WO2024124900A1 - 一种连续式反应釜及其应用 - Google Patents

一种连续式反应釜及其应用 Download PDF

Info

Publication number
WO2024124900A1
WO2024124900A1 PCT/CN2023/107671 CN2023107671W WO2024124900A1 WO 2024124900 A1 WO2024124900 A1 WO 2024124900A1 CN 2023107671 W CN2023107671 W CN 2023107671W WO 2024124900 A1 WO2024124900 A1 WO 2024124900A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed pipe
solution
kettle
guide tube
flow rate
Prior art date
Application number
PCT/CN2023/107671
Other languages
English (en)
French (fr)
Inventor
张洁
刘逸群
姜雨良
安孝坤
张儒超
董林涛
Original Assignee
万华化学(四川)有限公司
万华化学集团电池科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学(四川)有限公司, 万华化学集团电池科技有限公司 filed Critical 万华化学(四川)有限公司
Publication of WO2024124900A1 publication Critical patent/WO2024124900A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of lithium-ion battery materials, and specifically relates to a continuous reactor and its application.
  • lithium-ion batteries have rapidly developed into a research hotspot due to their advantages such as high specific energy, high voltage, long life, no memory effect and low pollution, and have been widely used in consumer electronics markets such as mobile phones, laptop batteries, digital cameras and the electric vehicle market.
  • the cathode materials in the lithium-ion battery material market mainly include lithium cobalt oxide, lithium manganese oxide, ternary materials, and lithium iron phosphate.
  • ternary materials have become the most promising cathode materials for lithium-ion batteries due to their outstanding safety and comprehensive performance.
  • CN209237963U discloses a reactor for producing ternary precursors, comprising a reactor body, a stirring system, and a power transmission system.
  • the reactor body comprises a reactor cover, a head, an inner cylinder and a jacketed cylinder.
  • the stirring system extending into the cylinder body is composed of an upper stirring shaft, a lower stirring shaft, a coupling, and a stirring blade.
  • the upper end of the upper stirring shaft is connected to the output shaft of the power transmission system, and the lower end of the upper stirring shaft is connected to the lower stirring shaft through a coupling.
  • the stirring blade for stirring the material is connected to the lower stirring shaft.
  • An internal guide tube is provided in the circumferential direction of the stirring blade. The upper end of the internal guide tube is connected to the reactor cover.
  • a guide port is provided on the cylinder wall of the internal guide tube, and a material inlet pipe is provided on the reactor cover.
  • CN112678881A discloses a preparation method of a nickel-cobalt-manganese precursor with controllable particle size distribution, comprising the following steps: adjusting the ammonia concentration and pH value in a reaction vessel 1 and a reaction vessel 2; adding a nickel-cobalt-manganese salt solution, an alkaline solution and ammonia water to the reaction vessel 1; overflowing the slurry in the reaction vessel 1 into the reaction vessel 2, adding a nickel-cobalt-manganese salt solution, an alkaline solution and ammonia water to the reaction vessel 2, and simultaneously turning on ultrasound; when the solid content in the reaction vessel 2 reaches 450g/L-550g/L, taking slurry at different heights of the reaction vessel 2 to test the particle size, popping out the slurry at the corresponding height that reaches the particle size target, washing, drying and sieving to obtain nickel-cobalt-manganese precursors with different particle sizes.
  • Manganese precursor This preparation method requires the use of multiple
  • the present application provides a continuous reactor and its application.
  • the continuous reactor optimizes the structure of the continuous reactor to solve the problem that the related technology cannot realize continuous production in a single reactor and control the particle size of the product.
  • the raw material flow rate of different feed pipes can be controlled during the reaction, thereby regulating the particle size distribution of the reaction product to obtain a high-quality product.
  • the present application provides a continuous reactor, which comprises a reactor body, a reactor cover, a guide tube, a stirring mechanism, a first feed pipe for a main material, a second feed pipe for a main material, a first feed pipe for a precipitant solution, a second feed pipe for a precipitant solution, a feed pipe for a complexing agent solution, a pure water feed pipe, and a gas feed pipe;
  • the side wall of the kettle body is provided with an overflow port, and the bottom of the kettle body is provided with a reaction liquid outlet;
  • the guide tube has an opening at the upper end and an opening at the lower end, and is arranged inside the kettle body;
  • the first feed pipe for main material extends into the interior of the guide tube, and the second feed pipe for main material extends into between the guide tube and the kettle body;
  • the first feed pipe of the precipitant solution extends into the interior of the guide tube, and the second feed pipe of the precipitant solution extends between the guide tube and the kettle body;
  • the complexing agent solution feed pipe extends into the interior of the guide tube
  • the pure water feed pipe and the gas feed pipe are independently passed through the kettle cover and are located above the upper end opening of the guide tube.
  • the overall reactor can be divided into a nucleation zone, a growth zone, and a stabilization zone.
  • the guide tube area is the nucleation zone
  • the area below the guide tube is the growth zone
  • the area above the guide tube is the stabilization zone.
  • the supersaturation of each zone is: stabilization zone ⁇ growth zone ⁇ nucleation zone.
  • the present application adjusts the supersaturation of each zone through each feed pipe, thereby controlling the nucleation and growth of the particle size.
  • a heating jacket is provided on the outer side of the kettle body.
  • the kettle body is made of stainless steel or titanium.
  • the stirring paddle includes an axial flow paddle or a radial flow paddle.
  • the stirring paddle has no less than 2 layers of blades, such as 2 layers, 3 layers, 4 layers, 5 layers or 6 layers, but is not limited to the listed values. Other unlisted values within the numerical range are also applicable, preferably 2 to 3 layers.
  • the upper layer of blades is located in the middle of the guide tube, and the lower layer of blades is close to the bottom of the guide tube.
  • the stirring paddle has three layers of blades
  • the upper blades are located at the upper position of the guide tube
  • the middle blades are located in the middle position of the guide tube
  • the lower blades are close to the bottom of the guide tube.
  • the orifice of the first feed pipe for the main material is located in the middle of the guide tube.
  • the orifice of the second main material feed pipe is close to the bottom of the guide tube.
  • the orifice of the first feed pipe for the precipitant solution is located in the middle of the guide tube.
  • the orifice of the second feed pipe for the precipitant solution is close to the bottom of the guide tube.
  • the orifice of the complexing agent solution feed pipe is located at the lower middle position of the guide tube.
  • the first feed pipe for the main material and the first feed pipe for the precipitant solution are symmetrically arranged relative to the center of the guide tube.
  • the second main material feed pipe and the second precipitant solution feed pipe are symmetrically arranged relative to the center of the guide tube.
  • the angle between the first main material feed pipe and the second main material feed pipe is 0 to 45°, such as 0°, 10°, 20°, 30° or 45°, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the angle between the first feed pipe of the precipitant solution and the second feed pipe of the precipitant solution is 0 to 45°, such as 0°, 10°, 20°, 30° or 45°, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the second main material feed pipe will be closer to the precipitant feed pipe, which will cause excessive local supersaturation and affect product quality.
  • the present application provides a method for preparing a ternary precursor, wherein the preparation method adopts The continuous reactor as described in the first aspect is carried out, and the preparation method comprises:
  • a bottom liquid is arranged in the continuous reactor to immerse the guide tube, and stirring is started, and protective gas is introduced at the same time; then, in the first reaction stage, the first feed pipe of the main material and/or the second feed pipe of the main material are selected to introduce the metal salt solution; at the same time, the first feed pipe of the precipitant solution and/or the second feed pipe of the precipitant solution are selected to introduce the precipitant solution; at the same time, the complexing agent solution is introduced from the complexing agent solution feed pipe;
  • the feed flow rate of the main material in the first feed pipe is regulated to account for 15-85% of the total flow rate of the metal salt solution, such as 15%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80% or 85%.
  • 15-85% of the total flow rate of the metal salt solution such as 15%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80% or 85%.
