WO2019230617A1 - 面発光パネル及び面発光パネルの製造方法 - Google Patents

面発光パネル及び面発光パネルの製造方法 Download PDF

Info

Publication number
WO2019230617A1
WO2019230617A1 PCT/JP2019/020792 JP2019020792W WO2019230617A1 WO 2019230617 A1 WO2019230617 A1 WO 2019230617A1 JP 2019020792 W JP2019020792 W JP 2019020792W WO 2019230617 A1 WO2019230617 A1 WO 2019230617A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
electrode
emitting panel
gas barrier
Prior art date
Application number
PCT/JP2019/020792
Other languages
English (en)
French (fr)
Inventor
正数 遠西
川原 雄介
北 弘志
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020522165A priority Critical patent/JPWO2019230617A1/ja
Publication of WO2019230617A1 publication Critical patent/WO2019230617A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention relates to a surface light emitting panel having a plurality of organic electroluminescent elements and a method for manufacturing the surface light emitting panel, and more specifically, an organic electroluminescent element having both sealing performance and flexibility and excellent manufacturability.
  • the present invention relates to a surface light emitting panel including the above and a method for manufacturing the surface light emitting panel.
  • organic electroluminescence element (hereinafter, abbreviated as “organic EL element”) using an organic material electroluminescence (hereinafter abbreviated as “EL”) has been rapidly spread.
  • An organic EL element is a thin-film type completely solid element that can emit light at a relatively low voltage of several V to several tens V, and has many excellent features such as high luminance, high luminous efficiency, thinness, and light weight. For this reason, the field of application as a surface light emitter for a display device or an illumination light source has been vigorously studied.
  • the organic EL element has a thin film structure, and by applying a flexible base material, flexibility can be imparted to the organic EL element, and flexibility can be achieved.
  • the organic functional layer constituting the organic EL element is easily affected by water or oxygen, it is necessary to protect them with a gas barrier layer and a sealing layer.
  • these gas barrier layers and sealing layers must be composed of highly rigid coatings such as metal oxides, nitrides, oxynitrides, etc. in order to improve gas barrier performance and sealing performance. Therefore, many of these coating films tend to break when subjected to stress such as bending, leading to a decrease in gas barrier properties, so there is a limit to the compatibility between gas barrier properties and flexibility. there were.
  • a plurality of light-emitting units each including a pixel electrode, a light-emitting layer, and a common electrode are formed on a stretchable base material at positions separated from each other.
  • An expandable / contractible display member configured to be sealed with a sealing member is disclosed (for example, see Patent Document 1).
  • the gas barrier layer is described on the stretchable base material, and more specifically, the light emission formed at positions separated from each other.
  • the gas barrier performance or sealing performance is not sufficient, and there is no clear description about the manufacturing method, but it is a display. Therefore, the manufacturing process is complicated, and there is a concern about the ease of manufacturing.
  • a substrate with a gas barrier layer in which a gas barrier layer is divided and patterned into a plurality of parts on a base material, and a display element is formed on each gas barrier layer, and a display element including the same are disclosed (for example, (See Patent Document 2).
  • the substrate with a gas barrier layer and the display element disclosed in Patent Document 2 are merely intermediate products, and finally, the unit divided by the gas barrier layer is cut to obtain a display element for mounting. It is for the purpose. Therefore, there is no wiring for connecting each electrode between the units.
  • the method described in Patent Document 2 is a dry method such as sputtering or vapor deposition except for the organic functional layer, and the apparatus to be used is increased in size, the manufacturing process is complicated, and there is a problem in manufacturability. Yes.
  • the present invention has been made in view of the above-mentioned problems, and the problem to be solved is a surface emitting panel including an organic electroluminescence element that has both sealing performance and flexibility and is excellent in manufacturability, and a method for manufacturing the same. Is to provide.
  • the inventor of the present invention has a small area organic EL element in which a gas barrier layer, a first electrode, an organic functional layer group, a second electrode, and a sealing layer are laminated in this order.
  • the surface emission is characterized in that the gas barrier layer corresponds to each organic EL element, and the plurality of organic EL elements are electrically connected through wiring.
  • the present inventors have found that a surface emitting panel provided with an organic EL element having both sealing performance and flexibility and excellent manufacturability can be realized by using the panel.
  • the surface-emitting panel is formed by laminating at least a gas barrier layer, a first electrode, an organic functional layer group, a second electrode, and a sealing layer on one surface side of a flexible substrate by a wet coating method or an inkjet printing method.
  • a surface emitting panel including an organic electroluminescence element that has both sealing performance and flexibility and is excellent in manufacturability, and a method for manufacturing the same.
  • the organic EL element has a thin film structure and can be made flexible by applying a flexible base material.
  • the thin film because of the thin film, the resistance to water and oxygen entering from the outside is low. It is necessary to protect the organic functional layer and the like from harmful gases such as water and oxygen with a barrier layer and a sealing layer.
  • gas barrier layer or a sealing layer As a method of blocking such harmful gases and improving the sealing performance, a method of forming a gas barrier layer or a sealing layer on the entire surface of a flexible substrate is known.
  • these gas barrier layers and sealing layers are basically composed of hard and dense films (for example, layers composed of metal oxides, nitrides, oxynitrides, etc.) in many cases.
  • a layer composed of such a metal oxide, for example, SiO 2 or the like has high rigidity and has a characteristic that the formed coating film is easily cracked when subjected to bending stress or the like.
  • the flexibility of the gas barrier layer and the sealing layer does not correspond to the flexible base material that is configured, and therefore, cracks and film breakage are likely to occur. There is a problem that a leak or a short path is generated from the broken portion and the gas barrier property is lowered.
  • a light emitting area having a gas barrier layer independently (separated) corresponding to each organic EL element on a flexible substrate has a small area of 100 mm 2 or less.
  • a manufacturing method of the surface emitting panel of the present invention at least a gas barrier layer, a first electrode, an organic functional layer group, a second electrode, and a sealing layer are provided on one surface side of a flexible substrate by a wet coating method. Or, by applying a method of manufacturing by laminating by ink jet printing method, a large vacuum device etc. is unnecessary, so the equipment load is light, flexible material selection and flexible shape of light emission are high, manufacturability It is possible to provide a method for manufacturing a surface light emitting panel excellent in the above.
  • Embodiment 4 Schematic layout diagram showing an example of using an Alpet as a sealing member in a typical configuration of a surface emitting panel of the present invention
  • Embodiment 5 Schematic layout diagram showing an example of a surface-emitting panel in which a protective substrate is provided on a sealing layer via an adhesive layer
  • Embodiment 6 Schematic layout diagram showing another example of a surface-emitting panel in which a protective substrate is provided on the sealing layer via an adhesive layer
  • Embodiment 7 Schematic layout diagram showing another example of a surface-emitting panel in which an adhesive layer and a protective substrate are provided on both sides of an organic EL element
  • Schematic front view showing an example of the configuration of a vacuum ultraviolet irradiation apparatus applicable to the formation of a gas barrier layer
  • the surface light emitting panel of the present invention is an organic electroluminescent device in which at least a gas barrier layer, a first electrode, an organic functional layer group, a second electrode, and a sealing layer are laminated in this order on one surface side of a flexible substrate.
  • a surface-emitting panel having a plurality of luminescence elements, wherein a light emission area per one of the plurality of organic electroluminescence elements is 100 mm 2 or less, and the gas barrier layer is independently provided for each organic electroluminescence element.
  • the plurality of organic electroluminescence elements are electrically connected to each other through a wiring.
  • the sealing layer constituting each organic EL element is also configured to have independently as in the gas barrier layer, This is preferable in that the flexibility of the surface light emitting panel can be further improved.
  • the sealing layer can be physically protected without breaking the flexibility, and the surface emitting panel is made of paper, cloth, wall material, This is preferable because it can be easily attached to another member such as a window glass.
  • the surface light emitting panel includes at least a gas barrier layer, a first electrode, an organic functional layer group, a second electrode, and a sealing layer on one surface side of the flexible substrate. It is manufactured by laminating by a wet coating method or an ink jet printing method.
  • the gas barrier layer is formed independently for each organic EL element having a small area, and the plurality of organic EL elements are electrically connected via wiring. It is characterized by.
  • FIGS. 1A and 1B are schematic layout diagrams showing an example of a configuration of a surface emitting panel of a comparative example of a conventional type.
  • FIG. 1A is an example of a conventional surface-emitting panel, in which a common gas barrier layer 2 is formed on the entire surface of a flexible substrate F, and a first electrode 4 (anode), The organic functional layer group 6 including the light emitting layer and the second electrode 7 (cathode) are laminated to constitute an organic EL element, and the peripheral portion of the laminated body is sealed with the first sealing layer 8, and then the surface emitting panel.
  • the entire surface of P is covered with a common second sealing layer 9. Between the 1st electrodes 4 of each organic EL element, it connects by the electrode wiring 11, and comprises the surface emitting body P.
  • FIG. 1A is an example of a conventional surface-emitting panel, in which a common gas barrier layer 2 is formed on the entire surface of a flexible substrate F, and a first electrode 4 (anode), The organic functional layer group 6 including the light emitting layer and the second electrode 7 (cathode) are laminated to constitute an organic EL element, and the peripheral portion of the laminated
  • the gas barrier layer 2 is formed on the entire surface, and when the base material is formed of the flexible base material F, it is common when subjected to stress such as bending or tension. Stress concentrates on the gas barrier layer having the structure, and as a result, cracks (short bath) and film breakage occur in the gas barrier layer, leading to a decrease in gas barrier performance.
  • 1B is an organic EL element in which a second sealing layer 9 is formed separately from the surface light emitting panel P described in FIG. 1A.
  • the gas barrier layer 2 is a common configuration and is subjected to stress even in this configuration. In such a case, the same problem as described above occurs.
  • the surface light-emitting panel of the present invention at least a gas barrier layer, a first electrode, an organic functional layer group, a second electrode, and a sealing layer are laminated in this order on one surface side of the flexible substrate.
  • the gas barrier layer is formed separately and separately for each organic EL element, and a plurality of organic EL elements having a small area are connected via wiring.
  • FIG. 2 is a schematic layout diagram showing Embodiment 1, which is an example of a typical configuration of the surface light emitting panel of the present invention.
  • a plurality of organic EL elements EL each having a light emitting area of 100 mm 2 or less are independently arranged on a flexible substrate F.
  • the light emitting area per organic EL element is more preferably 25 mm 2 or less.
  • the lower limit is not particularly limited, but is preferably 4 mm 2 or more.
  • Each organic EL element EL has an independent gas barrier layer 2 on which a first electrode 4 (anode), an organic functional layer group 6 including a light emitting layer, and a second electrode 7 (cathode) are stacked. Has been. The peripheral portion of the laminate is covered with a common first sealing layer 8 and second sealing layer 9 to constitute a surface light emitting panel P. Moreover, you may provide a base layer (not shown) between the flexible base material F and the gas barrier layer 2 for the purpose of the adhesive improvement of both as needed. Moreover, in each organic EL element EL, between each 1st electrode 4 (anode) is electrically connected by the electrode wiring 11, light emission control of each organic EL element EL is performed.
  • each second electrode 7 (cathode) is electrically connected by electrode wiring, but the illustration is omitted in this figure for convenience.
  • the light transmittance of the material applied to the flexible substrate F, the first electrode 4, the second electrode 7, the first sealing layer 8 and the second sealing layer 9 is adjusted or By selecting, the emission light L is extracted to the upper surface side (sealing layer side) of the surface light emitting panel P, or the top emission type TE is selected, or from the lower surface side of the surface light emitting panel P (back surface side of the flexible base material).
  • a bottom emission type BE from which the emitted light L is extracted can be obtained.
  • FIG. 3 is a schematic layout diagram showing Embodiment 2, which is an example of a typical configuration of the surface light emitting panel of the present invention.
  • the first sealing is further added to the surface light emitting panel (the first embodiment) in which only the gas barrier layer 2 shown in FIG.
  • the form which forms the layer 8 and the 2nd sealing layer 9 independently is shown, and it is one of the preferable forms at the point which the bending tolerance at the time of receiving stress, such as bending, improves more.
  • FIG. 4A to FIG. 4C, FIG. 5 to FIG. 5C, FIG. 6 and FIG. 7, the flexible substrate F and the gas barrier layer 2 are further added to the schematic structure described in FIG. 2 and FIG.
  • a more specific surface-emitting panel P in which an insulating layer 5 is provided between the base layer 1, the first electrode 4 (anode), the organic functional layer group 6 including the light-emitting layer, and the second electrode 7 (cathode). The structure of is shown.
  • FIGS. 4A to 4C and FIGS. 5 to 5C are manufacturing flow diagrams (top views) showing manufacturing steps of the surface-emitting panel P having the structure shown in FIGS. 6 and 7 to be described later.
  • FIG. 6 is a detailed cross-sectional view showing the configuration represented by the cut surface AA shown in FIG. 5C of the surface-emitting panel P manufactured by the above manufacturing flow
  • FIG. 7 is a cut surface of the surface-emitting panel shown in FIG. 5C. It is a detailed sectional view showing the configuration represented by BB.
  • FIGS. 4A to 4C and FIGS. 5 to 5C show a flow of manufacturing the surface light emitting panel P by sequentially laminating the constituent members on the flexible substrate F.
  • a gas barrier layer, a first electrode, an organic functional layer group, a second electrode, and a sealing layer described below are laminated by a wet coating method or an ink jet printing method. It is characterized by manufacturing.
  • the base layer 1 made of, for example, an ultraviolet curable resin is placed on the flexible substrate F disposed at the bottom, and then an independent gas barrier corresponding to the organic EL element is formed on the base layer 1.
  • Layer 2 is formed.
  • a grid-like grid for example, an Ag grid 3 is formed at the position shown in FIG. 4A, and the first electrode 4 (anode) is formed at a predetermined position thereon using, for example, a conductive polymer.
  • the surface of the Ag grid 3 in the region excluding the extraction portion which is the end portion of the first electrode 4 is covered with the insulating layer 5.
  • an organic functional layer group 6 including a light emitting layer is pattern-formed on the first electrode 4 which is an open portion surrounded by the formed insulating layer 5.
  • the second electrode 7 (cathode) is formed in a lattice shape between the Ag grids 3 on the organic functional layer group 6 at the position shown in FIG. 5A.
  • the first sealing layer 8 is formed by, for example, polyorganosiloxane, polydimethylsiloxane (abbreviation: PDMS) or the like so as to cover the organic functional layer group 6 and the insulating layer 5.
  • PDMS polydimethylsiloxane
  • the second sealing layer 9 is formed using, for example, perhydropolysilazane (abbreviation: PHPS) so as to cover the first sealing layer 8, and the surface emitting panel.
  • PHPS perhydropolysilazane
  • the organic EL element EL which comprises P is produced.
  • the second sealing layer 9 has a larger area than the first sealing layer 8 in order to cover the first sealing layer 8.
  • FIG. 6 is a cross-sectional view showing a configuration represented by a cut surface AA of the surface light emitting panel shown in FIG. 5C.
  • the AA line shows the organic functional layer group 6 formed on the entire surface of the second electrode 7. This is a region where is formed.
  • an independent gas barrier layer 2 is formed in a partial region of the flexible base material F via the base layer 1.
  • the first electrode 4 is provided so as to cover the grid-like Ag grid 3, and the insulating layer 5 is provided so as to cover both ends of the first electrode 4, thereby forming the insulating layer 5.
  • the organic functional layer group 6 is formed in the non-formed part (opening part), the second electrode 7 is formed over the entire surface, and the first sealing layer 8 and the second sealing are formed in a partial region on the second electrode 7.
  • the layer 9 is formed, and the surface emitting panel P is formed.
  • the gas barrier property of the second electrode 7 formed on the entire surface and having an exposed portion becomes important.
  • FIG. 7 is a cross-sectional view showing the structure represented by the cut surface BB of the surface light emitting panel shown in FIG. 5C. In the region represented by the line BB, the Ag grid 3 and the insulating layer 5 are formed over the entire surface. Has been.
  • the gas barrier property of the insulating layer 5 is also important.
  • FIG. 8 is a cross-sectional view (Embodiment 4) showing an example of a surface light emitting panel in which a transparent hygroscopic agent layer is further incorporated into the structure represented by the cut surface AA of the surface light emitting panel shown in FIG. 5C.
  • the transparent hygroscopic agent layer 16 may be installed between the first sealing layer 8 and the second sealing layer 9 in the surface light emitting panel as shown in FIG. preferable.
  • FIG. 9 is a schematic layout diagram (Embodiment 5) showing an example in which an Alpet is applied as the second sealing layer in a typical configuration of the surface light emitting panel of the present invention.
  • the Alpet AP is applied as the second sealing layer and simultaneously sealed as the first sealing layer with respect to the surface light emitting panel of the first embodiment described in FIG. An example in which the resin layer 15 is formed is shown.
  • the emission light L is a bottom emission type that is emitted from the back side (lower surface side) of the flexible base material F.
  • Embodiment 6 In Embodiments 2 to 4 described above, the basic configuration of the surface light emitting panel has been described. Next, a more practical form of the surface light emitting panel will be described.
  • FIG. 10A and FIG. 10B are schematic layout views (embodiment 6) showing an example of a surface emitting panel in which a protective substrate is provided on a sealing layer via an adhesive layer.
  • the surface light emitting panel P shown in FIG. 10A has a first adhesive layer 12, polyethylene terephthalate (PET), polyethylene (PE), etc. on the second sealing layer 9 of the surface light emitting panel shown in FIG.
  • stacked is shown.
  • a gap V can be formed between each organic EL element EL, but this gap V is a very narrow space, and in particular, a state where no filler is added or an adhesive layer is formed as necessary. It is also possible to form a sealing structure by being filled with an adhesive.
