WO2024047806A1 - 透明積層体の製造方法 - Google Patents

透明積層体の製造方法 Download PDF

Info

Publication number
WO2024047806A1
WO2024047806A1 PCT/JP2022/032802 JP2022032802W WO2024047806A1 WO 2024047806 A1 WO2024047806 A1 WO 2024047806A1 JP 2022032802 W JP2022032802 W JP 2022032802W WO 2024047806 A1 WO2024047806 A1 WO 2024047806A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysilazane
layer
mixed
resin layer
silicone resin
Prior art date
Application number
PCT/JP2022/032802
Other languages
English (en)
French (fr)
Inventor
岩井和史
Original Assignee
株式会社レニアス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レニアス filed Critical 株式会社レニアス
Priority to PCT/JP2022/032802 priority Critical patent/WO2024047806A1/ja
Publication of WO2024047806A1 publication Critical patent/WO2024047806A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin

Definitions

  • the present invention relates to a method for producing a transparent laminate for viewing or daylighting, which is used as a windshield for transportation equipment such as vehicles such as automobiles and trains, airplanes, and ships.
  • Windshield glasses of vehicles such as automobiles and trains, and transportation equipment such as airplanes and ships are exposed to outdoor environments or are used in environments where they are continuously rubbed by wipers.
  • Resin substrates such as polycarbonate are lighter than glass substrates, and are expected to replace glass substrates as window materials for transparent viewing and daylighting.
  • resin substrates have excellent moldability, their surfaces are extremely susceptible to scratches. Therefore, in order to enable resin substrates to be used in harsh environments such as windshields, attempts have been made to form a modified film containing silicon dioxide as a main component on resin substrates to improve scratch resistance.
  • This modified layer is formed by coating an acrylic resin or hard coat on the surface of a resin substrate to form a hard thin film.
  • a modified film containing silicon dioxide as a main component is formed by applying a siloxane resin by a dip coating method and irradiating the surface with vacuum ultraviolet rays.
  • a problem is disclosed in which cracks occur when the thickness of the modified film is increased to 0.6 ⁇ m or more.
  • a hard coat layer (I) containing a siloxane polymer component and an organic polymer component is laminated on a plastic substrate, and a polysilazane layer is formed on the hard coat layer (I).
  • a laminate further comprising a silica film (II) converted from (Polysilazane) is disclosed.
  • Polysilazane is an inorganic polymer having -(SiH 2 NH)- as a basic unit and soluble in organic solvents.
  • the hard coat layer (I) in the hard coat layer (I), a relatively large amount of the siloxane polymer component exists on the side in contact with the silica film (II), and a relatively large amount of the organic polymer component exists on the substrate side. It is formed so that it exists in large numbers. Formation of such a hard coat layer (I) is performed by applying the hard coat layer and then curing it by irradiation with active energy rays. The silica film (II) is formed by applying a polysilazane-containing coating composition. By having a relatively large amount of the siloxane polymer component present on the side in contact with the silica membrane (II), the adhesiveness with the silica membrane (II) is improved.
  • Patent Document 3 is a technology related to a flexible gas barrier film used in electronic devices such as solar cells and liquid crystals.
  • a barrier layer containing an inorganic substance is formed by applying a coating solution containing a polysilazane composition onto an adjacent layer and then performing a modification treatment using vacuum ultraviolet irradiation.
  • silanol groups etc. are not generated in the polysilazane coating film before irradiation with vacuum ultraviolet rays, and the molecular bonds of polysilazane are cut by subsequent irradiation with vacuum ultraviolet rays, and the coating film The surface is made into ceramic (silica modification).
  • a continuous region in which the ratio of Si, N , and O atoms is approximately constant is 2 nm or more in the depth direction in a region of about 5 to 100 nm (SiO 2 thermal oxide film equivalent value). It is said that a film that exists will be created.
  • perhydropolysilazane is particularly preferred as the polysilazane, but also suggests the use of a mixture of perhydropolysilazane and organopolysilazane. However, in the examples only examples of perhydropolysilazane are shown.
  • a method for producing a transparent laminate according to Patent Document 4 is to apply a composition containing polysilazane as a main component to the surface of a silicone resin layer formed on a resin substrate, and to cure the composition to convert it into silica, thereby producing a cured polysilazane layer.
  • a composition containing polysilazane as a main component to the surface of a silicone resin layer formed on a resin substrate, and to cure the composition to convert it into silica, thereby producing a cured polysilazane layer.
  • vacuum ultraviolet rays with a wavelength of 200 nm or less from above the cured polysilazane layer
  • a part of the silicone resin layer is modified into a modified silicon dioxide film through the cured polysilazane layer.
  • the silicone resin layer is irradiated with vacuum ultraviolet rays, the gas that evaporates diffuses into the resin substrate due to the gas barrier properties of the cured polysilazane layer. Improves crack and peeling performance
  • perhydropolysilazane is preferable as the polysilazane, but also suggests the possibility of selecting organopolysilazane. However, in the examples only examples of perhydropolysilazane are shown.
  • perhydropolysilazane is polysilazane (also referred to as PHPS) in which R1, R2, and R3 of the following general formula (Chemical formula 1) are all hydrogen atoms.
  • organopolysilazane refers to the following general formula (Chemical formula 1) in which the hydrogen moiety bonded to Si is partially substituted with an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • Polysilazane also referred to as OPSZ).
  • vacuum ultraviolet rays reach the interface between the cured polysilazane layer and the silicone resin layer to induce an interfacial reaction, thereby converting a part of the silicone resin layer into a modified silicon dioxide film through the cured polysilazane layer.
  • the results showed that weather resistance and heat resistance were improved compared to when vacuum ultraviolet rays were irradiated to a silicone resin layer that was not coated with polysilazane.
  • the applicant has conducted extensive studies to further improve weather resistance and heat resistance.
  • the recommended film thickness of polysilazane is 10 to 100 nm, and within this extremely narrow range, it can be applied to large areas of windshields of transportation equipment such as automobiles, trains, etc., airplanes, ships, etc.
  • this improvement was also considered.
  • An object of the present invention is to provide a method for producing a transparent laminate for viewing or daylighting, which is used as a windshield for transportation equipment such as vehicles such as automobiles and trains, airplanes, and ships.
  • the method for manufacturing a transparent laminate of the present invention includes forming a silicone resin layer on a resin substrate, and forming a solid content ratio (O/P ratio) of organopolysilazane to perhydropolysilazane of 1 wt% on the surface of the silicone resin layer.
