ)+E」で表される処理が行われ得る。このように、第2の実施形態では、計測中心波長λ及びパルスエネルギEのデータに基づいて波長頻度関数R(λ)が生成され得る。
第2の実施形態に係る狭帯域化レーザ装置のその他の構成及び動作は、第1の実施形態に係る狭帯域化レーザ装置と同様であってもよい。
4.3 効果
以下、第2の実施形態に係る狭帯域化レーザ装置の効果を説明する。第2の実施形態では、計測中心波長λ及びパルスエネルギEのデータに基づいて波長頻度関数R(λ)が生成されているので、波長頻度関数R(λ)は、1パルスP毎の中心波長及びパルスエネルギの差異による影響が反映されたものとなり得る。従って、この波長頻度関数R(λ)を用いたデコンボリューション処理により求められる復元スペクトル波形Q(λ)は、1パルスP毎の中心波長及びパルスエネルギの差異による影響が除去されたものとなり得る。さらに、第2の実施形態において、復元スペクトル波形Q(λ)に基づいて算出される計測スペクトル線幅Wは、パルスレーザ光PLの真のスペクトル線幅Wに、より近いものとなり得る。
4.4 変形例
第2の実施形態では、波長頻度関数生成部22dは、波長制御部21から計測中心波長λのデータを取得しているが、これに代えて、波長頻度関数生成部22dは、波長制御部21から目標中心波長λのデータを取得してもよい。従って、第2の実施形態に対しても、第1の実施形態と同様に、波長頻度関数の生成に関する変形が可能であり得る。
また、第2の実施形態に対しても、第1の実施形態と同様に、積算回数及び平均回数に関する変形と、観測スペクトル波形の生成に関する変形とが可能であり得る。
5.各スペクトル波形の波長をシフトさせることにより計測スペクトル線幅を算出する狭帯域化レーザ装置(第3の実施形態)
本開示の第3の実施形態に係る狭帯域化レーザ装置は、スペクトル線幅算出部22に含まれる演算処理部22c以外の構成が、図1を参照しながら説明した比較例の構成と同様であり得る。図22は、第3の実施形態における演算処理部22cの構成を示す。演算処理部22cは、スペクトル波形生成部50と、波長シフト処理部51と、波形平均化処理部52と、デコンボリューション処理部53と、E95算出部54と、を含んでもよい。
第3の実施形態では、カウンタ22bは、検出信号のカウント数Nを「1」だけインクリメントするたびに、第2のエタロン分光器19に含まれるラインセンサ19dに上述のデータ出力トリガを出力してもよい。第2のエタロン分光器19は、パルスレーザ光PLのパルスPを1回受光するたびに、干渉縞のデータF(r)を、スペクトル線幅算出部22の演算処理部22cに出力してもよい。
スペクトル波形生成部50は、演算処理部22cが1つの干渉縞のデータF(r)を受信するたびに、上式(2)に基づいてスペクトル波形を算出し得る。スペクトル波形生成部50により算出されるスペクトル波形は、上述の第2のスペクトル波形T’(λ)に相当し得る。
波長シフト処理部51は、スペクトル波形生成部50により生成された各スペクトル波形の中心波長λCiを算出し、各スペクトル波形を、中心波長λCiがほぼ一致するように、波長をシフトさせてもよい。
波形平均化処理部52は、カウント数Nが第1の回数N1となり、演算処理部22cがN1個の干渉縞のデータF(r)を受信するたびに、波長シフト処理部51により波長がシフトされたN1個のスペクトル波形を平均化してもよい。この平均化により、観測スペクトル波形O(λ)が生成され得る。
デコンボリューション処理部53は、比較例のデコンボリューション処理部32と同様の構成であり得る。デコンボリューション処理部53は、波形平均化処理部52の平均化処理により生成された観測スペクトル波形O(λ)に対して、装置関数記憶部22aに記憶された装置関数I(λ)を用いて、デコンボリューション処理を行い得る。例えば、デコンボリューション処理部53は、上式(7)を満たす復元スペクトル波形Q(λ)を求めるデコンボリューション処理を行い得る。
E95算出部54は、比較例のE95算出部33と同様の構成であり得る。E95算出部54は、デコンボリューション処理部53により生成された復元スペクトル波形Q(λ)から、後述するスペクトル純度E95を、計測スペクトル線幅Wとして算出してもよい。E95算出部54は、算出した計測スペクトル線幅Wのデータを、レーザ制御部20に出力してもよい。
5.1 動作
5.1.1 スペクトル線幅の算出処理
図23は、第3の実施形態のスペクトル線幅算出部22によるスペクトル線幅算出の処理を示すフローチャートである。スペクトル線幅算出部22は、以下の処理により、狭帯域化レーザ装置で生成されるパルスレーザ光PLのスペクトル線幅を算出してもよい。
