WO2024063024A1 - 生分解性ポリウレタン樹脂 - Google Patents

生分解性ポリウレタン樹脂 Download PDF

Info

Publication number
WO2024063024A1
WO2024063024A1 PCT/JP2023/033745 JP2023033745W WO2024063024A1 WO 2024063024 A1 WO2024063024 A1 WO 2024063024A1 JP 2023033745 W JP2023033745 W JP 2023033745W WO 2024063024 A1 WO2024063024 A1 WO 2024063024A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
biodegradable polyurethane
diisocyanate
polylactone polyol
aliphatic
Prior art date
Application number
PCT/JP2023/033745
Other languages
English (en)
French (fr)
Inventor
武 鎌田
成俊 前津
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2024063024A1 publication Critical patent/WO2024063024A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present disclosure relates to biodegradable polyurethane resins.
  • This application claims priority to Japanese Patent Application No. 2022-149032, filed in Japan on September 20, 2022, and its contents are incorporated herein.
  • biodegradable resin materials that can be decomposed in the natural environment have attracted attention, and various developments are being actively carried out.
  • biodegradable polyurethane resins tend to have inferior mechanical properties (strength, toughness, etc.) with regard to polyurethane resins, which are reaction products of polyols and polyisocyanates, so development efforts are underway to improve mechanical properties. It is being done.
  • Patent Document 1 describes a polycaprolactone copolymer polyol having an alkyl side chain in the molecular chain, a poly(ethylene-propylene) copolymer polyol, 4,4'-diphenylmethane diisocyanate, and 1,3-propanediol.
  • a biodegradable thermoplastic polyurethane elastomer is disclosed in which the following are blended in a specific blending ratio.
  • Patent Document 2 describes biodegradable polyester diols (poly- ⁇ -caprolactone diol, etc.), diisocyanates (lysine diisocyanate (LDI), etc.), and aliphatic diamines having side chains (1,2-butane diol, etc.). Biodegradable polyurethane ureas obtained using diamines (1,2-BDA, etc.) are disclosed.
  • Patent Document 3 describes poly- ⁇ -caprolactone diol, lysine diisocyanate (LDI) or butane diisocyanate (BDI), and chain extenders (1,4-butanediol (1,4-BG), etc.).
  • LCI lysine diisocyanate
  • BDI butane diisocyanate
  • chain extenders (1,4-butanediol (1,4-BG), etc.
  • the biodegradable thermoplastic polyurethane elastomer of Patent Document 1 has the problem of insufficient biodegradability and the generation of highly toxic aromatic amines when decomposed, which places a burden on the environment.
  • the biodegradable polyurethaneurea of Patent Document 2 and the biodegradable polyurethane of Patent Document 3 have insufficient mechanical properties and a long curing time, resulting in poor productivity when actually used. There was a question of sufficiency.
  • an object of the present disclosure is to provide a biodegradable polyurethane resin that exhibits excellent mechanical properties (strength, toughness) that can actually be used as a molded article, and that does not easily generate highly toxic aromatic amines. It is in.
  • Another object of the present disclosure is to exhibit excellent mechanical properties (strength, toughness) that can be practically used as a molded product, to have excellent productivity (low viscosity, short curing time), and to be non-toxic.
  • An object of the present invention is to provide a biodegradable polyurethane resin that does not easily generate strong aromatic amines.
  • the present disclosure provides a biodegradable polyurethane resin having a structural unit derived from a polylactone polyol and a structural unit derived from an aliphatic diisocyanate having no side chain and having 7 or more carbon atoms.
  • the polylactone polyol is preferably a compound represented by the following formula (1).
  • R 1 represents an m-valent hydrocarbon group
  • R 2 represents a divalent hydrocarbon group
  • m represents an integer of 2 to 10
  • n represents an integer of 1 to 35. . ]
  • the biodegradable polyurethane resin may further have a structural unit derived from an aliphatic diol.
  • the aliphatic diol is preferably a diol having a linear alkylene group.
  • the biodegradable polyurethane resin preferably has a structural unit derived from a reaction product of the polylactone polyol and the aliphatic diisocyanate, and a structural unit derived from the aliphatic diol.
  • the molar ratio of the structural units derived from the aliphatic diol to the structural units derived from the polylactone polyol is 0.10 to 3.00. It's good.
  • the present disclosure also provides a method for producing a biodegradable polyurethane resin, which includes a step of reacting a component containing at least a polylactone polyol and an aliphatic diisocyanate having no side chain and having 7 or more carbon atoms.
  • the above manufacturing method has a step of reacting a reaction product obtained by reacting the above polylactone polyol and the above aliphatic diisocyanate with an aliphatic diol.
  • the equivalent ratio (NCO/OH) of the NCO groups possessed by the aliphatic diisocyanate to the total OH groups possessed by the polylactone polyol and the aliphatic diol is preferably 0.90 to 1.10. preferable.
  • the present disclosure also provides a molded article made of the biodegradable polyurethane resin.
  • biodegradable polyurethane resin of the present disclosure By using the biodegradable polyurethane resin of the present disclosure, it is possible to obtain a molded article that does not generate highly toxic aromatic amines when decomposed and has excellent mechanical properties that can be used in practice. Furthermore, when the biodegradable polyurethane resin of the present disclosure is used, a molded article that does not generate highly toxic aromatic amines when decomposed and has excellent mechanical properties that can be used in practice can be produced. You can gain from productivity.
  • the biodegradable polyurethane resin of the present disclosure has a structural unit derived from a polylactone polyol and a structural unit derived from an aliphatic diisocyanate having 7 or more carbon atoms and having no side chain.
  • the biodegradable polyurethane resin preferably also contains a reaction product obtained by reacting components containing at least the polylactone polyol and the diisocyanate.
  • the polylactone polyol used in the present disclosure is a biodegradable polyol, and is preferably a reaction product of a polyhydric alcohol and a lactone.
  • the polylactone polyol has 2 to 10 (more preferably 2 to 6, even more preferably 2 to 4) hydroxyl groups, and has 2 to 10 functional (more preferably 2 to 6 functional, even more preferably 2 to 6) hydroxyl groups.
  • a polylactone polyol (tetrafunctional) is preferable, and a difunctional polylactone diol having two hydroxyl groups is particularly preferable.
  • the polylactone polyol is also preferably a compound represented by the following formula (1).
  • R 1 represents an m-valent hydrocarbon group
  • R 2 represents a divalent hydrocarbon group
  • m represents an integer of 2 to 10
  • n represents an integer of 1 to 35.
  • the above m is preferably 2 to 6, more preferably 2 to 4.
  • the number of carbon atoms in the m-valent hydrocarbon group related to R 1 is preferably 2 to 20, more preferably 2 to 10, and still more preferably 2 to 5. That is, the m-valent hydrocarbon group related to R 1 above has, for example, the structure of an m-valent polyhydric alcohol having 2 to 20 carbon atoms (preferably 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms). A group obtained by removing m hydroxyl groups from the formula is preferable. That is, the polylactone polyol preferably has a lactone polymer chain formed from the hydroxyl group of an m-valent polyhydric alcohol as a starting point.
  • m-valent polyhydric alcohol examples include divalent alcohols (ethylene glycol, propylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, trimethylpentanediol, cyclohexanediol, etc.).
  • trivalent alcohols glycerin, trimethylolpropane, etc.
  • tetravalent alcohols diglycerin, pentaerythritol, methylglucoside, tetramethylolcyclohexane, etc.
  • pentavalent alcohols glucose, mannose, fructose, etc.
  • hexavalent alcohols alcohols dipentaerythritol, sorbitol, etc.
  • examples of the hepta- to decavalent alcohols include sugars (sucrose, lactose, etc.), derivatives thereof, polyphenols, and the like.
  • dihydric to hexahydric alcohols are preferred, dihydric to tetrahydric alcohols are more preferred, dihydric alcohols are particularly preferred, and ethylene glycol is most preferred.
  • n is preferably 1 to 20, and more preferably 3 to 10.
  • the divalent hydrocarbon group for R 2 above may be linear or branched (more preferably is preferably a linear) alkylene group.
  • alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and the like. These may be one type or two or more types. Among these, a pentamethylene group is preferred because the biodegradable polyurethane resin tends to have excellent mechanical properties.
  • the divalent hydrocarbon group for R 2 is preferably a group derived from a lactone. That is, the polylactone polyol preferably has a lactone polymer chain having a degree of polymerization n and formed from the hydroxyl group of the polyhydric alcohol related to R 1 as a starting point.
  • lactone examples include ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -nonalactone, ⁇ -valerolactone, ⁇ -caprolactone, cyclopentadecanolide, cyclohexadecanolide.
  • Examples include de. These may be one type or two or more types. Among these, ⁇ -caprolactone is preferred because the biodegradable polyurethane resin tends to have excellent mechanical properties.
  • the number average molecular weight of the polylactone polyol is preferably 300 to 80,000, more preferably 500 to 4,000, even more preferably 1,000 to 3,000.
  • the number average molecular weight is 300 or more, the tensile strength of the resulting biodegradable polyurethane resin tends to be large, and when it is 80,000 or less, the tensile elongation tends to be large.
  • the number average molecular weight is 1000 or more, both tensile strength and tensile elongation tend to become large, and when it becomes 3000 or more, crystallization of caprolactone tends to occur and the tensile elongation tends to become small.
  • the diisocyanate used in the present disclosure is an aliphatic diisocyanate having 7 or more carbon atoms and having no side chain.
  • the biodegradable polyurethane resin of the present disclosure mainly contains structural units derived from aliphatic diisocyanates with respect to structural units derived from diisocyanates, so highly toxic aromatic amines are unlikely to be generated during decomposition. Moreover, since it does not have a side chain, aggregation of the constituent units derived from the diisocyanate is less likely to be hindered, so the mechanical properties of the biodegradable polyurethane resin tend to be excellent.
  • the number of carbon atoms in the aliphatic diisocyanate is 7 or more, preferably 7 to 22, more preferably 7 to 10.
  • the aliphatic diisocyanates include linear aliphatic diisocyanates (1,5-pentane diisocyanate, 1,6-hexane diisocyanate, etc.), alicyclic diisocyanates without side chains (cyclohexylene diisocyanate, (cyclohexane diisocyanate, etc.) (bismethylene) diisocyanate, dicyclohexylmethane-4,4-diisocyanate, etc.).
  • the aliphatic diisocyanate may be a multimer (trimer, for example, an isocyanurate group-containing diisocyanate) of the aliphatic diisocyanate or the alicyclic isocyanate. These may be used alone or in combination of two or more. Among them, linear aliphatic diisocyanates having 7 to 10 carbon atoms are preferred because they tend to give the biodegradable polyurethane resin excellent mechanical properties, and pentamethylene diisocyanate is preferred because it is easily available as a biomass material. More preferred.