  • a mixed polysilazane layer is formed by coating and curing the mixed polysilazane in an amount of 25 wt% or less, and by irradiating vacuum ultraviolet rays with a wavelength of 200 nm or less from above the mixed polysilazane layer, the silicone resin is applied through the mixed polysilazane layer. It is characterized by modifying a part of the layer into a modified silicon dioxide film.
  • the present invention it has been found that by mixing organopolysilazane with perhydropolysilazane, it is easier to coat the silicone resin layer than when organopolysilazane is used alone.
  • FIG. 2 is a diagram showing an example in which organopolysilazane is applied to a silicone resin layer by spin coating.
  • 1 is a diagram schematically showing a cross section of a transparent laminate manufactured by the modification method of the present invention.
  • FIG. 3 is a diagram showing the results of an SUV weather resistance and heat resistance test. It is a figure which shows the test result of abrasion resistance when changing O/P ratio.
  • FIG. 3 is a diagram showing test results regarding SUV weather resistance exerted by a catalyst. It is a figure which shows the test result about the influence of increasing the irradiation amount of vacuum ultraviolet rays. It is a figure showing the results of a heat resistance test, an SUV weather resistance test, and a Taber abrasion test for each film thickness.
  • Perhydropolysilazane forms an inorganic coating
  • organopolysilazane forms an inorganic-organic hybrid coating. Since the organopolysilazane film contains organic matter, it is expected that the toughness will be improved compared to the inorganic perhydropolysilazane film, and the occurrence of cracks will be suppressed even when the film thickness is increased.
  • organopolysilazane to apply a composition containing organopolysilazane as a main component to the surface of a silicone resin layer formed on a resin substrate, as shown in Patent Document 4, This was cured to form a mixed polysilazane layer converted into silica, and an attempt was made to irradiate vacuum ultraviolet rays with a wavelength of 200 nm or less from above the mixed polysilazane layer, and the prepared samples were evaluated.
  • FIG. 1 shows an example in which organopolysilazane is applied to a silicone resin layer by spin coating.
  • the silicone resin layer to be coated is a hard layer formed by applying a siloxane resin obtained by hydrolyzing a siloxane sol obtained through a condensation reaction using an alkoxysilane as a base, and hardening it by a dip coating method. This is a coat layer.
  • DURAZANE 1000 series DURAZANE is a registered trademark of Merck Co., Ltd.
  • organopolysilazane has an alkyl group such as a methyl group, which improves its adhesion to the base material, but in tests conducted by the applicant, DURAZANE1033 was not repelled. It became polka dot-like and could not be formed into a film.
  • the samples tested were prepared by adding a solvent to the stock solution of DURAZANE 1033 (FIG. 1C, 100 wt%) to adjust the ratio of DURAZANE 1033 to 25 wt% (FIG. 1A) and 50 wt% (FIG. 1B). As described above, it is actually difficult to apply organopolysilazane to a silicone resin layer. Note that FIG. 1D is a nominal chemical formula.
  • organopolysilazane by mixing organopolysilazane with perhydropolysilazane, it is easier to apply the mixture to the silicone resin layer than when organopolysilazane is used alone.
  • the organic/inorganic ratio (O/P ratio) for the weight of organopolysilazane solids and perhydropolysilazane solids was adjusted to 3 times (weight of organopolysilazane solids 300 to weight of perhydropolysilazane solids 100). Even in this case, a film with a thickness of 100 nm could be formed on the silicone resin layer by spin coating at 3000 rpm (1 minute).
  • the perhydropolysilazane used here is Tresmile #100-15 manufactured by Sanwa Chemical Co., Ltd. (Tresmile is a registered trademark of Sanwa Chemical Co., Ltd.).
  • mixed polysilazane a sample containing a mixture of organopolysilazane and perhydropolysilazane (hereinafter referred to as mixed polysilazane), the mixed polysilazane was applied to the surface of the silicone resin layer formed on the resin substrate, and then cured. to form a mixed polysilazane layer converted into silica, and irradiate vacuum ultraviolet rays with a wavelength of 200 nm or less from above the mixed polysilazane layer to modify a part of the silicone resin layer into a modified silicon dioxide film through the mixed polysilazane layer. I considered it.
  • Patent Document 4 when a silicone resin layer (hard coat layer) made of a polymer having a siloxane bond is formed and irradiated with vacuum ultraviolet rays, the organic matter of the polymer volatilizes from the surface of the silicone resin layer and mainly forms silicon dioxide. A phenomenon has been observed in which the surface roughness of the modified membrane as a component increases. Although the initial surface roughness (Rmax) was 3 nm or less, when the irradiation energy reached 8400 mJ/cm 2 , the surface roughness (Rmax) exceeded 10 nm.
  • the results of ultra-accelerated weathering tests (SUV) using metal halide lamps show that as the irradiation energy increases and the surface roughness increases, the time until cracking and peeling becomes shorter.
  • SUV weather resistance is to reduce the roughness of this surface.
  • FIG. 2 is a diagram schematically showing a cross section of a transparent laminate 10 manufactured by the modification method of the present invention. It is composed of a resin substrate 1, a primer layer 2 formed thereon, a silicone resin layer 3 formed thereon, and a mixed polysilazane layer 4 formed thereon.
  • the resin substrate 1 is not particularly limited, but suitable materials include resins such as acrylic resin, polycarbonate, polyarylate, polystyrene, polyethylene terephthalate, or styrene polymers, or various olefin resins.
  • the primer layer 2 is provided for the purpose of improving the adhesion between the resin substrate 1 and the silicone resin layer 3 and improving impact resistance. It also has the effect of erasing existing scars.
  • a primer layer 2 can be formed, for example, by applying various resins such as polyester resin, acrylic resin, polyurethane resin, epoxy resin, melamine resin, polyolefin resin, urethane acrylate resin, etc. by a dip coating method and curing the resin. It is possible.
  • the silicone resin layer 3 is formed by applying a siloxane resin obtained by hydrolyzing a siloxane sol obtained through a condensation reaction using an alkoxysilane as a base, by a dip coating method, and curing the resin. It is possible to form.
  • a siloxane resin obtained by hydrolyzing a siloxane sol obtained through a condensation reaction using an alkoxysilane as a base, by a dip coating method, and curing the resin. It is possible to form.
  • other polymers having siloxane bonds may be used as the silicone resin layer 3.
  • Other polymers having siloxane bonds include acrylic polymers having siloxane bonds.
  • the primer layer 2 is not necessary.
  • the mixed polysilazane layer 4 is prepared by mixing organopolysilazane and perhydropolysilazane, diluting the mixed polysilazane with an appropriate solvent to adjust the film thickness, viscosity, etc., and applying the mixed polysilazane to the silicone resin layer 3 by dipping, flow coating, or spraying. It is converted into a silica film by applying it using a spin coating method and curing it.
  • the mixed polysilazane can be cured by leaving it at room temperature for several days (in experiments conducted by the applicant, no significant difference could be detected in the curing time (from 10 minutes to 3 days) and curing temperature (from room temperature to 120° C.).
