WO2024060603A1 - 减水剂及其制备方法 - Google Patents

减水剂及其制备方法 Download PDF

Info

Publication number
WO2024060603A1
WO2024060603A1 PCT/CN2023/089218 CN2023089218W WO2024060603A1 WO 2024060603 A1 WO2024060603 A1 WO 2024060603A1 CN 2023089218 W CN2023089218 W CN 2023089218W WO 2024060603 A1 WO2024060603 A1 WO 2024060603A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
reducing agent
water
parts
acid
Prior art date
Application number
PCT/CN2023/089218
Other languages
English (en)
French (fr)
Inventor
封柯
黄玉美
倪涛
宋欣
汪咏梅
王玉乾
刘旭飞
田宇
王进春
Original Assignee
石家庄市长安育才建材有限公司
四川砼道科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄市长安育才建材有限公司, 四川砼道科技有限公司 filed Critical 石家庄市长安育才建材有限公司
Publication of WO2024060603A1 publication Critical patent/WO2024060603A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/10Polymers provided for in subclass C08B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2605Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present disclosure relates to the field of concrete building materials, and in particular to a water-reducing agent.
  • the present disclosure also relates to a preparation method of the above-mentioned water-reducing agent.
  • the present disclosure proposes a water-reducing agent, which is prepared from environmentally friendly starch-based materials and has the advantages of being green, low-carbon, and cost-effective.
  • a water-reducing agent the raw materials for preparing the water-reducing agent include the following components by weight: 500-600 parts of esterified modified starch solution, 100-200 parts of polyether monomer, and 30-60 parts of unsaturated acid , 2-4 parts of initiator, 0.2-0.8 parts of reducing agent, 2-4 parts of chain transfer agent, 200-300 parts of deionized water;
  • the raw materials for preparing the esterification modified starch solution include the following components by weight : 100-200 parts of degraded starch, 100-200 parts of dispersant, 5-40 parts of unsaturated acid, 1.8-20 parts of esterification catalyst, 0.04-0.4 parts of polymerization inhibitor; the molecular weight of the degraded starch is 2500-20000.
  • the water reducer disclosed herein uses unsaturated acid to esterify degraded starch to obtain esterified modified starch with unsaturated bonds, and the esterified modified starch is polymerized with a polyether monomer and an unsaturated acid to produce a polymer with the function of dispersing cement particles, which can improve the working performance of concrete.
  • the raw materials for preparing the above-mentioned water reducer use environmentally friendly starch materials, which have the advantages of being green, low-carbon and cost-effective.
  • the unsaturated acid includes at least one of acrylic acid, maleic acid, and maleic anhydride.
  • the initiator includes at least one of hydrogen peroxide, ceric ammonium nitrate and ammonium persulfate, and/or the reducing agent includes ascorbic acid.
  • the chain transfer agent includes at least one of thioglycolic acid and mercaptopropionic acid.
  • the dispersant includes at least one of dimethyl sulfoxide and formamide compounds
  • the esterification catalyst includes at least one of concentrated sulfuric acid and p-toluenesulfonic acid.
  • the reducing agent includes ascorbic acid.
  • esterification catalyst includes at least one of concentrated sulfuric acid and p-toluenesulfonic acid.
  • the molecular weight of the degraded starch is 2500-20000.
  • polyether monomer is isopentenyl alcohol polyoxyethylene ether with a molecular weight of 2000-3000.
  • This disclosure also proposes a preparation method of water reducing agent, which is characterized by:
  • Preparing the esterified modified starch solution weigh an appropriate amount of raw materials, mix degraded starch, dispersant, unsaturated acid, esterification catalyst, and polymerization inhibitor, stir evenly, and obtain the esterified modified starch solution;
  • Preparation of water reducing agent Add the esterified modified starch solution and polyether monomer into the reaction kettle, raise the temperature to 55-65°C, add the initiator under stirring; add a mixture of reducing agent and chain transfer agent dropwise to the reaction kettle Aqueous solution and unsaturated acid aqueous solution, after the dropwise addition is completed, the mixture is kept warm and the reaction is continued with stirring. After the reaction is completed, the pH is adjusted to 6-7 to obtain the water-reducing agent.
  • preparation method of degraded starch includes the following steps:
  • amylase includes at least one of ⁇ -amylase, ⁇ -amylase, ⁇ -amylase, glucoamylase, pullulan-amylase, and isoamylase.
  • the starch used to prepare the starch milk includes at least one of ordinary corn starch, waxy corn starch, wheat starch, potato starch, maltodextrin, and cyclodextrin.
  • test materials used in the following examples were all purchased from conventional biochemical reagent stores unless otherwise specified.
  • test materials used in the following examples were all purchased from conventional biochemical reagent stores unless otherwise specified.
  • the terms and processes involved in this embodiment can be understood in accordance with the general understanding and conventional methods in the prior art.
  • the raw materials for preparing the water-reducing agent include the following components by weight: 500-600 parts of esterified modified starch solution, 100-200 parts of polyether monomer, 30-60 parts of unsaturated acid, initiator 2-4 parts of agent, 0.2-0.8 parts of reducing agent, 2-4 parts of chain transfer agent, 200-300 parts of deionized water;
  • the raw materials for preparing the esterified modified starch solution include the following components by weight: 100 parts of degraded starch -200 parts, dispersant 100-200 parts, unsaturated acid 5-40 parts, esterification catalyst 1.8-20 parts, polymerization inhibitor 0.04-0.4 parts.
  • the present disclosure uses unsaturated acid to esterify the degraded starch to prepare an esterified modified starch solution.
  • the esterified starch has unsaturated bonds and can be polymerized with polyether monomers and unsaturated acids to form a comb-shaped solution.
  • the main chain of the polymer is composed of the above-mentioned esterified modified starch and unsaturated acid, and the side chain is composed of polyether monomer.
  • the polymer has the function of dispersing cement particles.
  • the carboxylic acid groups on the main chain of the polymer molecules of the water-reducing agent can adsorb to the metal ions on the surface of the cement particles, anchoring the polymer molecules to the surface of the cement particles, making the cement
  • the particle surface is negatively charged, forming an electrostatic repulsion effect, which causes the cement particles to disperse with each other, the flocculation structure disintegrates, and releases part of the wrapped water to participate in the flow, thereby effectively increasing the fluidity of the concrete mixture.
  • the long side chains composed of polyether monomers expand, and the long side chains produce steric hindrance between cement particles, hindering the agglomeration of cement particles, causing cement particles to disperse between particles, and improving the mixing performance of concrete.
  • the raw materials for preparing the water reducing agent of the present disclosure include starch as a component of the main adsorption chain.
  • the starch material is easy to obtain, biodegradable, environmentally friendly and low in cost.
  • Using the disclosed water-reducing agent raw materials to prepare the water-reducing agent can greatly reduce the amount of unsaturated acid, effectively reduce environmental pollution, and save costs.
  • the inventors have found that since the molecular weight of common starch is relatively large, even reaching hundreds of thousands or millions, and the degree of polymerization is relatively high, the grafted unsaturated acid cannot be effectively adsorbed, so the starch disclosed herein uses starch that has been degraded to a certain extent, and the molecular weight of the degraded starch is 2500-20000, which has a better adsorption effect.
  • the unsaturated acid can be a carboxylic acid with a relatively strong acidity, preferably including at least one of acrylic acid, maleic acid, and maleic anhydride.
  • the carboxyl group of the unsaturated acid can esterify and dehydrate with the hydroxyl group of the degraded starch, so that the unsaturated acid can be grafted onto the degraded starch. Since the degraded starch has multiple hydroxyl groups, multiple hydroxyl groups can be grafted.
  • the unsaturated acid has multiple unsaturated bonds and can be polymerized with multiple unsaturated acids and polyether monomers in subsequent polymerization to make the polymer more adsorbent.
  • the dispersant of the present disclosure can disperse the degraded starch, so that the degraded starch can be uniformly suspended in the solution, and the esterification can be more complete. It is preferable to use a dissolving dispersant that can dissolve starch to have a more stable state.