  • the feed flow rate in the first feed pipe of the precipitant solution is regulated so that it accounts for 15-85% of the total flow rate of the precipitant solution, for example 15%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80% or 85%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable, thereby controlling the particle size of the reaction product to obtain a ternary precursor.
  • a continuous reactor with optimized structure is used to prepare the ternary precursor, and the metal salt solution, the precipitant solution and the complexing agent solution are continuously pumped into the reactor by a pump.
  • the particle size distribution in the reactor is controlled by adjusting the flow rate of different feed ports at different times, thereby controlling the particle size of the precursor material.
  • This preparation method can not only realize the continuous production of a single reactor, but also effectively control the extreme values of product D0.001 and D99.999 and the appropriate particle size distribution, and has good application prospects.
  • the base liquid includes pure water, alkali solution and ammonia water.
  • the alkali solution comprises sodium hydroxide solution and/or potassium hydroxide solution.
  • the metal salt solution comprises a nickel-cobalt-manganese mixed salt solution, wherein the nickel content is 0.35-0.75 mol%, for example, 0.35 mol%, 0.45 mol%, 0.55 mol%, 0.65 mol% or 0.75 mol%, etc.; the cobalt content is 0.10-0.55 mol%, for example, 0.10 mol%, 0.25 mol%, 0.35 mol%, 0.45 mol% or 0.55 mol%, etc.; the manganese content is 0.15-0.55 mol%, for example, 0.15 mol%, 0.25 mol%, 0.35 mol%, 0.45 mol% or 0.55 mol%, etc.
  • the selection of the above numerical values is not limited to the listed values, and other unlisted values within the respective numerical ranges are equally applicable.
  • the precipitant solution comprises any one of sodium hydroxide solution, sodium carbonate solution, potassium hydroxide solution or potassium carbonate solution, or a combination of at least two thereof.
  • Typical but non-limiting examples of the combination include: a combination of sodium hydroxide solution and sodium carbonate solution, a combination of potassium hydroxide solution and potassium carbonate solution, and the like.
  • the complexing agent solution comprises any one of aqueous ammonia, ammonium sulfate solution or ammonium chloride solution, or a combination of at least two thereof.
  • Typical but non-limiting examples of the combination include: a combination of aqueous ammonia and ammonium sulfate solution, a combination of ammonium sulfate solution and ammonium chloride solution, a combination of aqueous ammonia, ammonium sulfate solution and ammonium chloride solution, etc.
  • the continuous reactor controls the reaction temperature to be 40-75°C, for example, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C or 75°C, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the stirring speed is 150-550 rpm, for example 150 rpm, 200 rpm, 250 rpm, 300 rpm, 350 rpm, 400 rpm, 450 rpm, 500 rpm or 550 rpm, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the pH of the reaction system is controlled at 9.0 to 12.5, for example, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5 or 12.5, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the ammonia concentration of the reaction system is 1.7 to 17 g/L, for example, 1.7 g/L, 2 g/L, 3 g/L, 4 g/L, 5 g/L, 6 g/L, 7 g/L, 8 g/L, 9 g/L, 10 g/L, 12 g/L, 14 g/L or 17 g/L, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the first reaction stage refers to a stage in which the reaction time is less than 12 hours.
  • the second reaction stage refers to a stage in which the reaction time is greater than 12 hours and the particle size span value in the kettle is 0.55 to 1.55.
  • the first reaction stage is the initial stage of the reaction.
  • the reaction is in the initial stage of nucleation growth, the solid content of the material in the reactor is low, and the span value will gradually narrow from the initial wide distribution. If the flow rate is adjusted too early in the first stage, it will affect the system balance, resulting in a too wide span distribution, affecting the product quality, making D0.001 too small and D99.999 too large.
  • the second reaction stage is a stage where the reaction time is greater than 12 hours, and the span value of the particle size in the kettle is 0.65 ⁇ 0.85 and the span value of the particle size in the kettle is 1.15 ⁇ 1.35, and the feed flow rate in the first feed pipe of the main material is regulated to account for 15-85% of the total flow rate of the metal salt solution; at the same time, the feed flow rate in the first feed pipe of the precipitant solution is regulated to account for 15-85% of the total flow rate of the precipitant solution;
  • V 1a is the feed flow rate of the first feed pipe of the main material
  • span is the particle size span value in the kettle in the second reaction stage
  • V metal salt solution kettle total is the total feed flow rate of the metal salt solution in the kettle
  • V 1b span ⁇ V Metal salt solution kettle general formula II
  • V 1b is the feed flow rate of the second feed pipe of the main material
  • span is the particle size span value in the kettle in the second reaction stage
  • V metal salt solution kettle total is the total feed flow rate of the metal salt solution in the kettle
  • V 2a
  • V 2a is the feed flow rate of the first feed pipe of the precipitant solution
  • span is the particle size span value in the kettle in the second reaction stage
  • V precipitant solution kettle total is the total feed flow rate of the precipitant solution in the kettle
  • V 2b span ⁇ V precipitant solution kettle total formula IV
  • V 2b is the feed flow rate of the second feed pipe of the precipitant solution
  • span is the particle size span value in the kettle in the second reaction stage
  • V precipitant solution kettle total is the total feed flow rate of the precipitant solution in the kettle.
  • the feed flow rate in the first feed pipe of the main material is regulated to account for 40-60% of the total flow rate of the metal salt solution, for example, 40%, 45%, 50%, 55% or 60%, etc.; at the same time, the feed flow rate in the first feed pipe of the precipitant solution is regulated to account for 40-60% of the total flow rate of the precipitant solution, for example, 40%, 45%, 50%, 55% or 60%, etc.
  • the feed flow rate in the first feed pipe of the precipitant solution is regulated to account for 40-60% of the total flow rate of the precipitant solution, for example, 40%, 45%, 50%, 55% or 60%, etc.
  • the selection of the above numerical values is not limited to the listed numerical values, and other unlisted numerical values within their respective numerical ranges are equally applicable.
  • the present application provides a ternary precursor, which is prepared by the preparation method described in the second aspect, and the ternary precursor is Ni a Co b Mn (1-ab) (OH) 2 , wherein 0.35 ⁇ a ⁇ 0.75, for example, 0.35, 0.45, 0.55, 0.65 or 0.75, etc.; 0.10 ⁇ b ⁇ 0.55, for example, 0.10, 0.25, 0.35, 0.45 or 0.55, etc.
  • the selection of the above numerical values is not limited to the listed numerical values, and other unlisted numerical values within their respective numerical ranges are equally applicable.
  • the continuous reactor described in the present application has an optimized structure. By adjusting the flow ratio of each feed pipe at different positions at different reaction time stages, the supersaturation of each area is different, thereby controlling the nucleation and growth of the particle size, effectively controlling the extreme values of D 0.001 and D 99.999 , and making the product particle size distribution moderate.
  • FIG1 is a schematic structural diagram of a continuous reactor provided in a specific embodiment of the present application.
  • 1-kettle body, 2-kettle cover, 3-guide tube, 4-stirring mechanism 1a-first feed pipe for main material, 1b-second feed pipe for main material, 2a-first feed pipe for precipitant solution, 2b-second feed pipe for precipitant solution, c-complexing agent solution feed pipe, d-pure water feed pipe, e-gas feed pipe, 5-overflow port, 6-reaction liquid outlet.
  • the present application provides a continuous reactor, the structural schematic diagram of the continuous reactor is shown in FIG1 , and the continuous reactor comprises a reactor body 1, a reactor cover 2, a guide tube 3, a stirring mechanism 4, a first feed pipe 1a for main material, a second feed pipe 1b for main material, a first feed pipe 2a for precipitant solution, a second feed pipe 2b for precipitant solution, a feed pipe c for complexing agent solution, a pure water feed pipe d, and a gas feed pipe e;
  • the side wall of the kettle body 1 is provided with an overflow port 5, and the bottom of the kettle body 1 is provided with a reaction liquid outlet 6;
  • the guide tube 3 has an upper opening and a lower opening, and is disposed inside the kettle body 1;
  • the first main material feed pipe 1a extends into the interior of the guide tube 3, and the second main material feed pipe 1b extends between the guide tube 3 and the kettle body 1;
  • the first feed pipe 2a of the precipitant solution extends into the interior of the guide tube 3, and the second feed pipe 2b of the precipitant solution extends between the guide tube 3 and the kettle body 1;
  • the complexing agent solution feed pipe c extends into the interior of the guide tube 3;