  • the first protective member 13 also serves to protect the organic EL element EL when the surface emitting panel P is subjected to external pressure, and also serves as a separate film as illustrated in FIG. 10B below.
  • the surface light emitting panel P having the configuration shown in FIG. 10A is exposed by peeling (separating) the first protective member 13 provided on the outermost surface of the surface light emitting panel P.
  • FIG. 11A and FIG. 11B are schematic layout diagrams (embodiment 7) showing an example of a surface light emitting panel in which an adhesive layer and a protective substrate are provided on both surfaces of an organic EL element.
  • the surface light emitting panel P shown in FIG. 11A which is Embodiment 7 is made of polyethylene via the second adhesive layer 12B on the back surface side of the flexible base material F with respect to the surface light emitting panel shown in FIG. 10A described above.
  • a second protective member 13B made of terephthalate (PET) or polyethylene (PE) is laminated.
  • gaps V are formed between the organic EL elements (EL). This gap V is a very narrow space, and a sealing structure can also be formed by filling a pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer in a state where no filler is added, or if necessary.
  • the second protective member 13B provided on the back surface of the surface light emitting panel P is peeled (separated) and exposed.
  • any flexible base material may be used.
  • a thin film glass, a resin film, a metal foil, a fabric (for example, a cloth or a woven fabric), Paper, elastomer (rubber fabric) or the like can be applied, and it may be transparent or opaque.
  • the flexible substrate F is preferably light transmissive.
  • Light transmittance means that the total light transmittance in the visible light region is 20% or more, preferably 50% or more, and more preferably 80% or more. preferable.
  • a particularly preferable flexible substrate F is a resin film capable of giving flexibility to the organic EL element.
  • the resin film examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol (PVA), polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate (PC), norbornene resin, polymethylpentene , Polyether ketone, polyimide (PI), polyether sulfone (PES), polyphenyle Sulfide, Polysulfones, Polyetherimide, Polyetherketoneimide, Polyamide, Fluororesin, Nylon, Polymethylmethacrylate (PMMA), Acrylic or Polyarylates, Arton (trade name, manufactured by JSR) or
  • the fabric may be any form such as fabric, woven fabric, knitted fabric, non-woven fabric made of cotton, wool, silk, nylon, linen, rayon, acrylic, polyester, polyurethane or the like.
  • elastomer in addition to natural rubber, synthetic rubber can be mentioned, isoprene rubber, butadiene rubber, styrene / butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene propylene rubber, acrylic rubber, fluoro rubber, urethane rubber, Examples thereof include silicone rubber.
  • ⁇ Flexible substrates can be used alone or in combination of two or more.
  • the respective substrates may be the same type or different types.
  • separate after producing an organic EL element may be sufficient.
  • the surface activation process may be given to the surface of the flexible base material F, and the base layer may be provided.
  • a hard coat layer may be provided.
  • Examples of the surface activation treatment include corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • the material for the underlayer and the hard coat layer examples include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer, and the like. Of these, ultraviolet curable resins can be preferably used.
  • the underlayer may be a single layer, but the adhesiveness is further improved when it has a multilayer structure.
  • a commercially available plastic substrate on which a hard coat layer is formed in advance may be used, or an undercoat layer or a hard coat layer may be installed by applying and curing only on a necessary portion of the flexible substrate.
  • the gas barrier layer is a layer having a function of preventing entry of harmful components (oxygen, moisture, etc.) from the outside to the organic EL element.
  • a plurality of organic EL elements are present.
  • it is characterized by being formed in an independent form.
  • the thickness of the gas barrier layer according to the present invention can be appropriately set according to the purpose, but can generally be in the range of 100 nm to 10 ⁇ m.
  • gas barrier layer according to the present invention is formed by a wet coating method or an ink jet printing method.
  • Silicon-containing polymer Materials applicable to the formation of the gas barrier layer according to the present invention include a silicon-containing polymer having a bond of silicon and oxygen (Si—O), silicon and nitrogen (Si—N), etc. in a repetitive structure. An example of such a configuration can be given.
  • silicon-containing polymer examples include polysiloxane having a Si—O bond (including polysilsesquioxane), polysilazane having a Si—N bond, Si—O bond and Si—N bond in a repeating structure.
  • examples include polysiloxazan containing both. These can be used in combination of two or more. It is also possible to laminate layers of different types of silicon-containing polymers.
  • Polysiloxane is a compound containing-[RaSiO 1/2 ]-,-[RbSiO]-,-[RcSiO 3/2 ]-,-[SiO 2 ]-, etc., in a repeating structure.
  • Ra, Rb and Rc are each independently a hydrogen atom, an alkyl group containing 1 to 20 carbon atoms (eg, a methyl group, an ethyl group, a propyl group, etc.), an aryl group (eg, a phenyl group, an unsaturated alkyl group) And the like.
  • a preferred example is polyorganosiloxane and polydimethylsiloxane (abbreviation: PDMS).
  • Polysilsesquioxane is a compound that includes the same structure as silsesquioxane among the polysiloxanes in its repeated structure.
  • Silsesquioxane is a compound having a structure represented by the above-[RcSiO 3/2 ]-.
  • polysilazane The structure of polysilazane can be represented by the following general formula (A).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group. .
  • the polysilazane in which all of R 1 , R 2 and R 3 in the general formula (A) are hydrogen atoms is perhydropolysilazane (abbreviation: PHPS).
  • Perhydropolysilazane is preferable in that a dense film can be obtained.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on a 6-membered ring and an 8-membered ring.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • a polysilane in which a part of hydrogen atoms bonded to Si is substituted with an alkyl group or the like is an organopolysilazane.
  • Organopolysilazane has improved adhesion to the underlying layer due to alkyl groups such as methyl groups, and can impart toughness to polysilazanes that have hard and brittle properties, so that even when the film is thickened, cracking is suppressed.
  • perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, or both may be used in combination.
  • Polysiloxazan includes a structure represented by — [(SiH 2 ) n (NH) r ] — and — [(SiH 2 ) m O] — in a repeating structure.
  • n, m and r each independently represent 1 to 3.
  • ⁇ Other polysilazanes> As another example of polysilazane which becomes ceramic at low temperature, a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a polysilazane having a main skeleton composed of a unit represented by the above general formula (A) (for example, Japanese Patent Laid-Open No. Hei. No.
  • glycidol-added polysilazanes obtained by reacting glycidol see, for example, JP-A-6-122852
  • alcohol-added polysilazanes obtained by reacting with alcohol see, for example, JP-A-6-6 240208
  • a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate see, for example, JP-A-6-299118
  • Acetylacetonate complex-added polysilazane eg If, JP 6-306329 discloses reference.
  • Fine metal particles of the metal particles added polysilazane obtained by adding e.g., JP-A-7-196986 JP reference.
  • the gas barrier layer according to the present invention is formed by a wet coating method or an ink jet printing method.
  • the forming method include a roll coating method, a flow coating method, a spray coating method, a printing method, a dip coating method, a bar coating method, a casting film forming method, an ink jet printing method, and a gravure printing method.
  • the ink jet printing method is preferable.
  • the solvent used for preparing the coating solution for forming the gas barrier layer it is preferable to avoid the use of an alcohol-based organic solvent that easily reacts with polysilazane or an organic solvent containing moisture.
  • the organic solvent that can be used for the preparation of the coating solution for forming the gas barrier layer include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbon solvents, and aliphatics. And ethers such as ether and alicyclic ether.
  • organic solvents such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to characteristics such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.
  • a commercially available product in which polysilazane is dissolved in an organic solvent can be used.
  • examples of commercially available products that can be used include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.
  • the gas barrier layer forming coating solution can also contain a catalyst from the viewpoint of promoting the reforming treatment.
  • the catalyst is preferably a basic catalyst, for example, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′— Amine catalysts such as tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, and Pd compounds such as propionic acid Pd And metal catalysts such as Rh compounds such as Rh acetylacetonate, N-heterocyclic compounds, and the like.
  • the content of the silicon-containing polymer in the gas barrier layer forming coating solution varies depending on the thickness of the silicon-containing polymer modified layer to be formed and the pot life of the coating solution, but is generally within the range of 0.2 to 35.0% by mass. It is preferable that
  • the formed gas barrier layer coating film can be dried by heating from the viewpoint of removing the organic solvent in the coating film.
  • the heating temperature in the drying treatment step can be in the range of 50 to 200 ° C.
  • the heating time is preferably set to a short time in order to prevent deformation of the flexible base material composed of a resin film or the like.
  • the temperature during the drying process is set to 150 ° C. or less in order to prevent deformation of the resin film. Can be set.
  • the gas barrier layer coating film thus formed can be subjected to a drying treatment in which it is dehumidified while maintaining a low humidity environment. Since the humidity in the low humidity environment varies depending on the temperature, the relationship between the temperature and the humidity can be determined based on the dew point temperature.
  • a preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is ⁇ 8 ° C. (temperature 25 ° C./humidity 10%) or lower, and a more preferable dew point temperature is ⁇ 31 ° C. (temperature 25 ° C./temperature). Humidity 1%) or less.
  • the pressure for drying under reduced pressure can be selected within the range of normal pressure to 0.1 MPa.
  • the gas barrier layer can be formed by forming a coating film using the coating solution containing the above-described silicon-containing polymer and then subjecting the coating film to a modification treatment.
  • the silicon-containing polymer can be converted to silica or the like by a modification treatment to obtain a modified treatment product, but it is not necessary to modify all of the silicon-containing polymer, and at least a part, for example, the ultraviolet irradiation surface side is It only needs to be modified.
  • gas barrier layer modification treatment method As a gas barrier layer modification treatment method, a known method with less heat damage to a flexible substrate made of a resin film or the like can be applied, and plasma treatment and ozone treatment capable of low-temperature treatment are possible. Irradiation treatment with ultraviolet rays or vacuum ultraviolet rays can be used. Among them, the irradiation treatment with vacuum ultraviolet rays is preferable because the gas barrier property is unlikely to deteriorate due to the influence of the environment between the formation of the gas barrier layer modified with the silicon-containing polymer and the subsequent process.
  • Vacuum ultraviolet irradiation treatment uses light energy of vacuum ultraviolet light (Vaccum Ultra Vilette, abbreviated as VUV) in the wavelength range of 100 to 200 nm, which is larger than the interatomic bonding force that constitutes a silicon-containing polymer, and bonds between atoms are photonized
  • VUV vacuum ultraviolet light
  • a vacuum ultraviolet light source may be any light source that generates light having a wavelength in the range of 100 to 200 nm.
  • the irradiation wavelength is a rare gas excimer lamp having a wavelength of about 172 nm (for example, manufactured by M.D. Xe excimer lamp MODEL: MECL-M-1-200), low pressure mercury vapor lamp of about 185 nm, medium pressure of 200 nm or less, and high pressure mercury vapor lamp.
  • the excimer lamp is characterized by the fact that it emits light of a single wavelength, has a very high luminous efficiency, the emitted light has a short wavelength, the temperature of the irradiation target can be kept at a low temperature, and it can be turned on and off instantaneously.
  • This is a light source that can be easily applied to a flexible substrate made of a resin film that is easily affected by heat.
  • vacuum ultraviolet light having a short wavelength of 172 nm emitted from an Xe excimer lamp has a large oxygen absorption coefficient, generates a high concentration of active oxygen or ozone from a small amount of oxygen, and has a high ability to dissociate organic bonds. Therefore, the reforming process can be performed in a short time.
  • the irradiation condition of vacuum ultraviolet rays may be set within a range in which the flexible base material below the gas barrier layer by the silicon-containing polymer modification is not deteriorated.
  • the irradiation time of ultraviolet rays generally depends on the composition, concentration, etc. of the coating material for forming the flexible base material, the underlayer, and the gas barrier layer, but is generally in the range of 0.1 to 10 minutes, 0.5 seconds It is preferably within a range of ⁇ 3 minutes.
  • the illuminance of the vacuum ultraviolet light can be in the range of 1 mW / cm 2 to 10 W / cm 2 . If it is 1 mW / cm 2 or more, the reforming efficiency is improved, and if it is 10 W / cm 2 or less, ablation that can occur in the coating film, damage to the flexible base material or the underlying layer, and the like can be reduced.
  • the irradiation energy amount (irradiation amount) of vacuum ultraviolet rays can be set within a range of 0.1 to 10.0 J / cm 2 . If it is this range, generation
  • the vacuum ultraviolet irradiation treatment may be batch treatment or continuous treatment.
  • batch processing it can be processed using an ultraviolet baking furnace (for example, an ultraviolet baking furnace manufactured by Eye Graphics Co., Ltd.) equipped with a vacuum ultraviolet light source.
  • continuous treatment vacuum ultraviolet rays may be continuously irradiated in a zone provided with a vacuum ultraviolet light source by transporting a flexible base material.
  • Oxygen is required for the reaction at the time of irradiation with vacuum ultraviolet rays, but since vacuum ultraviolet rays are absorbed by oxygen and the reforming efficiency tends to decrease, irradiation with vacuum ultraviolet rays is performed in an atmosphere with low oxygen concentration and water vapor concentration as much as possible. It is preferable to carry out.
  • the oxygen concentration during vacuum ultraviolet irradiation can be in the range of 10 to 20000 ppm by volume (0.001 to 2% by volume).
  • the water vapor concentration is preferably in the range of 1000 to 4000 ppm by volume.
  • dry inert gas particularly dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by adjusting the flow ratio of oxygen gas and inert gas introduced into the room.
  • FIG. 12 is a schematic front view showing an example of the configuration of a vacuum ultraviolet irradiation apparatus applicable to the formation of a gas barrier layer.
  • the vacuum ultraviolet irradiation apparatus 100 carries a flexible substrate F having a silicon-containing polymer-containing film that is a precursor of the underlayer 1 and the gas barrier layer on a stage 104 and transports the inside of the chamber 101. .
  • the chamber 101 water vapor is removed by exhaust, and the oxygen concentration is adjusted to be constant by introducing an inert gas.
  • the stage 104 incorporates a heater and can heat the flexible base material F.
  • the chamber 101 is divided into three zones by the shielding plate 106 in the conveyance direction V of the flexible base material F, and a plurality of Xe excimer lamps 102 are installed in the central vacuum ultraviolet irradiation zone.
  • the Xe excimer lamp 102 is supported by a holder 103 containing a power supply and is controlled to be lit.
  • the silicon-containing polymer modified layer may be a single layer, but may have a laminated structure of two or more layers from the viewpoint of further improving gas barrier properties.
  • a laminated structure for example, a laminated structure having different types of silicon-containing polymers such as polysiloxane / polysilazane may be used. By changing the type, not only gas barrier properties but also interlayer adhesion can be controlled.
  • the grid 3 shown in FIG. 4A is composed of conductive fine metal wires.
  • the shape of the grid 3 is not limited to the lattice shape, and various shapes of grid such as a stripe shape, a honeycomb structure shape, and a mesh shape can be used. From the viewpoint of obtaining uniform conductivity regardless of the position, the surface-emitting panel of the present invention preferably has a lattice shape.
  • the line width dw of the fine metal wires constituting the grid 3 is preferably in the range of 10 to 2000 ⁇ m.
  • the line width dw is 10 ⁇ m or more, sufficient conductivity can be obtained, and when the line width dw is 2000 ⁇ m or less, a decrease in transparency can be suppressed.
  • the height dh of the fine metal wires constituting the grid 3 is preferably in the range of 0.1 to 10.0 ⁇ m. If the height dh is 0.1 ⁇ m or more, sufficient conductivity is obtained, and if it is 10.0 ⁇ m or less, current leakage can be prevented when used in an electronic device.
  • the resistivity of grid 3 is 100 ⁇ / sq. The following is preferable, and 20 ⁇ / sq. The following is more preferable.
  • the resistivity of the grid 3 can be measured according to JIS K 7194-1994.
  • the aperture ratio of the grid 3 is preferably 80% or more from the viewpoint of enhancing transparency.
  • the aperture ratio is the ratio of the area occupied by the area where the fine metal wires forming the grid are not arranged in the total area of the surface light emitting portion.
  • the aperture ratio of a grid in which fine metal wires having a line width of 1 mm and a line interval of 10 mm are formed in a lattice shape is about 90%.
  • Examples of conductive metal materials that can be used for the fine metal wires of the grid 3 include gold, silver, copper, iron, cobalt, nickel, chromium, and alloys thereof. From the viewpoint of low resistance, silver or copper is preferable, and silver is particularly preferable.
  • the grid 3 is formed by applying a coating solution containing metal nanoparticles, metal complexes, etc. using the above metal material to a relief printing method, an intaglio printing method, a stencil printing method, a screen printing method, an inkjet printing method, an inkjet parallel line drawing method, and the like. Can be formed by applying to a desired shape.
  • the ink jet parallel line drawing method uses a coffee stain phenomenon in which when the coating liquid is applied in a line shape, the coating liquid flows from the center to the end of the line and solidification of the end proceeds. This is a method of forming two parallel lines from a line. In the case of forming a random network shape, as described in Japanese Patent Application Publication No.
  • a coating solution containing metal fine particles is applied and then dried, whereby the metal particles are spontaneously disordered.
  • the method of forming can be used. Among these, an inkjet printing method that can easily control the shape or an inkjet parallel line drawing method that has high precision in forming a fine line is preferable.
  • the coating solution containing a metal complex is sufficient if the metal forming the complex is dispersed or dissolved in the solvent.
  • the solvent ketocarboxylic acid, behenic acid, stearic acid and the like can be used.
  • JP-T-2008-530001 also discloses a silver complex compound derived by reacting a silver compound and an ammonium carbonate compound.