  • the present disclosure preferably uses at least one of dimethyl sulfoxide and formamide compounds. This type of dispersant is chemically and thermally stable. A good and excellent organic solvent, it has good dispersion of starch polysaccharide compounds and increases the speed of chemical reactions. Moreover, the soluble dispersant can penetrate into the starch granules to make the reaction more complete.
  • the esterification catalyst has the function of catalyzing the esterification reaction to make the esterification reaction more efficient, and may preferably include at least one of concentrated sulfuric acid and p-toluenesulfonic acid.
  • the polymerization inhibitor can effectively prevent the polymerization addition between unsaturated acids, so that the unsaturated acid can fully esterify with the degraded starch.
  • the polymerization inhibitor can preferably be a polyphenol polymerization inhibitor, such as diphenol.
  • the degraded starch After the degraded starch is modified by unsaturated acid esterification, it has unsaturated bonds and can be polymerized and added with unsaturated acids and polyether monomers in a redox system.
  • the molecular weight of the degraded starch is preferably 2500-20000.
  • Polymerization The initiator preferably includes at least one of hydrogen peroxide, ceric ammonium nitrate and ammonium persulfate, and the reducing agent may preferably be ascorbic acid.
  • the chain transfer agent is used to control the molecular weight of the polymer, and preferably at least one of thioglycolic acid and mercaptopropionic acid can be used.
  • the polyether monomer is preferably isopentenol polyoxyethylene ether with a molecular weight of 2000-3000, which has a longer molecular structure, making the side chain after polymerization longer and providing stronger steric hindrance.
  • This disclosure also proposes a preparation method of water reducing agent, which specifically includes the following steps:
  • esterified modified starch solution mix 100-200 parts of degraded starch and 100-200 parts of dispersant, add 5-40 parts of unsaturated acid, 1.8-20 parts of esterification catalyst, 0.04-0.4 parts of polymerization inhibitor, and heat up 80°C-120°C, stir evenly, reaction time is 60-180 minutes, and the esterified starch liquid can be obtained.
  • This step introduces reactive double bond groups on the degraded starch molecules, so that polyether monomers and unsaturated acids can be effectively grafted to the starch backbone during the next step of free radical polymerization.
  • the inventor obtained products with different degrees of esterification substitution by adjusting the amount of unsaturated acid. The degree of esterification substitution determines the carboxyl content in the esterified starch. When this amount is used for proportioning, the dispersion performance in cement is better.
  • Preparation of water-reducing agent Add 500-600 parts of esterified modified starch liquid and 100-200 parts of polyether monomer into the reaction kettle, raise the temperature to 60°C, add 2-4 parts of initiator under stirring, and start dripping reduction A mixed aqueous solution of agent and chain transfer agent and an aqueous unsaturated acid solution.
  • the aqueous unsaturated acid solution is a solution of 30-60 parts of acrylic acid dissolved in 85-110 parts of deionized water.
  • the dropping time is 120-180 minutes; reducing agent and chain transfer agent
  • the mixed aqueous solution is 0.2-0.8 parts of reducing agent, 2-4 parts of chain transfer agent and 115-190 parts of deionized water.
  • the dripping time is 150-210 minutes. After the dripping is completed, keep it warm and continue to stir for 90-120 minutes.
  • the reaction After adjusting the pH to 6-7, the water-reducing agent of the present disclosure is obtained.
  • the preparation method of degraded starch may preferably include the following steps:
  • a starch milk with a solid content of 20%-40%.
  • it includes at least one of deionized water, tap water, and groundwater. It is recommended to use tap water as the water used.
  • the calcium ions in tap water can activate the amylase's own activity.
  • the biocatalyst degrades starch in a shorter time to reach the target molecular weight and is more efficient than acidolyzed starch. high.
  • the starch used to prepare the starch milk includes at least one of ordinary corn starch, waxy corn starch, wheat starch, potato starch, maltodextrin, and cyclodextrin.
  • Specific methods include ⁇ -amylase, ⁇ -amylase, ⁇ -amylase, glucoamylase, and general amylase.
  • This method mainly controls the amylase dosage, catalytic time, gelatinization time, reaction temperature and other factors, which can efficiently degrade starch in a short time and effectively regulate the starch molecular weight to 2500-20000.
  • the pH regulator used to adjust the pH above can use acetic acid. or sodium bicarbonate.
  • This embodiment provides a method for preparing a water-reducing agent. The specific steps are as follows.
  • This embodiment provides a method for preparing a water-reducing agent. The specific steps are as follows.
  • dispersant N,N-dimethylformamide
  • This embodiment provides a method for preparing a water-reducing agent. The specific steps are as follows.
  • dispersant N,N-dimethylformamide
  • This embodiment provides a method for preparing a water-reducing agent. The specific steps are as follows:
  • the anti-mud polycarboxylate water-reducing agent disclosed in application number 201910928663.2 is used.
  • the specific process is:
  • modified polyether monomer Place 300g isopentenyl alcohol polyoxyethylene ether and 10g maleic anhydride in a dry three-neck flask, add 0.25g azobisisobutyrimidazoline hydrochloride, and pass in Nitrogen and constant stirring, raise the temperature to 50°C, and react continuously for 3 hours. After the reaction is completed, add water to dilute to 60% solid content to obtain modified polyether monomer;
  • Preparation of end-group modified polycarboxylate water-reducing agent Add 320g of 4-hydroxybutyl vinyl polyoxyethylene ether (VPEG), 10g of the above-mentioned modified polyether monomer, and 4g of acrylamide into a three-neck flask in sequence.
  • VPEG 4-hydroxybutyl vinyl polyoxyethylene ether
  • Preparation of polyamine polyether modified water-reducing agent Place 220g of polyethylene glycol monomethyl ether (MPEG) in a dry three-neck flask with constant stirring, slowly heat to 70°C, and slowly add 12g of sulfoxide dichloride into the three-necked flask. In the three-neck flask, finish the addition within 20 minutes, and continue to blow the air into the alkali solution tank. After 1.5 hours of reaction, cool down and cool down.
  • MPEG polyethylene glycol monomethyl ether
  • Preparation of anti-mud polycarboxylate water reducer The terminal-modified polycarboxylate water reducer and the polyamine-polyether modified water reducer are mixed in a ratio of 1.5:1 to obtain an anti-mud polycarboxylate water reducer.
  • the cement is Esheng P.O.42.5 cement and Southwest P.O.42.5 cement (two cements are used to test the adaptability of the water-reducing agent); the sand is artificial machine-made sand, with a sand fineness modulus of 2.6; the gravel is 5-10 mm and 10-20 mm crushed Stone, concrete performance testing was carried out in accordance with the "Standard for Test Methods of Mechanical Properties of Ordinary Concrete" (GB/T50080-2002). The products of the above four groups of examples and the two sets of comparative examples were used to conduct mix ratio experiments using C30. The mix ratios are as follows:
  • the 4 examples of green raw material environmentally friendly water-reducing agents listed in the table all have water reduction rates that meet the current market polycarboxylic acid water reduction rate standard of ⁇ 25%, the bleeding rate ratio is ⁇ 40%, and the compressive strength ratio (7d) Both are ⁇ 125%, and the compressive strength ratio (28d) is both ⁇ 120%, and can effectively improve the workability of concrete, and the green raw material environmentally friendly water-reducing agent tested by two cements has good performance, indicating that it can be used in different gelling The raw materials have good adaptability.
  • starch that can be controlled by amylase
  • tap water as the preferred solvent
  • calcium ions can activate the activity of amylase itself, and the biocatalyst degradation of starch reaches the target molecular weight in a shorter time and with higher efficiency than acid-hydrolyzed starch.
  • dissolving dispersants such as dimethyl sulfoxide and N, N-dimethylformamide (DMF) are used.
  • Such dispersants can penetrate into the starch granules to make the reaction more complete and improve the esterification efficiency of starch.
  • the above data only selects more typical embodiments, including but not limited to all raw materials and water reducers prepared by the process mentioned in this disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