  • the pure water feed pipe d and the gas feed pipe e are independently passed through the kettle cover 2 and are located above the upper end opening of the guide tube 3 .
  • a heating jacket is provided on the outer side of the kettle body 1; the material of the kettle body 1 includes stainless steel or titanium.
  • the stirring mechanism 4 includes a stirring paddle, and the stirring paddle includes an axial flow paddle or a radial flow paddle.
  • the stirring paddle has no less than 2 layers of blades, preferably 2 to 3 layers.
  • the stirring paddle has two layers of blades
  • the upper layer of blades is located in the middle of the guide tube 3
  • the lower layer of blades is close to the bottom of the guide tube 3 .
  • the stirring paddle has three layers of blades
  • the upper blades are located at the upper position of the guide tube 3
  • the middle blades are located in the middle position of the guide tube 3
  • the lower blades are close to the bottom of the guide tube 3 .
  • the pipe opening of the first main material feeding pipe 1 a is located in the middle of the guide tube 3 .
  • the pipe opening of the second main material feeding pipe 1 b is close to the bottom of the guide tube 3 .
  • the orifice of the first precipitant solution feeding pipe 2 a is located in the middle of the guide tube 3 .
  • the orifice of the second precipitant solution feeding pipe 2 b is close to the bottom of the guide tube 3 .
  • the pipe opening of the complexing agent solution feeding pipe c is located at the middle and lower position of the guide tube 3.
  • first main material feed pipe 1 a and the first precipitant solution feed pipe 2 a are symmetrically arranged about the center of the guide tube 3 .
  • the second main material feed pipe 1 b and the second precipitant solution feed pipe 2 b are symmetrically arranged about the center of the guide tube 3 .
  • the angle between the first main material feed pipe 1a and the second main material feed pipe 1b is 0-45°.
  • the angle between the first precipitant solution feeding pipe 2a and the second precipitant solution feeding pipe 2b is 0-45°.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a continuous reactor, based on the continuous reactor in the specific implementation manner, wherein:
  • the stirring paddle is an axial flow paddle with three layers of blades
  • the angle between the first main material feed pipe 1a and the second main material feed pipe 1b is 0°;
  • the angle between the first precipitant solution feeding pipe 2a and the second precipitant solution feeding pipe 2b is 0°.
  • This application example provides a method for preparing a ternary precursor, the preparation method is carried out using a continuous reactor as in Example 1, and the preparation method comprises the following steps:
  • the continuous reactor is made of stainless steel, with an effective volume of 10m 3 .
  • the total feed flow rate of the nickel-cobalt-manganese salt solution is set to 10 L/min, and the total feed flow rate of the sodium hydroxide solution is set to 4 L/min.
  • the feeding conditions of each raw material in the first reaction stage and the second reaction stage are shown in Table 1, wherein according to Formula I, Formula II, Formula III, Formula IV of the present application and the flow control rules when the reaction time is greater than 12 hours and the particle size span value in the kettle is 0.85 ⁇ 1.15, in the second reaction stage, the flow control conditions at three moments are adaptively listed.
  • This application example provides a method for preparing a ternary precursor, the preparation method is carried out using a continuous reactor as in Example 1, and the preparation method comprises the following steps:
  • the continuous reactor is made of stainless steel, with an effective volume of 10m 3 .
  • the total feed flow rate of the nickel-cobalt-manganese salt solution is set to 10 L/min, and the total feed flow rate of the sodium hydroxide solution is set to 4 L/min.
  • the feed conditions of each raw material in the first reaction stage and the second reaction stage are shown in Table 2, wherein according to Formula I, Formula II, Formula III, Formula IV of the present application and the flow control rule when the reaction time is greater than 12 hours and the particle size span value in the kettle is 0.85 ⁇ 1.15, in the second reaction stage, the flow control conditions at three moments are adaptively listed.
  • This application example provides a method for preparing a ternary precursor, the preparation method is carried out using a continuous reactor as in Example 1, and the preparation method comprises the following steps:
  • the continuous reactor is made of stainless steel, with an effective volume of 18m 3 .
  • the total feed flow rate of the nickel-cobalt-manganese salt solution is set to 20 L/min, and the total feed flow rate of the sodium hydroxide solution is set to 8 L/min.
  • the feed conditions of each raw material in the first reaction stage and the second reaction stage are shown in Table 3, wherein according to Formula I, Formula II, Formula III, Formula IV of the present application and the flow control rules when the reaction time is greater than 12 hours and the particle size span value in the kettle is 0.85 ⁇ 1.15, in the second reaction stage, the flow control conditions at three moments are adaptively listed.
  • This comparative application example provides a method for preparing a ternary precursor.
  • the preparation method is described in detail in the application
  • the preparation method in Example 2 the feeding conditions of each raw material in the entire reaction stage are shown in Table 4.
  • This comparative application example provides a method for preparing a ternary precursor.
  • the preparation method refers to the preparation method in Application Example 3.
  • the feeding conditions of each raw material in the entire reaction stage are shown in Table 5.
  • This application example provides a method for preparing a ternary precursor.
  • the preparation method refers to the preparation method in Application Example 1, with the only difference being that in the second reaction stage, the flow distribution conditions of the first feed pipe 1a of the main material and the second feed pipe 1b of the main material are exchanged, and the flow distribution conditions of the first feed pipe 2a of the precipitant solution and the second feed pipe 2b of the precipitant solution are exchanged, as shown in Table 7.
  • This application example provides a method for preparing a ternary precursor.
  • the preparation method refers to the preparation method in Application Example 1, with the only difference being that in the second reaction stage, the feed flow rates in the first feed pipe 1a of the main material and the first feed pipe 2a of the precipitant solution are reduced. To ensure that the total feed flow rate remains unchanged, the flow rates in the second feed pipe 1b of the main material and the second feed pipe 2b of the precipitant solution are increased accordingly.
  • Table 8 The specific details are shown in Table 8.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a continuous reactor, which refers to the continuous reactor in Example 1, with the only difference that the orifice of the first main material feed pipe 1a is close to the bottom of the guide tube 3, and the orifice of the first precipitant solution feed pipe 2a is close to the bottom of the guide tube 3.
  • This application example provides a method for preparing a ternary precursor, which is carried out using a continuous reactor as in Example 2.
  • the preparation method refers to the preparation method in Application Example 1, with the only difference being that the feeding conditions of the raw materials in the first reaction stage and the second reaction stage are changed, as shown in Table 10.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment provides a continuous reactor, which is similar to the continuous reactor in Embodiment 1, except that: the center of the guide tube 3 is the center of the circle, and the angle between the first main material feed pipe 1a and the second main material feed pipe 1b is 180°;
  • the angle between the first precipitant solution feeding pipe 2a and the second precipitant solution feeding pipe 2b is 180°.
  • This application example provides a method for preparing a ternary precursor.
  • the preparation method adopts the method described in Example 3.
  • the preparation method is carried out in a continuous reactor in the embodiment 1, and the preparation method refers to the preparation method in Application Example 1, with the only difference being that the feeding conditions of the raw materials in the first reaction stage and the second reaction stage are changed, as shown in Table 11.
  • the present application uses the above-mentioned embodiments to illustrate the devices and detailed methods of the present application, but the present application is not limited to the above-mentioned devices and detailed methods, that is, it does not mean that the present application must rely on the above-mentioned devices and detailed methods to be implemented.
  • the technicians in the relevant technical field should understand that any improvement to the present application, the equivalent replacement of the operation of the present application, the addition of auxiliary operations, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present application.