  • Vacuum ultraviolet rays having a wavelength of 200 nm or less, for example, a xenon excimer lamp (vacuum ultraviolet rays, wavelength 172 nm) are irradiated from above the mixed polysilazane layer 4 .
  • the vacuum ultraviolet rays pass through the mixed polysilazane layer 4 and modify the silicone resin layer 3 from the interface between the mixed polysilazane layer 4 and the silicone resin layer 3 into a film containing silicon dioxide as a main component.
  • the modified film mainly composed of silicon dioxide is composed of the thickness of the silicon dioxide film formed by the mixed polysilazane layer 4 and the thickness of the silicon dioxide film modified from the silicone resin layer 3.
  • Example 1 DURAZANE 1033 was used as the organopolysilazane, and Tresmile #100-15 manufactured by Sanwa Chemical Co., Ltd. was used as the perhydropolysilazane.
  • the silicone resin layer 3 shown in FIG. 2 is created, and the surface of the silicone resin layer 3 is spin-coated at 3000 rpm for 1 minute and cured to form a mixed polysilazane layer 4 with a thickness of 100 nm.
  • the silicone resin layer 3 was directly irradiated with vacuum ultraviolet rays of 2 J/cm 2 to modify the upper part of the silicone resin layer 3 into a film containing silicon dioxide as a main component.
  • Comparative example 2 The silicone resin layer 3 is coated with Tresmile #100-15, which is a perhydropolysilazane, and vacuum ultraviolet rays are irradiated at 2 J/cm 2 to form a film containing silicon dioxide as the main component from the top of the silicone resin layer 3. It was modified to As mentioned above, Tresmile #100-15 is a drug originally diluted to 5 wt% with a solvent. Comparative Example 2 is a sample prepared according to the technique described in Patent Document 4.
  • the above samples were subjected to an ultra-accelerated weathering test (SUV weathering) using a metal halide lamp, and the time until cracks or film peeling occurred was measured.
  • SUV weather resistance test we used a combination of irradiation, darkness, and water spray to check whether cracks or film peeling occurred every 120 hours (data in 120-hour increments in the figure).
  • the SUV weather resistance was targeted at 1200 hours and the heat resistance test was targeted at 1000 hours.
  • the target time could be reached.
  • the O/P ratio exceeded 25 wt%, the effect tended to decrease to the same degree as in Comparative Example 2 (perhydropolysilazane only, 0 wt%).
  • the desirable range of the O/P ratio is 1 wt% or more and 25 wt% or less.
  • FIG. 4 shows the wear resistance test results when the O/P ratio was changed.
  • the "hard coat layer” is an example in which mixed polysilazane was not applied.
  • the second "hard coat layer” and subsequent examples are modified by vacuum ultraviolet irradiation.
  • Comparative Example 2 is the second "hard coat layer”.
  • Example 2 A catalyst may be used to cure the mixed polysilazane applied to the silicone resin layer 3.
  • a mixed polysilazane containing a catalyst was used, the SUV weather resistance exerted by the catalyst was investigated.
  • the results for a representative metal catalyst: palladium acetate and an amine catalyst: 4,4-trimethylenebis-(1-methylpiperidine) are shown in FIG.
  • Amine type Ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, isopropylamine, di-n-propylamine, diisopropylamine, tri-n-propylamine, n-butylamine, isobutylamine, di- n-Butylamine, diisobutylamine, tri-n-butylamine, n-pentylamine, di-n-pentylamine, tri-n-pentylamine, dicyclohexylamine, aniline, 2,4-dimethylpyridine, 4,4-trimethylene Bis-(1-methylpiperidine), 1,4-diazabicyclo[2.2.2]octane, N,N-dimethylpiperazine, cis-2,6-dimethylpiperazine, trans-2,5-dimethylpiperazine, 4, 4-methylenebis(cyclohex
  • Organic acids Acetic acid, propionic acid, butyric acid, valeric acid, caproic acid
  • Example 3 The effect of increasing the irradiation dose of vacuum ultraviolet rays was investigated.
  • the Taber test was conducted based on ASTM D1044. Further, the conditions for the wiper test are as follows. Using a wiper with a length of 400 nm, sand scattering (JIS test powder type 1 (silica sand, particle size 45 to 300 ⁇ m) was dropped at a constant flow rate of 5 mm/min (7.3 g/min) into the middle of the wipe area. 990 reciprocations. (Test time: 30min x 33 round trips/min)
  • Figure 6 shows the results.
  • the irradiation amount of vacuum ultraviolet rays was 10 J/cm 2 or more, cracks or peeling occurred in the SUV weather resistance and heat resistance tests. Therefore, the irradiation amount of vacuum ultraviolet rays is preferably 2 or more and less than 10 J/cm 2 .
  • Patent Document 4 in the case of a film thickness of 88 nm made of perhydropolysilazane alone, there was a tendency for the results of the Taber test to deteriorate when the irradiation amount of vacuum ultraviolet rays was 2.9 J/cm 2 or more, but in this case
  • Experimental Example 2 in the case of the polysilazane layer 4 with a film thickness of 100 nm, the results of the Taber test become better as the amount of vacuum ultraviolet ray irradiation increases.
  • the vacuum ultraviolet ray irradiation amount was 10 J/cm 2 , ⁇ HAZE ⁇ 1% was reached in the Taber test and Wiper test items. This is the opposite result to the case of Patent Document 4. Therefore, in applications specializing in Taber test resistance, it may be possible to use vacuum ultraviolet rays with an irradiation amount of 10 J/cm 2 or more.
  • the film thickness of the mixed polysilazane layer 4 is 565 nm, the target time of 1000 hours was not reached. Furthermore, regarding the SUV weather resistance, when the film thickness of the mixed polysilazane layer 4 was 772 nm, the target of 1200 hours was not reached. Therefore, in order to meet the targets in terms of heat resistance and SUV weather resistance, the film thickness is desirably less than 565 nm. On the other hand, even when the thickness of the mixed polysilazane layer 4 was 11 nm, the SUV weather resistance reached the target of 1200 hours. Therefore, the thickness of the mixed polysilazane layer 4 is preferably 11 nm or more and less than 565 nm.
  • the coating on the silicone resin layer 3 becomes easier than when organopolysilazane is used alone.
  • the film thickness of the mixed polysilazane layer 4 when applied and cured mixed polysilazane layer 4 was irradiated with vacuum ultraviolet rays with a wavelength of 200 nm or less was examined, and if the film thickness was less than 565 nm, it was found that the SUV weather resistance was excellent. It has been found that a transparent laminate can be obtained.
  • Patent Document 4 when using perhydropolysilazane alone, the maximum film thickness can be increased to 100 nm, but by mixing 5 g of organopolysilazane with 100 g of perhydropolysilazane (5 wt%), the film thickness can be dramatically increased. was able to increase. Since the range of film thickness of the mixed polysilazane layer can be widened, productivity can be increased and film thickness quality can be improved for large areas and curved surfaces of windshields of transportation equipment such as automobiles, railways, etc., airplanes, ships, etc. It is possible to manage
  • the O/P ratio of organopolysilazane and perhydropolysilazane was studied, and if the mixed polysilazane layer 4 has an O/P ratio of 1 wt% or more and 25 wt% or less, it has excellent SUV weather resistance. It has been found that it is possible to obtain a transparent laminate.
  • vacuum ultraviolet light having a wavelength of 200 nm or less light obtained by an excimer laser or excimer lamp having a wavelength of 157 nm (F2 laser), 172 nm (Xe2), or 193 nm (ArF) can be used.
  • F2 laser 157 nm
  • Xe2 172 nm
  • ArF 193 nm