提供一种减水剂及其制备方法,该减水剂的制备原料按重量份计包括以下组分:酯化改性淀粉溶液500-600份,聚醚单体100-200份,不饱和酸30-60份,引发剂2-4份,还原剂0.2-0.8份,链转移剂2-4份,去离子水200-300份;酯化改性淀粉溶液的制备原料包括以下组分:降解淀粉,分散剂,不饱和酸,酯化催化剂,阻聚剂。降解淀粉酯化改性后,具有不饱和键,酯化改性淀粉与聚醚单体和不饱和酸聚合,能够提高混凝土的工作性能。上述原料采用环保的淀粉类材料,具有绿色低碳优势。

Description

减水剂及其制备方法
本公开要求在2022年9月20日提交中国专利局、申请号为CN202211140189.5、专利申请名称为“减水剂及其制备方法”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及混凝土建筑材料领域,特别涉及一种减水剂,同时本公开还涉及一种上述减水剂的制备方法。
背景技术
我国正处于大规模基建快速发展阶段中,混凝土是城市建设最大宗的建筑材料,混凝土外加剂作为混凝土的核心材料,每年消费量超过1700万吨。目前市场上以聚羧酸系、萘系、脂肪族、氨基磺酸盐等高性能减水剂以及高效减水剂为主,总用量占比在95%以上,其制备原材料料均是通过石油化工和煤化工来源的化工原材料产生,主要有聚醚、丙烯酸、萘、硫酸、甲醛等原材料,传统混凝土减水剂在生产过程中消耗大量的化石原料和化石能源,生产过程中能耗大,碳排放较高。
发明内容
有鉴于此,本公开提出了一种减水剂,该减水剂的制备原料采用环保的淀粉类材料,具有绿色低碳、性价比高的优势。
一种减水剂,所述减水剂的制备原料按重量份计包括以下组分:酯化改性淀粉溶液500-600份,聚醚单体100-200份,不饱和酸30-60份,引发剂2-4份,还原剂0.2-0.8份,链转移剂2-4份,去离子水200-300份;所述酯化改性淀粉溶液的制备原料按重量份计包括以下组分:降解淀粉100-200份,分散剂100-200份,不饱和酸5-40份,酯化催化剂1.8-20份,阻聚剂0.04-0.4份;所述降解淀粉的分子量为2500-20000。
本公开的减水剂采用不饱和酸对降解淀粉进行酯化改性,得到具有不饱和键的酯化改性淀粉,酯化改性淀粉与聚醚单体和不饱和酸聚合,产生具有分散水泥颗粒作用的聚合物,能够提高混凝土的工作性能。上述减水剂的制备原料采用环保的淀粉类材料,具有绿色低碳、性价比高的优势。
进一步的,所述不饱和酸包括丙烯酸、马来酸、马来酸酐中的至少一种。
进一步的,所述引发剂包括双氧水、硝酸铈铵和过硫酸铵中的至少一种,和/或,所述还原剂包括抗坏血酸。
所述链转移剂包括巯基乙酸和巯基丙酸中的至少一种。
进一步的,所述分散剂包括二甲基亚砜和甲酰胺类化合物中的至少一种,和/或,所述酯化催化剂包括浓硫酸、对甲苯磺酸中的至少一种。
进一步的,所述还原剂包括抗坏血酸。
进一步的,所述酯化催化剂包括浓硫酸、对甲苯磺酸中的至少一种。
进一步的,所述降解淀粉的分子量为2500-20000。
进一步的,所述聚醚单体为分子量2000-3000的异戊烯醇聚氧乙烯醚。
本公开还提出来一种减水剂的制备方法,其特征在于:
制备酯化改性淀粉溶液:称取适量原料,将降解淀粉、分散剂,不饱和酸,酯化催化剂,阻聚剂混合,搅拌均匀,得到所述酯化改性淀粉溶液;
制备减水剂:将酯化改性淀粉溶液、聚醚单体加入反应釜中,升温至55-65℃,在搅拌状态下加入引发剂;向反应釜滴加还原剂和链转移剂的混合水溶液以及不饱和酸水溶液,滴加结束后保温继续搅拌反应,反应结束后调节pH=6-7,得到所述减水剂。
进一步的,所述降解淀粉的制备方法包括以下步骤:
配制固含量为20%-40%的淀粉乳,将温度升至40℃-60℃,调整淀粉乳pH=3.5-6,加入淀粉酶,催化降解10-60分钟;
将pH调整至4-7.5,将温度升至60-110℃,控制淀粉糊化时间10-40分钟,加入淀粉酶,催化降解20-60分钟;
降温过滤,将滤液真空干燥研磨,得到所述降解淀粉。
进一步的,所述淀粉酶包括α-淀粉酶、β-淀粉酶、γ-淀粉酶、葡糖淀粉酶、普鲁兰-淀粉酶、异淀粉酶中的至少一种。
进一步的,配制所述淀粉乳所用的淀粉包括普通玉米淀粉、蜡质玉米淀粉、小麦淀粉、土豆淀粉、麦芽糊精、环糊精中的至少一种。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。另外,除本实施例特别说明之外,本实施例中所涉及的各术语及工艺依照现有技术中的一般认知及常规方法进行理解即可。
一种减水剂,减水剂的制备原料按重量份计包括以下组分:酯化改性淀粉溶液500-600份,聚醚单体100-200份,不饱和酸30-60份,引发剂2-4份,还原剂0.2-0.8份,链转移剂2-4份,去离子水200-300份;酯化改性淀粉溶液的制备原料按重量份计包括以下组分:降解淀粉100-200份,分散剂100-200份,不饱和酸5-40份,酯化催化剂1.8-20份,阻聚剂0.04-0.4份。