まず、S500において、スペクトル線幅算出部22は、レーザ制御部20の図示しないメモリから第1の回数N1のデータを読み込んでもよい。以下の処理は、パルスレーザ光PLのバースト発振中に行われてもよい。
S510において、カウンタ22bは、カウント数Nをリセットし、「N=0」としてもよい。次に、S520において、カウンタ22bは、狭帯域化レーザ装置がレーザ発振したか否かを判定してもよい。例えば、カウンタ22bは、エネルギセンサ17から検出信号を1回受信した場合に、狭帯域化レーザ装置がレーザ発振したと判定してもよい。狭帯域化レーザ装置がレーザ発振していない場合(S520;NO)、カウンタ22bは、狭帯域化レーザ装置がレーザ発振するまで待機してもよい。狭帯域化レーザ装置がレーザ発振した場合(S520;YES)、カウンタ22bは、処理をS530に進めてもよい。
S530において、カウンタ22bは、カウント数Nをインクリメントしてもよい。例えば、現在のカウント数Nに「1」を加算してもよい。このとき、パルスレーザ光PLの一部が第2のエタロン分光器19に入射し、エタロン19bを介してラインセンサ19dに干渉縞が露光され得る。これにより、ラインセンサ19dにおいて、干渉縞のデータF(r)が取得され得る。
次に、S540において、スペクトル線幅算出部22は、第2のエタロン分光器19のラインセンサ19dに、データ出力トリガを出力してもよい。次に、S550において、スペクトル線幅算出部22は、データ出力トリガの入力に応じてラインセンサ19dから出力される干渉縞のデータF(r)を受信してもよい。スペクトル線幅算出部22が受信した干渉縞のデータF(r)は、演算処理部22cに含まれるスペクトル波形生成部50に入力されてもよい。
次に、S560において、スペクトル波形生成部50は、演算処理部22cに入力された1つの干渉縞のデータF(r)を用い、式(2)に基づいてスペクトル波形を生成してもよい。
次に、S570において、スペクトル線幅算出部22は、カウント数Nが、第1の回数N1であるか否かを判定してもよい。カウント数Nが、第1の回数N1でない場合(S570;NO)、スペクトル線幅算出部22は、処理を上述のS520に戻してもよい。カウント数Nが、第1の回数N1となった場合(S570;YES)、スペクトル線幅算出部22は、処理をS580に進めてもよい。処理がS580に進む場合、スペクトル波形生成部50によりN1個のスペクトル波形が生成され得る。
S580において、図24に示されるサブルーチンを参照してもよい。図24に示されるS581において、波長シフト処理部51は、スペクトル波形生成部50により生成されたN1個のスペクトル波形のそれぞれについて中心波長λCiを算出し、各スペクトル波形を、中心波長λCiがほぼ一致するように、波長をシフトさせてもよい。
次に、S582において、波形平均化処理部52は、波長シフト処理部51により波長がシフトされたN1個のスペクトル波形を平均化し、観測スペクトル波形O(λ)を生成してもよい。次に、S583において、デコンボリューション処理部53は、装置関数記憶部22aに記憶された装置関数I(λ)を読み込んでもよい。次に、S584において、デコンボリューション処理部53は、観測スペクトル波形O(λ)を、装置関数I(λ)を用いてデコンボリューション処理し、上述の式(7)を満たす復元スペクトル波形Q(λ)を求めてもよい。
次に、S585において、E95算出部54は、復元スペクトル波形Q(λ)から計測スペクトル線幅Wを算出してもよい。次に、図23に示されるフローチャートに戻り、S590において、スペクトル線幅算出部22は、E95算出部54により算出された計測スペクトル線幅Wのデータを、スペクトル線幅制御部20aに出力してもよい。
次に、処理を上述の図23に示されるS510に戻してもよい。以上のスペクトル線幅計測の処理は、バースト発振期間Tb中に繰り返し行われてもよい。なお、第3の実施形態において、第1の回数N1は、2以上であればよい。
第3の実施形態に係る狭帯域化レーザ装置のその他の構成及び動作は、比較例に係る狭帯域化レーザ装置と同様であってもよい。
5.2 効果
図25は、第3の実施形態に係る狭帯域化レーザ装置の効果を説明する図である。図25(A)は、露光装置制御部40により目標中心波長λが変更されることにより、中心波長が変化した第1のスペクトル波形T(λ−x)を例示している。図25(B)は、スペクトル波形生成部50により生成されるスペクトル波形に相当する第2のスペクトル波形T’(λ−x)を例示している。図25(C)は、波長シフト処理部51及び波形平均化処理部52の処理により生成される観測スペクトル波形O(λ)と、デコンボリューション処理部53により生成される復元スペクトル波形Q(λ)とを例示している。