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种连续式反应釜及其应用,所述连续式反应釜包括釜体(1)、釜盖(2)、导流筒(3)、搅拌机构(4)、主料第一进料管(1a)、主料第二进料管(1b)、沉淀剂溶液第一进料管(2a)、沉淀剂溶液第二进料管(2b)以及络合剂溶液进料管(c);所述主料第一进料管(1a)伸入所述导流筒(3)内部,所述主料第二进料管(1b)伸入所述导流筒(3)与所述釜体(1)之间;所述沉淀剂溶液第一进料管(2a)伸入所述导流筒(3)内部,所述沉淀剂溶液第二进料管(2b)伸入所述导流筒(3)与所述釜体(1)之间;所述络合剂溶液进料管(c)伸入所述导流筒(3)内部;采用所述的连续式反应釜制备三元前驱体时,通过在不同时期调整不同进料口流量来控制反应釜内粒度分布可实现单釜的连续生产,并有效控制产品D0.001、D99.999的极值及合适粒度分布。

Description

一种连续式反应釜及其应用 技术领域
本申请属于锂离子电池材料技术领域,具体涉及一种连续式反应釜及其应用。
背景技术
近年来,锂离子电池因具有高比能量、电压高、长寿命、无记忆效应和低污染等优点迅速发展成为研究热点,并在手机、笔记本电池、数码相机等消费类电子市场和电动汽车市场得到广泛应用。
目前锂离子电池材料市场的正极材料主要包括钴酸锂、锰酸锂、三元材料、磷酸铁锂。其中,三元材料由于安全性及综合性能凸出,成为锂离子电池正极材料中最具有潜力的一种。
随着锂离子电池的需求量增加,三元前驱体使用量也逐年增加,稳定连续化生产成为当务之急。而当前连续反应,粒度波动较大,D0.001较小,D99.999较大,因此,解决粒度波动及分布问题成为当前急需解决的问题。
CN209237963U公开了一种用于生产三元前驱体的反应釜,包括釜体、搅拌系统、动力传动系统组成,釜体包括釜盖、封头、内筒体和夹套筒体,伸进筒体内的搅拌系统由搅拌上轴、搅拌下轴、联轴器、搅拌叶组成,搅拌上轴的上端与动力传动系统的输出轴相连接,搅拌上轴的下端经联轴器与搅拌下轴相连接,搅拌下轴上连接有搅拌物料的搅拌叶,搅拌叶的圆周方向上设有内部导流筒,内部导流筒的上端与釜盖相连接,内部导流筒的筒壁上设有导流口,釜盖上设有物料进管。采用该反应釜制备三元前驱体具有反应环境易操控、生产周期短、高效高产能的有点,但其无法有效的控制粒度的波动与分布问题。
CN112678881A公开了一种粒度分布可控的镍钴锰前驱体的制备,包括以下步骤:调节反应容器1和反应容器2中氨浓度、pH值;向反应容器1中加入镍钴锰盐溶液、碱溶液和氨水;将反应容器1中的浆料溢流至反应容器2中,向反应容器2中加入镍钴锰盐溶液、碱溶液和氨水,同时开启超声;待反应容器2中固含量达到450g/L-550g/L时,取反应容器2不同高度的浆料测试粒度,将达到粒度目标的对应高度的浆料蹦出,洗涤、干燥、筛分,得到不同粒径的镍钴 锰前驱体。该制备方法需要使用多釜串联,占地面积较大,设备成本较高。
综上所述,如何提供一种可实现单釜连续生产,且可有效控制产品粒度波动以及分布的装置和方法具有十分重要的意义。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种连续式反应釜及其应用,所述连续式反应釜针对相关技术中无法实现单釜连续生产并控制产品粒度的问题,优化了连续式反应釜结构,通过导流筒和各进料管的分布设置,使得进行反应时可控制不同进料管的原料流量,进而调控反应产物的粒度分布,得到高品质产品。
第一方面,本申请提供了一种连续式反应釜,所述连续式反应釜包括釜体、釜盖、导流筒、搅拌机构、主料第一进料管、主料第二进料管、沉淀剂溶液第一进料管、沉淀剂溶液第二进料管、络合剂溶液进料管、纯水进料管以及气体进料管;
所述釜体侧壁设置有溢流口,所述釜体的底部设置有反应液出口;
所述导流筒上端开口,下端开口,且设置于所述釜体内部;
所述主料第一进料管伸入所述导流筒内部,所述主料第二进料管伸入所述导流筒与所述釜体之间;
所述沉淀剂溶液第一进料管伸入所述导流筒内部,所述沉淀剂溶液第二进料管伸入所述导流筒与所述釜体之间;
所述络合剂溶液进料管伸入所述导流筒内部;
所述纯水进料管和所述气体进料管各自独立地管贯穿所述釜盖,位于所述导流筒上端开口的上方。
本申请中,通过对连续式反应釜的结构优化,整体反应釜可以分为成核区、成长区以及稳定区。导流筒区域为成核区,导流筒下方区域为成长区,导流筒上方区域为稳定区,而各个区域过饱和度为:稳定区<成长区<成核区。本申请通过各进料管来调整各区域过饱和度,从而控制粒度的成核及成长。
以下作为本申请优选的技术方案,但不作为本申请提供的技术方案的限制,通过以下技术方案,可以更好地达到和实现本申请的技术目的和有益效果。
作为本申请优选的技术方案,所述釜体的外侧套设有伴热夹套。
优选地,所述釜体的材质包括不锈钢或钛。
作为本申请优选的技术方案,所述搅拌桨包括轴流桨或径流桨。
优选地,所述搅拌桨的桨叶不少于2层,例如2层、3层、4层、5层或6层等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为2~3层。
优选地,所述搅拌桨的桨叶为2层时,上层桨叶位于所述导流筒的中间位置,下层桨叶靠近所述导流筒的底部。
优选地,所述搅拌桨的桨叶为3层时,上层桨叶位于所述导流筒的上部位置,中层桨叶位于所述导流筒的中间位置,下层桨叶靠近所述导流筒的底部。
作为本申请优选的技术方案,所述主料第一进料管的管口位于所述导流筒的中间位置。
优选地,所述主料第二进料管的管口靠近所述导流筒的底部。
优选地,所述沉淀剂溶液第一进料管的管口位于所述导流筒的中间位置。
优选地,所述沉淀剂溶液第二进料管的管口靠近所述导流筒的底部。
优选地,络合剂溶液进料管的管口位于所述导流筒的中下位置。
作为本申请优选的技术方案,所述主料第一进料管与所述沉淀剂溶液第一进料管相对于所述导流筒的中心对称设置。
优选地,所述主料第二进料管与所述沉淀剂溶液第二进料管相对于所述导流筒的中心对称设置。
优选地,与所述导流筒的中心为圆心,所述主料第一进料管与所述主料第二进料管之间的夹角为0~45°,例如0°、10°、20°、30°或45°等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,与所述导流筒的中心为圆心,所述沉淀剂溶液第一进料管与所述沉淀剂溶液第二进料管的夹角为0~45°,例如0°、10°、20°、30°或45°等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,所述主料第一进料管与主料第二进料管相距过远,则主料第二进料管会与沉淀剂进料管相距较近,此时会导致局部过饱和度过高,影响产品品质。
第二方面,本申请提供了一种三元前驱体的制备方法,所述制备方法采用 如第一方面所述的连续式反应釜进行,所述制备方法包括:
分别配制金属盐溶液、沉淀剂溶液以及络合剂溶液;
连续式反应釜内配置底液,浸没导流筒,并开启搅拌,同时通入保护性气体;然后,在第一反应阶段时,选择主料第一进料管和/或主料第二进料管,将金属盐溶液通入;同时,选择沉淀剂溶液第一进料管和/或沉淀剂溶液第二进料管,将沉淀剂溶液通入;同时,将络合剂溶液从络合剂溶液进料管通入;