Landscapes

  • Laminated Bodies (AREA)

Abstract

自動車や鉄道等の車両、飛行機、船舶等の輸送機器の風防として使用される透視用若しくは採光用の透明積層体の製造方法を提供する。 樹脂基板1上にシリコーン系樹脂層3を形成し、シリコーン系樹脂層3の表面にオルガノポリシラザンのパーヒドロポリシラザンに対する固形分比率(O/P比)が1wt%以上25wt%以下で混合した混合ポリシラザンを塗布して硬化させた混合ポリシラザン層4を形成し、混合ポリシラザン層4の上から波長200nm以下の真空紫外線を照射することにより、混合ポリシラザン層4を通してシリコーン系樹脂層の一部を二酸化ケイ素の改質膜に改質する。

Description

透明積層体の製造方法
本発明は、自動車や鉄道等の車両、飛行機、船舶等の輸送機器の風防として使用される透視用若しくは採光用の透明積層体の製造方法に関する。
自動車や鉄道等の車両、飛行機、船舶等の輸送機器の風防ガラスは、屋外環境下に晒され、或いはワイパーにより継続的に摩擦される環境下において使用される。ポリカーボネート等の樹脂基板は、ガラス製の基板に比べて軽量であり、透視用及び採光用等の窓材料としてガラス製の基板に代わるものと期待されている。樹脂基板は、成形性に優れる一方で、表面は非常に傷がつきやすい。そこで樹脂基板を風防ガラスのような過酷な環境でも使用できるように、樹脂基板上に二酸化ケイ素を主成分とする改質膜を形成し、耐擦傷性の向上を図ることが行われている。この改質層は、樹脂基板の表面にアクリル樹脂あるいはハードコートを塗布形成し硬質薄膜を形成することによって行われる。
例えば、特許文献1によれば、シロキサン樹脂を、ディップコーティング法により塗布し、その表面に真空紫外線を照射することにより、二酸化ケイ素を主成分とする改質膜を形成する。同文献によれば、改質膜の膜厚を0.6μm以上に増すとクラックが生ずるという問題が開示されている。
特許文献2によれば、車両用の窓材として、プラスチック基板上にシロキサン系重合体成分と有機系重合体成分を含むハードコート層(I)が積層され、ハードコート層(I)上にポリシラザン(Polysilazane)から転化したシリカ膜(II)を更に形成した積層体が開示されている。ポリシラザンは、-(SiHNH)-を基本ユニットとする有機溶剤に可溶な無機ポリマーである。
同特許文献による積層体では、ハードコート層(I)内において、シリカ膜(II)と接する側にシロキサン系重合体成分が相対的に多く存在し、基板側に有機系重合体成分が相対的に多く存在するように形成されている。このようなハードコート層(I)の形成は、ハードコート層を塗布した後に、活性エネルギー線照射により硬化させることにより行う。シリカ膜(II)の形成は、ポリシラザン含有被覆組成物を塗布することにより行う。シリカ膜(II)と接する側にシロキサン系重合体成分を相対的に多く存在させることにより、シリカ膜(II)との接着性を向上させている。
特許文献3は太陽電池や液晶等の電子デバイスに用いられるフレキシブルなガスバリア性フィルムに関する技術である。この技術によれば、ポリシラザンを含有する組成物の塗布液を隣接層上に塗布した後、真空紫外線照射による改質処理を施すことで、無機物を含むバリア層を形成することに触れられている。また、同文献によれば、隣接層を設けることにより、真空紫外線照射前のポリシラザン塗布膜中にシラノール基等が生成せず、その後の真空紫外線照射により、ポリシラザンの分子結合を切断し、塗膜表面のセラミックス化(シリカ改質)がなされる。そして、ポリシラザン層の膜厚150nmのとき、5~100nm(SiO熱酸化膜換算値)程度の領域で、Si、N、O原子の比率がほぼ一定となる連続領域が深さ方向に2nm以上存在するフィルムが作成されるとしている。
さらに、同文献では、ポリシラザンとしてパーヒドロポリシラザンが特に好ましいとしながら、パーヒドロポリシラザンとオルガノポリシラザンとを混合して使用することも示唆している。しかし、実施例ではパーヒドロポリシラザンの例のみが示されている。
特許文献4による透明積層体の製造方法は、樹脂基板上に形成されたシリコーン系樹脂層の表面にポリシラザンを主成分とする組成物を塗布し、これを硬化させてシリカに転化した硬化ポリシラザン層とし、硬化ポリシラザン層の上から波長200nm以下の真空紫外線を照射することにより、硬化ポリシラザン層を通してシリコーン系樹脂層の一部を二酸化ケイ素の改質膜に改質する。シリコーン系樹脂層に真空紫外線が照射されることにより揮発したガスが硬化ポリシラザン層のガスバリア性により樹脂基板内に拡散して表面を粗くして傷を付けることなく、超促進耐候試験(SUV)においてクラック、剥がれの性能を向上させている。
同文献でも、ポリシラザンとしては、パーヒドロポリシラザンが望ましいとしているが、オルガノポリシラザンの選択可能性も示唆している。しかし、実施例ではパーヒドロポリシラザンの例のみが示されている。
なお、パーヒドロポリシラザンとは、下記一般式(化1)のR1、R2及びR3 のすべてが水素原子であるポリシラザン(PHPSともいう)である。
また、オルガノポリシラザンとは、下記一般式(化1)のSiと結合する水素部分が一部アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基等で置換されたポリシラザン(OPSZともいう)である。
Figure JPOXMLDOC01-appb-C000001
 