本公开采用不饱和酸对降解淀粉进行酯化改性,制备酯化改性淀粉溶液,经过酯化改性的淀粉具有不饱和键,与聚醚单体和不饱和酸能够聚合成具有梳状结构的聚合物,该聚合物的主链是由上述酯化改性淀粉和不饱和酸加成而成,侧链则是由聚醚单体构成,该聚合物具有分散水泥颗粒的作用。当混凝土在拌和时加入了本公开的减水剂,减水剂的聚合物分子主链上羧酸基团能与水泥颗粒表面的金属离子吸附,使聚合物分子锚固于水泥颗粒表面,使水泥颗粒表面带有负电荷,形成静电排斥的作用,促使水泥颗粒相互分散,絮凝结构解体,释放出被包裹部分水,参与流动,从而有效地增加混凝土拌合物的流动性。同时聚醚单体构成的长侧链舒展开,长侧链在水泥颗粒间产生空间位阻作用,阻碍水泥颗粒间凝聚,使水泥的颗粒与颗粒之间分散,提高混凝土的拌和性能。
本公开的减水剂中制备原料引入淀粉作吸附主链的成分,淀粉材料易于获得,而且具有生物降解性,环保而且成本低。采用本公开的减水剂原料制备减水剂,可以极大减少不饱和酸的用量,有效减少环境污染,节约成本。
发明人发现,由于普通淀粉的分子量较大,分子量甚至能达到几十万、上百万,聚合度较高,接枝不饱和酸也不能有效吸附,因此本公开的淀粉采用经过一定程度降解的淀粉,降解淀粉的分子量为2500-20000,具有较好的吸附效果。不饱和酸可以采用酸性较强的羧酸,优选包括丙烯酸、马来酸、马来酸酐中的至少一种。
制备酯化改性淀粉溶液时,不饱和酸的羧基能与降解淀粉的羟基进行酯化脱水,使不饱和酸接枝到降解淀粉上,由于降解淀粉有多个羟基,因此可以接枝多个不饱和酸,使其具有多个不饱和键,可以在后续的聚合中与多个不饱和酸以及聚醚单体进行聚合加成,使聚合物的吸附作用更强。
本公开的分散剂能够分散降解淀粉,使降解淀粉能均一的悬浮在溶液中,使酯化更充分。可以优选用能溶解淀粉的溶解型分散剂,以具有更稳定的状态,本公开优选采用包括二甲基亚砜和甲酰胺类化合物中的至少一种,此类分散剂是化学和热稳定性好的优良有机溶剂,对淀粉多糖类化合物具有很好的分散,提高化学反应的速度。而且溶解型分散剂可渗入到淀粉颗粒内部使反应更充分。酯化催化剂具有催化酯化反应进行的作用,使酯化反应的效率更高,可以优选包括浓硫酸、对甲苯磺酸中的至少一种。阻聚剂可以有效防止不饱和酸之间进行聚合加成,而使不饱和酸充分与降解淀粉进行酯化,阻聚剂可以优选采用多元酚类阻聚剂,如苯二酚。
降解淀粉被不饱和酸酯化改性后,就具有了不饱和键,可以与不饱和酸以及聚醚单体在氧化还原体系下进行聚合加成,降解淀粉的分子量优选为2500-20000,聚合的引发剂优选包括双氧水、硝酸铈铵和过硫酸铵中的至少一种,还原剂可以优选为抗坏血酸。链转移剂用于控制聚合物的分子量,优选可以采用包括巯基乙酸和巯基丙酸中的至少一种。
其中聚醚单体优选为分子量2000-3000的异戊烯醇聚氧乙烯醚,具有较长的分子结构,使聚合后的侧链更长,空间位阻作用更强。
本公开还提出来一种减水剂的制备方法,具体包括以下步骤:
制备酯化改性淀粉溶液:取100-200份降解淀粉和100-200份分散剂混合,加入5-40份不饱和酸,1.8-20份酯化催化剂,0.04-0.4份阻聚剂,升温80℃-120℃,搅拌均匀,反应时间60-180分钟,即可得到酯化淀粉液。该步骤在降解淀粉分子上引入具有反应活性的双键基团,从而使得在下一步自由基聚合过程中聚醚单体以及不饱和酸可有效接枝到淀粉主链。发明人通过调整不饱和酸的量,得到不同酯化取代度的产品,酯化取代度决定酯化淀粉中的羧基含量,当采用此用量进行配比时,对水泥的分散性能较优。
制备减水剂:将500-600份酯化改性淀粉液、100-200份聚醚单体加入反应釜中,升温至60℃,在搅拌下加入2-4份引发剂,开始滴加还原剂和链转移剂的混合水溶液以及不饱和酸水溶液,不饱和酸水溶液为30-60份丙烯酸溶于85-110份去离子水的溶液,滴加时间120-180分钟;还原剂和链转移剂的混合水溶液为0.2-0.8份还原剂、2-4份链转移剂和115-190份去离子水,滴加时间150-210分钟,滴加结束后保温,继续搅拌反应90-120分钟,反应结束调节pH=6-7,得到本公开减水剂。
其中降解淀粉的制备方法可以优选包括以下步骤:
将反应釜中注入水250-350份,开启搅拌,取75-200份淀粉缓慢加入至反应釜中,配制得固含量为20%-40%的淀粉乳。具体包括去离子水、自来水、地下水的至少一种,所用的水建议优选使用自来水,自来水的钙离子可以激活淀粉酶自身活性,生物催化剂降解淀粉较酸解淀粉达到目标分子量时间更短,效率更高。配制淀粉乳所用的淀粉包括普通玉米淀粉、蜡质玉米淀粉、小麦淀粉、土豆淀粉、麦芽糊精、环糊精中的至少一种。
将反应釜温度升温至40℃-60℃,调整淀粉乳pH=3.5-6,加入淀粉酶,具体可以采用包括α-淀粉酶、β-淀粉酶、γ-淀粉酶、葡糖淀粉酶、普鲁兰-淀粉酶、异淀粉酶的至少一种。催化降解10-60分钟,此时淀粉的1,4-糖苷键被水解开。