  • the content ratio of the structural units derived from the aliphatic diisocyanate is preferably 1.00 to 7.00 parts by mole, more preferably 1.00 to 7.00 parts by mole, per 1 part by mole of the structural units derived from the polylactone polyol. 00 to 5.00 mole parts, more preferably 1.00 to 3.00 mole parts.
  • the viscosity of the biodegradable polyurethane resin consisting of structural units derived from the above polylactone polyol and structural units derived from the above diisocyanate, that is, the reaction product of the above polylactone polyol and the above diisocyanate, is determined by the prepolymer method in the following prepolymer method.
  • the pressure at 75° C. is preferably 1,500 mPa ⁇ s or less, more preferably 1,000 mPa ⁇ s or less, still more preferably 750 mPa ⁇ s or less.
  • the biodegradable polyurethane resin of the present disclosure tends to have excellent mechanical properties, in addition to the structural units derived from polylactone polyol and the structural unit derived from diisocyanate, the biodegradable polyurethane resin further includes a structural unit derived from aliphatic diol. It is preferable to have a unit.
  • the biodegradable polyurethane resin may be a reaction product obtained by a one-shot method in which the polylactone polyol, diisocyanate, and aliphatic diol are reacted all at once.
  • the above-mentioned biodegradable polyurethane resin also has structural units derived from a reaction product of the above-mentioned polylactone polyol and the above-mentioned diisocyanate, and structural units derived from an aliphatic diol, since it tends to have even better mechanical properties. It is preferable to have the following. That is, the biodegradable polyurethane resin is preferably a reaction product obtained by a prepolymer method in which a reaction product (prepolymer) of the polylactone polyol and the diisocyanate is reacted with an aliphatic diol.
  • the aliphatic diol used in the present disclosure is preferably a linear aliphatic diol without a side chain.
  • the aliphatic diol used in the present disclosure preferably has 2 or more carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably 3 to 6 carbon atoms.
  • linear aliphatic diol examples include diols having a linear alkylene group (ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexane diol, 1,8-octanediol, 1,9-nonanediol, etc.), polyalkylene glycol (diethylene glycol, triethylene glycol, dipropylene glycol, etc.), and the like. These may be used alone or in combination of two or more. Among these, 1,4-butanediol is preferred since the mechanical properties of the biodegradable polyurethane resin tend to be excellent.
  • linear alkylene group ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexane diol, 1,8-octanediol, 1,9-non
  • the molecular weight of the aliphatic diol is preferably 350 or less, more preferably 300 or less, even more preferably 200 or less.
  • the aggregation of the structural units derived from the aliphatic diol is less likely to be hindered, so the mechanical properties of the biodegradable polyurethane resin tend to be excellent.
  • the content ratio of the structural unit derived from the aliphatic diol may be 0 mole part, preferably 0.10 to 5.00 mole part, per 1 mole part of the structural unit derived from the polylactone polyol. (0.50 to 4.00 mole parts, more preferably 0.90 to 3.00 mole parts).
  • the molar ratio of the structural units derived from the aliphatic diol to the structural units derived from the polylactone polyol may be 0, and preferably 0.10 to 5.00. 0.50 to 4.00, more preferably 0.90 to 3.00).
  • the biodegradable polyurethane resin of the present disclosure may contain other structural units (constituent units derived from biodegradable polyols other than the polylactone polyol described above, and those having the side chains described above) within a range that does not impair the effects of the present disclosure.
  • structural units derived from polyisocyanates other than aliphatic diisocyanates having 7 or more carbon atoms, structural units derived from chain extenders other than the above-mentioned aliphatic diols, etc. may contain other structural units (constituent units derived from biodegradable polyols other than the polylactone polyol described above, and those having the side chains described above) within a range that does not impair the effects of the present disclosure.
  • structural units derived from polyisocyanates other than aliphatic diisocyanates having 7 or more carbon atoms structural units derived from chain extenders other than the above-mentioned aliphatic diols, etc.
  • biodegradable polyols examples include polyhydroxycarboxylic acids (polyglycolic acid, polylactic acid, polyhydroxybutyric acid, polyhydroxyvaleric acid, etc.), polyester polyols (polyglycolic acid, polylactic acid, polyhydroxybutyric acid, polyhydroxybutyrate, etc.). hydroxyvaleric acid, etc.), polyether polyols (polyoxyethylene glycol, polyoxypropylene glycol, polyoxyethylene oxypropylene glycol, polyoxybutylene glycol, polyoxytetramethylene glycol, etc.). These may be one type or two or more types.
  • the content ratio of the structural units derived from the above-mentioned other biodegradable polyol in the total of the structural units derived from the above-mentioned polylactone polyol and the above-mentioned other biodegradable polyol is preferably 3 mol% or less, more preferably 1 It is mol% or less, more preferably 0.5 mol% or less.
  • Examples of the other polyisocyanates include linear aliphatic diisocyanates having 4 or less carbon atoms (1,3-propane diisocyanate, 1,4-butane diisocyanate, etc.), branched aliphatic diisocyanates (1,3- butane diisocyanate, 2,4,4-trimethylhexane-1,6-diyl diisocyanate, etc.), alicyclic diisocyanates with side chains (ethyl ester L-lysine diisocyanate, isophorone diisocyanate, etc.), dimer acid diisocyanate, aromatic diisocyanates ( diphenylmethane diisocyanate, tolylene diisocyanate, tolidine diisocyanate, xylylene diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, tetramethylxylene diisocyanate, etc.). These may be one type or
  • the content of the structural units derived from the other polyisocyanates in the total of the structural units derived from the aliphatic diisocyanates having 7 or more carbon atoms and the above other polyisocyanates that do not have side chains is 3 mol% or less. It is preferably at most 1 mol%, more preferably at most 0.5 mol%.
  • chain extenders mentioned above include, for example, aliphatic diols having side chains (1,2-propanediol, 1,3-butanediol, 3-methyl-1,5-pentanediol, etc.), alicyclic diols ( 1,6-cyclohexanedimethanol, etc.), aliphatic diamines (1,2-propanediamine, 1,3-propanediamine, 1,4-butanediamine, isophoronediamine, etc.), and the like. These may be one type or two or more types.
  • the content ratio of the structural units derived from the above-mentioned other chain extenders in the total of the structural units derived from the above-mentioned aliphatic diols and the above-mentioned other chain extenders is preferably 3 mol% or less, more preferably 1 mol%.
  • the content is preferably 0.5 mol% or less.
  • the biodegradable polyurethane resin of the present disclosure includes additives (mold release agent, plasticizer, colorant, antioxidant, UV stabilizer, heat stabilizer, crosslinking agent, foaming agent, foam stabilizer, urethanization catalyst, filler). etc.) to form a biodegradable polyurethane resin composition.
  • additives may be blended together with the raw material components before the reaction, or may be blended by melt-kneading the biodegradable polyurethane resin obtained by the reaction.
  • the biodegradable polyurethane resin of the present disclosure is a component containing at least a polylactone polyol and an aliphatic diisocyanate having 7 or more carbon atoms and no side chain (the above polylactone polyol, the above diisocyanate, and optionally an aliphatic diol). ) can be obtained through a step of reacting.
  • the polylactone polyol, diisocyanate, and aliphatic diol are the same as those described for the biodegradable polyurethane resin.
  • Methods for reacting the components containing the polylactone polyol and diisocyanate include, for example, a one-shot method in which they are reacted all at once, and a reaction product obtained by reacting the polylactone polyol and diisocyanate in advance.
  • the prepolymer method involves reacting a polymer) with an aliphatic diol.
  • the prepolymer method is preferred because the molecular structure of the degradable polyurethane resin tends to be homogeneous and the mechanical properties of the biodegradable polyurethane resin tend to be excellent.
  • the equivalent ratio (NCO/OH) of the NCO groups possessed by the diisocyanate to the total OH groups possessed by the polylactone polyol and the aliphatic diol is preferably from 0.90 to 1.10, More preferably 0.95 to 1.05, still more preferably 0.97 to 1.03.
  • the molar ratio of the aliphatic diol to the polylactone polyol may be 0, and may be 0.10 to 5.00 (preferably 0.50 to 4.0). .00, more preferably 0.90 to 3.00).
  • the viscosity of the prepolymer in the prepolymer method is preferably 1,500 mPa ⁇ s or less, more preferably 1,000 mPa ⁇ s or less, and even more preferably 750 mPa ⁇ s or less at 75°C.
  • the viscosity can be measured using, for example, a viscometer (product name: "VISCOMETER TV-622", manufactured by Toki Sangyo Co., Ltd.).
  • the reaction temperature is, for example, preferably 20 to 220°C, more preferably 45 to 180°C, and still more preferably 70 to 140°C.
  • the reaction time is, for example, preferably 50 to 900 minutes, more preferably 100 to 600 minutes, still more preferably 150 to 300 minutes.
  • the reaction temperature when obtaining the prepolymer is, for example, preferably 20 to 200°C, more preferably 45 to 150°C, still more preferably 70 to 100°C. .
  • the reaction time for the reaction to obtain the prepolymer is not particularly limited, as long as it continues until the concentration of isocyanate groups in the reaction solution reaches a desired value, and is, for example, 10 to 400 minutes, 20 to 200 minutes, or 30 to 100 minutes. It is.
  • the reaction temperature when reacting the prepolymer with the aliphatic diol is, for example, preferably 20 to 220°C, more preferably 45 to 180°C, and even more preferably 70 to 140°C.
  • the reaction time is, for example, preferably 420 minutes or less, more preferably 360 minutes, still more preferably 300 minutes or less. When the reaction time is 240 minutes or less, productivity is excellent because the reaction time is short.
  • the obtained biodegradable polyurethane resin may be heat-treated, for example, at 100° C. or lower for 1 to 100 hours, if necessary.
  • a urethanization catalyst (tertiary amine compound, organometallic compound, etc.) may be used.
  • the biodegradable polyurethane resin of the present disclosure can be produced, for example, by a method in which a liquid molding material before reaction is shaped and then solidified by reaction, a method in which it is softened and melted by heating after the reaction, or a method in which it is molded after the reaction.
  • a method in which a liquid molding material before reaction is shaped and then solidified by reaction
  • a method in which it is softened and melted by heating after the reaction or a method in which it is molded after the reaction.
  • By molding using a dissolved solution it is possible to produce a biodegradable molded product that exhibits excellent mechanical properties (strength, toughness) that can be used in practice.
  • molding methods include, but are not limited to, well-known and commonly used molding methods such as coating, cast molding, vacuum molding, extrusion molding, calendar molding, blow molding, inflation molding, rotational molding, slush molding, foam molding, compression molding, stamping molding, casting, and dipping.