在第二反应阶段时,调控主料第一进料管中的进料流量,使其占金属盐溶液总流量的15~85%,例如15%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%或85%。但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用;
与此同时,调控沉淀剂溶液第一进料管中的进料流量,使其占沉淀剂溶液总流量的15~85%,例如15%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%或85%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,从而控制反应产物粒度,得到三元前驱体。
本申请中,制备三元前驱体时利用结构优化后的连续式反应釜,将金属盐溶液、沉淀剂溶液以及络合剂溶液通过泵连续泵入反应釜,通过在不同时期调整不同进料口的流量来控制反应釜内粒度分布从而控制前驱体物料粒度;该制备方法不仅可以实现单釜的连续生产,还可有效控制产品D0.001以及D99.999的极值及合适的粒度分布,具有较好的应用前景。
作为本申请优选的技术方案,所述底液包括包括纯水、碱液和氨水。
优选地,所述碱液包括氢氧化钠溶液和/或氢氧化钾溶液。
优选地,所述金属盐溶液包括镍钴锰混合盐溶液,其中,镍含量为0.35~0.75mol%,例如0.35mol%、0.45mol%、0.55mol%、0.65mol%或0.75mol%等;钴含量为0.10~0.55mol%,例如0.10mol%、0.25mol%、0.35mol%、0.45mol%或0.55mol%等;锰含量为0.15~0.55mol%,例如0.15mol%、0.25mol%、0.35mol%、0.45mol%或0.55mol%等,上述数值的选择并不仅限于所列举的数值,在各自的数值范围内其他未列举的数值同样适用。
优选地,所述沉淀剂溶液包括氢氧化钠溶液、碳酸钠溶液、氢氧化钾溶液或碳酸钾溶液中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:氢氧化钠溶液和碳酸钠溶液的组合,氢氧化钾溶液和碳酸钾溶液的组合等。
优选地,所述络合剂溶液包括氨水、硫酸铵溶液或氯化铵溶液中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:氨水和硫酸铵溶液的组合,硫酸铵溶液和氯化铵溶液的组合的,氨水、硫酸铵溶液和氯化铵溶液的组合等。
优选地,所述连续式反应釜在反应过程中,控制反应温度为40~75℃,例如40℃、45℃、50℃、55℃、60℃、65℃、70℃或75℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述搅拌的速度为150~550rpm,例如150rpm、200rpm、250rpm、300rpm、350rpm、400rpm、450rpm、500rpm或550rpm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述连续式反应釜在反应过程中,反应体系的pH控制在9.0~12.5,例如9.0、9.5、10.0、10.5、11.0、11.5或12.5等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述连续式反应釜在反应过程中,反应体系的氨浓度为1.7~17g/L,例如1.7g/L、2g/L、3g/L、4g/L、5g/L、6g/L、7g/L、8g/L、9g/L、10g/L、12g/L、14g/L或17g/L等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请优选的技术方案,所述第一反应阶段是指反应时间小于12小时的阶段。
优选地,所述第二反应阶段是指反应时间大于12小时,且釜内粒度span值为0.55~1.55的阶段。
本申请中,所述的第一反应阶段是反应初始阶段,此时反应处于造核生长初期,反应釜内物料固含量较低,span值会由初期的宽分布逐步缩窄。若在第一阶段过早进行流量调整会对体系平衡有所影响,进而导致span分布过宽,影响产品品质,使得D0.001偏小与D99.999偏大。
作为本申请优选的技术方案,所述第二反应阶段为反应时间大于12小时,且0.65≤釜内粒度span值≤0.85以及1.15≤釜内粒度span值≤1.35的阶段时,调控主料第一进料管中的进料流量,使其占金属盐溶液总流量的15~85%;与此同时,调控沉淀剂溶液第一进料管中的进料流量,使其占沉淀剂溶液总流量的15~85%;
优选地,所述第二反应阶段为反应时间大于12小时,且0.65≤釜内粒度span值≤0.85以及1.15≤釜内粒度span值≤1.35的阶段时,主料第一进料管的进料流量根据式I确定:
V1a=|1-span|×V金属盐溶液釜总   式I
其中,V1a为主料第一进料管的进料流量,span为第二反应阶段釜内的粒度span值,V金属盐溶液釜总为釜内金属盐溶液的进料总流量;
主料第二进料管的进料流量根据式II确定:
V1b=span×V金属盐溶液釜总   式II
其中,V1b为主料第二进料管的进料流量,span为第二反应阶段釜内的粒度span值,V金属盐溶液釜总为釜内金属盐溶液的进料总流量;
沉淀剂溶液第一进料管的进料流量根据式III确定:
V2a=|1-span|×V沉淀剂溶液釜总   式III
其中,V2a为沉淀剂溶液第一进料管的进料流量,span为第二反应阶段釜内的粒度span值,V沉淀剂溶液釜总为釜内沉淀剂溶液的进料总流量;
沉淀剂溶液第二进料管的进料流量根据式IV确定:
V2b=span×V沉淀剂溶液釜总   式IV
其中,V2b为沉淀剂溶液第二进料管的进料流量,span为第二反应阶段釜内的粒度span值,V沉淀剂溶液釜总为釜内沉淀剂溶液的进料总流量。
优选地,所述第二反应阶段为反应时间大于12小时,且0.85<釜内粒度span值<1.15时,调控主料第一进料管中的进料流量,使其占金属盐溶液总流量的40~60%,例如40%、45%、50%、55%或60%等;与此同时,调控沉淀剂溶液第一进料管中的进料流量,使其占沉淀剂溶液总流量的40~60%,例如40%、45%、50%、55%或60%等,上述数值的选择并不仅限于所列举的数值,在各自的数值范围内其他未列举的数值同样适用。
第三方面,本申请提供了一种三元前驱体,所述三元前驱体采用第二方面所述的制备方法制备得到,所述三元前驱体为NiaCobMn(1-a-b)(OH)2,其中0.35≤a≤0.75,例如0.35、0.45、0.55、0.65或0.75等;0.10≤b≤0.55,例如0.10、0.25、0.35、0.45或0.55等,上述数值的选择并不仅限于所列举的数值,在各自的数值范围内其他未列举的数值同样适用。
与相关技术相比,本申请具有以下有益效果:
本申请所述连续式反应釜对结构进行了优化,通过在不同反应时间阶段调控不同位置的各进料管的流量配比,从而使各区域过饱和度不同,进而控制粒度的成核与成长情况,有效的控制D0.001和D99.999的极值,使产品粒度分布适中。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1是本申请具体实施方式提供的一种连续式反应釜的结构示意图。