将pH调整至4-7.5,将反应釜温度升至60-110℃,控制淀粉糊化时间10-40分钟,加入淀粉酶,催化降解20-60分钟,此时淀粉的1,6-糖苷键被水解。降温过滤,滤除淀粉中的杂质蛋白质等,将滤液放置真空干燥箱干燥至恒重并研磨,得到降解淀粉。
该方法主要通过控制淀粉酶用量以及催化时间、糊化时间、反应温度等因素,可在短时间内高效降解淀粉且有效调控淀粉分子量为2500-20000,以上调节pH所用的pH调节剂可以使用醋酸或碳酸氢钠。
下面对本公开的具体实现方案做详细的描述。
实施例1
本实施例提供一种减水剂的制备方法,其具体步骤如下。
制备降解淀粉:
称取75g普通玉米淀粉加入至盛有140g自来水的反应釜中,配成35%的淀粉乳,升温至55℃,调pH=4.5±0.2,加入0.15g普鲁兰酶,催化降解30分钟,将pH调整至6±0.2,将反应釜温度升至90℃,控制淀粉糊化时间10分钟,加入0.03gα-淀粉酶,催化降解30分钟,降温过滤,滤液105℃真空干燥后研磨得到降解淀粉。以上用量可以成倍制备多份,以备后续所用。
制备酯化改性淀粉溶液:
取150 g降解淀粉溶于150 g分散剂(N,N-二甲基甲酰胺)中,加入10g马来酸酐,4g硫酸(98%),0.4g对苯二酚,升温至100℃搅拌混合120分钟得到酯化淀粉溶液。
制备减水剂:
将300g酯化改性淀粉液、82gTPEG2400(异戊烯醇聚氧乙烯醚)加入反应釜中,升温至60℃,在搅拌下加入2.08g双氧水,开始同步滴加A、B料,A料为:27g丙烯酸与52g去离子水溶液,滴加时间180 分钟;B料为:抗坏血酸0.33g、巯基丙酸1.34g、去离子水78g,滴加时间210分钟,滴加结束后保温继续搅拌反应90分钟,待反应结束调节pH=6.0,得到减水剂产品。
实施例2
本实施例提供一种减水剂的制备方法,其具体步骤如下。
制备降解淀粉:
称取75g蜡质玉米淀粉加入至盛有70g自来水与70g去离子水的反应釜中,配成35%的淀粉乳,升温至55℃,调pH=4.5±0.2,加入0.18g普鲁兰酶,催化降解60分钟,将pH调整至6±0.2,将反应釜温度升至90℃,控制淀粉糊化时间20分钟,加入0.05gα-淀粉酶,催化降解60分钟,降温过滤,滤液105℃真空干燥后研磨得到降解淀粉。以上用量可以成倍制备多份,以备后续所用。
制备酯化改性淀粉溶液:
取150 g降解淀粉溶于150 g分散剂(N,N-二甲基甲酰胺)中,加入15g丙烯酸,4g硫酸(98%),0.4g对苯二酚,升温至110℃搅拌混合120分钟得到酯化淀粉溶液。
制备减水剂:
将300g酯化改性淀粉液、82gTPEG2400(异戊烯醇聚氧乙烯醚)加入反应釜中,升温至60℃,在搅拌下加入2.3g双氧水,开始同步滴加A、B料,A料为:27g丙烯酸与52g去离子水溶液,滴加时间180 分钟;B料为:抗坏血酸0.41g、巯基丙酸1.34g、去离子水78g,滴加时间210分钟,滴加结束后保温继续搅拌反应90分钟,待反应结束调节pH=6.0,得到减水剂产品。
实施例3
本实施例提供一种减水剂的制备方法,其具体步骤如下。
制备降解淀粉:
称取75g普通玉米淀粉加入至盛有300g自来水的反应釜中,配成20%的淀粉乳,升温至55℃,调pH=4.5±0.2,加入0.15g普鲁兰酶,催化降解20分钟,将pH调整至6±0.2,将反应釜温度升至90℃,控制淀粉糊化时间10分钟,加入0.03gα-淀粉酶,催化降解30分钟,降温过滤,滤液105℃真空干燥后研磨得到降解淀粉。以上用量可以成倍制备多份,以备后续所用。
制备酯化改性淀粉溶液:
取150 g生物降解淀粉溶于150 g分散剂(N,N-二甲基甲酰胺)中,加入30g甲基丙烯酸,5g硫酸(98%),0.4g对苯二酚,升温至120℃搅拌混合180分钟得到酯化淀粉溶液。
制备减水剂:
将150g酯化改性淀粉、82gTPEG2400(异戊烯醇聚氧乙烯醚)加入反应釜中,升温至90℃,在搅拌下加入4g硝酸铈铵,开始同步滴加A、B料,A料为:34g丙烯酸与46g去离子水溶液,滴加时间180 分钟;B料为:巯基丙酸1.34g、去离子水78g,滴加时间210分钟,滴加结束后保温继续搅拌反应90分钟,待反应结束调节pH=6.0,得到减水剂成品。
实施例4
本实施例提供一种减水剂的制备方法,其具体步骤如下:
制备降解淀粉:
称取45g普通玉米淀粉与30g麦芽糊精加入至盛有140g自来水的反应釜中,配成35%的淀粉乳,将pH调整至6±0.2,将反应釜温度升至90℃,控制淀粉糊化时间30分钟,加入0.03gα-淀粉酶,催化降解60分钟,降温过滤,滤液回锅升温至55℃,调pH=4.5±0.2,加入0.1g葡糖-淀粉酶,催化降解30分钟,将溶液105℃真空干燥后研磨得到生物降解淀粉。
制备酯化改性淀粉溶液:
取150 g生物降解淀粉于150 g分散剂(N,N-二甲基甲酰胺)中,加入15g马来酸酐,3.5g硫酸(98%),0.4g对苯二酚,升温至120℃搅拌混合180分钟得到酯化淀粉液。
制备减水剂:
将300g酯化改性淀粉液、82gTPEG2400(异戊烯醇聚氧乙烯醚)加入反应釜中,升温至70℃,在搅拌下加入3.85g引发剂(双氧水:硝酸铈铵=1:1),开始同步滴加A、B料,A料为:27g丙烯酸与52g去离子水溶液,滴加时间180 分钟;B料为:抗坏血酸0.28g、巯基丙酸1.34g、去离子水78g,滴加时间210分钟,滴加结束后保温继续搅拌反应90分钟,待反应结束调节pH=6.0,得到绿色原材料环保减水剂。
对比例1:
采用申请号201910928663.2公开的抗泥型聚羧酸减水剂,具体工艺为:
改性聚醚单体的制备:将300g异戊烯醇聚氧乙烯醚和10g马来酸酐置于干燥的三颈烧瓶中,加入0 .25g偶氮二异丁咪唑啉盐酸盐,通入氮气并不断搅拌,升温至50℃,连续反应3h,待反应完成后,加水稀释至60%固含量,得到改性聚醚单体;
端基改性的聚羧酸减水剂的制备:将320g 4-羟丁基乙烯基聚氧乙烯醚(VPEG)、10g上述改性聚醚单体、4g丙烯酰胺依次加入三颈烧瓶中,加入210g水,不断搅拌至完全溶解后,加入0 .4g双氧水,得到底料;将27g丙烯酸、5g丙烯酸羟乙酯溶于33g水中,记为A液;将0 .3g维生素C和1 .6g巯基丙酸溶于35g水中,记为B液;待烧瓶中底料温度升至25℃时,开始滴加A液和B液,A液3小时滴完,B液3 .5h滴完,滴加完毕后36-38℃保温1h,加入15g 32%的NaOH,调节pH到7,加水稀释产品至40%,得到端基改性的聚羧酸减水剂;
多胺聚醚改性减水剂的制备:将220g聚乙二醇单甲醚(MPEG)置于干燥的三颈烧瓶中不断搅拌,缓慢加热至70℃,将12g二氯亚砜缓慢加入三颈烧瓶中,20min内加完,并持续通入空气将尾气鼓入碱液槽中,反应1.5h后降温冷却,向该三颈烧瓶中一次性加入30g三乙烯四胺,通入空气并缓慢加热至70℃,反应1 .5h后,得到多胺聚醚;继续向三颈烧瓶中加入75g亚磷酸,搅拌均匀并加热至100℃,缓慢加入75g甲醛(ω=37%),进行曼尼希反应,保持反应2-3h后向三颈烧瓶中加入22g NaOH溶液(32%),并补加水至质量浓度为40%,得到含有磷酸结构的多胺聚醚改性减水剂;
抗泥型聚羧酸减水剂的制备:将上述端基改性的聚羧酸减水剂和上述多胺聚醚改性减水剂按1.5:1比例进行混合,得到抗泥型聚羧酸减水剂。
对比例2:
采用公开号CN 107337766 A的一种高适应性聚羧酸减水剂及其制备方法,具体工艺为:
在装有温度计、搅拌器和滴液漏斗的1L玻璃圆底烧瓶中,加入200.0g蒸馏水、275.0g单体B-1和20.1g单体C-1,搅拌升温溶解。升温至85℃,然后将18.0g单体A-1、2.6g单体D-1、1.1g 3-巯基丙酸和100 .0g水混合搅拌制成均匀的单体水溶液,将其匀速滴加至圆 底烧瓶中,滴加时间为3h。同时匀速滴加由110.0g蒸馏水与5.4g过硫酸钾配制的引发剂溶液,滴加时间为3.5h。全部溶液滴加完毕后继续恒温保温3h,然后降温至40℃左右,加入氢氧化钠中和至pH=7.0左右,得到固含量为43.5%的高适应性聚羧酸减水剂。
以下为本公开的性能测试:
水泥为峨胜P.O.42.5水泥以及西南P.O.42.5水泥(用两种水泥以检验减水剂适应性);砂为人工机制砂,砂细度模数2.6;石子为5-10 mm及10-20mm碎石,按照《普通混凝土力学性能试验方法标准》(GB/T50080-2002)进行混凝土性能测试。将上述四组实施例的产品及两组对比例,采用C30进行配合比实验,配合比如下:
表1混凝土配合比
表2减水剂性能测试
结论:由表2的减水剂性能测试结果可知:
表中所列出绿色原材料环保减水剂4项实施例,减水率均达到目前市场聚羧酸减水率标准≥25%,泌水率比均≤40%,抗压强度比(7d)均≥125%,抗压强度比(28d)均≥120%,且可有效改善混凝土和易性,且通过两种水泥检测绿色原材料环保减水剂均具备良好性能,表示其应用于不同胶凝原材料均具备较好的适应性。
此外,对于淀粉酶可控降解淀粉,建议优选溶剂使用自来水,因钙离子可以激活淀粉酶自身活性,生物催化剂降解淀粉较酸解淀粉达到目标分子量时间更短,效率更高,其主要通过调节种种影响催化剂活性的条件(如温度、酸碱度、反应时间、糊化时间等)以调控淀粉催化降解程度从而控制降解淀粉的分子量。在对降解淀粉进行酯化反应改性阶段使用二甲基亚砜和N,N-二甲基甲酰胺(DMF)等溶解型分散剂,该类分散剂可渗入到淀粉颗粒内部使反应更充分,提高淀粉酯化效率。以上数据仅挑选较典型实施例,包括但不限于本公开中所提到的所有原材料以及工艺制备的减水剂。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。