第3の実施形態では、中心波長が異なる複数のスペクトル波形を、中心波長を一致させるように波長をシフトさせたうえで平均化することにより観測スペクトル波形O(λ)を生成し得る。このため、デコンボリューション処理により求められる復元スペクトル波形Q(λ)は、第1のスペクトル波形T(λ)とほぼ等しくなり得る。すなわち、第3の実施形態では、復元スペクトル波形Q(λ)は、露光装置制御部40により目標中心波長λが変更されることによる影響が除去され得る。従って、復元スペクトル波形Q(λ)に基づいて算出される計測スペクトル線幅Wは、パルスレーザ光PLの真のスペクトル線幅Wとほぼ等しくなり得る。
5.3 波長シフト処理で用いる中心波長のバリエーション
第3の実施形態では、波長シフト処理部51は、スペクトル波形生成部50により生成された各スペクトル波形の中心波長λCiを算出し、この中心波長λCiに基づいて各スペクトル波形の波長をシフトさせ得る。これに代えて、波長シフト処理部51は、波長制御部21に含まれる中心波長算出部21aにより算出される計測中心波長λに基づいて各スペクトル波形の波長をシフトさせてもよい。さらに、波長シフト処理部51は、上述の目標中心波長λに基づいて各スペクトル波形の波長をシフトさせてもよい。
6.第2のエタロン分光器のバリエーション(第4の実施形態)
図26は、本開示の第4の実施形態に係る狭帯域化レーザ装置において用いられる第2のエタロン分光器19の構成を示す。第4の実施形態において、第2のエタロン分光器19は、拡散プレート19aとエタロン19bとの間に、光ファイバー19eが配置されてもよい。
ビームスプリッタ16cと拡散プレート19aとの間には、集光レンズ19fが配置されてもよい。集光レンズ19fによってパルスレーザ光を集光することにより、拡散プレート19aを通過した散乱光が光ファイバー19eの入射端部19gに入射するようにしてもよい。光ファイバー19eの入射端部19gに入射した散乱光は、光ファイバー19eの出射端部19hからエタロン19bに向けて出射してもよい。
さらに、光ファイバー19eを振動させる加振装置19iが設けられてもよい。加振装置19iは、図示しないアクチュエータを備えてもよい。第4の実施形態では、高反射ミラー16dは、省略され得る。
パルスレーザ光の干渉性が高い場合に、加振装置19iによって光ファイバー19eを振動させることにより、干渉縞に加算されるスペックルノイズが低減し得る。その結果、パルスレーザ光のスペクトル線幅及び中心波長の計測精度が向上し得る。
7.MOPO間の同期によりスペクトル線幅を制御する狭帯域化レーザ装置(第5の実施形態)
図27は、本開示の第5の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す。第5の実施形態においては、第1の実施形態に係る狭帯域化レーザ装置のレーザチャンバ10と第1のビームスプリッタ16aとの間に、出力結合ミラー60と、高反射ミラー61及び62と、パワーオシレータと、が配置されていてもよい。スペクトル線幅可変部15は、省略されてもよい。
出力結合ミラー60は、部分反射ミラーであってもよく、波面を調節する機能を有しなくてもよい。出力結合ミラー60は、狭帯域化レーザ装置の発振波長の光は部分反射し、一対の放電電極11a及び11b間で発生する可視の放電光を高い透過率で透過する膜がコートされていてもよい。
第5の実施形態において、マスターオシレータ(MO)は、レーザチャンバ10と、一対の放電電極11a及び11bと、と、MO電源12と、狭帯域化モジュール14と、出力結合ミラー60と、図示しない充電器と、を含んでもよい。
高反射ミラー61及び62は、出力結合ミラー60から出力されたパルスレーザ光を高い反射率で反射することにより、パワーオシレータ(PO)のリアミラー63に導いてもよい。高反射ミラー61及び62は、可視の放電光を透過する膜がコートされていてもよい。一対の放電電極11a及び11b間の放電によって発生した光のうち、可視光の一部は、出力結合ミラー60と高反射ミラー61とを透過し、MO放電センサ64に導かれてもよい。MO放電センサ64は、出力結合ミラー60及び高反射ミラー61を透過した可視光から、マスターオシレータの一対の放電電極11a及び11b間における放電のタイミングを検出するように構成されてもよい。放電タイミングを示す信号は同期制御部65に出力されてもよい。