  • the coating liquid can also contain an amine compound as a reducing agent.
  • heat treatment it is preferable to perform heat treatment in a range that does not damage the flexible base material F. Thereby, fusion of metal materials such as metal nanoparticles and metal complexes proceeds, and the conductivity of the grid is increased.
  • a general oven or hot plate heating method can be used.
  • local heat treatment may be performed by flash pulse light irradiation treatment, microwave treatment, plasma treatment, dielectric heating treatment, excimer light irradiation treatment, ultraviolet ray treatment, infrared heater treatment, hot air heater treatment, etc. You may use together with heat processing by oven etc.
  • the maximum cross-sectional height Rt (p) measured in accordance with JIS B 0601-2013 is preferably 500 nm or less, more preferably 200 nm or less, and 100 nm or less. Further preferred. The higher the smoothness, the better the yield and continuous drivability of the organic EL element when used as an electrode.
  • the first electrode 4 is also referred to as an anode or an anode. As shown in an example in FIG. 6, the grid 3 is formed on the gas barrier layer 2, and the first electrode 4 is formed to cover the grid 3. Has been. Alternatively, the first electrode 4 may be formed on the gas barrier layer 2 and the grid 3 may be formed on the first electrode 4.
  • the first electrode 4 is mainly composed of a conductive polymer, a carbon material, a metal nanomaterial, or a mixture thereof, and is preferably formed by a wet coating method or an ink jet printing method.
  • the thickness of the first electrode layer 4 can be in the range of 30 to 2000 nm. From the viewpoint of enhancing conductivity, the thickness is preferably 100 nm or more. From the viewpoint of increasing the smoothness of the surface, the thickness is preferably 200 nm or more, and from the viewpoint of increasing transparency, the thickness is more preferably 1000 nm or less.
  • Examples of the ⁇ -conjugated conductive polymer applicable to the present invention include polythiophenes, polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, polyparaphenylene vinylenes, polyazulenes, Examples include polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, and polythiazyl compounds. Of these, polythiophenes or polyanilines are preferable and polyethylenedioxythiophene is more preferable from the viewpoint of improving conductivity, transparency, stability, and the like.
  • the ⁇ -conjugated conductive polymer can be easily produced by subjecting a precursor monomer that forms a ⁇ -conjugated conductive polymer to chemical oxidative polymerization in the presence of an oxidizing agent, an oxidation catalyst, and a polyanion.
  • the precursor monomer used for forming the ⁇ -conjugated conductive polymer has a ⁇ -conjugated system in the molecule, and has a ⁇ -conjugated system in the main chain even when polymerized by the action of an oxidizing agent.
  • Examples of such precursor monomers include pyrroles, thiophenes, anilines, and derivatives thereof.
  • the precursor monomer examples include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptyl
  • the polyanion is a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, or a copolymer thereof, It is a compound comprising a structural unit having an anionic group and a structural unit having no anionic group.
  • the polyanion solubilizes or disperses the ⁇ -conjugated conductive polymer in a solvent, and the anion group of the polyanion functions as a dopant for the ⁇ -conjugated conductive polymer. Improve sexiness.
  • the anion group of the polyanion may be any functional group that can undergo chemical oxidation doping to the ⁇ -conjugated conductive polymer.
  • a monosubstituted sulfate group, A substituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable.
  • a sulfo group, a monosubstituted sulfate group or a carboxy group is more preferable from the viewpoint of the doping effect of the functional group on the ⁇ -conjugated conductive polymer.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. . Furthermore, these homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • Fluorinated polyanions having further fluorine atoms in the molecule can also be used. Specific examples include Nafion containing a perfluorosulfonic acid group (manufactured by Dupont), Flemion made of perfluoro vinyl ether containing a carboxylic acid group (manufactured by Asahi Glass Co., Ltd.), and the like.
  • the fluorinated polyanion is preferable because it can form a transparent electrode with a hole injection function by using it together with the non-fluorinated polyanion, and the productivity is increased.
  • the degree of polymerization of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of improving solubility in a solvent and conductivity.
  • the ratio of the ⁇ -conjugated conductive polymer to the polyanion in the conductive polymer that is, the mass ratio of ⁇ -conjugated conductive polymer: polyanion can be in the range of 1: 1 to 1:20. From the viewpoint of improving dispersibility, the ratio is preferably in the range of 1: 2 to 1:10.
  • a commercially available product may be used.
  • a commercially available product of a conductive polymer composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid (hereinafter abbreviated as PEDOT / PSS) Heraeus Clevios series, Aldrich PEDOT-PSS 483095, 560596, Nagase Chemtex Denatron series, etc.
  • PEDOT / PSS polystyrenesulfonic acid
  • Heraeus Clevios series Heraeus Clevios series
  • Aldrich PEDOT-PSS 483095, 560596 Aldrich PEDOT-PSS 483095, 560596
  • Nagase Chemtex Denatron series etc.
  • ORMECON series manufactured by Nissan Chemical Industries, Ltd.
  • the first electrode 4 preferably contains a non-conductive polymer together with the above-described conductive polymer, and the non-conductive polymer is at least one of a self-dispersing polymer and a hydroxy group-containing polymer. It is more preferable to contain one.
  • a non-conductive polymer By using a non-conductive polymer, the content of the conductive polymer can be reduced without impairing the conductivity of the first electrode 4, and a transparent electrode having both high conductivity and transparency can be used as the first electrode. Can be obtained.
  • Self-dispersing polymers that can be used in combination with conductive polymers have dissociable groups, and colloidal particles formed by self-dispersing polymers do not aggregate even without surfactants or emulsifiers that assist micelle formation.
  • the self-dispersing polymer is a non-conductive polymer that can be dispersed in an aqueous medium. It is preferable that the self-dispersing polymer has high transparency because the transparency of the first electrode 4 can be increased.
  • the amount of the self-dispersing polymer used can be in the range of 50 to 1000% by mass with respect to the conductive polymer.
  • the main skeletons of self-dispersing polymers are polyethylene, polyethylene-polyvinyl alcohol, polyethylene-polyvinyl acetate, polyethylene-polyurethane, polybutadiene, polybutadiene-polystyrene, polyamide (nylon), polyvinylidene chloride, polyester, polyacrylate, polyacrylate Polyester, polyacrylate-polystyrene, polyvinyl acetate, polyurethane-polycarbonate, polyurethane-polyether, polyurethane-polyester, polyurethane-polyacrylate, silicone, silicone-polyurethane, silicone-polyacrylate, polyvinylidene fluoride-polyacrylate, polyfluoroolefin -Polyvinyl ether and the like.
  • copolymers based on these skeletons and further using other monomers may be used.
  • a polyester resin emulsion having an ester skeleton, a polyester-acrylic resin emulsion, an acrylic resin emulsion having an acrylic skeleton, or a polyethylene resin emulsion having an ethylene skeleton is preferable.
  • Examples of commercially available self-dispersing polymers include iodosol AD-176 and AD-137 (above, acrylic resin: manufactured by Henkel Japan), Vironal MD-1200, MD-1245, MD-1500 (above, polyester resin: Toyobo Co., Ltd.), Plus Coat RZ570, Plus Coat Z561, Plus Coat Z565, Plus Coat Z687, Plus Coat Z690 (above, polyester resin: manufactured by Mutsumi Chemical Co., Ltd.) and the like can be used.
  • One type or a plurality of types of self-dispersing polymer dispersions containing dissociable groups that can be dispersed in the aqueous medium can be used.
  • the hydroxy group-containing polymer is a non-conductive polymer having a hydroxy group.
  • the ratio of the conductive polymer and the hydroxy group-containing polymer in the first electrode 4, that is, the mass ratio of the conductive polymer: hydroxy group-containing polymer is preferably in the range of 100: 30 to 100: 900, and current leakage is prevented. From the viewpoint of enhancing transparency, it is more preferable that the ratio is in the range of 100: 100 to 100: 900.
  • Examples of the hydroxy group-containing polymer include polymers containing a structural unit represented by the following general formula (1).
  • R represents a hydrogen atom or a methyl group.
  • —Q— represents —C ( ⁇ O) O— or —C ( ⁇ O) NRd—
  • Rd represents a hydrogen atom or an alkyl group.
  • A represents a substituted or unsubstituted alkylene group, or — (CH 2 CHReO) x CH 2 CHRe—, and Re represents a hydrogen atom or an alkyl group.
  • x represents the average number of repeating units.
  • the hydroxy group-containing polymer has a wavelength within the same wavelength range of 2.5 to 3.0 ⁇ m as the infrared ray because the solvent can be easily removed when using infrared rays for drying the coating film. It preferably has an absorbance of 0.1 or more.
  • the absorbance here refers to the absorbance in the coating film having the thickness of the first electrode 4 to be formed.
  • the carbon material applicable to the formation of the first electrode 4 examples include graphene, carbon nanotube, fullerene and the like. These carbon materials may be used alone or in combination of two or more. Further, the first electrode formed of a carbon material may be a single layer, or may have a multilayer structure including a plurality of layers having the same or different carbon materials. The thickness of the first electrode 4 formed of a carbon material can be in the range of 10 nm to 10 ⁇ m.
  • a graphene is a sheet
  • the 1st electrode comprised from carbon can be formed by transcribe
  • Examples of the method for producing graphene include a method of applying and reducing graphene oxide described in JP2011-241479A, a method using epitaxial growth on a SiC substrate, and thermal CVD using Cu or Ni as a catalyst metal. It can produce
  • the carbon nanotube is a carbon fiber made of hollow graphene.
  • Carbon nanotubes can be produced by catalytic hydrogen reduction of carbon dioxide, arc discharge method, laser evaporation method, CVD method, HiPco method in which carbon monoxide is reacted with an iron catalyst at high temperature and high pressure and grown in the gas phase.
  • fullerene fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotube, etc.
  • a first electrode composed of carbon nanotubes can be formed by preparing a coating solution containing these and applying them on the gas barrier layer.
  • the metal nanomaterial applicable to the formation of the first electrode is a metal material having a nanoscale size, and is also called a nanotube, nanowire, nanofiber, or the like depending on the shape.
  • the metal include silver (Ag), aluminum (Al), copper (Cu), gold (Au), tungsten (W), molybdenum (Mo), and alloys thereof.
  • silver is preferable because it has low resistance, high conductivity, and can be easily processed into a desired shape.
  • the first electrode When the first electrode is formed of a metal nanomaterial, the first electrode can be formed by preparing a coating liquid containing the metal nanomaterial and applying it on the gas barrier layer.
  • the thickness of the first electrode formed of the metal nanomaterial can be in the range of 10 nm to 10 ⁇ m.
  • First electrode wiring 11 In the surface light emitting panel of the present invention, the plurality of organic ELs arranged at spaced positions are electrically connected via the first electrode wiring 11 as shown in FIG. 2 and FIG. Is one of the features.
  • 1st electrode wiring 11 is the form which extended the 1st electrode 4 to the non-light-emission area
  • the constituent material of the first electrode wiring 11 is the same as the material used for forming the first electrode described above.
  • Organic functional layer group 6 Examples of the configuration of a typical organic functional layer group in the organic EL device according to the present invention include the following configurations.
  • the 1st electrode and the 2nd electrode are described collectively for convenience.
  • the structure of the organic functional layer group shown below shows an example, and the structure of the organic functional layer group applicable to the present invention is not limited to these.
  • paragraph numbers [0014] to [0121] of JP 2013-089608 A, paragraph numbers [0065] to [0262] of JP 2014-120334 A, and paragraph numbers of JP 2015-201508 A Reference can be made to the contents described in [0044] to [0118].
  • the second electrode 7 is also referred to as a cathode or a cathode.
  • a material for forming the second electrode a conductive polymer, a carbon material, a metal nanomaterial, or a mixture thereof that can be used for forming the first electrode described above is used.
  • the second electrode it is particularly preferable to use a metal nanomaterial.
  • the metal nanomaterial applicable to the formation of the second electrode 7 is a metal material having a nanoscale size, and is also referred to as a nanoparticle, a nanotube, a nanowire, or a nanofiber depending on the shape.
  • the metal include silver (Ag), aluminum (Al), copper (Cu), gold (Au), tungsten (W), molybdenum (Mo), and alloys thereof.
  • silver is preferable because it has low resistance, high conductivity, and can be easily processed into a desired shape.
  • the second electrode can be formed by preparing a coating solution containing a metal nanomaterial, applying the coating solution on the organic functional layer group 6, and drying.
  • the thickness of the second electrode 7 formed of the metal nanomaterial can be in the range of 10 nm to 10 ⁇ m.
  • the second electrode When forming the second electrode, it is preferable to perform a heat treatment (annealing treatment) within a range that does not damage the organic functional layer group 6 located below. Thereby, fusion of metal materials such as metal nanoparticles proceeds, and the conductivity of the second electrode is increased.
  • a heat treatment annealing treatment
  • a general oven or hot plate heating method can be used.
  • local heat treatment may be performed by flash pulse light irradiation treatment, microwave treatment, plasma treatment, dielectric heating treatment, excimer light irradiation treatment, ultraviolet ray treatment, infrared heater treatment, hot air heater treatment, etc. You may use together with heat processing by oven etc.
  • Insulating layer 5 Various insulating materials can be used as the material for forming the insulating layer 5 according to the present invention shown in FIG. 4B, and an inorganic oxide film having a high relative dielectric constant is particularly preferable.
  • inorganic oxides include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium / strontium titanate, barium zirconate titanate, lead zirconate titanate, lead lanthanum titanate, strontium titanate , Barium titanate, barium magnesium fluoride, bismuth titanate, strontium bismuth titanate, strontium bismuth tantalate, bismuth tantalate niobate, trioxide yttrium, etc. Silicon, aluminum oxide, tantalum oxide, and titanium oxide. Inorganic nitrides such as silicon nitride and aluminum nitride can also be suitably used.
  • Examples of the method for forming an insulating layer composed of an inorganic oxide film include spray coating, spin coating, blade coating, dip coating, casting, roll coating, bar coating, die coating, and ink jet printing.
  • Wet forming methods such as a patterning method can be used and can be used depending on the material. Of these, the inkjet printing method is preferable.
  • Examples of the material for forming the insulating layer 5 according to the present invention include organic compounds.
  • Examples of the organic compounds include polyimide, polyamide, polyester, polyacrylate, photo radical polymerization, and photo cation polymerization photo curing.
  • An acryl resin, a copolymer containing an acrylonitrile component, polyvinyl phenol, polyvinyl alcohol, a novolac resin, and a phosphazene compound including a cyanoethyl pullulan, a polymer, and an elastomer can be used.
  • the cell venus etc. by a Daicel company can be mentioned.
  • a sealing structure is formed by a sealing layer around the periphery of the organic EL unit from the first electrode to the second electrode constituting the organic EL element.
  • a common sealing layer may be formed in a plurality of organic EL elements, or an independent sealing layer may be formed for each organic EL element.
  • the materials such as the silicon-containing polymer described in the formation of the gas barrier layer and the formation method thereof can be similarly applied.
  • the sealing layer according to the present invention is preferably composed of a first sealing layer 8 and a second sealing layer 9 as shown in the related drawings.
  • the first sealing layer 8 and the second sealing layer 9 may be formed of the same material or different materials.
  • a method of forming the first sealing layer 8 with polyorganosiloxane, polydimethylsiloxane (abbreviation: PDMS) or the like and forming the second sealing layer with perhydropolysilazane (abbreviation: PHPS) may be mentioned as an example. it can.
  • the transparent hygroscopic agent layer 16 may be installed.
  • FIG. 8 shows an example of a schematic cross-sectional view of a surface light emitting panel having a structure shown in FIG. 6 and further incorporating a transparent moisture absorbent layer.
  • the transparent hygroscopic agent layer 16 when installed in the surface light emitting panel, it is preferably installed between the first sealing layer 8 and the second sealing layer 9.
  • the transparent hygroscopic layer 16 includes a hygroscopic compound.
  • a hygroscopic compound For example, the structure only by a hygroscopic compound, the structure which disperse
  • the hygroscopic compound can be used without particular limitation as long as it is a compound having a moisture adsorption function.
  • the hygroscopic compound is preferably a compound that can chemically adsorb moisture and maintains a solid state even after moisture is adsorbed.
  • Examples of the hygroscopic compound used in the transparent hygroscopic layer 16 include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide), sulfates (for example, lithium sulfate, sodium sulfate, calcium sulfate). , Magnesium sulfate, etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, etc.), perchloric acids (eg, barium perchlorate, magnesium perchlorate, etc.).
  • Metal alkoxides can also be used. For example, aluminum alkoxide, titanium alkoxide, alkoxysilane, and the like can be given.
  • the binder resin applied to the formation of the transparent hygroscopic agent layer 16 it is preferable not to inhibit the moisture adsorption action of the hygroscopic compound, and it is preferable to use a material having high gas permeability.
  • the binder resin include polymer materials such as polyolefin-based, polyacryl-based, polyacrylonitrile-based, polyamide-based, polyester-based, epoxy-based, polycarbonate-based, and fluorine-based materials.
  • a method of manufacturing by a coating method or an ink jet printing method As a manufacturing method of the transparent hygroscopic agent layer 16, it is preferable to apply a method of manufacturing by a coating method or an ink jet printing method.
  • a method of dissolving a metal alkoxide in an excess of fluorinated alcohol is preferable because the sol-gel reaction rate can be reduced and the stability of the coating solution can be improved.
  • fluorinated alcohol examples include 2,2,3,3-tetrafluoropropanol, 2,2,3,3,3-pentafluoropropanol, 1,1,1,3,3,3-hexafluoroisopropanol, 2,2,3,3,4,4,5,5-octafluoropentanol and the like.