Claims (13)

  1. 一种减水剂,其特征在于:所述减水剂的制备原料按重量份计包括以下组分:酯化改性淀粉溶液500-600份,聚醚单体100-200份,不饱和酸30-60份,引发剂2-4份,还原剂0.2-0.8份,链转移剂2-4份,去离子水200-300份;
    所述酯化改性淀粉溶液的制备原料按重量份计包括以下组分:降解淀粉100-200份,分散剂100-200份,不饱和酸5-40份,酯化催化剂1.8-20份,阻聚剂0.04-0.4份。
  2. 根据权利要求1所述的减水剂,其特征在于:所述不饱和酸包括丙烯酸、马来酸、马来酸酐中的至少一种。
  3. 根据权利要求1所述的减水剂,其特征在于:所述引发剂包括双氧水、硝酸铈铵和过硫酸铵中的至少一种。
  4. 根据权利要求1所述的减水剂,其特征在于:所述链转移剂包括巯基乙酸和巯基丙酸中的至少一种。
  5. 根据权利要求1所述的减水剂,其特征在于:所述分散剂包括二甲基亚砜和甲酰胺类化合物中的至少一种。
  6. 根据权利要求1所述的减水剂,其特征在于:所述还原剂包括抗坏血酸。
  7. 根据权利要求1所述的减水剂,其特征在于:所述酯化催化剂包括浓硫酸、对甲苯磺酸中的至少一种。
  8. 根据权利要求1所述的减水剂,其特征在于:所述降解淀粉的分子量为2500-20000。
  9. 根据权利要求1-8任一项所述的减水剂,其特征在于:所述聚醚单体为分子量2000-3000的异戊烯醇聚氧乙烯醚。
  10. 一种根据权利要求1-9任一项所述的减水剂的制备方法,其特征在于:
    制备酯化改性淀粉溶液:称取适量原料,将降解淀粉、分散剂,不饱和酸,酯化催化剂,阻聚剂混合,搅拌均匀,得到所述酯化改性淀粉溶液;
    制备减水剂:将酯化改性淀粉溶液、聚醚单体加入反应釜中,升温至55-65℃,在搅拌状态下加入引发剂;向反应釜滴加还原剂和链转移剂的混合水溶液以及不饱和酸水溶液,滴加结束后保温继续搅拌反应,反应结束后调节pH=6-7,得到所述减水剂。
  11. 根据权利要求10所述的减水剂的制备方法,其特征在于:所述降解淀粉的制备方法包括以下步骤:
    配制固含量为20%-40%的淀粉乳,将温度升至40℃-60℃,调整淀粉乳pH=3.5-6,加入淀粉酶,催化降解10-60分钟;
    将pH调整至4-7.5,将温度升至60-110℃,控制淀粉糊化时间10-40分钟,加入淀粉酶,催化降解20-60分钟;
    降温过滤,将滤液真空干燥研磨,得到所述降解淀粉。
  12. 根据权利要求11所述的减水剂的制备方法,其特征在于:所述淀粉酶包括α-淀粉酶、β-淀粉酶、γ-淀粉酶、葡糖淀粉酶、普鲁兰-淀粉酶、异淀粉酶中的至少一种。
  13. 根据权利要求11所述的减水剂的制备方法,其特征在于:配制所述淀粉乳所用的淀粉包括普通玉米淀粉、蜡质玉米淀粉、小麦淀粉、土豆淀粉、麦芽糊精、环糊精中的至少一种。
PCT/CN2023/089218 2022-09-20 2023-04-19 减水剂及其制备方法 WO2024060603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211140189.5A CN115215979B (zh) 2022-09-20 2022-09-20 减水剂及其制备方法
CN202211140189.5 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024060603A1 true WO2024060603A1 (zh) 2024-03-28