パワーオシレータは、レーザチャンバ70と、一対の放電電極71a及び71bと、PO電源72と、図示しない充電器と、を含んでもよい。これらの構成は、マスターオシレータの対応する構成と同様でよい。パワーオシレータは、さらにリアミラー63と出力結合ミラー73とを含んでもよい。リアミラー63及び出力結合ミラー73は、部分反射ミラーであり、光共振器を構成してもよい。出力結合ミラー73は、レーザ発振する波長の光が部分反射する膜がコートされていてもよい。ここで、出力結合ミラー73の部分反射膜の反射率は、10%〜30%の範囲内であってもよい。
高反射ミラー62からリアミラー63に入射したパルスレーザ光の一部は、レーザチャンバ70内に導入され、出力結合ミラー73とリアミラー63とで往復する間に増幅されてもよい。増幅されたパルスレーザ光は、出力結合ミラー73から出力されもよい。このように、マスターオシレータから出力されたパルスレーザ光をパワーオシレータによって増幅して出力するレーザ装置を、MOPO方式のレーザ装置という。
リアミラー63は、レーザ発振する波長の光が部分反射し、可視の放電光を高い透過率で透過する膜がコートされていてもよい。ここで、リアミラー63の部分反射膜の反射率は、70%〜90%の範囲内であってもよい。一対の放電電極71a及び71b間の放電により発生した光のうち、可視光の一部が、リアミラー63及び高反射ミラー62を介してPO放電センサ74に導かれてもよい。PO放電センサ74は、リアミラー63及び高反射ミラー62を透過した可視光から、パワーオシレータの一対の放電電極71a及び71b間における放電のタイミングを検出するように構成されてもよい。放電タイミングを示す信号は同期制御部65に出力されてもよい。
レーザ制御部20は、同期制御部65に発振トリガ信号を出力してもよい。同期制御部65は、レーザ制御部20から受信した発振トリガ信号に基づいて、マスターオシレータのMO電源12のスイッチ12aに第1のスイッチ信号を出力し、パワーオシレータのPO電源72のスイッチ72aに第2のスイッチ信号を出力してもよい。ここで、同期制御部65は、マスターオシレータにおける放電タイミングに対するパワーオシレータにおける放電タイミングの遅延時間が所望の遅延時間となるように、第1のスイッチ信号と第2のスイッチ信号のタイミングを制御してもよい。
図28は、MOPO方式のレーザ装置におけるマスターオシレータとパワーオシレータの放電タイミングの遅延時間と、パルスエネルギ及びスペクトル線幅との関係を示す。図28に示されるように、マスターオシレータとパワーオシレータの放電タイミングの遅延時間が所定の許容範囲にあれば、パワーオシレータから出力されるパルスレーザ光のパルスエネルギはほぼ一定となり得る。しかし、このような許容範囲内であっても、マスターオシレータとパワーオシレータの放電タイミングの遅延時間に応じて、パワーオシレータから出力されるパルスレーザ光のスペクトル線幅が異なり得る。具体的には、遅延時間が長くなるのに応じて、スペクトル線幅は狭くなり得る。そこで、第5の実施形態においては、マスターオシレータとパワーオシレータの放電タイミングの遅延時間を調整することにより、スペクトル線幅を制御してもよい。
他の点については、第1〜第4の実施形態と同様でよい。さらに、第5の実施形態では、パワーオシレータの光共振器として、ファブリペロ型の共振器の例を示したが、これに限定されることなく、リング型の共振器であってもよい。
8.制御部の構成
図29は、制御部の概略構成を示すブロック図である。上述した実施の形態におけるレーザ制御部20、波長制御部21、スペクトル線幅算出部22、同期制御部65等の制御部は、コンピュータやプログラマブルコントローラ等汎用の制御機器によって構成されてもよい。例えば、以下のように構成されてもよい。
8.1 構成
制御部は、処理部1000と、処理部1000に接続される、ストレージメモリ1005と、ユーザインターフェイス1010と、パラレルI/Oコントローラ1020と、シリアルI/Oコントローラ1030と、A/D、D/Aコンバータ1040とによって構成されてもよい。また、処理部1000は、CPU1001と、CPU1001に接続された、メモリ1002と、タイマー1003と、GPU1004とから構成されてもよい。
8.2 動作
処理部1000は、ストレージメモリ1005に記憶されたプログラムを読み出してもよい。また、処理部1000は、読み出したプログラムを実行したり、プログラムの実行に従ってストレージメモリ1005からデータを読み出したり、ストレージメモリ1005にデータを記憶させたりしてもよい。
パラレルI/Oコントローラ1020は、パラレルI/Oポートを介して通信可能な機器1021〜102xに接続されてもよい。パラレルI/Oコントローラ1020は、処理部1000がプログラムを実行する過程で行うパラレルI/Oポートを介した、デジタル信号による通信を制御してもよい。