特許第4536824号公報 特許第6256858号公報 特許第5935263号公報 特開2020-104462号公報
特許文献4においては、硬化ポリシラザン層とシリコーン系樹脂層の界面に真空紫外線を到達させ界面反応を誘起させることで、硬化ポリシラザン層を通してシリコーン系樹脂層の一部を二酸化ケイ素の改質膜に改質して密着性を改善させた結果、ポリシラザンを塗布していないシリコーン系樹脂層に真空紫外線を照射する場合に比べて、耐候性、耐熱性が向上することを示した。
本出願人は、耐候性、耐熱性をさらに向上させるべく鋭意検討を進めた。また、同文献において、推奨されるポリシラザンの膜厚は10~100nmとされており、このような極めて狭い範囲内で、自動車や鉄道等の車両、飛行機、船舶等の輸送機器の風防の広い面積かつ曲面に対して膜厚の品質を管理することはコストを要するものであるため、この改善も検討された。
本発明の目的は、自動車や鉄道等の車両、飛行機、船舶等の輸送機器の風防として使用される透視用若しくは採光用の透明積層体の製造方法を提供する。
本発明の透明積層体の製造方法は、樹脂基板上にシリコーン系樹脂層を形成し、前記シリコーン系樹脂層の表面にオルガノポリシラザンのパーヒドロポリシラザンに対する固形分比率(O/P比)が1wt%以上25wt%以下で混合した混合ポリシラザンを塗布して硬化させた混合ポリシラザン層を形成し、前記混合ポリシラザン層の上から波長200nm以下の真空紫外線を照射することにより、前記混合ポリシラザン層を通してシリコーン系樹脂層の一部を二酸化ケイ素の改質膜に改質することを特徴とする。
本発明によれば、オルガノポリシラザンをパーヒドロポリシラザンと混合することで、オルガノポリシラザン単独の場合よりもシリコーン系樹脂層への塗布が容易になることを見いだした。次いで、塗布され硬化した混合ポリシラザン層の上から波長200nm以下の真空紫外線を照射した場合の混合ポリシラザン層膜厚の検討を行い、膜厚565nm未満とすることによりSUV耐候性に優れた透明積層体を得ることができた。混合ポリシラザン層の膜厚の範囲を広くすることができるので、自動車や鉄道等の車両、飛行機、船舶等の輸送機器の風防の広い面積かつ曲面に対して、生産性を上げて膜厚の品質を管理することが可能である。
また、紫外線照射後のポリシラザン層の膜厚を100~300nmとすることにより、SUV耐候性に優れた透明積層体を得ることができる。
オルガノポリシラザンをシリコーン系樹脂層にスピンコートで塗布した例を示した図である。 本発明の改質方法によって製造された透明積層体の断面を模式的に示した図である。 SUV耐候性、耐熱試験の結果を示す図である。 O/P比を変化させたときの耐摩耗性の試験結果を示す図である。 触媒が及ぼすSUV耐候性についての試験結果を示す図である。 真空紫外線の照射量を増やすことの影響についての試験結果を示す図である。 各膜厚について耐熱性試験、SUV耐候性試験、テーバー摩耗試験の結果を示す図である。
パーヒドロポリシラザンは無機被膜を形成するのに対して、オルガノポリシラザンは無機有機ハイブリッド被膜を形成する。オルガノポリシラザンの被膜には有機が含まれる分、パーヒドロポリシラザンの無機被膜より靱性が向上して、膜厚を厚くした場合にもクラックの発生が抑えられることが期待されている。
そこで、発明者らは、オルガノポリシラザンを使用して、特許文献4に示されるように、樹脂基板上に形成されたシリコーン系樹脂層の表面にオルガノポリシラザンを主成分とする組成物を塗布し、これを硬化させてシリカに転化した混合ポリシラザン層とし、混合ポリシラザン層の上から波長200nm以下の真空紫外線を照射することを試み、作成した試料を評価した。
図1は、オルガノポリシラザンをシリコーン系樹脂層にスピンコートで塗布した例を示している。塗布対象のシリコーン系樹脂層は、アルコキシシランをベースとして、縮合反応を経由して得られたシロキサンゾルを加水分解して得られるシロキサン樹脂を、ディップコーティング法により塗布し、硬化して形成したハードコート層である。利用したオルガノポリシラザンは、メルク コマンデイトゲゼルシャフト アウフ アクチェン社によるDURAZANE1000シリーズ(DURAZANEは同社の登録商標)から1033を選択した。DURAZANE1033は、液状低粘性、溶剤不要の樹脂である。
特許文献3によると、オルガノポリシラザンは、メチル基等のアルキル基を有することにより下地基材との接着性が改善されるとのことであったが、出願人による試験では、DURAZANE1033は弾かれて水玉状になり成膜させることができなかった。試験したのは、原液のDURAZANE1033(図1C、100wt%)に溶剤を加え、DURAZANE1033の比を25wt%(図1A)、50wt%(図1B)に調製した試料である。このように、オルガノポリシラザンは、シリコーン系樹脂層への塗布が実際には困難である。尚、図1Dは公称された化学式である。
次に、発明者らは、オルガノポリシラザンをパーヒドロポリシラザンと混合することで、オルガノポリシラザン単独の場合よりもシリコーン系樹脂層への塗布が容易になることを見いだした。オルガノポリシラザン固形分とパーヒドロポリシラザン固形分の重量についての有機/無機比(O/P比)を3倍(オルガノポリシラザン固形分の重量300に対してパーヒドロポリシラザン固形分の重量100)に調製した場合でも、上記シリコーン系樹脂層上にスピンコートにより3000rpm(1分間)で膜厚100nmの膜を成膜することができた。ここで使用したパーヒドロポリシラザンは、サンワ化学株式会社のトレスマイル#100-15(トレスマイルはサンワ化学株式会社の登録商標)である。
そして、オルガノポリシラザンとパーヒドロポリシラザンとを混合した試料(以下、混合ポリシラザンと称する)を使用することで、樹脂基板上に形成されたシリコーン系樹脂層の表面に混合ポリシラザンを塗布し、これを硬化させてシリカに転化した混合ポリシラザン層とし、混合ポリシラザン層の上から波長200nm以下の真空紫外線を照射して、混合ポリシラザン層を通してシリコーン系樹脂層の一部を二酸化ケイ素の改質膜に改質することを検討した。
特許文献4においては、シロキサン結合を有するポリマーによるシリコーン系樹脂層(ハードコート層)を形成して真空紫外線を照射すると、ポリマーの有機物がシリコーン系樹脂層の表面から揮発して、二酸化ケイ素を主成分とする改質膜の表面の粗さが大きくなると言う現象が観察されている。3nm以下の当初表面粗さ(Rmax)であったものが、照射エネルギーが8400mJ/cmに達すると、表面粗さ(Rmax)10nmを超える。メタルハライドランプによる超促進耐候試験(SUV)の結果は、照射エネルギーが増加して表面の粗さが大きくなるに従って、クラック・剥離までの時間が短くなったことを示している。SUV耐候性におけるさらなる性能の向上には、この表面の粗さを少なくすることが1つの対策になる。
真空紫外線の照射前の比較例の表面にさらに混合ポリシラザンを塗布すると、表面の粗さは平滑化される。そして、真空紫外線を照射しても、その表面粗さ(Rmax)は、3nm以下であり殆ど変化しなかった。よって、発明者らは、混合ポリシラザンを使用することで、パーヒドロポリシラザン単独で使用した場合(特許文献4)よりも、耐候性、耐熱性が向上するかどうか、若しくは、耐候性、耐熱性が同程度でも、特許文献4において推奨されるポリシラザンの膜厚(10~100nm)よりも、大きな膜厚値にできることで、膜厚の品質管理のコストを低減させることができるかどうかの検討を行った。
図2は、本発明の改質方法によって製造された透明積層体10の断面を模式的に示した図である。樹脂基板1と、その上に形成されたプライマー層2と、その上に形成されたシリコーン系樹脂層3と、その上に形成された混合ポリシラザン層4とから構成される。
樹脂基板1としては、特に制限はないが、素材としては、アクリル樹脂、ポリカーボネート、ポリアリレート、ポリスチレン、ポリエチレンテレフタレート又はスチレン系重合体等の樹脂、あるいは各種オレフィン系樹脂が好適に挙げられる。
プライマー層2としては、樹脂基板1とシリコーン系樹脂層3との密着性の向上、耐衝撃性の向上等の目的で設けられるが、本発明に於いては、樹脂基板1の表面に生じている傷を消失する効果も有する。このようなプライマー層2は、例えば、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、ポリオレフィン樹脂、ウレタンアクリレート樹脂等の各樹脂をディップコーティング法により塗布し、硬化して形成することが可能である。
シリコーン系樹脂層3は、具体的には、アルコキシシランをベースとして、縮合反応を経由して得られたシロキサンゾルを加水分解して得られるシロキサン樹脂を、ディップコーティング法により塗布し、硬化して形成することが可能である。尚、シリコーン系樹脂層3として、シロキサン結合を有する他のポリマーを用いても良い。他のシロキサン結合を有するポリマーには、シロキサン結合を有するアクリルポリマーなどがある。但し、シロキサン結合を有するアクリルポリマーを用いる場合、プライマー層2は不要である。
混合ポリシラザン層4は、オルガノポリシラザンとパーヒドロポリシラザンを混合し、膜厚調整、粘度調整などのため、適宜溶剤で希釈した混合ポリシラザンを、シリコーン系樹脂層3にディップ法、フローコート法、スプレー法、スピンコート法などで塗布して、硬化させることによりシリカ膜に転化したものである。混合ポリシラザンの硬化は数日の室温放置で良い(出願人による実験では、硬化時間(10分間から3日間)、硬化温度(常温から120℃)で有意な差は検出できなかった。
波長200nm以下の真空紫外線、例えばキセノンエキシマランプ(真空紫外線、波長172nm)を混合ポリシラザン層4の上から照射する。真空紫外線は混合ポリシラザン層4を透過して、混合ポリシラザン層4とシリコーン系樹脂層3の界面から二酸化ケイ素を主成分とする膜にシリコーン系樹脂層3を改質する。二酸化ケイ素を主成分とする改質膜は、混合ポリシラザン層4による二酸化ケイ素膜の膜厚とシリコーン系樹脂層3から改質した二酸化ケイ素膜の膜厚とから構成される。