Family

ID=83617518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089218 WO2024060603A1 (zh) 2022-09-20 2023-04-19 减水剂及其制备方法

Country Status (2)

Country Link
CN (1) CN115215979B (zh)
WO (1) WO2024060603A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115215979B (zh) * 2022-09-20 2023-01-13 石家庄市长安育才建材有限公司 减水剂及其制备方法
CN115745468A (zh) * 2023-01-06 2023-03-07 石家庄市长安育才建材有限公司 淀粉基保坍减水剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225118A (zh) * 2008-01-30 2008-07-23 沈阳化工学院 一种醚酯化淀粉衍生物的橡胶功能性补强剂
CN101863994A (zh) * 2010-06-18 2010-10-20 罗代洪 一种微波制备酯化淀粉的方法
US20130172505A1 (en) * 2010-07-27 2013-07-04 Jian Fang Synthesis method of polycarboxylic acid water-reducing agent
KR101647658B1 (ko) * 2015-05-20 2016-08-12 주식회사 알티켐 콘크리트 혼화제용 폴리카르복실산 중합체 조성물 및 이를 포함하는 콘크리트 조성물
CN111592619A (zh) * 2020-06-18 2020-08-28 北京建研昆仑科技有限公司 一种淀粉基聚羧酸减水剂伴侣、其制备方法及使用方法
CN112608067A (zh) * 2021-03-05 2021-04-06 建研建材有限公司 一种制备淀粉基高性能减水剂的方法及其产品
CN115215979A (zh) * 2022-09-20 2022-10-21 石家庄市长安育才建材有限公司 减水剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645632A (zh) * 2020-12-26 2021-04-13 湖北月竹里建材有限公司 一种混凝土减水剂及其制备方法
CN112920336B (zh) * 2021-01-29 2021-11-23 成都博思聚合科技有限公司 一种淀粉改性聚羧酸减水剂及其制备方法
CN113636774B (zh) * 2021-08-13 2022-08-26 科之杰新材料集团有限公司 一种大体积混凝土用聚羧酸减水剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225118A (zh) * 2008-01-30 2008-07-23 沈阳化工学院 一种醚酯化淀粉衍生物的橡胶功能性补强剂
CN101863994A (zh) * 2010-06-18 2010-10-20 罗代洪 一种微波制备酯化淀粉的方法
US20130172505A1 (en) * 2010-07-27 2013-07-04 Jian Fang Synthesis method of polycarboxylic acid water-reducing agent
KR101647658B1 (ko) * 2015-05-20 2016-08-12 주식회사 알티켐 콘크리트 혼화제용 폴리카르복실산 중합체 조성물 및 이를 포함하는 콘크리트 조성물
CN111592619A (zh) * 2020-06-18 2020-08-28 北京建研昆仑科技有限公司 一种淀粉基聚羧酸减水剂伴侣、其制备方法及使用方法
CN112608067A (zh) * 2021-03-05 2021-04-06 建研建材有限公司 一种制备淀粉基高性能减水剂的方法及其产品
CN115215979A (zh) * 2022-09-20 2022-10-21 石家庄市长安育才建材有限公司 减水剂及其制备方法

Also Published As

Publication number Publication date
CN115215979A (zh) 2022-10-21
CN115215979B (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2024060603A1 (zh) 减水剂及其制备方法
CN107474196B (zh) 小坍落度混凝土用聚羧酸减水剂及其制备方法
CN112920336B (zh) 一种淀粉改性聚羧酸减水剂及其制备方法
CN101851323B (zh) 一种具有优异保坍性能的多支链聚羧酸减水剂及其制备方法
WO2014085996A1 (zh) 一种保坍型聚羧酸超塑化剂
CN104496256A (zh) 一种聚羧酸减水剂及其制备方法
CN102532435B (zh) 一种聚羧酸盐高性能减水剂及其制备方法
CN104987469A (zh) 一种高分散型聚羧酸减水剂的制备方法
CN110218022B (zh) 壳寡糖接枝改性聚羧酸减水剂及其制备方法
WO2023015661A1 (zh) 一种大体积混凝土用聚羧酸减水剂及其制备方法
CN107337769B (zh) 一种保坍型聚羧酸减水剂及其制备方法
CN102010487B (zh) 一种聚羧酸减水剂的制备方法
CN104861125A (zh) 一种保坍型聚醚类聚羧酸减水剂及其制备方法
CN111548459A (zh) 一种高保坍型聚羧酸减水剂的制备方法
CN104371081A (zh) 一种快速分散降粘型聚羧酸水泥分散剂的制备方法
CN115745468A (zh) 淀粉基保坍减水剂及其制备方法
CN101831037A (zh) 一种羧酸类共聚物混凝土保坍剂
CN113698548A (zh) 一种高性能聚羧酸减水剂及其制备方法
CN102206314B (zh) 聚羧酸、该聚羧酸的用途、含有该聚羧酸的水泥减水剂
CN109251269B (zh) 改性天然甲壳素生物基高性能聚羧酸减水剂的制备方法
CN114292367B (zh) 一种机制砂混凝土用抗泥保水型聚羧酸减水剂及其制备方法
CN109232821B (zh) 端基官能化制备pH响应型梳状结构聚羧酸的方法
CN114195953B (zh) 一种低敏感高保水型聚羧酸减水剂及其制备方法
CN114195956A (zh) 一种高强度混凝土降粘型减水剂及其制备方法
CN114163578A (zh) 一种粘度调控聚羧酸减水剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866900

Country of ref document: EP

Kind code of ref document: A1