  • Ti (OiPr) 4 titanium tetraisopropoxide
  • the transparent moisture absorbent layer 16 formed by this method functions as a transparent moisture absorbent layer because unreacted metal fluoride alkoxide remains inside. Furthermore, because the fluorinated alcohol produced by reacting with water molecules that have penetrated into the layer is water-repellent, in addition to its original hygroscopicity, it is added with a water-repellent function, and exhibits a synergistic effect on sealing properties. It has characteristics not found in conventional desiccants.
  • the film thickness of the transparent hygroscopic agent layer 16 is 10 nm to 100 ⁇ m, and more preferably 0.1 to 1 ⁇ m, in terms of the effect.
  • Alpet AP can be applied as a sealing member, for example, a second sealing layer.
  • Alpet AP which is a polyethylene terephthalate film on which aluminum (Al) is deposited applicable to the present invention, include Alpet 12/34 manufactured by Asia Aluminum, 9-100 (Aluminum foil: 9 ⁇ m manufactured by Panac).
  • sealing resin layer 15 Further, in the case of applying Alpet AP as the second sealing layer, it is preferable to provide the sealing resin layer 15 as the first sealing layer.
  • the material constituting the resin sealing layer 15 include a photo-curing or thermosetting resin having a reactive vinyl group of an epoxy-based, acrylic acid-based oligomer or methacrylic acid-based oligomer, 2-cyanoacrylic acid ester, etc. And a moisture curable resin.
  • Examples of the pressure-sensitive adhesive material applicable to the formation of the pressure-sensitive adhesive layers 12A and 12B according to the present invention include hydrophilic acrylic polymer pressure-sensitive adhesives represented by polyacrylic acid pressure-sensitive adhesives, polyvinyl acetal pressure-sensitive adhesives, and polyvinyl alcohol-based pressure-sensitive adhesives.
  • polyvinyl alcohol adhesive for example, natural rubber, synthetic rubber, styrene-isoprene-styrene block copolymer, isoprene rubber, polyisobutylene (PIB), styrene-butadiene- Styrene block copolymer, styrene-butadiene rubber, polybutene, etc.
  • rubber adhesive for example, natural rubber, synthetic rubber, styrene-isoprene-styrene block copolymer, isoprene rubber, polyisobutylene (PIB), styrene-butadiene- Styrene block copolymer, styrene-butadiene rubber, polybutene, etc.
  • the thickness of the pressure-sensitive adhesive layer formed of the pressure-sensitive adhesive material is not particularly limited, but is preferably selected within the range of 0.1 to 10 ⁇ m.
  • the protective members 13, 13A, and 13B described in FIGS. 10A, 10B, 11A, and 11B are not particularly limited.
  • Fabrics for example, fabrics and woven fabrics), paper, elastomers (rubber fabrics), and the like can be similarly applied, and may be transparent or opaque.
  • these protective members are preferably made to function as a separator (separation sheet).
  • a substrate such as polyester, polyethylene, polypropylene, paper, etc., which has a silicon coat, a polyalkylene coat, or a fluororesin coat can be used, but a polyester film is silicon coated from the viewpoint of dimensional stability, smoothness, and peel stability. Those are preferred.
  • the thickness of the protective member is preferably in the range of 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • a surface emitting panel including an organic EL element is, for example, a dry forming method using a chemical vapor deposition method or a vacuum vapor deposition method, a spin coating method, a casting method, an LB method (Langmuir Brodget, Langmuir Broadgett method).
  • a surface emitting panel of the present invention can be formed by applying a known thin film forming method such as a wet coating method such as an inkjet printing method, etc., but in the method for manufacturing a surface emitting panel of the present invention, on one surface side of the flexible substrate, At least a gas barrier layer, a first electrode, an organic functional layer group, a second electrode, and a sealing layer are laminated by a wet coating method or an ink jet printing method to manufacture a surface emitting panel.
  • a known thin film forming method such as a wet coating method such as an inkjet printing method, etc.
  • a surface emitting panel is manufactured by a wet coating method or an ink jet printing method.
  • wet coating method examples of the wet coating method other than the inkjet printing method applicable to the present invention include spin coating method, casting method, screen printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, LB method ( Langmuir-Blodgett method) and the like, and a die coating method, a roll coating method, a spray coating method and the like are preferable from the viewpoint of obtaining a homogeneous thin film easily and high productivity.
  • the inkjet printing method is applied to the formation of at least the gas barrier layer, the first electrode, the organic functional layer group, the second electrode, and the sealing layer. This is preferable in that a plurality of organic EL elements having a small area can be efficiently formed at an arbitrary position of the panel.
  • Discharge methods include electro-mechanical conversion methods (eg, single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.), and electro-thermal conversion methods (eg, thermal Specific examples include an ink jet type, a bubble jet (registered trademark) type, an electrostatic suction type (for example, an electric field control type, a slit jet type, etc.), and a discharge type (for example, a spark jet type).
  • any discharge method may be used.
  • a serial head method, a line head method, or the like can be used without limitation.
  • the volume of ink droplets ejected from the inkjet head is preferably in the range of 0.5 to 100 pL.
  • the range of 2 to 20 pL is more preferable from the viewpoint of less application unevenness of the formation layer and high printing speed.
  • the volume of the ink droplet can be appropriately adjusted to a desired condition by adjusting the applied voltage or the like.
  • Printing methods using the inkjet printing method include a one-pass printing method and a multi-pass printing method.
  • the one-pass printing method is a method in which a plurality of inkjet heads are fixedly arranged in a predetermined printing area and printed by one head scan.
  • the multi-pass printing method (also referred to as a serial printing method) is a method of printing a predetermined printing area by a plurality of head scans.
  • a wide head in which nozzles are arranged in parallel over a width equal to or larger than the width of a desired coating pattern.
  • a wide head having at least the width of each coating pattern may be used.
  • FIG. 13 is a schematic view showing an example of a method for forming an organic EL element using an inkjet printing method of a one-pass printing method.
  • FIG. 13 shows an example of a gas barrier layer, a first electrode, an organic functional layer group, a second electrode, and a sealing layer that constitute an organic EL element on a flexible substrate F using an inkjet printer equipped with an inkjet head 30.
  • An example of a method for forming a plurality of independent organic EL elements EL by sequentially ejecting ink containing each forming material is shown.
  • the ink including the organic EL element forming material is sequentially ejected as ink droplets by the inkjet head 30, and a desired constituent layer (gas barrier layer) , First electrode, organic functional layer group, second electrode, and sealing layer).
  • the ink jet head 30 applicable to the method of manufacturing the surface light emitting panel of the present invention is not particularly limited, and for example, the ink pressure chamber has a vibration plate provided with a piezoelectric element.
  • the head may be a shear mode type (piezo type) head that discharges ink liquid by pressure change, and has a heating element. The thermal energy from this heating element causes a sudden volume change due to film boiling of the ink liquid from the nozzle.
  • a thermal type head that discharges ink liquid may be used.
  • the ink jet head 30 is connected to an ink supply mechanism for ejecting ink.
  • the ink liquid is supplied by the tank 38A.
  • the tank liquid level is made constant so that the ink liquid pressure in the ink jet head 30 is always kept constant.
  • the ink liquid is overflowed from the tank 38A and returned to the tank 38B under a natural flow.
  • the ink liquid is supplied from the tank 38B to the tank 38A by the pump 31, and is controlled so that the liquid level of the tank 38A is stably constant according to the ejection conditions.
  • the ink liquid is returned from the pump 31 to the tank 38A through the filter 32.
  • the filter medium having an absolute filtration accuracy or semi-absolute filtration accuracy of 0.05 to 50 ⁇ m at least once.
  • the ink liquid from the tank 36 and the cleaning solvent from the tank 37 can be forcibly supplied to the inkjet head 30 by the pump 39.
  • tank pumps may be divided into a plurality of parts for the ink jet head 30, pipe branches may be used, or a combination thereof may be used. In FIG. 12, a pipe branch 13 is used.
  • the ink liquid may be extracted from the air vent pipe while being forcibly sent from the tank 36 to the ink jet 30 by the pump 39 and sent to the waste liquid tank 34. .
  • FIG. 14A and 14B are schematic external views showing an example of the structure of an inkjet head applicable to the inkjet printing method.
  • FIG. 14A is a schematic perspective view showing an inkjet head 100 applicable to the present invention
  • FIG. 14B is a bottom view of the inkjet head 100.
  • An inkjet head 100 applicable to the present invention is mounted on an inkjet printer (not shown), a head chip that ejects ink from a nozzle, a wiring board on which the head chip is disposed, and the wiring board. And a drive circuit board connected via a flexible board, a manifold for introducing ink into the channel of the head chip via a filter, a casing 56 containing the manifold inside, and a bottom opening of the casing 56 A cap receiving plate 57 attached to be closed, first and second joints 81a and 81b attached to the first ink port and the second ink port of the manifold, and a third attached to the third ink port of the manifold. A joint 82 and a cover member 59 attached to the housing 56; . Further, attachment holes 68 for attaching the casing 56 to the printer main body are formed.
  • the cap receiving plate 57 shown in FIG. 14B is formed as a substantially rectangular plate shape whose outer shape is long in the left-right direction, corresponding to the shape of the cap receiving plate mounting portion 62, and a plurality of nozzles are formed in the substantially central portion.
  • a nozzle opening 71 that is long in the left-right direction is provided.
  • FIG. 2 described in JP 2012-140017 A can be referred to.
  • 14A and 14B show typical examples of ink jet heads, but other examples include, for example, Japanese Patent Application Laid-Open Nos. 2012-140017, 2013-010227, 2014-058171, and 2014. No. 097664, JP-A-2015-142979, JP-A-2015-142980, JP-A-2016-002675, JP-A-2016-002682, JP-A-2016-107401, JP-A-2017-109476 An ink jet head having a configuration described in Japanese Patent Laid-Open No. 2005-177626 and the like can be appropriately selected and applied.
  • 15 and 16 are schematic flow charts showing an example of a manufacturing process using the inkjet printing method of the organic EL element EL having the configuration on the AA cut plane shown in FIG.
  • Step 1 Formation of underlayer>
  • an ink solution for forming a base layer containing an ultraviolet curable resin is applied to the position on the flexible substrate F described in FIG. 4A, which is the manufacturing flow diagram (top view).
  • the base layer 1 is formed by curing by irradiating ultraviolet rays.
  • Step 2 Formation of gas barrier layer>
  • a gas barrier layer forming ink liquid containing, for example, a silicon-containing polymer is ejected from the inkjet head 30 at the position described in FIG. 4A (top view) to form a pattern.
  • the gas barrier layer 2 is formed by performing a modification treatment by irradiating vacuum ultraviolet light of 172 nm using a Xe excimer lamp in an environment in which the oxygen concentration and the water vapor concentration are controlled. To do.
  • Step 3 Formation of grid>
  • an ink liquid for forming a grid containing silver nanoparticles is applied from the inkjet head 30 to a predetermined position on the gas barrier layer 2 described in FIG. 4A (top view).
  • the grid 3 with enhanced conductivity is formed by performing heat treatment in a range that does not damage the flexible base material F.
  • a conductive polymer such as poly (3,4-ethylenedioxythiophene) is formed on the grid 3 at the predetermined light emitting position described in FIG. 4A (top view) by the method shown in FIG.
  • the first electrode 4 is formed by discharging the ink solution for forming the first electrode containing the composite of PEDOT and PSS (polypropylenesulfonic acid) from the inkjet head 30 to form a pattern, and then removing the solvent by drying. To do.
  • Step 5 Formation of insulating layer>
  • the upper surface of the grid 3 excluding the electrode extraction portion is removed by the inkjet head 30 using the insulating layer forming ink containing the insulating material by the method shown in FIG.
  • the solvent is dried and removed, and a curing process suitable for the ink for forming the insulating layer is performed to form the insulating layer 5.
  • a region for forming an organic functional layer group in the next step was provided as an opening.
  • each organic functional layer is formed on the first electrode 4 in the opening surrounded by the insulating layer 5 from the inkjet head 30 by the method shown in FIG. (For example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc.) After sequentially discharging each organic functional layer group forming ink containing a forming material, the solvent is removed by drying. The organic functional layer group 6 is formed.
  • Step 7 Formation of second electrode>
  • the second electrode forming ink containing the second electrode forming material is used by the method shown in FIG.
  • the solvent is removed by drying, and the second electrode 7 is formed by performing heat treatment within a range that does not damage the organic functional layer group 6. In the AA cut surface, the entire surface is formed.
  • Step 8 Formation of first sealing layer>
  • a first sealing layer forming material for example, polydimethylsiloxane (abbreviation: PDMS)
  • PDMS polydimethylsiloxane
  • a pattern is formed on the second electrode 7 in a form that covers the organic functional layer group 6 and the insulating layer 5 from the inkjet head 30 using the ink for the ink, and after the solvent is removed by drying, the ultraviolet light is irradiated.
  • the first sealing layer 8 is formed by performing the modification process.
  • Step 9 Formation of second sealing layer>
  • a second sealing layer forming material for example, perhydropolysilazane (abbreviation: PHPS)
  • the ink is used to form a pattern so as to cover the first sealing layer 8 from the inkjet head 30, and after the solvent is dried and removed, an Xe excimer lamp is used in an environment in which the oxygen concentration and the water vapor concentration are controlled.
  • the surface treatment panel including the organic EL element can be formed by performing the modification treatment by irradiating vacuum ultraviolet light of 172 nm and forming the second sealing layer 9.
  • a transparent moisture absorbent layer 16 may be installed.
  • the transparent hygroscopic agent layer 16 is installed, it is preferably installed between the first sealing layer 8 and the second sealing layer 9 as shown in FIG.
  • the surface light emitting panel of the present invention a surface light emitting panel having an organic EL element having both sealing performance and flexibility and excellent manufacturability can be realized.