  • molded bodies include, but are not limited to, films, sheets, hoses, tubes, packing materials, vibration-proofing materials, bonding materials, paint films, coating materials, fibers, foams, synthetic leather, and elastic bodies. etc.
  • the above-mentioned molded bodies are, for example, clothing/non-clothing products, packaging materials, household/miscellaneous goods, furniture parts, mechanical parts, electrical/electronic parts, parts for automobiles and other vehicles, parts for industrial products, civil engineering/building materials, agricultural supplies. It can be suitably used in a wide range of applications such as fishing supplies, gardening supplies, sanitary supplies, medical and nursing supplies, and sports and leisure supplies.
  • the Shore A hardness of the biodegradable polyurethane resin of the present disclosure according to the evaluation method described in the Examples is preferably 80 or higher, more preferably 85 or higher.
  • the tensile strength of the biodegradable polyurethane resin of the present disclosure measured by the strength evaluation method described in the Examples is preferably 5 MPa or more, more preferably 7 MPa or more.
  • the tensile strength of the biodegradable polyurethane resin of the present disclosure measured by the toughness evaluation method described in Examples is preferably 500% or more, more preferably 550% or more.
  • ⁇ Polycaprolactone polyol A1 Difunctional polycaprolactone diol, product name "PLACCEL 210N", number average molecular weight 1000, manufactured by Daicel Corporation.
  • ⁇ Polycaprolactone polyol A2 Difunctional polycaprolactone diol, product name "PLACCEL 220N", Number average molecular weight 2000, manufactured by Daicel Corporation
  • -Diisocyanate B1 1,5-pentane diisocyanate, trade name "Stabio PDI", manufactured by Mitsui Chemicals, Inc.
  • -Diisocyanate B2 diphenylmethane diisocyanate, trade name "Millionate MT”, manufactured by Tosoh Corporation
  • -Diisocyanate B3 Ethyl ester L -Lysine diisocyanate, trade name "LDI”, manufactured by Alfa Aesar
  • ⁇ Aliphatic diol C 1,4-butanediol, trade name "14BG", molecular weight 90.12, manufactured by Mitsubishi Chemical Corporation
  • Example 1 Polylactone polyol A1 (1.00 mol parts) and diisocyanate B1 (2.00 mol parts) were placed in a glass container, and the isocyanate group concentration in the reaction solution (JIS K1603-1:2007 B) was heated at 80°C. A prepolymer was obtained by reacting until there was no change in the value (measured according to the method).
  • the aliphatic diol C (1.00 molar parts) was further added to the glass container so that the equivalent ratio (NCO/OH) of the NCO groups in the diisocyanate B1 to the total OH groups in the polylactone polyol A1 and aliphatic diol C was 0.99, and the mixture was mixed uniformly and degassed using a planetary stirring device (product name: "Thinner AR-250", manufactured by Thinky Corporation) to obtain a liquid molding material.
  • a planetary stirring device product name: "Thinner AR-250", manufactured by Thinky Corporation
  • the obtained liquid material for molding is poured into a mold, heated together with the mold in an oven at 120°C for 960 minutes to react and solidify, and further cured at 23°C and 50% RH for 48 hours to determine the hardness.
  • a measurement sample (rectangular shape, length 13 mm, width 20 mm, thickness 2 mm) and a tensile test sample (dumbbell shape (JIS K 6251, No. 3), length 100 mm, width 25 mm, thickness 2 mm) were obtained.
  • the prepolymer viscosity of the above prepolymer, the urethane curing time of the above molding liquid material, and the color tone, feel, hardness, melting point/enthalpy of melting, strength, toughness, and biodegradability of the above sample were measured and evaluated.
  • Prepolymer viscosity The viscosity of the above prepolymer at 75° C. was measured using a viscometer (product name “VISCOMETER TV-22”, manufactured by Toki Sangyo Co., Ltd.). The lower the viscosity of the prepolymer, the easier it is to cast, which indicates that the productivity of the molded product is excellent.
  • the storage modulus was measured using a rotational rheometer (product name "MCR302", manufactured by Anton Paar) at a strain of 5%, a frequency of 10 Hz, and a temperature of 120°C. The time until the storage modulus reached a constant value without changing was evaluated as the urethane curing time. The shorter the urethane curing time, the better the productivity of the molded article.
  • the above tensile test sample was tested at 23°C and 50% RH using a Tensilon universal testing machine (product name "RTC-1350A", manufactured by A&D Co., Ltd.), with a distance between gauge lines of 20 mm, and a tensile speed.
  • a tensile test was conducted under the condition of 500 mm/min, and the stress at an elongation of 300% (tensile strength) and the elongation when the sample broke (elongation at break) were measured. The higher the tensile strength, the better the strength, and the higher the elongation at break, the better the toughness.
  • biodegradable The degree of biodegradation was evaluated after 180 days under aerobic composting conditions at 58°C ( ⁇ 2°C) according to ISO 14855-1. The larger the value, the better the biodegradability.
  • Comparative Examples 1 to 3 The same procedure as in Example 1 was carried out except that the raw material components and/or molar parts were changed as shown in Table 1 below. In addition, in Comparative Example 3, a molded article that could be measured and evaluated was not obtained.
  • the biodegradable polyurethane resins of Examples 1 to 5 were shown to have excellent mechanical properties and can be used in practice, as well as excellent biodegradability (tensile strength 7 to 12 MPa, breaking strength 505 to 674%). , biodegradation 90 days).
  • the prepolymer viscosity was low (694 mPa ⁇ s) and the urethane curing time was short (225 minutes), so it was shown that the productivity was excellent.
  • the biodegradable polyurethane resin of Comparative Example 1 has poor biodegradability (30% biodegradability); Moreover, the productivity was also poor (prepolymer viscosity: 2666 mPa ⁇ s).
  • the biodegradable polyurethane resin of Comparative Example 3 could not be taken out of the test sample from the mold, and its mechanical properties (strength, toughness) were poor.
  • R 1 represents an m-valent hydrocarbon group
  • R 2 represents a divalent hydrocarbon group
  • m represents an integer of 2 to 10
  • n represents an integer of 1 to 35.
  • [Appendix 3] The biodegradable polyurethane resin according to Appendix 2, wherein m is 2 to 6 (preferably 2 to 4).
  • [Appendix 4] m hydroxyl groups are removed from the structural formula of the m-valent polyhydric alcohol in which R 1 has 2 to 20 carbon atoms (preferably 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms).
  • [Appendix 5] The biodegradable polyurethane resin according to Appendix 2 or 3, wherein R 1 is a divalent hydrocarbon group obtained by removing the hydroxyl group from ethylene glycol.
  • [Appendix 6] The biodegradable polyurethane resin according to any one of Appendices 2 to 5, wherein n is 1 to 20 (preferably 3 to 10).
  • R 2 is a linear or branched (preferably linear) alkylene group having 2 to 20 carbon atoms (preferably 3 to 15 carbon atoms, more preferably 4 to 10 carbon atoms) The biodegradable polyurethane resin according to any one of Supplementary Notes 2 to 6.
  • the lactone is ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -nonalactone, ⁇ -valerolactone, ⁇ -caprolactone, cyclopentadecanolide, and cyclohexane.
  • Appendix 13 The biodegradable polyurethane resin according to any one of Appendices 9 to 11, wherein the lactone is ⁇ -caprolactone.
  • the content ratio of the structural unit derived from the aliphatic diisocyanate is 1.00 to 7.00 parts by mole (preferably 1.00 to 7.00 parts by mole) per 1 part by mole of the structural unit derived from the polylactone polyol. 5.00 mole parts, more preferably 1.00 to 3.00 mole parts), the biodegradable polyurethane resin according to any one of appendices 1 to 17.
  • Appendix 20 The biodegradable polyurethane resin according to any one of Appendices 1 to 19, further having a structural unit derived from an aliphatic diol.
  • the biodegradable method according to Additional Note 20 wherein the aliphatic diol is a diol having a linear alkylene group having 2 or more carbon atoms (preferably 2 to 10 carbon atoms, more preferably 3 to 6 carbon atoms). polyurethane resin.
  • Additional Note 22 The biodegradable polyurethane resin according to Additional Note 20, wherein the aliphatic diol is 1,4-butanediol.
  • the molar ratio of the structural units derived from the aliphatic diol to the structural units derived from the polylactone polyol is 0.10 to 5.00 (preferably 0.50). ⁇ 4.00, more preferably 0.90 to 3.00), the biodegradable polyurethane resin according to any one of appendices 20 to 24.
  • [Additional Note 26] Contains a structural unit derived from a biodegradable polyol other than the polylactone polyol, and includes a structural unit derived from the other biodegradable polyol in the total of the structural units derived from the polylactone polyol and the other biodegradable polyol.
  • the content of the structural unit derived from the degradable polyol is 3 mol% or less (preferably 1 mol% or less, more preferably 0.5 mol% or less).
  • Biodegradable polyurethane resin is 3 mol% or less (preferably 1 mol% or less, more preferably 0.5 mol% or less).
  • [Additional note 27] Contains a structural unit derived from a polyisocyanate other than the aliphatic diisocyanate having 7 or more carbon atoms that does not have the side chain, and includes the aliphatic diisocyanate having 7 or more carbon atoms that does not have the side chain and the other
  • the content of the structural units derived from the other polyisocyanate in the total of structural units derived from the polyisocyanate is 3 mol% or less (preferably 1 mol% or less, more preferably 0.5 mol% or less).
  • the biodegradable polyurethane resin according to any one of Supplementary Notes 1 to 26.
  • the other chain extender includes a structural unit derived from a chain extender other than the aliphatic diol, and is included in the total of structural units derived from the aliphatic diol and the other chain extender.
  • a method for producing a biodegradable polyurethane resin comprising a step of reacting at least a polylactone polyol and a component containing an aliphatic diisocyanate having 7 or more carbon atoms and having no side chain.
  • the equivalent ratio (NCO/OH) of the NCO groups possessed by the diisocyanate to the total OH groups possessed by the polylactone polyol and the aliphatic diol is from 0.90 to 1.10 (preferably from 0.95 to 1.05, more preferably 0.97 to 1.03), the method for producing a biodegradable polyurethane resin according to appendix 29 or 30.
  • the molar ratio of the aliphatic diol to the polylactone polyol is 0.10 to 5.00 (preferably 0.50 to 4.00, more preferably 0.10 to 5.00). 90 to 3.00), the method for producing a biodegradable polyurethane resin according to appendix 30 or 31.
  • the viscosity of the reaction product obtained by reacting the polylactone polyol and the aliphatic diisocyanate in advance is 1500 mPa ⁇ s or less (preferably 1000 mPa ⁇ s or less, more preferably 750 mPa ⁇ s or less) at 75°C.
  • biodegradable polyurethane resin of the present disclosure By using the biodegradable polyurethane resin of the present disclosure, it is possible to obtain a molded article that does not generate highly toxic aromatic amines when decomposed and has excellent mechanical properties that can be used in practice. Furthermore, when the biodegradable polyurethane resin of the present disclosure is used, a molded article that does not generate highly toxic aromatic amines when decomposed and has excellent mechanical properties that can be used in practice can be produced. You can gain from productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