其中,1-釜体,2-釜盖,3-导流筒,4-搅拌机构,1a-主料第一进料管,1b-主料第二进料管,2a-沉淀剂溶液第一进料管,2b-沉淀剂溶液第二进料管,c-络合剂溶液进料管,d-纯水进料管,e-气体进料管,5-溢流口,6-反应液出口。
具体实施方式
为更好地说明本申请,便于理解本申请的技术方案,下面对本申请进一步详细说明。但下述的实施例仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请保护范围以权利要求书为准。
在一个具体实施方式中,本申请提供了一种连续式反应釜,所述连续式反应釜的结构示意图如图1所示,所述连续式反应釜包括釜体1、釜盖2、导流筒3、搅拌机构4、主料第一进料管1a、主料第二进料管1b、沉淀剂溶液第一进料管2a、沉淀剂溶液第二进料管2b、络合剂溶液进料管c、纯水进料管d以及气体进料管e;
所述釜体1侧壁设置有溢流口5,所述釜体1的底部设置有反应液出口6;
所述导流筒3上端开口,下端开口,且设置于所述釜体1内部;
所述主料第一进料管1a伸入所述导流筒3内部,所述主料第二进料管1b伸入所述导流筒3与所述釜体1之间;
所述沉淀剂溶液第一进料管2a伸入所述导流筒3内部,所述沉淀剂溶液第二进料管2b伸入所述导流筒3与所述釜体1之间;
所述络合剂溶液进料管c伸入所述导流筒3内部;
所述纯水进料管d和所述气体进料管e各自独立地管贯穿所述釜盖2,位于所述导流筒3上端开口的上方。
进一步地,所述釜体1的外侧套设有伴热夹套;所述釜体1的材质包括不锈钢或钛。
进一步地,所述搅拌机构4包括搅拌桨,所述搅拌桨包括轴流浆或径流浆。
进一步地,所述搅拌桨的桨叶不少于2层,优选为2~3层。
进一步地,所述搅拌桨的桨叶为2层时,上层桨叶位于所述导流筒3的中间位置,下层桨叶靠近所述导流筒3的底部。
进一步地,所述搅拌桨的桨叶为3层时,上层桨叶位于所述导流筒3的上部位置,中层桨叶位于所述导流筒3的中间位置,下层桨叶靠近所述导流筒3的底部。
进一步地,所述主料第一进料管1a的管口位于所述导流筒3的中间位置。
进一步地,所述主料第二进料管1b的管口靠近所述导流筒3的底部。
进一步地,所述沉淀剂溶液第一进料管2a的管口位于所述导流筒3的中间位置。
进一步地,所述沉淀剂溶液第二进料管2b的管口靠近所述导流筒3的底部。
进一步地,络合剂溶液进料管c的管口位于所述导流筒3的中下位置。
进一步地,所述主料第一进料管1a与所述沉淀剂溶液第一进料管2a关于所述导流筒3的中心对称设置。
进一步地,所述主料第二进料管1b与所述沉淀剂溶液第二进料管2b关于所述导流筒3的中心对称设置。
进一步地,与所述导流筒3的中心为圆心,所述主料第一进料管1a与所述主料第二进料管1b之间的夹角为0~45°。
进一步地,与所述导流筒3的中心为圆心,所述沉淀剂溶液第一进料管2a与所述沉淀剂溶液第二进料管2b的夹角为0~45°。
以下为本申请典型但非限制性实施例:
实施例1:
本实施例提供了一种连续式反应釜,基于具体实施方式中的连续式反应釜,其中:
所述搅拌桨为轴流浆,桨叶为3层;
与所述导流筒3的中心为圆心,所述主料第一进料管1a与所述主料第二进料管1b之间的夹角为0°;
与所述导流筒3的中心为圆心,所述沉淀剂溶液第一进料管2a与所述沉淀剂溶液第二进料管2b的夹角为0°。
应用例1:
本应用例提供了一种三元前驱体的制备方法,所述制备方法采用如实施例1中的连续式反应釜进行,所述制备方法包括以下步骤:
配制2mol/L镍钴锰盐溶液,其中,镍、钴、锰的摩尔比为40∶20∶40;配制10mol/L氢氧化钠溶液;配制8mol/L氨水溶液。连续式反应釜材质为不锈钢材质,有效体积为10m3
向连续式反应釜加入纯水、氢氧化钠溶液及氨水配置底液,浸没导流筒3,控制pH值为11.25,氨浓度为8.5g/L,设定搅拌转速为195rpm,反应体系温度为60℃,通入氮气作为保护气体。
设定镍钴锰盐溶液的总进料流量为10L/min,氢氧化钠溶液的总进料流量为4L/min,第一反应阶段和第二反应阶段各原料的进料情况如表1所示,其中,根据本申请式I、式II、式III、式IV以及反应时间大于12小时,且0.85<釜内粒度span值<1.15时的流量控制规则,在第二反应阶段,适应性的列举了3种时刻的流量调控情况。
表1
反应运行40h后,从反应液出口6连续取样三次,依次为产品A、产品B和产品C。
应用例2:
本应用例提供了一种三元前驱体的制备方法,所述制备方法采用如实施例1中的连续式反应釜进行,所述制备方法包括以下步骤:
配制2mol/L镍钴锰盐溶液,其中,镍、钴、锰的摩尔比为55∶15∶30;配制10mol/L氢氧化钠溶液;配制8mol/L氨水溶液。连续式反应釜材质为不锈钢材质,有效体积为10m3
向连续式反应釜加入纯水、氢氧化钠溶液及氨水配置底液,浸没导流筒3,控制pH值为11.30,氨浓度为7.5g/L,设定搅拌转速为185rpm,反应体系温度为60℃,通入氮气作为保护气体。
设定镍钴锰盐溶液的总进料流量为10L/min,氢氧化钠溶液的总进料流量为4L/min,第一反应阶段和第二反应阶段各原料的进料情况如表2所示,其中,根据本申请式I、式II、式III、式IV以及反应时间大于12小时,且0.85<釜内粒度span值<1.15时的流量控制规则,在第二反应阶段,适应性的列举了3种时刻的流量调控情况。
表2
反应运行40h后,从反应液出口6连续取样三次,依次为产品D、产品E和产品F。
应用例3:
本应用例提供了一种三元前驱体的制备方法,所述制备方法采用如实施例1中的连续式反应釜进行,所述制备方法包括以下步骤:
配制2mol/L镍钴锰盐溶液,其中,镍、钴、锰的摩尔比为60∶10∶30;配制10mol/L氢氧化钠溶液;配制8mol/L氨水溶液。连续式反应釜材质为不锈钢材质,有效体积为18m3
向连续式反应釜加入纯水、氢氧化钠溶液及氨水配置底液,浸没导流筒3,控制pH值为11.30,氨浓度为7.0g/L,设定搅拌转速为160rpm,反应体系温度为60℃,通入氮气作为保护气体。
设定镍钴锰盐溶液的总进料流量为20L/min,氢氧化钠溶液的总进料流量为8L/min,第一反应阶段和第二反应阶段各原料的进料情况如表3所示,其中,根据本申请式I、式II、式III、式IV以及反应时间大于12小时,且0.85<釜内粒度span值<1.15时的流量控制规则,在第二反应阶段,适应性的列举了3种时刻的流量调控情况。
表3
反应运行40h后,从反应液出口6连续取样三次,依次为产品G、产品H和产品I。
比较应用例1:
本比较应用例提供了一种三元前驱体的制备方法,所述制备方法参照应用 例2中的制备方法,整个反应阶段各原料的进料情况如表4所示。
表4
反应运行40h后,从反应液出口6连续取样两次,依次为产品D-1和产品E-1。
比较应用例2:
本比较应用例提供了一种三元前驱体的制备方法,所述制备方法参照应用例3中的制备方法,整个反应阶段各原料的进料情况如表5所示。
表5
反应运行40h后,从反应液出口6连续取样两次,依次为产品G-1和产品H-1。
使用马尔文激光粒度仪Mastersizer3000采用激光衍射法分析应用例1-3和对比例应用例1-2中得到的产品的粒度分布情况,结果如表6所示。
表6