(実験例1)
オルガノポリシラザンとしてDURAZANE1033、パーヒドロポリシラザンとしてサンワ化学株式会社のトレスマイル#100-15を利用した。
オルガノポリシラザンとパーヒドロポリシラザンを混合し、有機/無機の固形分比(O/Pの重量比:O/P比)の異なる試料をO/P比1wt%(有機g/無機g=1g/100g)、5wt%(有機g/無機g=5g/100g)、10wt%(有機g/無機g=10g/100g)、25wt%(有機g/無機g=25g/100g)、50wt%(有機g/無機g=50g/100g)、75wt%(有機g/無機g=75g/100g)、90wt%(有機g/無機g=90g/100g)の7種類作成した。なお、トレスマイル#100-15は、溶剤により5wt%に希釈されて販売されているため、O/P比は溶剤を含んだ比ではなく、溶剤を除いた固形分の比である。
さらに、これらをジブチルエーテルにて5%になるように希釈する。
図2で示したシリコーン系樹脂層3を作成し、シリコーン系樹脂層3の表面に3000rpmのスピンコートを1分間行い、硬化させて膜厚100nmの混合ポリシラザン層4を形成する。
(比較例1)
シリコーン系樹脂層3に対して、そのまま真空紫外線を2J/cm照射してシリコーン系樹脂層3の上部から二酸化ケイ素を主成分とする膜に改質させた。
(比較例2)
シリコーン系樹脂層3に対して、パーヒドロポリシラザンであるトレスマイル#100-15を塗布し、真空紫外線を2J/cm照射してシリコーン系樹脂層3の上部から二酸化ケイ素を主成分とする膜に改質させた。尚、トレスマイル#100-15は、先に述べたように、もともと溶剤により5wt%に希釈されている薬剤である。この比較例2が、特許文献4に記載されている技術に従って作成される試料である。
以上の試料に対し、メタルハライドランプによる超促進耐候試験(SUV耐候性)を行い、クラックや膜の剥離が生ずるまでの時間を測定した。SUV耐候性試験においては、照射、暗黒、水スプレーを組み合せて120時間毎にクラックや膜の剥離が生じたかどうかをチェックした(図中、120時間刻みのデータになっている)。SUV耐候性は1200時間及び耐熱試験は1000時間を目標とした。
SUV耐候性、耐熱試験の結果を図3に示した。
図3AにおいてSUV耐候性の目標時間1200時間について、比較例1は目標とする時間には到達しなかったが、比較例2は到達した。
O/P比が1wt%以上25wt%以下である場合には、目標とする時間に達することができた。一方、O/P比が25wt%を超えると、O/P比が比較例2(パーヒドロポリシラザンのみ、0wt%)の場合と効果が同じ程度に下がる傾向が見られた。この結果、SUV耐候性に関して、O/P比の望ましい範囲は、1wt%以上25wt%以下である。
図4は、O/P比を変化させたときの耐摩耗性の試験結果である。図中、「ハードコート層」は、混合ポリシラザンの塗布を実施しなかった例である。そのうち、2番目の「ハードコート層」以降の例については、真空紫外線照射による改質処理がされている。比較例2は、2番目の「ハードコート層」である。
真空紫外線照射によりΔHAZE≦2%が得られており、テーバー摩耗試験の結果にO/P比は依拠しないことが分かった。
(実験例2)
シリコーン系樹脂層3に塗布する混合ポリシラザンを硬化させるために触媒が使用される場合がある。触媒を含有する混合ポリシラザンを用いた場合に、触媒が及ぼすSUV耐候性について検討した。代表的な金属系の触媒:酢酸パラジウムと、アミン系の触媒:4,4-トリメチレンビス-(1-メチルピペリジン)との結果を図5に示す。使用した混合ポリシラザンは、O/P比が5wt%(有機g/無機g=5g/100g)であり、膜厚100nmの混合ポリシラザン層4を形成して実験を行った。
酢酸パラジウムの結果(図5A)と、4,4-トリメチレンビス-(1-メチルピペリジン)の結果(図5B)を見ると、触媒の種類による違いがみられず、また、触媒量は0.5%以下であればSUV耐候性には影響を与えないことを確認した。なお、ポリシラザンの硬化のために使用されると想定される触媒は、以下の通りである。
アミン系:
アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、n-プロピルアミン、イソプロピルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、トリ-n-プロピルアミン、n-ブチルアミン、イソブチルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、トリ-n-ブチルアミン、n-ペンチルアミン、ジ-n-ペンチルアミン、トリ-n-ペンチルアミン、ジシクロヘキシルアミン、アニリン、2,4-ジメチルピリジン、4,4-トリメチレンビス-(1-メチルピペリジン)、1,4-ジアザビシクロ[2.2.2]オクタン、N,N-ジメチルピペラジン、シス-2,6-ジメチルピペラジン、トランス-2,5-ジメチルピペラジン、4,4-メチレンビス(シクロヘキシルアミン)、ステアリリルアミン、1,3-ジ-(4-ピペリジル)プロパン、N,N-ジメチルプロパノールアミン、N,N-ジメチルヘキサノールアミン、N,N-ジメチルオクタノールアミン、N,N-ジエチルエタノールアミン、1-ピペリジンエタノール、4-ピペリジノール
有機酸系:
酢酸、プロピオン酸、酪酸、バレリアン酸、カプロン酸
金属系:
パラジウム、酢酸パラジウム、パラジウム-アセチルアセトナート、プロピオン酸パラジウム、ニッケル、ニッケル-アセチルアセトナート、銀、酢酸銀、銀アセチルアセトナート、白金、白金アセチルアセトナート、ルテニウム、ルテニウム-アセチルアセトナート、ルテニウム-カルボニル、金、銅、銅アセチルアセトナート、アルミニウム-アセチルアセトナート、アルミニウム-トリス(エチルアセトアセテート)
(実験例3)
真空紫外線の照射量を増やすことの影響について検討した。使用した混合ポリシラザンは、O/P比が5wt%(有機g/無機g=5g/100g)であり、膜厚100nmの混合ポリシラザン層4を形成して実験を行った。
テーバー試験は、ASTMD1044に基づいて行った。
また、ワイパー試験での条件は、以下の通りである。
400nm長のワイパーで、砂散布(JIS試験用粉体 1種(けい砂、粒径45~300μm)を5mm/min(7.3g/min)一定流量でワイプ範囲の真ん中に落下した。990往復(試験時間:30min×33往復/min)
図6に、結果を示す。真空紫外線の照射量が10J/cm以上になると、SUV耐候性及び耐熱試験においてクラック又は剥離が生じた。よって、真空紫外線の照射量は、2以上10J/cm未満が望ましい。
尚、特許文献4においては、パーヒドロポリシラザン単独による膜厚88nmの場合、真空紫外線の照射量が2.9J/cm以上になるとテーバー試験の結果が悪くなる傾向が見られたが、今回の実験例2においては、膜厚100nmのポリシラザン層4の場合、真空紫外線の照射量が増えることにより、テーバー試験の結果が良好となる。真空紫外線の照射量が10J/cmのとき、テーバー試験、ワイパー試験の項目についてはΔHAZE≦1%に達した。これは、特許文献4の場合とは、逆の結果である。よって、テーバー試験の耐性に特化する用途では、真空紫外線の照射量が10J/cm以上でも利用可能性がある。
(実験例4)
以上の実験では、混合ポリシラザン層4の膜厚は100nmとしたが、それ以外の膜厚についても耐熱性試験、SUV耐候性試験、テーバー摩耗試験を行った。結果を図7に示す。5wt%(有機g/無機g=5g/100g)であり、真空紫外線の照射量は、2J/cmである。
耐熱性試験については、混合ポリシラザン層4の膜厚が565nmになると、目標とする1000時間に達しなかった。また、SUV耐候性については、混合ポリシラザン層4の膜厚が772nmになると、目標とする1200時間に達しなかった。よって、耐熱性、SUV耐候性において目標を満たすには、膜厚は565nm未満が望ましい。一方、混合ポリシラザン層4の膜厚が11nmでも、SUV耐候性について目標とする1200時間に達した。よって、混合ポリシラザン層4の膜厚は、11nm以上565nm未満がよい。
本実施例によれば、オルガノポリシラザンをパーヒドロポリシラザンと混合することで、オルガノポリシラザン単独の場合よりもシリコーン系樹脂層3への塗布が容易になることを見いだした。次いで、塗布され硬化した混合ポリシラザン層4の上から波長200nm以下の真空紫外線を照射した場合の混合ポリシラザン層4の膜厚を検討し、膜厚が565nm未満であるならばSUV耐候性に優れた透明積層体を得ることができることを見いだした。特許文献4では、パーヒドロポリシラザン単独であると、100nmが膜厚を厚くできる限界としたが、100gのパーヒドロポリシラザンにオルガノポリシラザンを5g混ぜるような割合(5wt%)で、膜厚を飛躍的に増大することができた。混合ポリシラザン層の膜厚の範囲を広くすることができるので、自動車や鉄道等の車両、飛行機、船舶等の輸送機器の風防の広い面積かつ曲面に対して、生産性を上げて膜厚の品質を管理することが可能である。
また、本実施例によれば、オルガノポリシラザンとパーヒドロポリシラザンのO/P比について検討を行い、O/P比が1wt%以上25wt%以下の混合ポリシラザン層4であるならばSUV耐候性に優れた透明積層体を得ることができることを見いだした。
本実施例においては、波長200nm以下の真空紫外線として、波長157nm(F2レーザー)、172nm(Xe2)、193nm(ArF)のエキシマレーザーあるいはエキシマランプにより得られる光を用いることができる。混合ポリシラザン層4の厚みよりも、真空紫外線のシリコーン系樹脂層3への侵入深さを長くすることにより、シリコーン系樹脂層3側に多くの割合を有する二酸化ケイ素膜を形成することができる。
  1     樹脂基板
  2     プライマー層
  3     シリコーン系樹脂層
  4     混合ポリシラザン層
 10     透明積層体