シリアルI/Oコントローラ1030は、シリアルI/Oポートを介して通信可能な機器1031〜103xに接続されてもよい。シリアルI/Oコントローラ1030は、処理部1000がプログラムを実行する過程で行うシリアルI/Oポートを介した、デジタル信号による通信を制御してもよい。
A/D、D/Aコンバータ1040は、アナログポートを介して通信可能な機器1041〜104xに接続されてもよい。A/D、D/Aコンバータ1040は、処理部1000がプログラムを実行する過程で行うアナログポートを介した、アナログ信号による通信を制御してもよい。
ユーザインターフェイス1010は、オペレータが処理部1000によるプログラムの実行過程を表示したり、オペレータによるプログラム実行の中止や割り込み処理を処理部1000に行わせたりするよう構成されてもよい。
処理部1000のCPU1001は、プログラムの演算処理を行ってもよい。メモリ1002は、CPU1001がプログラムを実行する過程で、プログラムの一時記憶や、演算過程でのデータの一時記憶を行ってもよい。タイマー1003は、時刻や経過時間を計測し、プログラムの実行に従ってCPU1001に時刻や経過時間を出力してもよい。GPU1004は、処理部1000に画像データが入力された際、プログラムの実行に従って画像データを処理し、その結果をCPU1001に出力してもよい。
パラレルI/Oコントローラ1020に接続される、パラレルI/Oポートを介して通信可能な機器1021〜102xは、露光装置制御部40、他の制御部等のトリガ信号やタイミングを示す信号の受送信に使用してもよい。
シリアルI/Oコントローラ1030に接続される、シリアルI/Oポートを介して通信可能な機器1031〜103xは、露光装置制御部40、他の制御部等のデータの受送信に使用してもよい。
A/D、D/Aコンバータ1040に接続される、アナログポートを介して通信可能な機器1041〜104xは、エネルギセンサ17、ラインセンサ18d及び19d等の各種センサであってもよい。以上のように構成されることで、制御部は各実施形態に示された動作を実現可能であってよい。
上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の各実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
部と、を備えてもよい。

Claims (17)

  1. スペクトル線幅を狭帯域化する光学素子を含むレーザ共振器と、
    前記レーザ共振器から出力されるパルスレーザ光に含まれる複数のパルスについて分光強度分布を検出する分光器と、
    前記複数のパルスの分光強度分布が加算されてなるスペクトル波形を生成するスペクトル波形生成部と、
    前記分光器の装置関数を記憶する装置関数記憶部と、
    前記複数のパルスの中心波長の頻度分布を表す波長頻度関数を生成する波長頻度関数生成部と、
    前記スペクトル波形に対して、前記装置関数と前記波長頻度関数とを用いてデコンボリューション処理するデコンボリューション処理部と、
    を備える狭帯域化レーザ装置。
  2. 前記デコンボリューション処理部は、前記装置関数と前記波長頻度関数とをコンボリューション処理することにより得られる合成関数を用いて前記デコンボリューション処理を行う、
    請求項1記載の狭帯域化レーザ装置。
  3. 前記各パルスの中心波長を計測する中心波長計測部をさらに備え、
    前記波長頻度関数生成部は、前記中心波長計測部により計測された計測中心波長に基づいて前記波長頻度関数を生成する、
    請求項1記載の狭帯域化レーザ装置。
  4. 前記中心波長は、半値波長の平均値、ピーク波長、及び重心波長のうちのいずれか1つである、
    請求項3記載の狭帯域化レーザ装置。
  5. 前記各パルスの中心波長の制御に用いる目標中心波長を露光装置から取得する制御部をさらに備え、
    前記波長頻度関数生成部は、前記目標中心波長に基づいて前記波長頻度関数を生成する、
    請求項1記載の狭帯域化レーザ装置。
  6. 前記複数のパルスについての前記目標中心波長の波長変更量は、前記波長頻度関数の区間幅の2倍以上である、
    請求項5記載の狭帯域化レーザ装置。
  7. 前記区間幅は、0より大きく、かつ7fm以下である、
    請求項6記載の狭帯域化レーザ装置。
  8. 前記分光器は、前記分光強度分布を第1の回数検出するたびに、前記分光強度分布が積算された積算データを出力し、かつ、前記出力を第2の回数行うセンサを含み、