  • the surface light emitting panel of the present invention is a display device. It can be suitably used as a surface light emitter such as a display or an illumination light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明の課題は、簡易な構成を有し、印加電圧差による発光品質の低下や発光輝度差が改良された有機ELデバイスと、製造手段として大型設備を必要とせず、低コストで製造することができる有機ELデバイスの製造方法と、それを具備した画像表示装置を提供することである。 本発明の有機ELデバイスは、複数の有機EL素子を含む画素ユニットを有し、前記有機EL素子が、基材上に、少なくとも、第1電極と、発光層を含む有機機能層と、第2電極とを有し、前記画素ユニットが、発光色が異なる複数の前記有機EL素子を同一面上に配置した構成を有し、かつ、複数の前記有機EL素子のそれぞれの第1電極に電圧を印加するバスラインと、前記有機EL素子のそれぞれに印加する電圧を調整する抵抗値を有する導電部材と、前記有機EL素子に電圧を印加する印加電源部とを有することを特徴とする。

Description

面発光パネル及び面発光パネルの製造方法
 本発明は、複数の有機エレクトロルミネッセンス素子を具備した面発光パネルと、面発光パネルの製造方法に関し、更に詳しくは、封止性能とフレキシブル性を両立し、製造容易性に優れた有機エレクトロルミネッセンス素子を具備した面発光パネルと、面発光パネルの製造方法に関する。
 近年、有機材料のエレクトロルミネッセンス(Electroluminescence:以下、「EL」と略記する。)を利用した有機エレクトロルミネッセンス素子(以下、「有機EL素子」と略記する。)等が急速に普及しており、この有機EL素子は、数V~数十V程度の比較的低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有する。このため、表示装置用や照明光源等の面発光体として、その適用分野の検討が精力的になされている。
 有機EL素子を構成する層を形成する際、高い生産性を可能とする製造方法としては、ウェットプロセスが着目されている。従来適用されてきた真空蒸着法では、大型の真空装置が必要になると共に、基板等の真空操作や、蒸着プロセスに時間を要し、また、材料の利用効率も低いという問題を抱えていた。加えて、発光形状やサイズを変更する場合には、使用するマスクの変更等が必要となるため、マスクの設計及び作製において、長い作業期間と費用がかかり、多様なパネルに対応するための製造適性に問題があった。また、マスクの形状維持のために、表現可能な図形等に制限が生じているのが現状である。
 一方、有機EL素子は薄膜構成であることが特徴の一つであり、フレキシブル基材を適用することで、有機EL素子に可撓性を付与でき、フレキシブル化が図れる。しかしながら、有機EL素子を構成する有機機能層等は、水や酸素による影響を受けやすいため、それらをガスバリアー層と封止層で保護する必要がある。しかし、これらガスバリアー層や封止層は、ガスバリアー性能や封止性能を高めるため、剛性の高い塗膜、例えば、金属の酸化物、窒化物、酸窒化物等で塗膜を構成する必要があるために、これらの塗膜の多くは折り曲げ等の応力を受けた際、塗膜が破断しやすくなり、ガスバリアー性の低下を招くため、ガスバリアー性とフレキシブル性の両立には限界があった。
 上記問題に対し、伸縮性を有する基材上に、互いに離間した位置に形成された、画素電極、発光層、共通電極から構成される複数の発光ユニットを有し、それぞれの発光ユニットが個別の封止部材で封止されている構成の伸縮可能な表示部材が開示されている(例えば、特許文献1参照。)。
 特許文献1で開示されている後述の図1Bで示すような構成の表示部材では、伸縮性を有する基材上にガスバリアー層の記載、更に詳しくは、互いに離間した位置に形成されている発光ユニットごとに、独立したガスバリアー層を形成する形態の記載はなく、そのため、ガスバリアー性能あるいは封止性能としては十分ではなく、また、その製造方法に関しての明確な記載はないが、ディスプレイであるがゆえにその製造工程が複雑であり、製造容易性にも懸念がある。
 また、基材上にガスバリアー層が複数に分割パターニングされ、それぞれのガスバリアー層上に表示エレメントが形成されているガスバリアー層つき基板とそれを具備した表示素子が開示されている(例えば、特許文献2参照。)。
 特許文献2で開示されているガスバリアー層つき基板や表示素子は、あくまでも中間製品であり、最終的には、ガスバリアー層により分割されたユニットごとに切断して、実装用の表示素子を得ることを目的とするものである。したがって、各ユニット間には各電極を接続するための配線が存在していない。また、特許文献2に記載の方法では、有機機能層を除いては、スパッタや蒸着等の乾式法であり、使用する装置が大型化し、製造工程も複雑となり、製造容易性に問題を抱えている。
米国特許公開第2016/0211483号明細書 特開2009-37798号公報
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、封止性能とフレキシブル性を両立し、製造容易性に優れた有機エレクトロルミネッセンス素子を具備した面発光パネルとその製造方法を提供することである。
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層がこの順で積層されている小面積の有機EL素子を複数個有し、前記ガスバリアー層が、個々の有機EL素子に対応して有し、前記複数の有機EL素子が、配線を介して電気的に接続されていることを特徴とする面発光パネルにより、封止性能とフレキシブル性を両立し、製造容易性に優れた有機EL素子を具備した面発光パネルを実現することができることを見いだし、本発明に至った。
 すなわち、本発明の上記課題は、下記の手段により解決される。
 1.フレキシブル基材の一方の面側に、少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層がこの順で積層されている有機エレクトロルミネッセンス素子を複数個有する面発光パネルであって、
 前記複数の有機エレクトロルミネッセンス素子の1個当たりの発光面積が100mm以下であり、
 前記ガスバリアー層を、前記有機エレクトロルミネッセンス素子ごとに独立して有し、かつ、
 前記複数の有機エレクトロルミネッセンス素子が、配線を介して電気的に接続されている
 ことを特徴とする面発光パネル。
 2.前記封止層を、前記有機エレクトロルミネッセンス素子ごとに独立して有していることを特徴とする第1項に記載の面発光パネル。
 3.前記封止層に隣接して、更に粘着層を有することを特徴とする第1項又は第2項に記載の面発光パネル。
 4.前記フレキシブル基材の前記有機エレクトロルミネッセンス素子を有する面とは反対側の面に、更に粘着層を有することを特徴とする第1項から第3項までのいずれか一項に記載の面発光パネル。
 5.第1項から第4項のいずれか一項に記載の面発光パネルを製造する面発光パネルの製造方法であって、
 前記面発光パネルが、フレキシブル基材の一方の面側に、少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層を、湿式塗布法又はインクジェットプリント法により積層して製造することを特徴とする面発光パネルの製造方法。
 本発明によれば、封止性能とフレキシブル性を両立し、製造容易性に優れた有機エレクトロルミネッセンス素子を具備した面発光パネルとその製造方法を提供することができる。
 本発明で規定する構成からなる面発光パネルの技術的特徴とその効果の発現機構は、以下のように推察される。
 有機EL素子は、前述のとおり、薄膜構造が一つの特徴であり、フレキシブル基材を適用することでフレキブル化が図れるが、薄膜がゆえに、外部から侵入する水や酸素に対する耐性が低いため、ガスバリアー層や封止層で、水や酸素等の有害ガスから有機機能層等を保護する必要がある。
 このような有害ガスを遮断し、封止性能を高める方法としては、フレキシブル基材の全面にガスバリアー層や封止層を形成する方法が知られている。しかしながら、これらのガスバリアー層や封止層は、基本的には硬く緻密な膜(例えば、金属の酸化物、窒化物、酸窒化物等により構成される層)で構成されている場合が多い。このような金属酸化物、例えば、SiO等で構成される層は剛性が高く、折り曲げ応力等を受けた際、形成した塗膜が割れ易い特性であるため、これらの構成からなるガスバリアー層や封止層を適用した面発光パネルでは、構成しているフレキシブル基材に対し、当該ガスバリアー層や封止層のフレキシブル性が対応していないため、亀裂や膜破壊を生じやすくなり、その破壊箇所よりリークやショートパスが生じ、ガスバリアー性が低下する問題を有している。
 本発明では、上記問題について鋭意検討を進めた結果、フレキシブル基材上に、それぞれの有機EL素子に対応してガスバリアー層を独立(離間)して有する発光面積が100mm以下の小面積の有機EL素子を複数設置し、各離間して存在する有機EL素子間を、配線を介して電気的に接続することにより、屈曲した際のガスバリアー層への応力を分散させることで、面発光パネル全体のフレキシブル性を向上させることができた。
 また、本発明の面発光パネルの製造方法として、フレキシブル基材の一方の面側に、少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層を、湿式塗布法又はインクジェットプリント法により積層して製造する方法を適用することにより、大型の真空装置等が不要なため、設備負荷が軽く、フレキシブル基材の材料選択や発光形状の自由度が高く、製造容易性に優れた面発光パネルの製造方法を提供することができる。
従来型の比較例の面発光パネルの構成の一例を示す概略配置図 従来型の比較例の面発光パネルの構成の他の一例を示す概略配置図 本発明の面発光パネルの代表的な構成の一例を示す概略配置図(実施形態1) 本発明の面発光パネルの代表的な構成の他の一例を示す概略配置図(実施形態2) 本発明の面発光パネルの製造フローの一例を示す上面図(第1ステップ) 本発明の面発光パネルの製造フローの一例を示す上面図(第2ステップ) 本発明の面発光パネルの製造フローの一例を示す上面図(第3ステップ) 本発明の面発光パネルの製造フローの一例を示す上面図(第4ステップ) 本発明の面発光パネルの製造フローの一例を示す上面図(第5ステップ) 本発明の面発光パネルの製造フローの一例を示す上面図(第6ステップ) 図5Cで示す面発光パネルの切断面A-Aで表される構成を示す断面図(実施形態3) 図5Cで示す面発光パネルの切断面B-Bで表される構成を示す断面図(実施形態3) 図6に示す構成で、更に透明吸湿剤層を組み入れた面発光パネルの一例を示す断面図(実施形態4) 本発明の面発光パネルの代表的な構成で、封止部材にアルペットを用いた一例を示す概略配置図(実施形態5) 封止層上に粘着層を介して保護基板を設けた面発光パネルの一例を示す概略配置図(実施形態6) 封止層上に粘着層を介して保護基板を設けた面発光パネルの他の一例を示す概略配置図 有機EL素子の両面に粘着層と保護基板を設けた面発光パネルの一例を示す概略配置図(実施形態7) 有機EL素子の両面に粘着層と保護基板を設けた面発光パネルの他の一例を示す概略配置図 ガスバリアー層の形成に適用可能な真空紫外線照射装置の構成の一例を示す概略正面図 湿式塗布方式の一例であるインクジェットプリント法の一例を示す概略図 インクジェットプリント法に適用可能なインクジェットヘッドの構造の一例を示す概略斜視図 インクジェットプリント法に適用可能なインクジェットヘッドの構造の一例を示す底面図 図6で表される面発光パネルのインクジェットプリント法を用いた製造プロセスの一例を示す概略フロー図(その1) 図6で表される面発光パネルのインクジェットプリント法を用いた製造プロセスの一例を示す概略フロー図(その2)
 本発明の面発光パネルは、フレキシブル基材の一方の面側に、少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層がこの順で積層されている有機エレクトロルミネッセンス素子を複数個有する面発光パネルであって、前記複数の有機エレクトロルミネッセンス素子の1個当たりの発光面積が100mm以下であり、前記ガスバリアー層は、前記有機エレクトロルミネッセンス素子ごとに独立して有し、かつ、前記複数の有機エレクトロルミネッセンス素子が、配線を介して電気的に接続されていることを特徴とする。この特徴は、下記各実施形態に係る発明に共通する技術的特徴である。
 本発明の実施形態としては、本発明の目的とする効果をより発現できる観点から、各有機EL素子を構成する封止層も、ガスバリアー層と同様に独立して有する構成とすることにより、面発光パネルのフレキシブル性をより一層向上させることができる点で好ましい。
 また、前記封止層に隣接して粘着層を有する構成とすることにより、フレキシブル性を取り崩さずに封止層を物理的に保護でき、かつ面発光パネルを、紙、布、壁材、窓ガラス等の別の部材に容易に貼り付けることが可能となり、好ましい。
 また、フレキシブル基材から光を取り出す場合、有機EL素子を有する面とは反対側の面に粘着層を有する構成とすることにより、別の部材に貼り付け、当該部材の裏面側から光を照射することができ、意匠的に好ましい。
 また、面発光パネルの製造方法においては、面発光パネルが、フレキシブル基材の一方の面側に、少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層を、湿式塗布法又はインクジェットプリント法により積層して製造することを特徴とする。
 以下、本発明の面発光パネルの構成要素、及び本発明を実施するための形態について、図を交えて詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。なお、各図の説明において、構成要素の末尾に記載した数字は、各図における符号を表す。
 《有機ELデバイスの基本構成》
 本発明の面発光パネルは、ガスバリアー層が、それぞれの微小面積の有機EL素子ごとに独立して形成され、かつ複数の有機EL素子間が、配線を介して電気的に接続されていることを特徴とする。
 本発明の面発光パネルの詳細な説明の前に、従来型の比較例である面発光パネルの構成について説明する。
 図1A及び図1Bは、従来型の比較例の面発光パネルの構成の一例を示す概略配置図である。
 図1Aは、従来型の面発光パネルの一例で、フレキシブル基材Fの全面に、共通のガスバリアー層2を形成し、その上に、それぞれ離間した状態で、第1電極4(陽極)、発光層を含む有機機能層群6、第2電極7(陰極)が積層されて有機EL素子を構成し、その積層体の周辺部を第1封止層8で封止した後、面発光パネルPの全面を、共通の第2封止層9で被覆した構成である。各有機EL素子の第1電極4間は、電極配線11により接続され、面発光体Pを構成している。
 このような面発光パネルPでは、ガスバリアー層2が全面に形成されている構成であり、基材がフレキシブル基材Fで構成されている場合、折り曲げや引張等の応力を受けた際、共通構成のガスバリアー層に応力が集中し、その結果、ガスバリアー層で亀裂(ショートバス)や膜破壊が生じ、ガスバリアー性能の低下を招く。
 図1Bに示す構成の比較例である面発光パネルPは、上記図1Aで説明した面発光パネルPに対し、第2封止層9が、それぞれ離間して形成されている有機EL素子(第1電極4、有機機能層群6、第2電極7)に対し独立して形成されている例を示しているが、この構成でも、ガスバリアー層2は共通の構成であり、応力を受けた場合には、上記と同様の問題が生じる。
 上記で示した構成は、例えば、特許文献1である米国特許公開第2016/0211483号明細書に記載されている構成である。
 次いで、本発明の面発光パネルの構成について、図を交えて説明する。なお、以下に説明する面発光パネルの各構成要素の詳細については、後述する。
 本発明の面発光パネルは、前述のとおり、フレキシブル基材の一方の面側に、少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層がこの順で積層され、ガスバリアー層が有機EL素子ごとに独立・分離して形成され、かつ小面積の複数の有機EL素子間が配線を介して接続されていることを特徴とする。
 (実施形態1)
 図2は、本発明の面発光パネルの代表的な構成の一例である実施形態1を示す概略配置図である。
 図2に示す本発明の面発光パネルPは、フレキシブル基材F上に、1個当たりの発光面積が100mm以下である有機EL素子ELを複数個、独立して配置している。有機EL素子の1個当たりの発光面積としては、25mm以下であることが更に好ましい。下限は特に制限はないが、4mm以上であることが好ましい。
 それぞれの有機EL素子ELごとに、独立したガスバリアー層2を有し、その上に、第1電極4(陽極)、発光層を含む有機機能層群6、第2電極7(陰極)が積層されている。その積層体の周辺部を、共通の第1封止層8及び第2封止層9で被覆して、面発光パネルPを構成している。また、必要に応じて、フレキシブル基材Fとガスバリアー層2の間に、両者の密着性向上を目的として下地層(不図示)設けてもよい。また、各有機EL素子ELでは、それぞれの第1電極4(陽極)間を電極配線11で電気的に接続して、各有機EL素子ELの発光制御を行う。各素子間の電極配線11はフレキシブル基材F上に直接設置されていても良いが、下地層(不図示)を設け、その上に設置してもよい。なお、各有機EL素子においては、それぞれの第2電極7(陰極)間は電極配線により電気的に接続されているが、本図では便宜上、その記載は省略している。
 図2で示す面発光パネルPにおいては、フレキシブル基材F、第1電極4、第2電極7、第1封止層8及び第2封止層9に適用する材料の光透過性を調整あるいは選択することにより、面発光パネルP上面側(封止層側)に発光光Lを取り出す、トップエミッション型TEとすること、あるいは、面発光パネルPの下面側(フレキシブル基材の裏面側)から発光光Lを取り出す、ボトムエミッション型BEとすることができる。
 (実施形態2)
 図3は、本発明の面発光パネルの代表的な構成の一例である実施形態2を示す概略配置図である。
 図3に示す実施形態2である面発光パネルPでは、上記説明した図2で示すガスバリアー層2のみを独立した構成とした面発光パネル(実施形態1)に対し、更に、第1封止層8及び第2封止層9を独立して形成している形態を示しており、より折り曲げ等のストレスを受けた際の折り曲げ耐性が向上する点で好ましい形態の一つである。
 (実施形態3)
 次いで、有機EL素子(EL)を含む面発光パネルPのより詳細な構成(実施形態3)について、図4A~図4C、図5~図5C、図6及び図7を用いて説明する。
 図4A~図4C、図5~図5C、図6及び図7に示す面発光パネルPでは、上記図2及び図3で説明した概略構成に対し、更にフレキシブル基材Fとガスバリアー層2の間に下地層1と、第1電極4(陽極)、発光層を含む有機機能層群6と第2電極7(陰極)と間に絶縁層5を設けた、より具体的な面発光パネルPの構成を示す。
 図4A~図4C、図5~図5Cは、後述する図6及び図7で示す構成の面発光パネルPの製造ステップを示す製造フロー図(上面図)である。図6は上記製造フローで作製した面発光パネルPの図5Cで示す切断面A-Aで表される構成を示す詳細断面図であり、図7は、図5Cで示す面発光パネルの切断面B-Bで表される構成を示す詳細断面図である。
 はじめに、図4A~図4C、図5~図5Cを用いて、面発光パネル(実施形態3)の製造フローについて説明する。図4A~図4C、図5~図5Cでは、フレキシブル基材F上に、各構成部材を順次積層して、面発光パネルPを作製するフローを示してある。本発明の面発光パネルの製造方法においては、以下に説明する少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層を、湿式塗布法又はインクジェットプリント法により積層して製造することを特徴とする。
 図4Aでは、最下部に配置するフレキシブル基材F上に、例えば、紫外線硬化型樹脂より構成される下地層1を設置し、次いで、下地層1上に有機EL素子に対応した独立のガスバリアー層2を形成する。