 

Claims (3)

  1. 樹脂基板上にシリコーン系樹脂層を形成し、
    前記シリコーン系樹脂層の表面にオルガノポリシラザンのパーヒドロポリシラザンに対する固形分比率(O/P比)が1wt%以上25wt%以下に混合した混合ポリシラザンを塗布して硬化させた混合ポリシラザン層を形成し、
    前記混合ポリシラザン層の上から波長200nm以下の真空紫外線を照射することにより、前記混合ポリシラザン層を通してシリコーン系樹脂層の一部を二酸化ケイ素の改質膜に改質することを特徴とする透明積層体の製造方法。
     
  2. 請求項1の透明積層体の製造方法において、混合ポリシラザン層の膜厚を11nm以上565nm未満とすることを特徴とした透明積層体の製造方法。
     
  3. 請求項1の透明積層体の製造方法において、前記真空紫外線の照射量は、2J/cm以上8J/cm以下であることを特徴とした透明積層体の製造方法。

     
PCT/JP2022/032802 2022-08-31 2022-08-31 透明積層体の製造方法 WO2024047806A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032802 WO2024047806A1 (ja) 2022-08-31 2022-08-31 透明積層体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032802 WO2024047806A1 (ja) 2022-08-31 2022-08-31 透明積層体の製造方法