通过应用例2-3和比较应用例1-2相比可知,采用本申请所述连续式反应釜以及制备方法得到的三元前驱体粒度分布适中,D0.001和D99.999极限值均比比较应用例中小,且span值在1.22以下,达到了较好的技术效果。
应用例4:
本应用例提供了一种三元前驱体的制备方法,所述制备方法参照应用例1中的制备方法,区别仅在于:第二反应阶段中,主料第一进料管1a与主料第二进料管1b的流量分配情况交换,沉淀剂溶液第一进料管2a和沉淀剂溶液第二进料管2b的流量分配情况交换,具体情况如表7所示。
表7
反应运行44h后,从反应液出口6连续取样两次,依次为产品A-1和产品B-1。
应用例5:
本应用例提供了一种三元前驱体的制备方法,所述制备方法参照应用例1中的制备方法,区别仅在于:第二反应阶段中,减小主料第一进料管1a以及沉淀剂溶液第一进料管2a内的进料流量,为保证总进料流量不变,即相应的增大主料第二进料管1b以及沉淀剂溶液第二进料管2b的流量,具体情况如表8所示。
表8

反应运行44h后,从反应液出口6连续取样两次,依次为产品A-2和产品B-2。
使用马尔文激光粒度仪Mastersizer3000采用激光衍射法分析应用例4和5中得到的产品的粒度分布情况,结果如表9所示。
表9
通过应用例1和应用例4-5可知,若违背本申请式I、式II、式III、式IV以及反应时间大于12小时,且0.85<釜内粒度span值<1.15时的流量控制规则会使得反应稳定体系时间边长且产品粒度分布span值变宽,同时D0.001和D99.999与应用例1对比相差较大。
实施例2:
本实施例提供了一种连续式反应釜,所述连续式反应釜参照实施例1中的连续式反应釜,区别仅在于:所述主料第一进料管1a的管口靠近所述导流筒3的底部,所述沉淀剂溶液第一进料管2a的管口靠近所述导流筒3的底部。
应用例6:
本应用例提供了一种三元前驱体的制备方法,所述制备方法采用如实施例2中的连续式反应釜进行,所述制备方法参照应用例1中的制备方法,区别仅在于:第一反应阶段和第二反应阶段各原料的进料情况有变,具体情况如表10所示。
表10
反应运行48h后,从反应液出口6连续取样两次,依次为产品A-3和产品B-3。
实施例3:
本实施例提供了一种连续式反应釜,所述连续式反应釜参照实施例1中的连续式反应釜,区别仅在于:与所述导流筒3的中心为圆心,所述主料第一进料管1a与所述主料第二进料管1b之间的夹角为180°;
与所述导流筒3的中心为圆心,所述沉淀剂溶液第一进料管2a与所述沉淀剂溶液第二进料管2b的夹角为180°。
应用例7:
本应用例提供了一种三元前驱体的制备方法,所述制备方法采用如实施例3 中的连续式反应釜进行,所述制备方法参照应用例1中的制备方法,区别仅在于:第一反应阶段和第二反应阶段各原料的进料情况有变,具体情况如表11所示。
表11
反应运行48h后,从反应液出口6连续取样两次,依次为产品A-4和产品B-4。
使用马尔文激光粒度仪Mastersizer3000采用激光衍射法分析应用例6和7中得到的产品的粒度分布情况,结果如表12所示。
表12

通过应用例1和应用例6-7可知,若导流筒内的主料第一进料管1a和沉淀剂溶液第一进料管2a的管口位置过低,会使得局部过饱和度变高,产品粒度分布span值更大,而D0.001和D99.999与应用例1比较差值更大;若主料第一进料管1a与主料第二进料管1b之间的角度,以及沉淀剂溶液第一进料管2a与沉淀剂溶液第二进料管2b之间的角度过大,即相距过远,会导致主进料与沉淀剂相距过近,亦会导致局部过饱和度升高,产品分布span值、D0.001、D99.999与应用例1比较差值更大。
本申请通过上述实施例来说明本申请的设备和详细方法,但本申请并不局限于上述设备和详细方法,即不意味着本申请必须依赖上述设备和详细方法才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请操作的等效替换及辅助操作的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种连续式反应釜,其包括釜体、釜盖、导流筒、搅拌机构、主料第一进料管、主料第二进料管、沉淀剂溶液第一进料管、沉淀剂溶液第二进料管、络合剂溶液进料管、纯水进料管以及气体进料管;
    所述釜体侧壁设置有溢流口,所述釜体的底部设置有反应液出口;
    所述导流筒上端开口,下端开口,且设置于所述釜体内部;
    所述主料第一进料管伸入所述导流筒内部,所述主料第二进料管伸入所述导流筒与所述釜体之间;
    所述沉淀剂溶液第一进料管伸入所述导流筒内部,所述沉淀剂溶液第二进料管伸入所述导流筒与所述釜体之间;
    所述络合剂溶液进料管伸入所述导流筒内部;
    所述纯水进料管和所述气体进料管各自独立地管贯穿所述釜盖,位于所述导流筒上端开口的上方。
  2. 根据权利要求1所述的连续式反应釜,其中,所述釜体的外侧套设有伴热夹套。
  3. 根据权利要求1或2所述的连续式反应釜,其中,所述釜体的材质包括不锈钢或钛。
  4. 根据权利要求1-3任一项所述的连续式反应釜,其中,所述搅拌机构包括搅拌桨,所述搅拌桨包括轴流桨或径流桨。
  5. 根据权利要求1-4任一项所述的连续式反应釜,其中,所述搅拌桨的桨叶不少于2层,优选为2~3层;
    优选地,所述搅拌桨的桨叶为2层时,上层桨叶位于所述导流筒的中间位置,下层桨叶靠近所述导流筒的底部;
    优选地,所述搅拌桨的桨叶为3层时,上层桨叶位于所述导流筒的上部位置,中层桨叶位于所述导流筒的中间位置,下层桨叶靠近所述导流筒的底部。
  6. 根据权利要求1-5任一项所述的连续式反应釜,其中,所述主料第一进料管的管口位于所述导流筒的中间位置;
    优选地,所述主料第二进料管的管口靠近所述导流筒的底部;
    优选地,所述沉淀剂溶液第一进料管的管口位于所述导流筒的中间位置;
    优选地,所述沉淀剂溶液第二进料管的管口靠近所述导流筒的底部;
    优选地,络合剂溶液进料管的管口位于所述导流筒的中下位置。
  7. 根据权利要求1-6任一项所述的连续式反应釜,其中,所述主料第一进料管与所述沉淀剂溶液第一进料管相对于所述导流筒的中心对称设置;
    优选地,所述主料第二进料管与所述沉淀剂溶液第二进料管相对于所述导流筒的中心对称设置;
    优选地,与所述导流筒的中心为圆心,所述主料第一进料管与所述主料第二进料管之间的夹角为0~45°;
    优选地,与所述导流筒的中心为圆心,所述沉淀剂溶液第一进料管与所述沉淀剂溶液第二进料管的夹角为0~45°。
  8. 一种三元前驱体的制备方法,其中,所述制备方法采用如权利要求1-7任一项所述的连续式反应釜进行,所述制备方法包括:
    连续式反应釜内配置底液,浸没导流筒,并开启搅拌,同时通入保护性气体;然后,在第一反应阶段时,选择主料第一进料管和/或主料第二进料管,将金属盐溶液通入;同时,选择沉淀剂溶液第一进料管和/或沉淀剂溶液第二进料管,将沉淀剂溶液通入;同时,将络合剂溶液从络合剂溶液进料管通入;
    在第二反应阶段时,调控主料第一进料管中的进料流量,使其占金属盐溶液总流量的15~85%;与此同时,调控沉淀剂溶液第一进料管中的进料流量,使其占沉淀剂溶液总流量的15~85%,从而控制反应产物粒度,得到三元前驱体。
  9. 根据权利要求8所述的制备方法,其中,所述底液包括纯水、碱液和氨水。
  10. 根据权利要求9所述的制备方法,其中,所述碱液包括氢氧化钠溶液和/或氢氧化钾溶液。
  11. 根据权利要求8-10任一项所述的制备方法,其中,所述金属盐溶液包括镍钴锰混合盐溶液,其中,镍含量为0.35~0.75mol%,钴含量为0.10~0.55mol%,锰含量为0.15~0.55mol%。
  12. 根据权利要求8-11任一项所述的制备方法,其中,所述沉淀剂溶液包括氢氧化钠溶液、碳酸钠溶液、氢氧化钾溶液或碳酸钾溶液中的任意一种或至少两种的组合;
    优选地,所述络合剂溶液包括氨水、硫酸铵溶液或氯化铵溶液中的任意一种或至少两种的组合;
    优选地,所述连续式反应釜在反应过程中,控制反应温度为40~75℃;
    优选地,所述搅拌的速度为150~550rpm;
    优选地,所述连续式反应釜在反应过程中,反应体系的pH控制在9.0~12.5;
    优选地,所述连续式反应釜在反应过程中,反应体系的氨浓度为1.7~17g/L。
  13. 根据权利要求8-12任一项所述的制备方法,其中,所述第一反应阶段是指反应时间小于12小时的阶段;
    优选地,所述第二反应阶段是指反应时间大于12小时,且釜内粒度span值为0.55~1.55的阶段。
  14. 根据权利要求13所述的制备方法,其中,所述第二反应阶段为反应时间大于12小时,且0.65≤釜内粒度span值≤0.85以及1.15≤釜内粒度span值≤1.35的阶段时,调控主料第一进料管中的进料流量,使其占金属盐溶液总流量的15~85%;与此同时,调控沉淀剂溶液第一进料管中的进料流量,使其占沉淀剂溶液总流量的15~85%;
    优选地,所述第二反应阶段为反应时间大于12小时,且0.65≤釜内粒度span值≤0.85以及1.15≤釜内粒度span值≤1.35的阶段时,主料第一进料管的进料流量根据式I确定:
    V1a=|1-span|×V金属盐溶液釜总    式I
    其中,V1a为主料第一进料管的进料流量,span为第二反应阶段釜内的粒度span值,V金属盐溶液釜总为釜内金属盐溶液的进料总流量;
    主料第二进料管的进料流量根据式II确定:
    V1b=span×V金属盐溶液釜总   式II
    其中,V1b为主料第二进料管的进料流量,span为第二反应阶段釜内的粒度span值,V金属盐溶液釜总为釜内金属盐溶液的进料总流量;
    沉淀剂溶液第一进料管的进料流量根据式III确定:
    V2a=|1-span|×V沉淀剂溶液釜总   式III
    其中,V2a为沉淀剂溶液第一进料管的进料流量,span为第二反应阶段釜内的粒度span值,V沉淀剂溶液釜总为釜内沉淀剂溶液的进料总流量;
    沉淀剂溶液第二进料管的进料流量根据式IV确定:
    V2b=span×V沉淀剂溶液釜总   式IV
    其中,V2b为沉淀剂溶液第二进料管的进料流量,span为第二反应阶段釜内 的粒度span值,V沉淀剂溶液釜总为釜内沉淀剂溶液的进料总流量;
    优选地,所述第二反应阶段为反应时间大于12小时,且0.85<釜内粒度span值<1.15时,调控主料第一进料管中的进料流量,使其占金属盐溶液总流量的40~60%;与此同时,调控沉淀剂溶液第一进料管中的进料流量,使其占沉淀剂溶液总流量的40~60%。
  15. 一种三元前驱体,其中,所述三元前驱体采用如权利要求8-14任一项所述的制备方法制备得到,所述三元前驱体为NiaCobMn(1-a-b)(OH)2,其中0.35≤a≤0.75,0.10≤b≤0.55。
PCT/CN2023/107671 2022-12-14 2023-07-17 一种连续式反应釜及其应用 WO2024124900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211606428.1 2022-12-14
CN202211606428.1A CN115814741A (zh) 2022-12-14 2022-12-14 一种连续式反应釜及其应用