成形体として実際に使用可能である優れた機械的特性(強度、靭性)を示し、かつ強い毒性の芳香族アミンを発生しにくい生分解性ポリウレタン樹脂を提供する。 本開示の生分解性ポリウレタン樹脂は、ポリラクトンポリオールに由来する構成単位、及び側鎖を持たない炭素数7以上の脂肪族ジイソシアネートに由来する構成単位を有する生分解性ポリウレタン樹脂である。また、本開示の生分解性ポリウレタン樹脂の製造方法は、少なくともポリラクトンポリオール、及び、側鎖を持たない炭素数7以上の脂肪族ジイソシアネートを含む成分を反応させる工程を有する。

Description

生分解性ポリウレタン樹脂
 本開示は、生分解性ポリウレタン樹脂に関する。本願は、2022年9月20日に日本に出願した、特願2022-149032号の優先権を主張し、その内容をここに援用する。
 近年、自然環境に対する負荷軽減の観点から、自然環境下で分解可能である生分解性樹脂材料が注目され、様々な開発が積極的に行われている。その中で、ポリオールとポリイソシアネートとの反応物であるポリウレタン樹脂について、生分解性ポリウレタン樹脂が機械的特性(強度、靭性等)に劣る傾向にあることから、機械的特性の向上を求める開発が行われている。
 例えば、特許文献1には、分子鎖中にアルキル側鎖を有するポリカプロラクトン系共重合ポリオール、ポリ(エチレン-プロピレン)共重合ポリオール、4,4’-ジフェニルメタンジイソシアネート、及び、1,3-プロパンジオールを特定の配合比で配合した生分解性熱可塑性ポリウレタンエラストマーが開示されている。
 また、例えば、特許文献2には、生分解性ポリエステルジオール(ポリ-ε-カプロラクトンジオール等)、ジイソシアネート(リジンジイソシアネート(LDI)等)、及び、側鎖を有する脂肪族ジアミン(1,2-ブタンジアミン(1,2-BDA)等)を用いて得られる生分解性ポリウレタンウレアが開示されている。
 また、例えば、特許文献3には、ポリ-ε-カプロラクトンジオール、リジンジイソシアネート(LDI)又はブタンジイソシアネート(BDI)、及び、鎖延長剤(1,4-ブタンジオール(1,4-BG)等)を用いて得られる生分解性ポリウレタンが開示されている。
特開2006-070129号公報 特開2009-203404号公報 特開2012-062370号公報
 しかしながら、特許文献1の生分解性熱可塑性ポリウレタンエラストマーには、生分解性が不十分で、かつ分解する際に毒性の強い芳香族アミンが発生して環境に負荷をかけるという問題があった。また、特許文献2の生分解性ポリウレタンウレア、及び特許文献3の生分解性ポリウレタンには、実際に使用する場合には機械的特性が不十分で、かつ硬化時間が長いことにより生産性が不十分であるという問題があった。
 従って、本開示の目的は、成形体として実際に使用可能である優れた機械的特性(強度、靭性)を示し、かつ毒性の強い芳香族アミンを発生しにくい生分解性ポリウレタン樹脂を提供することにある。また、本開示の別の目的は、成形体として実際に使用可能である優れた機械的特性(強度、靭性)を示し、成形体の生産性に優れ(低い粘度、短い硬化時間)、かつ毒性の強い芳香族アミンを発生しにくい生分解性ポリウレタン樹脂を提供することにある。
 本開示の発明者は、鋭意検討した結果、特定の構成単位を有する生分解性ポリウレタン樹脂によれば、上記課題を解決できることを見出した。本開示は、これらの知見に基づいて完成されたものに関する。
 すなわち、本開示は、ポリラクトンポリオールに由来する構成単位、及び側鎖を持たない炭素数7以上の脂肪族ジイソシアネートに由来する構成単位を有する生分解性ポリウレタン樹脂を提供する。
 上記ポリラクトンポリオールは、下式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、R1はm価の炭化水素基を表し、R2は2価の炭化水素基を表し、mは2~10の整数を示し、nは1~35の整数を示す。]
 上記生分解性ポリウレタン樹脂は、さらに、脂肪族ジオールに由来する構成単位を有してもよい。
 上記脂肪族ジオールは、直鎖アルキレン基を有するジオールであることが好ましい。
 上記生分解性ポリウレタン樹脂は、上記ポリラクトンポリオールと上記脂肪族ジイソシアネートとの反応生成物に由来する構成単位と、上記脂肪族ジオールに由来する構成単位とを有することが好ましい。
 上記生分解性ポリウレタン樹脂において、上記ポリラクトンポリオールに由来する構成単位に対する、上記脂肪族ジオールに由来する構成単位のモル比(脂肪族ジオール/ポリラクトンポリオール)は、0.10~3.00であってよい。
 本開示は、また、少なくともポリラクトンポリオール、及び、側鎖を持たない炭素数7以上の脂肪族ジイソシアネートを含む成分を反応させる工程を有する、生分解性ポリウレタン樹脂の製造方法を提供する。
 上記製造方法は、上記ポリラクトンポリオール及び上記脂肪族ジイソシアネートを予め反応させて得られた反応生成物と、脂肪族ジオールと反応させる工程を有するものであることが好ましい。
 上記方法において、上記ポリラクトンポリオール及び上記脂肪族ジオールの有する合計のOH基に対する、上記脂肪族ジイソシアネートの有するNCO基の当量比(NCO/OH)は、0.90~1.10であることが好ましい。
 本開示は、また、上記生分解性ポリウレタン樹脂からなる成形体を提供する。
 本開示の生分解性ポリウレタン樹脂を用いると、分解する際に毒性の強い芳香族アミンを発生せず、かつ、実際に使用可能である優れた機械的特性を有する成形体を得ることができる。また、本開示の生分解性ポリウレタン樹脂を用いると、分解する際に毒性の強い芳香族アミンを発生せず、かつ、実際に使用可能である優れた機械的特性を有する成形体を、優れた生産性で得ることができる。
<生分解性ポリウレタン樹脂>
 本開示の生分解性ポリウレタン樹脂は、ポリラクトンポリオールに由来する構成単位、及び側鎖を持たない炭素数7以上の脂肪族ジイソシアネートに由来する構成単位を有する。上記生分解性ポリウレタン樹脂は、また、少なくとも上記ポリラクトンポリオール及び上記ジイソシアネートを含む成分を反応させて得られる反応生成物を含むことが好ましい。
(ポリラクトンポリオール)
 本開示に用いるポリラクトンポリオールは、生分解性ポリオールであって、多価アルコールとラクトンとの反応生成物であることが好ましい。
 上記ポリラクトンポリオールは、2~10個(より好ましくは2~6個、さらに好ましくは2~4個)の水酸基を有する、2~10官能(より好ましくは2~6官能、さらに好ましくは2~4官能)のポリラクトンポリオールであることが好ましく、特に好ましくは2個の水酸基を有する2官能のポリラクトンジオールである。
 上記ポリラクトンポリオールは、また、下記式(1)で表される化合物であることが好ましい。式(1)中、R1はm価の炭化水素基を表し、R2は2価の炭化水素基を表し、mは2~10の整数を示し、nは1~35の整数を示す。
Figure JPOXMLDOC01-appb-C000003
 上記mは、2~6であることが好ましく、より好ましくは2~4である。
 上記R1に係るm価の炭化水素基の炭素数は、2~20が好ましく、より好ましくは2~10、さらに好ましくは2~5である。すなわち、上記R1に係るm価の炭化水素基は、例えば、炭素数2~20(好ましくは炭素数2~10、より好ましくは炭素数2~5)の、m価の多価アルコールの構造式からm個の水酸基を除いた基であることが好ましい。つまり、上記ポリラクトンポリオールは、m価の多価アルコールの水酸基を起点として形成されたラクトン重合鎖を有するものであることが好ましい。
 上記m価の多価アルコールとしては、例えば、2価のアルコール(エチレングリコール、プロピレングリコール、ジエチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、トリメチルペンタンジオール、シクロヘキサンジオール等)、3価のアルコール(グリセリン、トリメチロールプロパン等)、4価のアルコール(ジグリセリン、ペンタエリスリトール、メチルグルコシド、テトラメチロールシクロヘキサン等)、5価のアルコール(グルコース、マンノース、フルクトース等)、6価のアルコール(ジペンタエリスリトール、ソルビトール等)が挙げられ、7~10価のアルコールとしては、糖類(ショ糖、ラクトース等)やその誘導体、ポリフェノール類等が挙げられる。中でも、上記生分解性ポリウレタン樹脂の機械的特性が優れたものとなりやすい点から、2~6価のアルコールが好ましく、2~4価のアルコールがより好ましく、2価のアルコールが特に好ましく、エチレングリコールが最も好ましい。
 上記nは、1~20であることが好ましく、より好ましくは3~10である。
 上記R2に係る2価の炭化水素基は、また、炭素数2~20(好ましくは炭素数3~15、より好ましくは炭素数4~10)の、直鎖状又は分岐鎖状(より好ましくは直鎖状)のアルキレン基であることが好ましい。上記アルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基等が挙げられる。これらは1種のみであってよいし2種以上であってもよい。中でも、上記生分解性ポリウレタン樹脂の機械的特性が優れたものとなりやすい点から、ペンタメチレン基であることが好ましい。
 上記R2に係る2価の炭化水素基は、ラクトンに由来する基であることが好ましい。つまり、上記ポリラクトンポリオールは、上記R1に係る多価アルコールの水酸基を起点として形成された重合度nのラクトン重合鎖を有するものであることが好ましい。
 上記ラクトンとしては、例えば、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、γ-ノナラクトン、δ-バレロラクトン、ε-カプロラクトン、シクロペンタデカノリド、シクロヘキサデカノリド等が挙げられる。これらは1種のみであってよいし2種以上であってもよい。中でも、上記生分解性ポリウレタン樹脂の機械的特性が優れたものとなりやすい点から、ε-カプロラクトンであることが好ましい。