    前記スペクトル波形生成部は、前記第2の回数分の前記積算データを平均化した積算平均データに基づいて前記スペクトル波形を生成する、
    請求項1記載の狭帯域化レーザ装置。
  9. 前記第1の回数及び前記第2の回数はそれぞれ1以上であって、
    前記第1の回数と前記第2の回数との積である第3の回数は2以上である、
    請求項8記載の狭帯域化レーザ装置。
  10. 前記各パルスのパルスエネルギを検出するエネルギセンサをさらに備え、
    波長頻度関数生成部は、波長の区間毎に前記パルスエネルギの和を算出することにより前記波長頻度関数を生成する、
    請求項1記載の狭帯域化レーザ装置。
  11. 前記デコンボリューション処理部により算出される復元スペクトル波形に基づき、スペクトル線幅を算出するスペクトル線幅算出部を、
    さらに備える請求項1記載の狭帯域化レーザ装置。
  12. 前記スペクトル線幅算出部により算出された前記スペクトル線幅に基づいて、前記パルスレーザ光のスペクトル線幅を制御するスペクトル線幅制御部を、
    さらに備える請求項11記載の狭帯域化レーザ装置。
  13. スペクトル線幅を狭帯域化する光学素子を含むレーザ共振器と、
    前記レーザ共振器から出力されるパルスレーザ光に含まれる複数のパルスについて分光強度分布を検出する分光器と、
    前記複数のパルスのそれぞれについて、前記分光強度分布に基づいてスペクトル波形を生成するスペクトル波形生成部と、
    前記分光器の装置関数を記憶する装置関数記憶部と、
    前記スペクトル波形生成部により生成された各スペクトル波形を、中心波長がほぼ一致するように波長をシフトさせる波長シフト処理部と、
    前記波長シフト処理部により波長がシフトされた複数のスペクトル波形を平均化する波形平均化処理部と、
    前記波形平均化処理部により平均化されたスペクトル波形に対して、前記装置関数を用いてデコンボリューション処理するデコンボリューション処理部と、
    を備える狭帯域化レーザ装置。
  14. 前記各パルスの中心波長を計測する中心波長計測部をさらに備え、
    前記波長シフト処理部は、前記前記中心波長計測部により計測された計測中心波長に基づいて波長をシフトさせる、
    請求項13記載の狭帯域化レーザ装置。
  15. 前記中心波長は、半値波長の平均値、ピーク波長、及び重心波長のうちのいずれか1つである、
    請求項14記載の狭帯域化レーザ装置。
  16. 前記各パルスの中心波長の制御に用いる目標中心波長を露光装置から取得する制御部をさらに備え、
    前記波長シフト処理部は、前記目標中心波長に基づいて波長をシフトさせる、
    請求項13記載の狭帯域化レーザ装置。
  17. レーザ共振器から出力されるパルスレーザ光に含まれる複数のパルスについて分光強度分布を検出する分光器と、
    前記複数のパルスの分光強度分布が加算されてなるスペクトル波形を生成するスペクトル波形生成部と、
    前記分光器の装置関数を記憶する装置関数記憶部と、
    前記複数のパルスの中心波長の頻度分布を表す波長頻度関数を生成する波長頻度関数生成部と、
    前記スペクトル波形に対して、前記装置関数と前記波長頻度関数とを用いてデコンボリューション処理するデコンボリューション処理部と、
    を備えるスペクトル線幅計測装置。
JP2017554731A 2015-12-10 2015-12-10 狭帯域化レーザ装置及びスペクトル線幅計測装置 Active JP6549248B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084621 WO2017098625A1 (ja) 2015-12-10 2015-12-10 狭帯域化レーザ装置及びスペクトル線幅計測装置

Publications (2)

Publication Number Publication Date
JPWO2017098625A1 JPWO2017098625A1 (ja) 2018-10-04
JP6549248B2 true JP6549248B2 (ja) 2019-07-24

Family

ID=59013856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017554731A Active JP6549248B2 (ja) 2015-12-10 2015-12-10 狭帯域化レーザ装置及びスペクトル線幅計測装置

Country Status (4)

Country Link
US (1) US10741991B2 (ja)