Publications (1)

Publication Number Publication Date
WO2024124900A1 true WO2024124900A1 (zh) 2024-06-20

Family

ID=85547249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107671 WO2024124900A1 (zh) 2022-12-14 2023-07-17 一种连续式反应釜及其应用

Country Status (2)

Country Link
CN (1) CN115814741A (zh)
WO (1) WO2024124900A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115814741A (zh) * 2022-12-14 2023-03-21 万华化学(四川)有限公司 一种连续式反应釜及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107915263A (zh) * 2017-08-31 2018-04-17 广东佳纳能源科技有限公司 一种小粒径三元正极材料前驱体的制备方法
CN109847683A (zh) * 2019-02-27 2019-06-07 中机国际工程设计研究院有限责任公司 三元正极材料前驱体制备用反应釜
CN110600683A (zh) * 2018-06-13 2019-12-20 浙江帕瓦新能源股份有限公司 一种半连续式三元前驱体的制备方法
US20210130189A1 (en) * 2017-08-25 2021-05-06 Hunan Shanshan Energy Technology Co., Ltd. High voltage lithium nickel cobalt manganese oxide precursor, method for making the same, and high voltage lithium nickel cobalt manganese oxide cathode material
CN113996251A (zh) * 2021-10-27 2022-02-01 广东佳纳能源科技有限公司 三元前驱体的制备设备及制备方法
CN216063259U (zh) * 2021-09-28 2022-03-18 南通金通储能动力新材料有限公司 一种三元前驱体的制备装置
CN114804232A (zh) * 2022-05-16 2022-07-29 南通金通储能动力新材料有限公司 一种中空三元正极材料前驱体及制备方法
CN115814741A (zh) * 2022-12-14 2023-03-21 万华化学(四川)有限公司 一种连续式反应釜及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210130189A1 (en) * 2017-08-25 2021-05-06 Hunan Shanshan Energy Technology Co., Ltd. High voltage lithium nickel cobalt manganese oxide precursor, method for making the same, and high voltage lithium nickel cobalt manganese oxide cathode material
CN107915263A (zh) * 2017-08-31 2018-04-17 广东佳纳能源科技有限公司 一种小粒径三元正极材料前驱体的制备方法
CN110600683A (zh) * 2018-06-13 2019-12-20 浙江帕瓦新能源股份有限公司 一种半连续式三元前驱体的制备方法
CN109847683A (zh) * 2019-02-27 2019-06-07 中机国际工程设计研究院有限责任公司 三元正极材料前驱体制备用反应釜
CN216063259U (zh) * 2021-09-28 2022-03-18 南通金通储能动力新材料有限公司 一种三元前驱体的制备装置
CN113996251A (zh) * 2021-10-27 2022-02-01 广东佳纳能源科技有限公司 三元前驱体的制备设备及制备方法
CN114804232A (zh) * 2022-05-16 2022-07-29 南通金通储能动力新材料有限公司 一种中空三元正极材料前驱体及制备方法
CN115814741A (zh) * 2022-12-14 2023-03-21 万华化学(四川)有限公司 一种连续式反应釜及其应用

Also Published As

Publication number Publication date
CN115814741A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US9899675B2 (en) Method for preparing precursor of lithium composite transition metal oxide using a reactor
CN113373517B (zh) 一种高镍单晶小颗粒三元前驱体及其连续型制备方法
JP2022191312A (ja) 正極活物質及びその製造方法
WO2024124900A1 (zh) 一种连续式反应釜及其应用
CN113716627A (zh) 一种高性能三元前驱体及其制备方法
CN113735190B (zh) 一种小颗粒三元前驱体及其制备方法
CN114573052B (zh) 镍钴锰三元前驱体及其制备方法、镍钴锰正极材料及其制备方法和锂离子电池
CN112830527B (zh) 一种中空型正极材料的前驱体及其制备方法
US20230391635A1 (en) Radially structured nickel-based precursor and preparation method thereof
CN113793925B (zh) 宽分布无微粉三元前驱体及其制备方法
CN111540898A (zh) 一种一次颗粒均一性好的前驱体的制备方法和应用
CN115490273B (zh) 一种大比表三元前驱体连续制备的方法及制备得到的前驱体
CN108264096B (zh) 一种高密度小颗粒镍钴锰氢氧化物的制备方法
CN114388758A (zh) 一种具有新型复合相结构的锂金属氧化物正极材料及其制备方法和应用
CN114620777A (zh) 一种超高镍三元前驱体及其制备方法
CN116282216A (zh) 一种正极前驱体材料及其制备方法和应用
CN113555545B (zh) 一种晶面可控的阴/阳离子共掺杂的α/β复合镍钴铝前驱体及其制备方法
CN113666436B (zh) 一种富镍三元前驱体及其制备方法和应用
CN113800576B (zh) 一种高功率三元前驱体及其制备方法
CN115818733A (zh) 一种锆掺杂均匀的镍锰氢氧化物及其制备方法和应用
CN111908517B (zh) 一种适用于高镍三元前驱体合成过程中防开裂的方法
CN114057239A (zh) 一种含碱水洗涤的高镍三元前驱体的制备方法
CN111943280A (zh) 用于制备类球形镍钴锰三元正极材料及其专用前驱体的制备方法
CN111943279A (zh) 用于制备大单晶形貌镍钴锰三元正极材料及其前驱体的方法
CN115872458B (zh) 一种锂离子电池正极材料前驱体及其制备方法与用途