 上記ポリラクトンポリオールの数平均分子量は、300~80000が好ましく、より好ましくは500~4000、さらに好ましくは1000~3000である。数平均分子量が300以上であると、得られる生分解性ポリウレタン樹脂の引張強度が大きくなりやすく、80000以下であると引張伸度が大きくなりやすい。また、数平均分子量が1000以上であると、引張強度と引張伸度がともに大きくなりやすく、3000以上になると、カプロラクトンの結晶化が発現しやすく、引張伸度が小さくなりやすい。
(ジイソシアネート)
 本開示に用いるジイソシアネートは、側鎖を持たない炭素数7以上の脂肪族ジイソシアネートである。
 本開示の生分解性ポリウレタン樹脂は、ジイソシアネートに由来する構成単位について、主として脂肪族ジイソシアネートに由来する構成単位を含むため、分解の際に毒性の強い芳香族アミンが発生しにくい。また、側鎖を持たないため、上記ジイソシアネートに由来する構成単位での凝集が妨げられにくくなるので、上記生分解性ポリウレタン樹脂の機械的特性が優れたものとなりやすい。
 上記脂肪族ジイソシアネートの炭素数は、7以上であり、好ましくは7~22、より好ましくは7~10である。上記脂肪族ジイソシアネートとしては、例えば、直鎖状の脂肪族ジイソシアネート(1,5-ペンタンジイソシアネート、1,6-ヘキサンジイソシアネート等)、側鎖を持たない脂環式ジイソシアネート(シクロヘキシレンジイソシアネート、(シクロヘキサンジイルビスメチレン)ジイソシアネート、ジシクロヘキシルメタン-4,4-ジイソシアネ-ト等)などが挙げられる。上記脂肪族ジイソシアネートは、上記脂肪族ジイソシアネートや上記脂環式イソシアネートの多量体(三量体、例えば、イソシアヌレート基含有ジイソシアネート等)であってもよい。これらは1種のみを用いてよいし2種以上を用いてもよい。中でも、上記生分解性ポリウレタン樹脂の機械的特性が優れたものとなりやすい点から、炭素数7~10の直鎖状の脂肪族ジイソシアネートが好ましく、バイオマス素材として入手しやすい点から、ペンタメチレンジイソシアネートがより好ましい。
 上記脂肪族ジイソシアネートに由来する構成単位の含有割合は、上記ポリラクトンポリオールに由来する構成単位1モル部に対して、1.00~7.00モル部であることが好ましく、より好ましくは1.00~5.00モル部、さらに好ましくは1.00~3.00モル部である。
 上記ポリラクトンポリオールに由来する構成単位及び上記ジイソシアネートに由来する構成単位からなる生分解性ポリウレタン樹脂、すなわち、上記ポリラクトンポリオールと上記ジイソシアネートとの反応生成物の粘度は、下記プレポリマー法におけるプレポリマーとして用いる場合、75℃において、1500mPa・s以下であることが好ましく、より好ましくは1000mPa・s以下、さらに好ましくは750mPa・s以下である。
 本開示の生分解性ポリウレタン樹脂は、機械的特性が優れたものとなりやすい点から、ポリラクトンポリオールに由来する構成単位及びジイソシアネートに由来する構成単位に加えて、さらに、脂肪族ジオールに由来する構成単位を有することが好ましい。
 上記生分解性ポリウレタン樹脂は、上記ポリラクトンポリオールと、上記ジイソシアネートと、脂肪族ジオールとを一括して反応させるワンショット法によって得られる反応生成物であってよい。
 上記生分解性ポリウレタン樹脂は、また、機械的特性が一層優れたものとなりやすい点から、上記ポリラクトンポリオールと上記ジイソシアネートとの反応生成物に由来する構成単位と、脂肪族ジオールに由来する構成単位とを有することが好ましい。すなわち、上記生分解性ポリウレタン樹脂は、上記ポリラクトンポリオールと上記ジイソシアネートとの反応生成物(プレポリマー)と、脂肪族ジオールと反応させるプレポリマー法によって得られる反応生成物であることが好ましい。
(脂肪族ジオール)
 本開示に用いる脂肪族ジオールは、側鎖を持たない、直鎖状の脂肪族ジオールであることが好ましい。本開示に用いる脂肪族ジオールの炭素数は、2以上であることが好ましく、より好ましくは2~10、さらに好ましくは3~6である。
 上記直鎖状の脂肪族ジオールとしては、例えば、直鎖アルキレン基を有するジオール(エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール等)、ポリアルキレングリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等)などが挙げられる。これらは1種のみを用いてよいし2種以上を用いてもよい。中でも、上記生分解性ポリウレタン樹脂の機械的特性が優れたものとなりやすい点から、1,4-ブタンジオールが好ましい。
 上記脂肪族ジオールの分子量は、350以下が好ましく、より好ましくは300以下、さらに好ましくは200以下である。分子量が350以下であると、上記脂肪族ジオールに由来する構成単位での凝集が妨げられにくくなるので、上記生分解性ポリウレタン樹脂の機械的特性が優れたものとなりやすい。
 上記脂肪族ジオールに由来する構成単位の含有割合は、上記ポリラクトンポリオールに由来する構成単位1モル部に対して、0モル部であってよく、0.10~5.00モル部(好ましくは0.50~4.00モル部、より好ましくは0.90~3.00モル部)であってもよい。
 上記ポリラクトンポリオールに由来する構成単位に対する、上記脂肪族ジオールに由来する構成単位のモル比(脂肪族ジオール/ポリラクトンポリオール)は、0であってよく、0.10~5.00(好ましくは0.50~4.00、より好ましくは0.90~3.00)であってもよい。
 本開示の生分解性ポリウレタン樹脂は、本開示の効果を損ねない範囲であれば、その他の構成単位(上記ポリラクトンポリオール以外の他の生分解性ポリオールに由来する構成単位、上記側鎖を持たない炭素数7以上の脂肪族ジイソシアネート以外の他のポリイソシアネートに由来する構成単位、上記脂肪族ジオール以外の他の鎖延長剤に由来する構成単位等)を含んでいてもよい。
 上記他の生分解性ポリオールとしては、例えば、ポリヒドロキシカルボン酸(ポリグリコール酸、ポリ乳酸、ポリヒドロキシ酪酸、ポリヒドロキシ吉草酸等)、ポリエステルポリオール(ポリグリコール酸、ポリ乳酸、ポリヒドロキシ酪酸、ポリヒドロキシ吉草酸等)、ポリエーテルポリオール(ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシエチレンオキシプロピレングリコール、ポリオキシブチレングリコール、ポリオキシテトラメチレングリコール等)などが挙げられる。これらは1種のみであってよいし2種以上であってもよい。
 上記ポリラクトンポリオール及び上記他の生分解性ポリオールに由来する構成単位の合計中の、上記他の生分解性ポリオールに由来する構成単位の含有割合は、3モル%以下が好ましく、より好ましくは1モル%以下、さらに好ましくは0.5モル%以下である。
 上記他のポリイソシアネートとしては、例えば、炭素数4以下の直鎖状の脂肪族ジイソシアネート(1,3-プロパンジイソシアネート、1,4-ブタンジイソシアネート等)、分岐鎖状脂肪族ジイソシアネート(1,3-ブタンジイソシアネート、2,4,4-トリメチルヘキサン-1,6-ジイルジイソシアネート等)、側鎖を有する脂環式ジイソシアネート(エチルエステルL-リジンジイソシアネート、イソホロンジイソシアネート等)、ダイマー酸ジイソシアネート、芳香族ジイソシアネート(ジフェニルメタンジイソシアネート、トリレンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、テトラメチルキシレンジイソシアネート等)などが挙げられる。これらは1種のみであってよいし2種以上であってもよい。
 上記側鎖を持たない炭素数7以上の脂肪族ジイソシアネート及び上記他のポリイソシアネートに由来する構成単位の合計中の、上記他のポリイソシアネートに由来する構成単位の含有割合は、3モル%以下が好ましく、より好ましくは1モル%以下、さらに好ましくは0.5モル%以下である。
 上記他の鎖延長剤として、例えば、側鎖を有する脂肪族ジオール(1,2-プロパンジオール、1,3-ブタンジオール、3-メチル-1,5-ペンタンジオール等)、脂環式ジオール(1,6-シクロヘキサンジメタノール等)、脂肪族ジアミン(1,2-プロパンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、イソホロンジアミン等)などが挙げられる。これらは1種のみであってよいし2種以上であってもよい。
 上記脂肪族ジオール及び上記他の鎖延長剤に由来する構成単位の合計中の、上記他の鎖延長剤に由来する構成単位の含有割合は、3モル%以下が好ましく、より好ましくは1モル%以下、さらに好ましくは0.5モル%以下である。
 本開示の生分解性ポリウレタン樹脂は、添加剤(離型剤、可塑剤、着色剤、酸化防止剤、UV安定剤、熱安定剤、架橋剤、発泡剤、整泡剤、ウレタン化触媒、フィラー等)を配合して、生分解性ポリウレタン樹脂組成物としてもよい。上記添加剤は、反応前に原料成分とともに配合してよいし、反応して得られた生分解性ポリウレタン樹脂について溶融混練によって配合してもよい。
<生分解性ポリウレタン樹脂を製造する方法>
 本開示の生分解性ポリウレタン樹脂は、少なくともポリラクトンポリオール、及び、側鎖を持たない炭素数7以上の脂肪族ジイソシアネートを含む成分(上記ポリラクトンポリオール、上記ジイソシアネート、及び必要に応じて脂肪族ジオール)を反応させる工程を経て得ることができる。上記ポリラクトンポリオール、上記ジイソシアネート、及び上記脂肪族ジオールは、上記生分解性ポリウレタン樹脂において説明したものと同じである。
 上記ポリラクトンポリオール及びジイソシアネートを含む成分を反応させる方法としては、例えば、これらを一括して反応させるワンショット法や、上記ポリラクトンポリオール及び上記ジイソシアネートを予め反応させて得られた反応生成物(プレポリマー)と脂肪族ジオールとを反応させるプレポリマー法が挙げられる。中でも、分解性ポリウレタン樹脂の分子構造が均質となりやすく、上記生分解性ポリウレタン樹脂の機械的特性が優れたものとなりやすい点から、プレポリマー法が好ましい。