JP (1) JP6549248B2 (ja)
CN (1) CN108352673B (ja)
WO (1) WO2017098625A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102428750B1 (ko) 2017-10-19 2022-08-02 사이머 엘엘씨 단일의 리소그래피 노광 패스로 복수의 에어리얼 이미지를 형성하는 방법
JP7244436B2 (ja) * 2017-12-05 2023-03-22 ギガフォトン株式会社 エキシマレーザ装置、及び電子デバイスの製造方法
CN116979354A (zh) 2018-03-30 2023-10-31 西默有限公司 脉冲光束的光谱特征选择和脉冲时序控制
CN112640230B (zh) * 2018-10-23 2023-08-18 极光先进雷射株式会社 激光系统和电子器件的制造方法
CN112771737B (zh) 2018-11-08 2023-09-12 极光先进雷射株式会社 激光系统和电子器件的制造方法
US11774867B2 (en) 2019-02-25 2023-10-03 Asml Netherlands B.V. Radiation measurement system
CN110196107B (zh) * 2019-07-02 2020-07-07 中国工程物理研究院激光聚变研究中心 一种太赫兹线宽测量装置及方法
CN114072977A (zh) 2019-08-07 2022-02-18 极光先进雷射株式会社 光学脉冲展宽器、激光装置和电子器件的制造方法
CN111289124B (zh) * 2020-03-31 2021-03-05 北京科益虹源光电技术有限公司 激光器波长测量装置及方法
CN111934183A (zh) * 2020-08-18 2020-11-13 北京科益虹源光电技术有限公司 一种准分子激光器线宽和e95主动控制装置及方法
WO2022085146A1 (ja) * 2020-10-22 2022-04-28 ギガフォトン株式会社 レーザ装置、及び電子デバイスの製造方法
JPWO2022172382A1 (ja) * 2021-02-11 2022-08-18
WO2022219689A1 (ja) * 2021-04-12 2022-10-20 ギガフォトン株式会社 レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法
JPWO2022249444A1 (ja) * 2021-05-28 2022-12-01
WO2023166583A1 (ja) * 2022-03-02 2023-09-07 ギガフォトン株式会社 レーザ装置、スペクトル線幅の計測方法、及び電子デバイスの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997956B2 (ja) 1991-06-27 2000-01-11 株式会社小松製作所 波長検出装置
JP3095970B2 (ja) 1995-02-06 2000-10-10 日本分光株式会社 デコンボリューション処理方法及び装置
JP3690632B2 (ja) * 1998-03-17 2005-08-31 株式会社小松製作所 狭帯域モジュールの検査装置
US6141095A (en) * 1998-06-10 2000-10-31 New Chromex, Inc. Apparatus for measuring and applying instrumentation correction to produce a standard Raman spectrum
WO2001059889A1 (en) 2000-02-09 2001-08-16 Cymer, Inc. Bandwidth control technique for a laser
JP2001317999A (ja) * 2000-05-08 2001-11-16 Komatsu Ltd スペクトル計測装置
JP4094307B2 (ja) 2002-02-21 2008-06-04 ギガフォトン株式会社 ガスレーザ装置
JP3830036B2 (ja) * 2002-02-22 2006-10-04 株式会社小松製作所 狭帯域化ガスレーザ装置
US7741639B2 (en) * 2003-01-31 2010-06-22 Cymer, Inc. Multi-chambered excimer or molecular fluorine gas discharge laser fluorine injection control