 次いで、図4Aで示す位置に、格子状のグリッド、例えば、Agグリッド3を形成し、その上の所定の位置に、例えば、導電性ポリマー等で第1電極4(陽極)を形成する。
 次いで、図4Bで示すように、絶縁層5により第1電極4の端部である取り出し部を除いた領域のAgグリッド3表面を被覆する。
 次いで、図4Cで示すように、上記形成した絶縁層5で囲まれた開放部である第1電極4上に、発光層を含む有機機能層群6をパターン成膜する。
 次いで、図5Aで示す位置に、第2電極7(陰極)を、有機機能層群6上で、Agグリッド3間に格子状で形成する。
 次いで、図5Bで示すように、有機機能層群6と絶縁層5を被覆する様に、例えば、ポリオルガノシロキサン、ポリジメチルシロキサン(略称:PDMS)等により第1封止層8を形成する。
 最後に、図5Cで示すように、第1封止層8を被覆する様に、例えば、パーヒドロポリシラザン(略称:PHPS)等を用いて第2封止層9を形成して、面発光パネルPを構成する有機EL素子ELを作製する。
 この時、第2封止層9は、第1封止層8を被覆するため、第1封止層8より広い面積を有している。
 図6は、図5Cで示す面発光パネルの切断面A-Aで表される構成を示す断面図で、A-Aラインは、有機機能層群6が形成され、その全面に第2電極7が形成されている領域である。
 図6で示すように、フレキシブル基材Fの一部の領域に、下地層1を介して、独立したガスバリアー層2が形成されている。その上に、格子状のAgグリッド3を被覆する様に第1電極4が設けられている、その第1電極4の両端部を被覆する様に絶縁層5が設けられ、絶縁層5を形成していない非形成部(開口部)に有機機能層群6が形成され、その全面にわたり第2電極7が形成され、その上の一部領域に、第1封止層8と第2封止層9が形成され、面発光パネルPを形成している。
 この切断面A-Aで表される構成においては、全面に形成され、露出部を有する第2電極7のガスバリアー性も重要になってくる。
 図7は、図5Cで示す面発光パネルの切断面B-Bで表される構成を示す断面図で、B-Bラインで表される領域は、Agグリッド3及び絶縁層5が全面にわたり形成されている。
 図7で示す断面図は、Agグリッド3及び絶縁層5が全巾にわたり形成されている構成であり、このような場合には、絶縁層5のガスバリアー性も重要になってくる。
 (実施形態4)
 図8は、図5Cで示す面発光パネルの切断面A-Aで表される構成に対し、更に透明吸湿剤層を組み入れた面発光パネルの一例を示す断面図(実施形態4)である。
 透明吸湿剤層16は、封止層の封止性能を高めるため、図8に示すように、面発光パネル内の第1封止層8と第2封止層9の間に設置することが好ましい。
 透明吸湿剤層16の詳細については後述する。
 (実施形態5)
 図9は、本発明の面発光パネルの代表的な構成で、第2封止層としてアルペットを適用した一例を示す概略配置図(実施形態5)である。
 図9で示す面発光パネルPでは、前述の図2で説明した実施形態1の面発光パネルに対し、第2封止層としてアルペットAPを適用し、同時に、第1封止層として封止樹脂層15を形成している一例を示してある。
 実施形態5に記載の構成においては、アルペット自身が光不透過性のため、発光光Lがフレキシブル基材Fの背面側(下面側)から放射されるボトムエミッション型となる。
 (実施形態6)
 上記説明した実施形態2~4においては、面発光パネルの基本的な構成について説明したが、次に、面発光パネルとして、より実用的な形態について説明する。
 図10A及び図10Bは、封止層上に粘着層を介して保護基板を設けた面発光パネルの一例を示す概略配置図(実施形態6)である。
 図10Aで示す面発光パネルPは、先に説明した図3に記載の面発光パネルの第2封止層9上に、第1粘着層12と、ポリエチレンテレフタレート(PET)やポリエチレン(PE)等で構成されている第1保護部材13が積層されている構成を示してある。この構造においては、各有機EL素子EL間には、間隙Vが形成されうるが、この間隙Vは極めて狭い空間であり、特に充填物を添加しない状態、又は、必要に応じて粘着層を構成する粘着剤が充填されて封止構造を形成することもできる。
 この第1保護部材13は、面発光パネルPが外圧を受けた際の有機EL素子ELを保護する役割と、下記の図10Bで説明するようなセパレートフィルムとしての役割も果たす。
 また、図10Aで示した構成の面発光パネルPは、図10Bで示すように、面発光パネルPの最表面に設けた第1保護部材13を剥離(セパレート)し、露出している第1粘着層12を介して、設置部材14、例えば、紙、布、壁面、あるいは窓ガラスなどの様々な形状を有する部材に貼付して、フレキシブル性に優れた面状照明装置やサインボードを得ることができる。
 (実施形態7)
 図11A及び図11Bは、有機EL素子の両面に粘着層と保護基板を設けた面発光パネルの一例を示す概略配置図(実施形態7)である。
 実施形態7である図11Aで示す面発光パネルPは、上記説明した図10Aに記載の面発光パネルに対し、更に、フレキシブル基材Fの裏面側に、第2粘着層12Bを介して、ポリエチレンテレフタレート(PET)やポリエチレン(PE)等で構成されている第2保護部材13Bが積層されている。図11Aで示す場合においても、各有機EL素子(EL)間には、間隙Vが形成されている。この間隙Vは極めて狭い空間であり、特に充填物を添加しない状態、又は、必要に応じて粘着層を構成する粘着剤が充填されて封止構造を形成することもできる。
 また、図11Aで示した構成の面発光パネル(P)においても、図11Bで示すように、面発光パネルPの裏面に設けた第2保護部材13Bを剥離(セパレート)し、露出している第2粘着層12Bを介して、設置部材14、例えば、紙、布、壁面、あるいは窓ガラスなどの様々な形状を有する部材に貼付して、フレキシブル性に優れた面状照明装置やサインボードを得ることができる。
 《有機ELデバイスの構成部材》
 次いで、上記各図を用いて説明した本発明の面発光パネルの主要構成部材の詳細について、以下に説明する。
 〔フレキシブル基材F〕
 本発明の面発光パネルに適用可能なフレキシブル基材Fとしては、フレキシブル性を備えた基材であればよく、例えば、薄膜ガラス、樹脂フィルム、メタルホイル、ファブリック(例えば、生地や織物等)、紙、エラストマー(ゴム生地)等を適用することができ、また、透明であっても不透明であってもよい。
 有機EL素子ELとして、フレキシブル基材F側から発光光Lを取り出すボトムエミッション型BEの場合には、フレキシブル基材Fは光透過性であることが好ましい。光透過性であるということは、可視光領域における全光線透過率が20%以上であることをいい、50%以上であることが好ましく、80%以上の透明性を有していることがより好ましい。特に好ましいフレキシブル基材Fは、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール(PVA)、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド(PI)、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート(PMMA)、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 ファブリックとしては、例えば、綿、羊毛、絹、ナイロン、リネン、レーヨン、アクリル、ポリエステル、ポリウレタン等により構成されている生地、織物、編物、不織布等いずれの形態でもよい。
 エラストマーとしては、天然ゴムの他に、合成ゴムを挙げることができ、イソプレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレンプロピレンゴム、アクリルゴム、フッ素ゴム、ウレタンゴム、シリコーンゴム等を挙げることができる。
 フレキシブル基材は、単独又は2種以上組み合わせて用いることができる。フレキシブル基材が2層以上の積層構造である場合、各基材は同じ種類であってもよいし異なる種類であってもよい。また、有機EL素子を作製した後に剥離、分離できる構成でもよい。
 〔フレキシブル基材の密着性向上処理〕
 フレキシブル基材F表面には、フレキシブル基材上に形成するガスバリアー層2との密着性を高めるため、表面活性化処理が施されていてもよいし、下地層が設けられていてもよい。また、耐衝撃性を高めるため、ハードコート層が設けられていてもよい。
 表面活性化処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等が挙げられる。
 下地層及びハードコート層の材料としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等が挙げられ、なかでも紫外線硬化型樹脂を好ましく使用できる。下地層は単層でもよいが、多層構造であると密着性がより向上する。予めハードコート層が形成されている市販のプラスチック基材を用いても良いし、フレキシブル基材の必要な部分にのみ塗布、硬化して、下地層やハードコート層を設置しても良い。
 〔ガスバリアー層2〕
 ガスバリアー層は、有機EL素子に対し、外部から有害成分(酸素、水分等)の侵入を防止する機能を有する層で、本発明の面発光パネルにおいては、複数個存在する各有機EL素子に対応し、独立した形態で形成されていることが特徴である。
 本発明に係るガスバリアー層の厚さは、目的に応じて適宜設定することができるが、一般的には、100nm~10μmの範囲内とすることができる。
 また、本発明に係るガスバリアー層は、湿式塗布法又はインクジェットプリント法により形成することを特徴とする。
 (ケイ素含有ポリマー)
 本発明に係るガスバリアー層の形成に適用可能な材料としては、繰り返し構造中にケイ素と酸素(Si-O)、ケイ素と窒素(Si-N)等の結合を有するケイ素含有ポリマーを含有している構成を一例として挙げることができる。
 ケイ素含有ポリマーの具体例としては、繰り返し構造中に、Si-O結合を有するポリシロキサン(ポリシルセスキオキサンを含む)、Si-N結合を有するポリシラザン、Si-O結合とSi-N結合の両方を含むポリシロキサザン等が挙げられる。これらは2種以上を混合して使用することができる。また、異なる種類のケイ素含有ポリマーの層を積層することもできる。
 〈ポリシロキサン〉
 ポリシロキサンは、繰り返し構造中に、-〔RaSiO1/2〕-、-〔RbSiO〕-、-〔RcSiO3/2〕-、-〔SiO〕-等を含む化合物である。
 Ra、Rb及びRcは、それぞれ独立に、水素原子、1~20の炭素原子を含むアルキル基(例えば、メチル基、エチル基、プロピル基等)、アリール基(例えば、フェニル基、不飽和アルキル基)等の置換基を表す。好ましい一例は、ポリオルガノシロキサン、ポリジメチルシロキサン(略称:PDMS)である。ポリシルセスキオキサンは、上記ポリシロキサンのなかでもシルセスキオキサンと同じ構造を繰り返し構造中に含む化合物である。シルセスキオキサンは、上記-[RcSiO3/2]-で表される構造を有する化合物である。
 〈ポリシラザン〉
 ポリシラザンの構造は、下記一般式(A)で表すことができる。
 一般式(A)
   -[Si(R)(R)-N(R)]-
 上記一般式(A)において、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基又はアルコキシ基を表す。
 上記一般式(A)中のR、R及びRの全てが水素原子であるポリシラザンが、パーヒドロポリシラザン(略称:PHPS)である。パーヒドロポリシラザンは、緻密な膜が得られる点で好ましい。
 パーヒドロポリシラザンは、直鎖構造と、6員環及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は、数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体又は固体の物質があり、その状態は分子量により異なる。
 一方、上記一般式(A)において、Siと結合する水素原子の一部がアルキル基等で置換されたポリシランがオルガノポリシラザンである。オルガノポリシラザンは、メチル基等のアルキル基によって下地層との密着性が向上し、かつ硬くてもろい特性を有するポリシラザンに靭性を付与することができるため、膜を厚くした場合でもクラックの発生が抑えられるという利点がある。したがって、用途に応じて適宜、パーヒドロポリシラザンとオルガノポリシラザンを選択するか、又は両者を混合して使用すればよい。
 〈ポリシロキサザン〉
 ポリシロキサザンは、繰り返し構造中に、-[(SiH(NH)]-と-[(SiHO]-で表される構造を含む。n、m及びrは、それぞれ独立に、1~3を表す。
 〈その他のポリシラザン〉
 低温でセラミック化するポリシラザンの他の例としては、上記一般式(A)で表される単位からなる主骨格を有するポリシラザンに、ケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報参照。)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報参照。)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報参照。)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報参照。)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報参照。)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報参照。)等が挙げられる。
 (ガスバリアー層の成膜方法)
 本発明に係るガスバリアー層は、湿式塗布法又はインクジェットプリント法により形成することを特徴とする。その形成方法としては、ロールコート法、フローコート法、スプレーコート法、プリント法、ディップコート法、バーコート法、流延成膜法、インクジェットプリント法、グラビア印刷法等が挙げられるが、製造容易性を重視する場合には、インクジェットプリント法が好ましい。
 (ガスバリアー層形成用塗布液)
 ガスバリアー層の形成用塗布液の調製に用いる溶媒としては、ポリシラザンと容易に反応するアルコール系有機溶媒又は水分を含む有機溶媒の使用を避けることが好ましい。したがって、ガスバリアー層形成用塗布液の調製に使用できる有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類等が挙げられる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素類、塩化メチレン、トリクロロエタン等のハロゲン炭化水素類、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。これらの有機溶媒は、ポリシラザンの溶解度や有機溶媒の蒸発速度等の特性に合わせて選択し、複数の有機溶媒を混合してもよい。
 ガスバリアー層形成用塗布液としては、ポリシラザンを有機溶媒中に溶解させた市販品を使用することができる。使用できる市販品としては、AZエレクトロニックマテリアルズ社製のアクアミカNAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140等が挙げられる。
 ガスバリアー層形成用塗布液は、改質処理を促進する観点から、触媒を含有することもできる。触媒としては、塩基性触媒が好ましく、例えば、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N′,N′-テトラメチル-1,3-ジアミノプロパン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物等が挙げられる。
 ガスバリアー層形成用塗布液におけるケイ素含有ポリマーの含有量は、形成するケイ素含有ポリマー改質層の厚さや塗布液のポットライフによっても異なるが、おおむね0.2~35.0質量%の範囲内であることが好ましい。
 形成したガスバリアー層塗膜には、塗膜中の有機溶媒を除去する観点から、加熱による乾燥処理を施すことができる。
 乾燥処理工程における加熱温度は、50~200℃の範囲内とすることができる。加熱時間は、樹脂フィルム等で構成されているフレキシブル基材の変形等を防ぐため、短時間に設定することが好ましい。例えば、フレキシブル基材として、ガラス転移温度が70℃のポリエチレンテレフタレート(PET)で構成されている樹脂フィルムの場合、乾燥処理時の温度としては、樹脂フィルムの変形を防止するため、150℃以下に設定することができる。
 また、形成したガスバリアー層の塗膜に、塗膜中の水分を取り除く観点から、低湿度環境に維持して除湿する乾燥処理を施すこともできる。低湿度環境における湿度は、温度により変化するので、温度と湿度の関係は露点温度の規定により決定することができる。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-8℃(温度25℃/湿度10%)以下、さらに好ましい露点温度は-31℃(温度25℃/湿度1%)以下である。水分を取り除きやすくするため、減圧乾燥してもよい。減圧乾燥における圧力は常圧~0.1MPaの範囲内で選ぶことができる。
 (ガスバリアー層の改質処理)
 ガスバリアー層は、上述したケイ素含有ポリマーを含有する塗布液を用いて塗膜を形成した後、当該塗膜に改質処理を施すことにより形成することができる。なお、改質処理によりケイ素含有ポリマーをシリカ等に転化させて改質処理物を得ることができるが、ケイ素含有ポリマーの全てを改質する必要はなく、少なくとも一部、例えば、紫外線照射面側が改質されていればよい。
 ガスバリアー層の改質処理の方法としては、樹脂フィルム等で構成されているフレキシブル基材への熱ダメージ等が少ない公知の方法を適用することができ、低温処理が可能なプラズマ処理、オゾン処理、紫外線又は真空紫外線の照射処理等を用いることができる。なかでも、真空紫外線の照射処理は、ケイ素含有ポリマーを改質したガスバリアー層を形成してから、次工程までの間の環境の影響によってガスバリアー性が低下しにくいことから、好ましい。
 真空紫外線照射処理は、ケイ素含有ポリマーを構成する原子間結合力より大きい100~200nmの波長範囲にある真空紫外光(Vaccum Ultra Vilet、略称:VUV)の光エネルギーを用い、原子間の結合を光量子プロセスと呼ばれる、光子のみによる作用により直接切断するとともに、活性酸素やオゾンによる酸化反応を進行させることで、約200℃以下の比較的低温の環境下で、ケイ素含有ポリマーをシリカ等に転化させる処理である。
 真空紫外光の光源としては、100~200nmの範囲内にある波長の光を発生させるものであればよく、照射波長が、約172nmの希ガスエキシマランプ(例えば、エム・ディ・コム社製のXeエキシマランプ MODEL:MECL-M-1-200)、約185nmの低圧水銀蒸気ランプ、200nm以下の中圧及び高圧水銀蒸気ランプ等が挙げられる。
 エキシマランプの特徴としては、単一波長の光を放射し、発光効率が極めて高いこと、放射する光が短波長で照射対象の温度を低温状態に保てること、瞬時の点灯及び点滅が可能であること等が挙げられ、熱の影響を受けやすい樹脂フィルムで構成されているフレキシブル基材にも適用しやすい光源である。特に、Xeエキシマランプが放射する172nmという短い単一波長の真空紫外光は、酸素の吸収係数が大きく、微量な酸素から高濃度の活性酸素又はオゾンを発生させ、有機物の結合の解離能力が高いことから、短時間での改質処理を可能とする。
 真空紫外線の照射条件は、ケイ素含有ポリマー改質によるガスバリアー層より下のフレキシブル基材を劣化させない範囲内で設定すればよい。例えば、紫外線の照射時間は、フレキシブル基材や下地層、ガスバリアー層形成用塗布液の組成、濃度等にもよるが、一般に0.1秒~10分の範囲内であり、0.5秒~3分の範囲内であることが好ましい。なお、均一に紫外線を照射する観点から、光源からの紫外線を反射板で反射させた反射光をケイ素含有ポリマー改質層の塗膜に照射することが好ましい。