 上記反応において、上記ポリラクトンポリオール及び上記脂肪族ジオールの有する合計のOH基に対する、上記ジイソシアネートの有するNCO基の当量比(NCO/OH)は、0.90~1.10であることが好ましく、より好ましくは0.95~1.05、さらに好ましくは0.97~1.03である。
 また、上記反応において、上記ポリラクトンポリオールに対する上記脂肪族ジオールのモル比(脂肪族ジオール/ポリラクトンポリオール)は、0であってよく、0.10~5.00(好ましくは0.50~4.00、より好ましくは0.90~3.00)であってもよい。
 プレポリマー法における上記プレポリマーの粘度は、75℃において、1500mPa・s以下であることが好ましく、より好ましくは1000mPa・s以下、さらに好ましくは750mPa・s以下である。上記粘度が1500mPa・s以下であると、反応前の成形用材料について成形性に優れるので、成形体の生産性に優れる。上記粘度は、例えば、粘度計(製品名「VISCOMETER TV-622」、東機産業(株)製)を用いて測定することができる。
 ワンショット法により上記生分解性ポリウレタン樹脂を得る場合、反応温度は、例えば、20~220℃が好ましく、より好ましくは45~180℃、さらに好ましくは70~140℃である。反応時間は、例えば、50~900分が好ましく、より好ましくは100~600分、さらに好ましくは150~300分である。
 プレポリマー法により上記生分解性ポリウレタン樹脂を得る場合、プレポリマーを得る際の反応温度は、例えば、20~200℃が好ましく、より好ましくは45~150℃、さらに好ましくは70~100℃である。プレポリマーを得る反応の反応時間は、反応液中のイソシアネート基濃度について所望の値となるまで続ければよく、特に限定されないが、例えば、10~400分、20~200分、又は30~100分である。上記プレポリマーと脂肪族ジオールとを反応させる際の反応温度は、例えば、20~220℃が好ましく、より好ましくは45~180℃、さらに好ましくは70~140℃である。反応時間は、例えば、420分以下が好ましく、より好ましくは360分、さらに好ましくは300分以下である。反応時間が240分以下であると、反応時間が短いことから生産性に優れる。
 得られた上記生分解性ポリウレタン樹脂は、必要に応じて、例えば、100℃以下にて、1~100時間、熱処理されてもよい。
 上記生分解性ポリウレタン樹脂の製造では、ウレタン化触媒(三級アミン系化合物、有機金属系化合物等)を用いてもよい。
<成形体>
 本開示の生分解性ポリウレタン樹脂は、例えば、反応前の液状成形用材料を賦形してから反応固化させて成形する方法、反応後に加熱により軟化、溶融させて成形する方法、あるいは、反応後に溶解させた溶液を用いて成形する方法によって、実際に使用可能である優れた機械的特性(強度、靭性)を示しつつ生分解可能な成形体とすることができる。
 成形方法の具体例としては、特に限定されないが、例えば、塗布、注型成形、真空成形、押出成形、カレンダー成形、ブロー成形、インフレーション成形、回転成形、スラッシュ成形、発泡成形、圧縮成形、スタンピング成形、キャスティング、ディッピング等の公知慣用の成形方法が挙げられる。
 上記成形体の具体例としては、特に限定されないが、例えば、フィルム、シート、ホース、チューブ、パッキング材、防振材、接合材、塗膜、コーティング材、繊維、発泡体、合成皮革、弾性体等が挙げられる。上記成形体は、例えば、衣料・非衣料用品、包装材料、家庭・雑貨用品、家具部品、機械部品、電気・電子部品、自動車その他乗り物の部品、工業製品の部材、土木・建築材料、農業用品、漁業用品、園芸用品、衛生用品、医療・介護用品、スポーツ・レジャー用品等の広範な用途において好適に用いることができる。
 本開示の生分解性ポリウレタン樹脂の、実施例に記載の評価方法によるショアA硬度は、80以上であることが好ましく、85以上であることがより好ましい。
 本開示の生分解性ポリウレタン樹脂の、実施例に記載の強度の評価方法による引張強度は、5MPa以上であることが好ましく、7MPa以上であることがより好ましい。
 本開示の生分解性ポリウレタン樹脂の、実施例に記載の靭性の評価方法による引張強度は、500%以上であることが好ましく、550%以上であることがより好ましい。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の趣旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。また、本開示に係る各発明は、実施形態や以下の実施例によって限定されることはなく、特許請求の範囲によってのみ限定される。
 以下に、実施例に基づいて本開示の一実施形態をより詳細に説明する。
 本開示の実施例、比較例に用いた原料成分は、以下の通りである。
・ポリカプロラクトンポリオールA1:2官能のポリカプロラクトンジオール、商品名「PLACCEL 210N」、数平均分子量1000、(株)ダイセル製
・ポリカプロラクトンポリオールA2:2官能のポリカプロラクトンジオール、商品名「PLACCEL 220N」、数平均分子量2000、(株)ダイセル製
・ジイソシアネートB1:1,5-ペンタンジイソシアネート、商品名「スタビオPDI」、三井化学(株)製
・ジイソシアネートB2:ジフェニルメタンジイソシアネート、商品名「ミリオネートMT」、東ソー(株)製
・ジイソシアネートB3:エチルエステルL-リジンジイソシアネート、商品名「LDI」、Alfa Aesar社製
・脂肪族ジオールC:1,4-ブタンジオール、商品名「14BG」、分子量90.12、三菱ケミカル(株)製
<実施例1>
 ガラス容器内に、ポリラクトンポリオールA1(1.00モル部)、及びジイソシアネートB1(2.00モル部)を仕込み、80℃で、反応液中のイソシアネート基濃度(JIS K1603-1:2007のB法に従って測定)が変化しなくなるまで反応させてプレポリマーを得た。
 ガラス容器内に、さらに、上記ポリラクトンポリオールA1及び脂肪族ジオールCの有する合計のOH基に対する、上記ジイソシアネートB1の有するNCO基の当量比(NCO/OH)が0.99となるように、上記脂肪族ジオールC(1.00モル部)を加えて、自公転式撹拌装置(製品名「あわとり練太郎 AR-250」、(株)シンキー製)を用いて均一に混合し脱泡して、成形用液状材料を得た。
 得られた成形用液状材料を金型に注型し、金型ごとオーブンにて120℃で960分間加熱して、反応固化させ、さらに23℃、50%RHで48時間養生することによって、硬度測定用サンプル(矩形状、タテ13mm、ヨコ20mm、厚さ2mm)、及び引張試験用サンプル(ダンベル状(JIS K 6251、3号)、タテ100mm、ヨコ25mm、厚さ2mm)を得た。
 上記プレポリマーについてプレポリマー粘度を、上記成形用液状材料についてウレタン硬化時間を、上記サンプルについて、色調、触感、硬度、融点・融解エンタルピー、強度、靭性、及び生分解性を測定・評価した。
(プレポリマー粘度)
 粘度計(製品名「VISCOMETER TV-22」、東機産業(株)製)を用いて、上記プレポリマーの75℃における粘度を測定した。プレポリマーの粘度が低いほど注型しやすいことから、成形体の生産性に優れることを示す。
(ウレタン硬化時間)
 回転式レオメーター(製品名「MCR302」、Anton Paar社製)を用いて、ひずみ5%、周波数10Hz、温度120℃にて貯蔵弾性率を測定した。貯蔵弾性率が変化せず一定の値に達した時間をウレタン硬化時間と評価した。ウレタン硬化時間が短いほど、成形体の生産性に優れることを示す。
(色調)
 上記硬度測定用サンプルについて、23℃、50%RHにおいて、外観を目視にて観察し、透明であるかどうかを評価した。
(触感)
 上記硬度測定用サンプルについて、23℃、50%RHにおいて、手指による触感にて、弾性であるかどうかを評価した。
(硬度)
 上記硬度測定用サンプルについて、JIS K 6253に従って、ショアA型硬度計((株)島津製作所製)を用いて測定した。
(強度、靭性)
 上記引張試験用サンプルについて、23℃、50%RHにおいて、テンシロン万能試験機(製品名「RTC-1350A」、(株)エー・アンド・デイ製)を用いて、標線間距離20mm、引張速度500mm/minの条件にて引張試験を行い、伸度300%における応力(引張強度)、及び、サンプルが破断した際の伸度(破断伸度)を測定した。引張強度が大きいほど強度に優れ、破断伸度が大きいほど靭性に優れることを示す。
(生分解性)
 ISO 14855-1に従って、58℃(±2℃)、好気性堆肥化条件下、180日後における生分解度を評価した。値が大きいほど生分解性に優れることを示す。
<実施例2~5、比較例1~3>
 原料成分及び/又はモル部について、下表1に記載の内容となるように変更する以外は、実施例1と同様にした。なお、比較例3では、測定・評価が可能である成形体が得られなかった。
 測定・評価の結果を下記表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000004
 表中、「-」は、測定、評価を実施しなかったことを表す。
 実施例1~5の生分解性ポリウレタン樹脂では、機械的特性に優れ実際に使用可能であることと、生分解性に優れることが示された(引張強度7~12MPa、破断強度505~674%、生分解度90日)。また、実施例1では、プレポリマー粘度が低く(694mPa・s)、ウレタン硬化時間が短いことから(225分)、生産性に優れることが示された。
 一方、毒性の強い芳香族アミンを発生する比較例1、2の生分解性ポリウレタン樹脂のうち、さらに比較例1の生分解性ポリウレタン樹脂は、生分解性が劣り(生分解度30%)、また、生産性も劣るものであった(プレポリマー粘度2666mPa・s)。比較例3の生分解性ポリウレタン樹脂は、金型から試験用サンプルを取り出すこともできず、機械的特性(強度、靭性)に劣るものであった。