US7256893B2 (en) * 2003-06-26 2007-08-14 Cymer, Inc. Method and apparatus for measuring bandwidth of an optical spectrum output of a very small wavelength very narrow bandwidth high power laser
TWI263412B (en) * 2003-06-26 2006-10-01 Cymer Inc Improved bandwidth estimation
US7304748B2 (en) * 2003-06-26 2007-12-04 Cymer, Inc. Method and apparatus for bandwidth measurement and bandwidth parameter calculation for laser light
JP4798687B2 (ja) * 2004-07-09 2011-10-19 株式会社小松製作所 狭帯域化レーザ装置
CN100526992C (zh) * 2005-07-01 2009-08-12 株式会社尼康 曝光装置、曝光方法及设备制造方法
JPWO2014192704A1 (ja) * 2013-05-27 2017-02-23 ギガフォトン株式会社 レーザ装置及びアクチュエータを制御する方法

Also Published As

Publication number Publication date
JPWO2017098625A1 (ja) 2018-10-04
CN108352673B (zh) 2020-07-24
US20180254600A1 (en) 2018-09-06
WO2017098625A1 (ja) 2017-06-15
US10741991B2 (en) 2020-08-11
CN108352673A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6549248B2 (ja) 狭帯域化レーザ装置及びスペクトル線幅計測装置
JP6752718B2 (ja) 狭帯域化レーザ装置
US10615565B2 (en) Line narrowed laser apparatus
JP6444489B2 (ja) 固体レーザシステム、及び露光装置用レーザ装置
JP6113426B2 (ja) マスタオシレータシステムおよびレーザ装置
US20150380893A1 (en) Laser device, and method of controlling actuator
US11079686B2 (en) Excimer laser apparatus and electronic-device manufacturing method
US10283927B2 (en) Line narrowed laser apparatus
US10502623B2 (en) Line-narrowed KrF excimer laser apparatus
WO2023166583A1 (ja) レーザ装置、スペクトル線幅の計測方法、及び電子デバイスの製造方法
US20230349762A1 (en) Laser system, spectrum waveform calculation method, and electronic device manufacturing method
US20240044711A1 (en) Wavelength measurement apparatus, narrowed-line laser apparatus, and method for manufacturing electronic devices
JP5110633B2 (ja) レーザ光軸調整装置及びレーザ光軸調整方法
WO2022219690A1 (ja) スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法
CN116998070A (zh) 激光装置、激光的谱的评价方法和电子器件的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190626

R150 Certificate of patent or registration of utility model

Ref document number: 6549248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250