 真空紫外線の照度は、1mW/cm~10W/cmの範囲内とすることができる。1mW/cm以上であれば、改質効率が向上し、10W/cm以下であれば、塗膜に生じ得るアブレーション、フレキシブル基材や下地層のダメージ等を低減することができる。真空紫外線の照射エネルギー量(照射量)は、0.1~10.0J/cmでの範囲内にすることができる。この範囲であれば、過剰な改質によるクラックの発生、フレキシブル基材の熱変形等を防止することができ、生産性も向上する点で好ましい。
 真空紫外線照射処理は、バッチ処理でも連続処理でもよい。バッチ処理の場合、真空紫外線の光源を備える紫外線焼成炉(例えば、アイグラフィクス社製の紫外線焼成炉。)を用いて処理することができる。連続処理の場合、フレキシブル基材を搬送して真空紫外線の光源を備えるゾーン内で連続的に真空紫外線を照射すればよい。
 真空紫外線照射時の反応には酸素が必要であるが、真空紫外線は酸素による吸収があり、改質効率が低下しやすいことから、できる限り酸素濃度及び水蒸気濃度の低い雰囲気内で真空紫外線の照射を行うことが好ましい。例えば、真空紫外線照射時の酸素濃度は、10~20000体積ppm(0.001~2体積%)の範囲内とすることができる。水蒸気濃度は、好ましくは1000~4000体積ppmの範囲内である。上記雰囲気の調整には、乾燥不活性ガス、特にコストの観点から乾燥窒素ガスを用いることが好ましい。酸素濃度の調整は、室内に導入する酸素ガス及び不活性ガスの流量比を調整することにより、行うことができる。
 次いで、本発明にガスバリアー層の形成に用いる真空紫外線照射装置について説明する。
 図12は、ガスバリアー層の形成に適用可能な真空紫外線照射装置の構成の一例を示す概略正面図である。
 図12に示すように、真空紫外線照射装置100は、ステージ104上に下地層1及びガスバリアー層の前駆体であるケイ素含有ポリマー含有膜を有するフレキシブル基材Fを載せてチャンバー101内を搬送する。チャンバー101内は、排気によって水蒸気が除去され、不活性ガスの導入により酸素濃度が一定に調整されている。
 ステージ104はヒーターを内蔵し、フレキシブル基材Fを加熱することが可能である。チャンバー101内は、遮蔽板106によってフレキシブル基材Fの搬送方向Vで3つのゾーンに分けられ、中央の真空紫外線照射ゾーンには複数のXeエキシマランプ102が設置されている。Xeエキシマランプ102は、電源を内蔵するホルダー103によって支持され、点灯制御される。ケイ素含有ポリマー含有膜が形成されたフレキシブル基材Fを、このXeエキシマランプ102が設置された真空紫外線照射ゾーン内を通過させることにより、真空紫外線を照射して、ガスバリアー層に改質することができる。
 ケイ素含有ポリマー改質層は単層でも良いが、ガスバリアー性をより高める観点から2層以上の積層構造であってもよい。積層構造をとる場合には、例えば、ポリシロキサン/ポリシラザンのように、ケイ素含有ポリマーの種類が異なる構成の積層でもよい。種類を変えることにより、ガスバリアー性だけでなく層間密着性の制御も可能となる。
 〔グリッド3〕
 図4Aで示すグリッド3は、導電性の金属細線から構成されている。グリッド3の形状は、格子状に限らず、ストライプ状、ハニカム構造状、網目状等の様々な形状のグリッドを使用できる。位置によらず均一な導電性を得る観点からは、本発明の面発光パネルにおいては、格子状であることが好ましい。
 グリッド3を構成する金属細線の線幅dwは、10~2000μmの範囲内にあることが好ましい。線幅dwが10μm以上であれば十分な導電性が得られ、2000μm以下であれば透明性の低下を抑制できる。
 グリッド3を構成する金属細線の高さdhは、0.1~10.0μmの範囲内にあることが好ましい。高さdhが0.1μm以上であれば十分な導電性が得られ、10.0μm以下であれば電子デバイスに用いたときに電流リークを防ぐことができる。
 グリッド3の抵抗率は、100Ω/sq.以下であることが好ましく、大面積化するには20Ω/sq.以下であることがより好ましい。グリッド3の抵抗率は、JIS K 7194-1994に準拠して測定することができる。
 グリッド3の開口率は、透明性を高める観点から、80%以上であることが好ましい。開口率とは、面発光部の全面積のうち、グリッドを形成する金属細線が配置されていない領域が占める面積の割合である。例えば、線幅が1mm、線間隔が10mmの金属細線が、格子状に形成されたグリッドの開口率は、約90%である。
 グリッド3の金属細線に使用可能な導電性の金属材料としては、例えば、金、銀、銅、鉄、コバルト、ニッケル、クロム、これらの合金等が挙げられる。低抵抗という観点からは、銀又は銅が好ましく、特に好ましくは銀である。
 グリッド3は、上記金属材料を用いた金属ナノ粒子、金属錯体等を含有する塗布液を、凸版印刷法、凹版印刷法、孔版印刷法、スクリーン印刷法、インクジェットプリント法、インクジェット平行線描画法等により所望の形状に塗布することにより、形成することができる。インクジェット平行線描画法は、塗布液を線状に塗布したときに線の中央部から端部へと塗布液が流動して端部の固形化がすすむコーヒーステイン現象を利用して、1本の線から2本の平行線を形成する方法である。ランダムな網目形状を形成する場合は、特表2005-530005号公報に記載のように、金属微粒子を含有する塗布液を塗布した後、乾燥することにより、自発的に金属微粒子が無秩序な網目形状を形成する方法を利用できる。なかでも、形状の制御が容易なインクジェットプリント法又は細線形成の精度が高いインクジェット平行線描画法が好ましい。
 金属錯体を含有する塗布液は、錯体を形成する金属が溶媒中に分散又は溶解されていればよい。溶媒としては、ケトカルボン酸、ベヘン酸、ステアリン酸等を使用できる。また、特表2008-530001号公報には、銀化合物とアンモニウムカーボネート系化合物とを反応して誘導された銀錯体化合物も挙げられている。塗布液は、還元剤として、アミン系化合物を含有することもできる。
 グリッド形成時、フレキシブル基材Fにダメージを与えない範囲で加熱処理を施すことが好ましい。これにより、金属ナノ粒子や金属錯体等の金属材料の融着が進み、グリッドの導電性が高まる。加熱処理には、一般的なオーブンやホットプレートによる加熱方法等を用いることができる。また、フラッシュパルス光照射処理、マイクロ波処理、プラズマ処理、誘電加熱処理、エキシマ光照射処理、紫外線処理、赤外ヒーター処理、熱風ヒーター処理等により、局所的な加熱処理を施してもよく、上記オーブン等による加熱処理と併用してもよい。
 グリッド3表面の平滑性としては、JIS B 0601-2013に準拠して測定される最大断面高さRt(p)が500nm以下であることが好ましく、200nm以下であることがより好ましく、100nm以下がさらに好ましい。平滑性が高いほど、電極として用いたときの有機EL素子の歩留りや連続駆動性が向上する。
 〔第1電極4〕
 第1電極4は、陽極又はアノードとも称され、図6で一例を示すように、ガスバリアー層2上に上記グリッド3を形成し、当該グリッド3上を被覆するように第1電極4が形成されている。あるいは、ガスバリアー層2上に第1電極4を形成し、当該第1電極4上にグリッド3が形成されている構成であってもよい。第1電極4は、主には、導電性ポリマー、カーボン材料、金属ナノ材料、又はこれらの混合で構成され、湿式塗布法又はインクジェットプリント法により形成可能なことが好ましい。
 第1電極層4の厚さは、30~2000nmの範囲内にすることができる。導電性を高める観点からは、厚さが100nm以上であることが好ましい。表面の平滑性を高める観点からは、厚さが200nm以上であることが好ましく、透明性を高める観点からは、厚さが1000nm以下であることがより好ましい。
 (導電性ポリマー)
 本発明において、第1電極の形成に適用可能な導電性ポリマーの一例として、ポリアニオンを含有するπ共役系導電性高分子を挙げることができる。
 本発明に適用可能なπ共役系導電性高分子としては、例えば、ポリチオフェン類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、ポリチアジル類等が挙げられる。なかでも、導電性、透明性、安定性等を高める観点から、ポリチオフェン類又はポリアニリン類が好ましく、ポリエチレンジオキシチオフェンがより好ましい。
 π共役系導電性高分子は、π共役系導電性高分子を形成する前駆体モノマーを、酸化剤、酸化触媒及びポリアニオンの存在の下で、化学酸化重合させることによって容易に製造できる。π共役系導電性高分子の形成に用いられる前駆体モノマーは、分子内にπ共役系を有し、酸化剤の作用によって高分子化した際にも主鎖にπ共役系を有する。そのような前駆体モノマーとしては、例えば、ピロール類、チオフェン類、アニリン類、及びこれらの誘導体等が挙げられる。
 前駆体モノマーの具体例としては、ピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブテンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等が挙げられる。
 ポリアニオンは、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステル、又はこれらの共重合体であって、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなる化合物である。ポリアニオンは、π共役系導電性高分子を溶媒に可溶化又は分散させ、ポリアニオンのアニオン基はπ共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性と耐熱性を向上させる。
 ポリアニオンのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、製造を容易とし、安定性を高める観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。なかでも、官能基のπ共役系導電性高分子へのドープ効果の観点から、スルホ基、一置換硫酸エステル基又はカルボキシ基がより好ましい。
 ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。さらに、これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
 また、分子内にさらにフッ素原子を有するフッ素化ポリアニオンも使用することができる。具体的には、パーフルオロスルホン酸基を含有するナフィオン(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(旭硝子社製)等が挙げられる。フッ素化ポリアニオンは、非フッ素化ポリアニオンと併用することにより、正孔注入機能を付加した透明電極を一体形成することができ、生産性が高まることから好ましい。
 ポリアニオンの重合度は、モノマー単位が10~100000個の範囲内にあることが好ましく、溶媒への溶解性及び導電性を高める点からは、50~10000個の範囲内にあることがより好ましい。
 導電性ポリマーにおけるπ共役系導電性高分子とポリアニオンの比率、すなわちπ共役系導電性高分子:ポリアニオンの質量比は、1:1~1:20の範囲内とすることができ、導電性及び分散性を高める観点からは、1:2~1:10の範囲内とすることが好ましい。
 導電性ポリマーは市販品を使用してもよく、例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる導電性ポリマー(以下、PEDOT/PSSと略す)の市販品としては、Heraeus社のCleviosシリーズ、Aldrich社のPEDOT-PSSの483095、560596、Nagase Chemtex社のDenatronシリーズ等がある。また、ポリアニリンの市販品としては、日産化学工業社製のORMECONシリーズ等を使用できる。
 (非導電性ポリマー)
 第1電極4は、透明性を高める観点から、上記説明した導電性ポリマーとともに、非導電性ポリマーを含有することが好ましく、さらに非導電性ポリマーが自己分散型ポリマー及びヒドロキシ基含有ポリマーの少なくとも一つを含有することがより好ましい。非電導性ポリマーを用いることにより、第1電極4の導電性を損なうことなく、導電性ポリマーの含有量を減らすことができ、第1電極として高い導電性と透明性の両方を備える透明電極を得ることができる。
 〈自己分散型ポリマー〉
 導電性ポリマーと併用できる自己分散型ポリマーは、解離性基を有し、ミセル形成を補助する界面活性剤や乳化剤等がなくても、自己分散型ポリマーにより形成されるコロイド粒子が凝集することなく、自己分散型ポリマー単体で水系媒体中に分散することが可能な非導電性ポリマーである。自己分散型ポリマーは透明性が高いと、第1電極4の透明性を高めることができ、好ましい。
 自己分散型ポリマーの使用量は、導電性ポリマーに対して50~1000質量%の範囲内とすることができる。
 自己分散型ポリマーの主骨格としては、ポリエチレン、ポリエチレン-ポリビニルアルコール、ポリエチレン-ポリ酢酸ビニル、ポリエチレン-ポリウレタン、ポリブタジエン、ポリブタジエン-ポリスチレン、ポリアミド(ナイロン)、ポリ塩化ビニリデン、ポリエステル、ポリアクリレート、ポリアクリレート-ポリエステル、ポリアクリレート-ポリスチレン、ポリ酢酸ビニル、ポリウレタン-ポリカーボネート、ポリウレタン-ポリエーテル、ポリウレタン-ポリエステル、ポリウレタン-ポリアクリレート、シリコーン、シリコーン-ポリウレタン、シリコーン-ポリアクリレート、ポリフッ化ビニリデン-ポリアクリレート、ポリフルオロオレフィン-ポリビニルエーテル等が挙げられる。また、これらの骨格をベースに、さらに他のモノマーを使用した共重合体でもよい。なかでも、エステル骨格を有するポリエステル樹脂エマルジョン、ポリエステル-アクリル樹脂エマルジョン、アクリル骨格を有するアクリル樹脂エマルジョン又はエチレン骨格を有するポリエチレン樹脂エマルジョンが好ましい。
 自己分散型ポリマーの市販品としては、例えば、ヨドゾールAD-176、AD-137(以上、アクリル樹脂:ヘンケルジャパン社製)、バイロナールMD-1200、MD-1245、MD-1500(以上、ポリエステル樹脂:東洋紡社製)、プラスコートRZ570、プラスコートZ561、プラスコートZ565、プラスコートZ687、プラスコートZ690(以上、ポリエステル樹脂:互応化学社製)等を用いることができる。上記水系媒体に分散可能な、解離性基を含有する自己分散型ポリマー分散液は、1種でも複数種でも使用することができる。
 〈ヒドロキシ基含有ポリマー〉
 ヒドロキシ基含有ポリマーは、ヒドロキシ基を有する非導電性ポリマーである。第1電極4における導電性ポリマーとヒドロキシ基含有ポリマーの比率、すなわち導電性ポリマー:ヒドロキシ基含有ポリマーの質量比は、100:30~100:900の範囲内であることが好ましく、電流リークを防止し、透明性を高める観点からは、100:100~100:900の範囲内であることがより好ましい。
 ヒドロキシ基含有ポリマーとしては、例えば、下記一般式(1)で表される構造単位を含むポリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、Rは、水素原子又はメチル基を表す。-Q-は、-C(=O)O-、又は-C(=O)NRd-を表し、Rdは、水素原子又はアルキル基を表す。Aは、置換もしくは無置換のアルキレン基、又は-(CHCHReO)CHCHRe-を表し、Reは、水素原子又はアルキル基を表す。xは、平均繰り返しユニット数を表す。
 ヒドロキシ基含有ポリマーは、第1電極4の形成工程において、塗膜の乾燥に赤外線を用いる場合、溶媒の除去が容易となることから、赤外線と同じ2.5~3.0μmの波長範囲内に吸光度0.1以上の吸収を持つことが好ましい。ここでいう吸光度は、形成する第1電極4の厚さの塗布膜における吸光度をいう。
 (カーボン材料)
 第1電極4の形成に適用可能なカーボン材料としては、グラフェン、カーボンナノチューブ、フラーレン等が挙げられる。これらカーボン材料は、それぞれ単独で使用してもよいし、複数種を併用してもよい。また、カーボン材料により形成する第1電極は、単層であってもよいし、カーボン材料が同じ又は異なる複数の層からなる多層構造であってもよい。カーボン材料により形成する第1電極4の厚さは、10nm~10μmの範囲内とすることができる。
 〈グラフェン〉
 グラフェンは、ハニカム構造状に結合した炭素原子のシートであり、このシートを、例えば、ガスバリアー層上に転写することにより、カーボンから構成される第1電極を形成することができる。グラフェンの生成方法としては、例えば、特開2011-241479号公報に記載の酸化グラフェンを塗布して還元する方法、SiC基材上にエピタキシャル成長を用いる方法、CuやNi等を触媒金属として熱CVDによりグラフェンを生成する方法、サファイア等の非金属基材上にグラフェンを生成する方法等の公知の方法を適用して生成することができる。
 〈カーボンナノチューブ〉
 カーボンナノチューブは、中空状のグラフェンからなるカーボンファイバーである。カーボンナノチューブは、二酸化炭素の接触水素還元、アーク放電法、レーザー蒸発法、CVD法、一酸化炭素を高温高圧化で鉄触媒とともに反応させて気相で成長させるHiPco法等によって生成することができる。フラーレンとしては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ等を用いることができる。カーボンナノチューブ又はフラーレンを用いる場合は、これらを含有する塗布液を調製してガスバリアー層上に塗布することにより、カーボンナノチューブから構成される第1電極を形成することができる。
 (金属ナノ材料)
 第1電極の形成に適用可能な金属ナノ材料は、サイズがナノスケールの金属材料であり、形状によってナノチューブ、ナノワイヤー、ナノファイバー等とも呼ばれる。金属の種類としては、銀(Ag)、アルミニウム(Al)、銅(Cu)、金(Au)、タングステン(W)、モリブデン(Mo)、これらの合金等が挙げられる。なかでも、銀は低抵抗で導電性が高く、所望の形状に加工しやすいことから、好ましい。
 第1電極を金属ナノ材料により形成する場合、金属ナノ材料を含有する塗布液を調製してガスバリアー層上に塗布することにより、形成することができる。金属ナノ材料により形成する第1電極の厚さは、10nm~10μmの範囲内とすることができる。
 〔第1電極配線11〕
 本発明の面発光パネルにおいては、離間した位置に配置されている複数の有機EL間を、図2や図3で示すように、第1電極配線11を介して電気的に接続されていることを特徴の一つとする。
 第1電極配線11は、第1電極4を非発光領域に延長した形態であり、隣接する有機EL素子の第1電極と接続することで両者間を電気的に接続する。
 従って、第1電極配線11の構成材料は、上記説明した第1電極の形成に用いる材料と同一である。
 〔有機機能層群6〕
 本発明に係る有機EL素子における代表的な有機機能層群の構成としては、以下の構成を挙げることができる。下記に示す構成では、有機EL素子全体の構成を示すため、便宜上、第1電極及び第2電極を併せて記載してある。以下に示す有機機能層群の構成はその一例を示すものであり、本発明に適用可能な有機機能層群の構成はこれらに限定されるものではない。
 (1)(第1電極)/発光層/(第2電極)
 (2)(第1電極)/発光層/電子輸送層/(第2電極)
 (3)(第1電極)/正孔輸送層/発光層/(第2電極)
 (4)(第1電極)/正孔輸送層/発光層/電子輸送層/(第2電極)
 (5)(第1電極)/正孔輸送層/発光層/電子輸送層/電子注入層/(第2電極)
 (6)(第1電極)/正孔注入層/正孔輸送層/発光層/電子輸送層/(第2電極)
 (7)(第1電極)/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/(第2電極)
 本発明に係る各有機機能層において、具体的な構成や形成方法等に関しては特に限定はなく、公知の構成や材料、また形成方法を適用することができる。例えば、特開2013-089608号公報の段落番号〔0014〕~同〔0121〕、特開2014-120334号公報の段落番号〔0065〕~同〔0262〕、特開2015-201508号公報の段落番号〔0044〕~同〔0118〕等に記載されている内容を参照することができる。
 〔第2電極7〕
 第2電極7は、陰極又はカソードとも称され、第2電極の形成材料としては、上述した第1電極の形成に用いることができる導電性ポリマー、カーボン材料、金属ナノ材料、あるいはこれらの混合物を挙げることができるが、第2電極においては、特に、金属ナノ材料を用いて形成することが好ましい。