 以下、本開示に係る発明のバリエーションを記載する。
[付記1]ポリラクトンポリオールに由来する構成単位、及び側鎖を持たない炭素数7以上の脂肪族ジイソシアネートに由来する構成単位を有する生分解性ポリウレタン樹脂。
[付記2]前記ポリラクトンポリオールが、下式(1)で表される化合物である、付記1に記載の生分解性ポリウレタン樹脂。
Figure JPOXMLDOC01-appb-C000005
[式(1)中、R1はm価の炭化水素基を表し、R2は2価の炭化水素基を表し、mは2~10の整数を示し、nは1~35の整数を示す]
[付記3]前記mが2~6(好ましくは2~4)である、付記2に記載の生分解性ポリウレタン樹脂。
[付記4]前記R1が炭素数2~20(好ましくは炭素数2~10、より好ましくは炭素数2~5)の、m価の多価アルコールの構造式からm個の水酸基を除いた炭化水素基であって、m価が2~6価(好ましくは2~4価、より好ましくは2価)である、付記2又は3に記載の生分解性ポリウレタン樹脂。
[付記5]前記R1がエチレングリコールから水酸基を除いた2価の炭化水素基である、付記2又は3に記載の生分解性ポリウレタン樹脂。
[付記6]前記nが1~20(好ましくは3~10)である、付記2~5の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記7]前記R2が炭素数2~20(好ましくは炭素数3~15、より好ましくは炭素数4~10)の、直鎖状又は分岐鎖状(好ましくは直鎖状)のアルキレン基である、付記2~6の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記8]前記R2がペンタメチレン基である、付記2~6の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記9]前記ポリラクトンポリオールが、多価アルコールとラクトンとの反応生成物である、付記1に記載の生分解性ポリウレタン樹脂。
[付記10]前記多価アルコールが、2~6価(好ましくは2~4価、より好ましくは2価)のアルコールである、付記9に記載の生分解性ポリウレタン樹脂。
[付記11]前記多価アルコールがエチレングリコールである、付記9に記載の生分解性ポリウレタン樹脂。
[付記12]前記ラクトンが、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、γ-ノナラクトン、δ-バレロラクトン、ε-カプロラクトン、シクロペンタデカノリド、及びシクロヘキサデカノリドから選択される少なくとも1種である、付記9~11の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記13]前記ラクトンが、ε-カプロラクトンである、付記9~11の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記14]前記ポリラクトンポリオールの数平均分子量が、300~80000(好ましくは500~4000、より好ましくは1000~3000)である、付記9~13の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記15]前記脂肪族ジイソシアネートの炭素数が、7以上(好ましくは7~22、より好ましくは7~10)である、付記1~14の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記16]前記脂肪族ジイソシアネートが、直鎖状の脂肪族ジイソシアネート、側鎖を持たない脂環式ジイソシアネート、又はこれらの多量体である、付記1~15の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記17]前記脂肪族ジイソシアネートがペンタメチレンジイソシアネートである、付記1~15の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記18]前記脂肪族ジイソシアネートに由来する構成単位の含有割合が、前記ポリラクトンポリオールに由来する構成単位1モル部に対して、1.00~7.00モル部(好ましくは1.00~5.00モル部、より好ましくは1.00~3.00モル部)である、付記1~17の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記19]前記ポリラクトンポリオールと前記ジイソシアネートとの反応生成物の粘度が、75℃において、1500mPa・s以下(好ましくは1000mPa・s以下、より好ましくは750mPa・s以下)である、付記1~18の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記20]さらに、脂肪族ジオールに由来する構成単位を有する、付記1~19の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記21]前記脂肪族ジオールが、炭素数2以上(好ましくは炭素数2~10、より好ましくは炭素数3~6)の直鎖アルキレン基を有するジオールである、付記20に記載の生分解性ポリウレタン樹脂。
[付記22]前記脂肪族ジオールが、1,4-ブタンジオールである、付記20に記載の生分解性ポリウレタン樹脂。
[付記23]前記脂肪族ジオールの分子量が、350以下(好ましくは300以下、より好ましくは200以下)である、付記20~22の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記24]前記ポリラクトンポリオールと前記脂肪族ジイソシアネートとの反応生成物に由来する構成単位と、前記脂肪族ジオールに由来する構成単位とを有する、付記20~23の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記25]前記ポリラクトンポリオールに由来する構成単位に対する、前記脂肪族ジオールに由来する構成単位のモル比(脂肪族ジオール/ポリラクトンポリオール)が0.10~5.00(好ましくは0.50~4.00、より好ましくは0.90~3.00)である、付記20~24の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記26]前記ポリラクトンポリオール以外の他の生分解性ポリオールに由来する構成単位を含み、前記ポリラクトンポリオール及び前記他の生分解性ポリオールに由来する構成単位の合計中の、前記他の生分解性ポリオールに由来する構成単位の含有割合が、3モル%以下(好ましくは1モル%以下、より好ましくは0.5モル%以下)である、付記1~25の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記27]前記側鎖を持たない炭素数7以上の脂肪族ジイソシアネート以外の他のポリイソシアネートに由来する構成単位を含み、前記側鎖を持たない炭素数7以上の脂肪族ジイソシアネート及び前記他のポリイソシアネートに由来する構成単位の合計中の、前記他のポリイソシアネートに由来する構成単位の含有割合が、3モル%以下(好ましくは1モル%以下、より好ましくは0.5モル%以下)である、付記1~26の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記28]前記脂肪族ジオール以外の他の鎖延長剤に由来する構成単位を含み、前記脂肪族ジオール及び前記他の鎖延長剤に由来する構成単位の合計中の、前記他の鎖延長剤に由来する構成単位の含有割合が、3モル%以下(好ましくは1モル%以下、より好ましくは0.5モル%以下)である、付記20~27の何れか1つに記載の生分解性ポリウレタン樹脂。
[付記29]少なくともポリラクトンポリオール、及び、側鎖を持たない炭素数7以上の脂肪族ジイソシアネートを含む成分を反応させる工程を有する、生分解性ポリウレタン樹脂の製造方法。
[付記30]前記ポリラクトンポリオール及び前記脂肪族ジイソシアネートを予め反応させて得られた反応生成物と、脂肪族ジオールと反応させる工程を有する、付記29に記載の生分解性ポリウレタン樹脂の製造方法。
[付記31]前記ポリラクトンポリオール及び前記脂肪族ジオールの有する合計のOH基に対する、前記ジイソシアネートの有するNCO基の当量比(NCO/OH)が0.90~1.10(好ましくは0.95~1.05、より好ましくは0.97~1.03)である、付記29又は30に記載の生分解性ポリウレタン樹脂の製造方法。
[付記32]前記ポリラクトンポリオールに対する前記脂肪族ジオールのモル比(脂肪族ジオール/ポリラクトンポリオール)が0である、付記30又は31に記載の生分解性ポリウレタン樹脂の製造方法。
[付記33]前記ポリラクトンポリオールに対する前記脂肪族ジオールのモル比(脂肪族ジオール/ポリラクトンポリオール)が、0.10~5.00(好ましくは0.50~4.00、より好ましくは0.90~3.00)である、付記30又は31に記載の生分解性ポリウレタン樹脂の製造方法。
[付記34]前記ポリラクトンポリオール及び前記脂肪族ジイソシアネートを予め反応させて得られた反応生成物の粘度が、75℃において、1500mPa・s以下(好ましくは1000mPa・s以下、より好ましくは750mPa・s以下)である、付記30、31又は33に記載の生分解性ポリウレタン樹脂の製造方法。
[付記35]付記1~28の何れか1項に記載の生分解性ポリウレタン樹脂からなる成形体。
 本開示の生分解性ポリウレタン樹脂を用いると、分解する際に毒性の強い芳香族アミンを発生せず、かつ、実際に使用可能である優れた機械的特性を有する成形体を得ることができる。また、本開示の生分解性ポリウレタン樹脂を用いると、分解する際に毒性の強い芳香族アミンを発生せず、かつ、実際に使用可能である優れた機械的特性を有する成形体を、優れた生産性で得ることができる。