Publications (1)

Publication Number Publication Date
WO2024047806A1 true WO2024047806A1 (ja) 2024-03-07

Family

ID=90098941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032802 WO2024047806A1 (ja) 2022-08-31 2022-08-31 透明積層体の製造方法

Country Status (1)

Country Link
WO (1) WO2024047806A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165146A (ja) * 1994-12-12 1996-06-25 Central Glass Co Ltd 紫外線赤外線吸収ガラス
JPH11268198A (ja) * 1998-03-25 1999-10-05 Asahi Glass Co Ltd 透明被覆成形品の製造方法
JP2004325579A (ja) * 2003-04-22 2004-11-18 Asahi Glass Co Ltd 反射防止性有機基材の製造方法
JP2011068042A (ja) * 2009-09-26 2011-04-07 Konica Minolta Holdings Inc バリアフィルム、その製造方法及び有機光電変換素子
JP2012000546A (ja) * 2010-06-15 2012-01-05 Konica Minolta Holdings Inc ガスバリア性フィルムの製造方法、有機電子デバイス
JP2012000828A (ja) * 2010-06-16 2012-01-05 Konica Minolta Holdings Inc ガスバリア性部材、ガスバリア性部材の製造方法及び該ガスバリア性部材を有する有機光電変換素子
JP2012183823A (ja) * 2011-02-18 2012-09-27 Konica Minolta Holdings Inc 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
WO2013122055A1 (ja) * 2012-02-15 2013-08-22 コニカミノルタ株式会社 機能性フィルム、およびその製造方法、並びに前記機能性フィルムを含む電子デバイス
JP2013233716A (ja) * 2012-05-08 2013-11-21 Mitsubishi Plastics Inc ガスバリア性フィルム
WO2016194559A1 (ja) * 2015-06-01 2016-12-08 コニカミノルタ株式会社 ガスバリア性フィルム
WO2019230617A1 (ja) * 2018-05-31 2019-12-05 コニカミノルタ株式会社 面発光パネル及び面発光パネルの製造方法
JP2020104462A (ja) * 2018-12-28 2020-07-09 株式会社レニアス 透明積層体の製造方法
US20210114363A1 (en) * 2019-05-17 2021-04-22 Korea Electronics Technology Institute Method for manufacturing hybrid moisture barrier layer
JP2022064372A (ja) * 2020-10-14 2022-04-26 信越化学工業株式会社 電子材料保護用コーティング剤

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165146A (ja) * 1994-12-12 1996-06-25 Central Glass Co Ltd 紫外線赤外線吸収ガラス
JPH11268198A (ja) * 1998-03-25 1999-10-05 Asahi Glass Co Ltd 透明被覆成形品の製造方法
JP2004325579A (ja) * 2003-04-22 2004-11-18 Asahi Glass Co Ltd 反射防止性有機基材の製造方法
JP2011068042A (ja) * 2009-09-26 2011-04-07 Konica Minolta Holdings Inc バリアフィルム、その製造方法及び有機光電変換素子
JP2012000546A (ja) * 2010-06-15 2012-01-05 Konica Minolta Holdings Inc ガスバリア性フィルムの製造方法、有機電子デバイス
JP2012000828A (ja) * 2010-06-16 2012-01-05 Konica Minolta Holdings Inc ガスバリア性部材、ガスバリア性部材の製造方法及び該ガスバリア性部材を有する有機光電変換素子
JP2012183823A (ja) * 2011-02-18 2012-09-27 Konica Minolta Holdings Inc 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
WO2013122055A1 (ja) * 2012-02-15 2013-08-22 コニカミノルタ株式会社 機能性フィルム、およびその製造方法、並びに前記機能性フィルムを含む電子デバイス
JP2013233716A (ja) * 2012-05-08 2013-11-21 Mitsubishi Plastics Inc ガスバリア性フィルム
WO2016194559A1 (ja) * 2015-06-01 2016-12-08 コニカミノルタ株式会社 ガスバリア性フィルム
WO2019230617A1 (ja) * 2018-05-31 2019-12-05 コニカミノルタ株式会社 面発光パネル及び面発光パネルの製造方法
JP2020104462A (ja) * 2018-12-28 2020-07-09 株式会社レニアス 透明積層体の製造方法
US20210114363A1 (en) * 2019-05-17 2021-04-22 Korea Electronics Technology Institute Method for manufacturing hybrid moisture barrier layer
JP2022064372A (ja) * 2020-10-14 2022-04-26 信越化学工業株式会社 電子材料保護用コーティング剤

Similar Documents

Publication Publication Date Title
JP5821634B2 (ja) ハードコート剤組成物およびハードコート層を有する樹脂基板
EP0759457B2 (en) Weather and soiling-resistant silicone-containing coating composition
EP2527047B1 (en) Method for producing resin substrate having hard coat layer, and resin substrate having hard coat layer
JP5772598B2 (ja) ハードコート被膜付き樹脂基板およびその製造方法
JP5178199B2 (ja) 金属ストリップのコーティングにポリシラザンを使用する方法。
KR20080104979A (ko) 내찰상성 코팅 조성물 및 피복 물품
WO2012077686A1 (ja) 防曇性物品およびその製造方法
KR101470858B1 (ko) 유무기 복합 하이브리드 수지 및 이를 이용한 코팅재 조성물
JP5957620B2 (ja) 防汚性シート及びその製造方法
JPH10279362A (ja) SiO2系セラミックス膜の形成方法
US20150132572A1 (en) Polycarbonate Glazing and Method of Preparing the Same
JPWO2015008672A1 (ja) 防曇性物品
US20010031364A1 (en) Anti-contaminant coating film, producing method thereof, anti-contaminant glass for automobile, producing method thereof, and automobile employing the glass
WO2024047806A1 (ja) 透明積層体の製造方法
JP2020104462A (ja) 透明積層体の製造方法
JPH10212114A (ja) SiO2系セラミックス膜の形成方法
JPH11166157A (ja) コーティング組成物及びシリカ系セラミックス膜の製造方法
JP2016030392A (ja) ハードコート層付き樹脂基板およびハードコート層付き樹脂基板の製造方法
JP2004026873A (ja) オルガノシロキサン樹脂組成物の調製方法
JP6596796B2 (ja) 防汚性シート
JP2017215585A (ja) 樹脂基材のハードコート形成用組成物、ハードコートの形成方法およびそれを用いた物品
KR20150041404A (ko) 폴리카보네이트 글래이징 및 그 제조방법
JP3993330B2 (ja) SiO2系セラミックス膜の形成方法
CN111918723A (zh) 耐用超疏水涂层
KR20150010540A (ko) 폴리카보네이트 글래이징 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956695

Country of ref document: EP

Kind code of ref document: A1