Claims (10)

  1.  ポリラクトンポリオールに由来する構成単位、及び側鎖を持たない炭素数7以上の脂肪族ジイソシアネートに由来する構成単位を有する生分解性ポリウレタン樹脂。
  2.  前記ポリラクトンポリオールが、下式(1)で表される化合物である、請求項1に記載の生分解性ポリウレタン樹脂。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R1はm価の炭化水素基を表し、R2は2価の炭化水素基を表し、mは2~10の整数を示し、nは1~35の整数を示す]
  3.  さらに、脂肪族ジオールに由来する構成単位を有する、請求項2に記載の生分解性ポリウレタン樹脂。
  4.  前記脂肪族ジオールが、直鎖アルキレン基を有するジオールである、請求項3に記載の生分解性ポリウレタン樹脂。
  5.  前記ポリラクトンポリオールと前記脂肪族ジイソシアネートとの反応生成物に由来する構成単位と、前記脂肪族ジオールに由来する構成単位とを有する、請求項3に記載の生分解性ポリウレタン樹脂。
  6.  前記ポリラクトンポリオールに由来する構成単位に対する、前記脂肪族ジオールに由来する構成単位のモル比(脂肪族ジオール/ポリラクトンポリオール)が0.10~3.00である、請求項3~5の何れか1項に記載の生分解性ポリウレタン樹脂。
  7.  少なくともポリラクトンポリオール、及び、側鎖を持たない炭素数7以上の脂肪族ジイソシアネートを含む成分を反応させる工程を有する、生分解性ポリウレタン樹脂の製造方法。
  8.  前記ポリラクトンポリオール及び前記脂肪族ジイソシアネートを予め反応させて得られた反応生成物と、脂肪族ジオールと反応させる工程を有する、請求項7に記載の生分解性ポリウレタン樹脂の製造方法。
  9.  前記ポリラクトンポリオール及び前記脂肪族ジオールの有する合計のOH基に対する、前記脂肪族ジイソシアネートの有するNCO基の当量比(NCO/OH)が0.90~1.10である、請求項7又は8に記載の生分解性ポリウレタン樹脂の製造方法。
  10.  請求項1~5の何れか1項に記載の生分解性ポリウレタン樹脂からなる成形体。
PCT/JP2023/033745 2022-09-20 2023-09-15 生分解性ポリウレタン樹脂 WO2024063024A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022149032A JP2024043831A (ja) 2022-09-20 2022-09-20 生分解性ポリウレタン樹脂
JP2022-149032 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024063024A1 true WO2024063024A1 (ja) 2024-03-28

Family

ID=90454492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033745 WO2024063024A1 (ja) 2022-09-20 2023-09-15 生分解性ポリウレタン樹脂

Country Status (3)

Country Link
JP (1) JP2024043831A (ja)
TW (1) TW202421779A (ja)
WO (1) WO2024063024A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164616A (ja) * 1982-03-25 1983-09-29 Sanyo Chem Ind Ltd ポリウレタン樹脂溶液の製造法
JPH0543826A (ja) * 1991-08-19 1993-02-23 Sanyo Chem Ind Ltd ウレタン樹脂粉末組成物の製法
JPH10237384A (ja) * 1997-02-27 1998-09-08 Sanyo Chem Ind Ltd 金属蒸着用下塗り剤組成物
JP2006265408A (ja) * 2005-03-24 2006-10-05 Mitsubishi Gas Chem Co Inc 重合性組成物
JP2012062370A (ja) * 2010-09-14 2012-03-29 Bridgestone Corp 生分解性ポリウレタン
JP2013194081A (ja) * 2012-03-16 2013-09-30 Dic Corp ポリウレタンポリウレア樹脂及び印刷インキ
CN107488255A (zh) * 2017-09-07 2017-12-19 绵阳凤面科技有限公司 一种无毒工艺制备水性聚氨酯的方法
CN107522833A (zh) * 2017-08-02 2017-12-29 合肥思敬齐化工材料有限责任公司 一种自清洁型水性聚氨酯的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164616A (ja) * 1982-03-25 1983-09-29 Sanyo Chem Ind Ltd ポリウレタン樹脂溶液の製造法
JPH0543826A (ja) * 1991-08-19 1993-02-23 Sanyo Chem Ind Ltd ウレタン樹脂粉末組成物の製法
JPH10237384A (ja) * 1997-02-27 1998-09-08 Sanyo Chem Ind Ltd 金属蒸着用下塗り剤組成物
JP2006265408A (ja) * 2005-03-24 2006-10-05 Mitsubishi Gas Chem Co Inc 重合性組成物
JP2012062370A (ja) * 2010-09-14 2012-03-29 Bridgestone Corp 生分解性ポリウレタン
JP2013194081A (ja) * 2012-03-16 2013-09-30 Dic Corp ポリウレタンポリウレア樹脂及び印刷インキ
CN107522833A (zh) * 2017-08-02 2017-12-29 合肥思敬齐化工材料有限责任公司 一种自清洁型水性聚氨酯的制备方法
CN107488255A (zh) * 2017-09-07 2017-12-19 绵阳凤面科技有限公司 一种无毒工艺制备水性聚氨酯的方法

Also Published As

Publication number Publication date
JP2024043831A (ja) 2024-04-02
TW202421779A (zh) 2024-06-01

Similar Documents

Publication Publication Date Title
KR101453333B1 (ko) 2액 경화형 발포 폴리우레탄 수지 조성물, 그것을 사용하여 이루어지는 성형체, 및 신발창
TWI454527B (zh) 聚胺基甲酸酯樹脂組成物及其成形物
KR101912193B1 (ko) 내구성이 향상된 열가소성 폴리에테르 에스테르 엘라스토머 수지 조성물 및 이를 포함하는 성형품
WO2016098073A2 (en) Polyurethanes
JP2009537668A (ja) 強化された耐加水分解性を備えるポリウレタンエラストマー
KR20150049446A (ko) 친환경 폴리우레탄 수지 조성물 및 이를 이용한 폴리우레탄 성형체
EP4321550A2 (en) Composition for forming environmentally friendly polyurethane foam and method for manufacturing polyurethane foam
JPWO2018207807A1 (ja) ポリウレタン樹脂、ポリウレタン樹脂の製造方法、および、成形品
WO2006075710A1 (ja) コーティング剤組成物およびその用途
KR20200128396A (ko) 열가소성 폴리우레탄 조성물
US6420446B1 (en) Polyurethane prepared from sorbitol-branched polyesters
JP2022143014A (ja) 反応硬化性ポリウレタン樹脂形成性組成物、該樹脂形成性組成物を用いた成形体、及びコーティング剤
JP2013237714A (ja) ポリウレタン弾性体の製造方法、ポリウレタン弾性体、弾性繊維、人造皮革および不織布
JP2013163778A (ja) 2液熱硬化型ポリウレタンエラストマー組成物、弾性成形体、及びロール
WO2009098966A1 (ja) 低反発軟質ポリウレタンフォーム
WO2024063024A1 (ja) 生分解性ポリウレタン樹脂
AU2015370122A1 (en) Thermoplastic polyurethane composition
KR101027663B1 (ko) 내구성이 우수한 폴리우레탄 코팅 수지 조성물
KR101737764B1 (ko) 바이오 폴리올을 사용한 미세기공형 폼시트용 폴리우레탄 수지조성물
US20200190246A1 (en) Impact-resistant thermoplastic polyurethanes, production and use thereof
WO2007080929A1 (ja) ポリオキサレートウレタン
KR101288295B1 (ko) 피로저항성이 우수한 폴리우레탄의 제조방법 및 그에 의해 제조된 폴리우레탄
TW202206496A (zh) 無溶劑聚氨酯材料及其製備之鞋中底
JP2012201800A (ja) ポリオール組成物及びポリウレタン樹脂
JP4962085B2 (ja) ポリオキサレートポリオールおよびそれから誘導されるポリオキサレートウレタン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868145

Country of ref document: EP

Kind code of ref document: A1