 第2電極7の形成に適用可能な金属ナノ材料は、サイズがナノスケールの金属材料であり、形状によってナノ粒子、ナノチューブ、ナノワイヤー、ナノファイバー等とも呼ばれる。金属の種類としては、銀(Ag)、アルミニウム(Al)、銅(Cu)、金(Au)、タングステン(W)、モリブデン(Mo)、これらの合金等が挙げられる。なかでも、銀は低抵抗で導電性が高く、所望の形状に加工しやすいことから、好ましい。
 第2電極は、金属ナノ材料を含有する塗布液を調製して有機機能層群6上に塗布、乾燥することにより、形成することができる。金属ナノ材料による形成する第2電極7の厚さは、10nm~10μmの範囲内とすることができる。
 第2電極の形成時には、下部に位置する有機機能層群6にダメージを与えない範囲で、加熱処理(アニール処理)を施すことが好ましい。これにより、金属ナノ粒子等の金属材料の融着が進み、第2電極の導電性が高まる。加熱処理には、一般的なオーブンやホットプレートによる加熱方法等を用いることができる。また、フラッシュパルス光照射処理、マイクロ波処理、プラズマ処理、誘電加熱処理、エキシマ光照射処理、紫外線処理、赤外ヒーター処理、熱風ヒーター処理等により、局所的な加熱処理を施してもよく、上記オーブン等による加熱処理と併用してもよい。
 〔絶縁層5〕
 図4Bで記載の本発明に係る絶縁層5の形成材料としては、種々の絶縁材料を用いることができるが、特に、比誘電率の高い無機酸化物皮膜が好ましい。無機酸化物としては、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウム・ストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウム・マグネシウム、チタン酸ビスマス、チタン酸ストロンチウム・ビスマス、タンタル酸ストロンチウム・ビスマス、タンタル酸ニオブ酸ビスマス、トリオキサイドイットリウムなどが挙げられるが、それらのうち好ましいのは、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタンである。窒化ケイ素、窒化アルミニウムなどの無機窒化物も好適に用いることができる。
 無機酸化皮膜により構成される絶縁層の形成方法としては、スプレーコート法、スピンコート法、ブレードコート法、デイップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法や、インクジェットプリント法などのパターニングによる方法などの湿式形成法が挙げられ、材料に応じて使用できる。これらのうち好ましいのは、インクジェットプリント法である。
 また、本発明に係る絶縁層5の形成材料として、有機化合物を挙げることができ、有機化合物としては、例えば、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、光ラジカル重合系、光カチオン重合系の光硬化性樹脂、アクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂、およびシアノエチルプルラン、ポリマー体、エラストマー体を含むホスファゼン化合物、等を用いることもできる。また、市販品としては、ダイセル社製のセルビーナス等を挙げることができる。
 〔封止層〕
 本発明においては、有機EL素子を構成する第1電極から第2電極までの有機ELユニットの周辺部を、封止層により封止構造を形成する。
 封止層としては、複数の有機EL素子において共通の封止層を形成しても、あるいは有機EL素子ごとに独立した封止層を形成する構成であってもよい。
 封止層の構成材料及び形成方法は、前述のガスバリアー層の形成で記載したケイ素含有ポリマー等の材料とその形成方法を、同様に適用することができる。
 本発明に係る封止層は、上記関連する各図に示すように、第1封止層8と第2封止層9により構成されていることが好ましい形態である。第1封止層8及び第2封止層9は、同一の材料で形成しても、あるいは異なる材料で形成してもよい。
 例えば、第1封止層8をポリオルガノシロキサン、ポリジメチルシロキサン(略称:PDMS)等で形成し、第2封止層をパーヒドロポリシラザン(略称:PHPS)で形成する方法を一例として挙げることができる。
 〔透明吸湿剤層〕
 封止層の封止性能を高めるために、透明吸湿剤層16を設置しても良い。
 図8に、図6に示す構成の面発光パネルにおいて、更に透明吸湿剤層を組み入れた面発光パネルの概略断面図の一例を示す。
 図8に示すように、面発光パネル内に透明吸湿剤層16を設置する場合は、第1封止層8と第2封止層9の間に設置することが好ましい。
 透明吸湿剤層16は、吸湿性化合物を含んで構成される。例えば、吸湿性化合物のみによる構成や、粒子状の吸湿性化合物や吸湿性化合物を含む粒子を、バインダー樹脂中に分散させた構成が挙げられる。
 吸湿性化合物は、水分の吸着機能を有する化合物であれば特に限定することなく用いることができる。吸湿性化合物としては、化学的に水分を吸着することが可能であり、水分を吸着した後でも、固体状態を維持する化合物であることが好ましい。
 透明吸湿剤層16に用いられる吸湿性化合物としては、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム等)、硫酸塩(例えば、硫酸リチウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられる。また、金属アルコキシドを用いることもできる。例えば、アルミニウムアルコキシド、チタニウムアルコキシド、アルコキシシランなどを挙げることができる。
 透明吸湿剤層16の形成に適用されるバインダー樹脂としては、吸湿性化合物の水分吸着作用を阻害しないことが好ましく、気体透過性の高い材料を用いることが好ましい。バインダー樹脂としては、例えば、ポリオレフィン系、ポリアクリル系、ポリアクリロニトリル系、ポリアミド系、ポリエステル系、エポキシ系、ポリカーボネート系、フッ素系等の高分子材料を挙げることできる。
 透明吸湿剤層16の製造方法としては、塗布法又はインクジェットプリント法により製造する方法を適用することが好ましい。製造適性と吸湿性能の観点より、金属アルコキシド溶液を原料とし、一般にゾル・ゲル法と呼ばれる、金属アルコキシドの加水分解とそれに続く重縮合反応により、有機無機ハイブリッド化合物を合成して、膜形成する方法が好ましい。金属アルコキシドを過剰のフッ素化アルコールに溶解する方法は、ゾル・ゲル反応速度を緩和することができ、塗布液の安定性を高められるため好ましい。
 フッ素化アルコールとしては、例えば、2,2,3,3-テトラフルオロプロパノール、2,2,3,3,3-ペンタフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、2,2,3,3,4,4,5,5-オクタフルオロペンタノール等が挙げられる。例えば、チタニウムテトライソプロポキシド(Ti(OiPr))の3質量%脱水テトラフルオロプロパノール溶液に極微量の水を添加することで、ゾル・ゲル反応を一部進めたものを塗布し、溶媒を乾燥除去した後、紫外光を照射して、表面のゾル・ゲル反応を促進させる製造方法が好ましい。
 この方法で形成した透明吸湿剤層16は、未反応の金属フッ化アルコキシドが内部に残存しているため、透明吸湿剤層として機能する。更に、層内に侵入してきた水分子と反応して生成するフッ素化アルコールが撥水性のため、本来の吸湿性に加え、撥水機能が付加されて、封止性に相乗効果を発揮するという、従来の乾燥剤にはない特徴を有する。
 透明吸湿剤層16の膜厚は、ドライ膜で10nm~100μmの範囲内であり、より好ましくは、0.1~1μmの範囲内であることが効果を発現する上で好ましい。
 〔アルペットAP〕
 本発明においては、図9で示すように、封止部材、例えば、第2封止層としてアルペットAPを適用することもできる。
 本発明に適用可能なアルミニウム(Al)が蒸着されたポリエチレンテレフタレートフィルムであるアルペットAPとしては、例えば、アジアアルミ社製のアルペット12/34、パナック社製の9-100(アルミ箔:9μm、PET:100μm)、9-125K(アルミ箔:9μm、PET:125μm)、10-75(アルミ箔:10μm、PET:75μm)、12-50(アルミ箔:12μm、PET:50μm)、12-188(アルミ箔:12μm、PET:188μm)、20-75(アルミ箔:20μm、PET:75μm)、20-100(アルミ箔:20μm、PET:100μm)、30-188(アルミ箔:30μm、PET:188μm)、東海東洋アルミ販売社製「アルペット1N30」、福田金属社製「アルペット3025」、大同化工社製「ALPET1025」等が挙げられる。
 〔封止樹脂層15〕
 また、第2封止層としてアルペットAPを適用する場合には、第1封止層としては、封止樹脂層15を設けることが好ましい。樹脂封止層15を構成する材料としては、例えば、エポキシ系、アクリル酸系オリゴマー又はメタクリル酸系オリゴマーの反応性ビニル基を有する光硬化性又は熱硬化性樹脂や、2-シアノアクリル酸エステル等の湿気硬化性樹脂等が挙げられる。
 〔粘着層12A及び12B〕
 本発明に係る粘着層12A及び12Bの形成に適用可能な粘着材料としては、例えば、ポリアクリル酸系粘着剤に代表される親水性アクリルポリマー系粘着剤、ポリビニルアセタール系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルアルコール系粘着剤、酢酸ビニル系粘着剤、ゴム系粘着剤(例えば、天然ゴム、合成ゴム、スチレン-イソプレン-スチレンブロック共重合体、イソプレンゴム、ポリイソブチレン(PIB)、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-ブタジエンゴム、ポリブテン等)を挙げることができる。
 粘着材料により形成する粘着層の厚さは特に制限はないが、0.1~10μmの範囲内で選択することが好ましい。
 〔保護部材13〕
 図10A、図10B及び図11A、図11Bに記載した保護部材13、13A及び13Bとしては、特に制限はないが、前述のフレキシブル基材Fの説明で記載した薄膜ガラス、樹脂フィルム、メタルホイル、ファブリック(例えば、生地や織物等)、紙、エラストマー(ゴム生地)等を同様に適用することができ、また、透明であっても不透明であってもよい。
 また、図10A及び図10Bに記載の第1保護部材13や図11A及び図11Bに記載の第2保護部材13Bのように、粘着層面から剥離し、例えば、設置部材、例えば、紙、布、壁面、あるいは窓ガラス等に面発光パネルを貼付する用途に適用する場合には、これらの保護部材は、セパレーター(隔離シート)として機能させることが好ましく。例えば、ポリエステル、ポリエチレン、ポリプロピレン、紙等の基材にシリコンコート、ポリアルキレンコート、フッ素樹脂コートしたものが使用できるが、寸法安定性、平滑性、剥離安定性の点からポリエステルフィルムにシリコンコートしたものが好ましい。
 また、保護部材の厚さは10~200μmの範囲が好ましく、更に好ましくは20~100μmである。
 《面発光パネルの製造方法》
 一般に、有機EL素子を具備する面発光パネルは、例えば、化学蒸着法や真空蒸着法等を用いた乾式形成方法や、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)及びインクジェット印刷法等の湿式塗布方法等、公知の薄膜形成方法を適用することにより形成することができるが、本発明の面発光パネルの製造方法においては、フレキシブル基材の一方の面側に、少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層を、湿式塗布法又はインクジェットプリント法により積層して、面発光パネルを製造することを特徴とする。
 〔面発光パネルの形成方法〕
 本発明においては、湿式塗布法又はインクジェットプリント法により面発光パネルを製造することを特徴とする。
 (湿式塗布法)
 本発明に適用可能なインクジェットプリント法を除く湿式塗布法としては、スピンコート法、キャスト法、スクリーン印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等が挙げられ、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、スプレーコート法などが好ましい。
 (インクジェットプリント法)
 本発明の面発光パネルの製造においては、特に、少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層の形成に、インクジェットプリント法を適用することが、面発光パネルの任意の位置に、微小面積の有機EL素子を複数個、効率よく形成することができる点で好ましい。
 以下、インクジェットプリント法に使用するインクジェットヘッド、インク液滴の射出条件、インクジェット記録方法と記録装置及び具体的な面発光パネルのインクジェットプリント法により製造フローについて、図を交えて説明する。
 〈インクジェットヘッド〉
 インクジェットプリント法で用いられるインクジェットヘッドとしては、オンデマンド方式でもコンティニュアス方式でもよい。また、吐出方式としては、電気-機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)、電気-熱変換方式(例えば、サーマルインクジェット型、バブルジェット(登録商標)型等)、静電吸引方式(例えば、電界制御型、スリットジェット型等)、放電方式(例えば、スパークジェット型等)などを具体的な例として挙げることができるが、いずれの吐出方式を用いてもよい。また、印字方式としては、シリアルヘッド方式、ラインヘッド方式等を制限なく用いることができる。
 〈インク滴サイズ〉
 各構成層の形成において、インクジェットヘッドから射出するインク滴の体積は、0.5~100pLの範囲内とすることが好ましい。形成層の塗布ムラが少なく、かつ印字速度を高速化できる観点から、2~20pLの範囲であることが、より好ましい。なお、インク滴の体積は、印加電圧の調整等によって、所望の条件に適宜調整が可能である。
 〈印字方法〉
 インクジェットプリント法による印字方法には、ワンパス印字法とマルチパス印字法がある。ワンパス印字法は、所定の印字領域に複数のインクジェットヘッドを固定配置し、1回のヘッドスキャンで印字する方法である。これに対し、マルチパス印字法(シリアルプリント方式ともいう。)は、所定の印字領域を複数回のヘッドスキャンで印字する方法である。
 ワンパス印字法では、所望とする塗布パターンの幅以上の幅に亘ってノズルが並設された広幅のヘッドを用いることが好ましい。同一の基材上に、互いにパターンが連続していない独立した複数の塗布パターンを形成する場合は、少なくとも各塗布パターンの幅以上の広幅ヘッドを用いればよい。
 図13は、ワンパス印字法のインクジェットプリント法を用いた有機EL素子の形成方法の一例を示す概略図である。
 図13は、インクジェットヘッド30を具備したインクジェットプリンターを用いて、フレキシブル基材F上に、有機EL素子を構成するガスバリアー層、第1電極、有機機能層群、第2電極及び封止層の各形成材料を含むインクを順次吐出して、複数の独立した形態の有機EL素子ELを形成する方法の一例を示してある。
 図13に示すように、フレキシブル基材Fを連続的に搬送しながら、インクジェットヘッド30により有機EL素子形成材料を含むインクを、インク液滴として順次射出して、所望の構成層(ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層)より構成される有機EL素子ELを形成する。
 本発明の面発光パネルの製造方法に適用可能なインクジェットヘッド30としては、特に限定はなく、例えばインク圧力室に圧電素子を備えた振動板を有しており、この振動板によるインク圧力室の圧力変化でインク液を吐出させる剪断モード型(ピエゾ型)のヘッドでもよいし、発熱素子を有しており、この発熱素子からの熱エネルギーによりインク液の膜沸騰による急激な体積変化によりノズルからインク液を吐出させるサーマルタイプのヘッドであってもよい。
 インクジェットヘッド30には、射出用のインク液の供給機構などが接続されている。インク液の供給はタンク38Aにより行われる。インクジェットヘッド30内のインク液圧力を常に一定に保つようにこの例ではタンク液面を一定にする。その方法としては、インク液をタンク38Aからオーバーフローさせてタンク38Bに自然流下で戻している。タンク38Bからタンク38Aへのインク液の供給は、ポンプ31により行われており、射出条件に合わせて安定的にタンク38Aの液面が一定となるように制御されている。
 なお、ポンプ31からタンク38Aへインク液を戻す際には、フィルター32を通してから行われている。このように、インク液はインクジェットヘッド30へ供給される前に絶対濾過精度又は準絶対濾過精度が0.05~50μmの濾材を少なくとも1回は通過させることが好ましい。
 また、インクジェットヘッド30の洗浄作業や液体充填作業などを実施するためにタンク36よりインク液が、タンク37より洗浄溶媒がポンプ39によりインクジェットヘッド30へ強制的に供給可能となっている。インクジェットヘッド30に対してこうしたタンクポンプ類は複数に分けても良いし、配管の分岐を使用しても良い、またそれらの組み合わせでもかまわない。図12では配管分岐13を使用している。さらにインクジェットヘッド30内のエアーを十分に除去するため、タンク36よりポンプ39によりインクジェット30へインク液を強制的に送液しながらエアー抜き配管からインク液を抜き出して廃液タンク34に送ることもある。
 図14A及び図14Bは、インクジェットプリント方式に適用可能なインクジェットヘッドの構造の一例を示す概略外観図である。
 図14Aは、本発明に適用可能なインクジェットヘッド100を示す概略斜視図であり、図14Bは、インクジェットヘッド100の底面図である。
 本発明に適用可能なインクジェットヘッド100は、インクジェットプリンター(図示略)に搭載されるものであり、インクをノズルから吐出させるヘッドチップと、このヘッドチップが配設された配線基板と、この配線基板とフレキシブル基板を介して接続された駆動回路基板と、ヘッドチップのチャネルにフィルターを介してインクを導入するマニホールドと、内側にマニホールドが収納された筐体56と、この筐体56の底面開口を塞ぐように取り付けられたキャップ受板57と、マニホールドの第1インクポート及び第2インクポートに取り付けられた第1及び第2ジョイント81a及び81bと、マニホールドの第3インクポートに取り付けられた第3ジョイント82と、筐体56に取り付けられたカバー部材59とを備えている。また、筐体56をプリンタ本体側に取り付けるための取り付け用孔68がそれぞれ形成されている。
 また、図14Bで示すキャップ受板57は、キャップ受板取り付け部62の形状に対応して、外形が左右方向に長尺な略矩形板状として形成され、その略中央部に複数のノズルが配置されているノズルプレート61を露出させるため、左右方向に長尺なノズル用開口部71が設けられている。また、図14Aで示すインクジェットヘッド内部の具体的な構造に関しては、例えば、特開2012-140017号公報に記載されている図2等を参照することができる。
 図14A及び図14Bにインクジェットヘッドの代表例を示したが、そのほかにも、例えば、特開2012-140017号公報、特開2013-010227号公報、特開2014-058171号公報、特開2014-097644号公報、特開2015-142979号公報、特開2015-142980号公報、特開2016-002675号公報、特開2016-002682号公報、特開2016-107401号公報、特開2017-109476号公報、特開2017-177626号公報等に記載されている構成からなるインクジェットヘッドを適宜選択して適用することができる。
 〔面発光パネルの製造フロー〕
 以下、面発光パネルの製造方法の一例として、図6に記載の切断面A-Aで表される有機EL素子ELを、インクジェットプリント法を用いて製造する工程フローについて、図を交えて説明する。
 図15及び図16は、図6で表されるA-A切断面における構成からなる有機EL素子ELのインクジェットプリント法を用いた製造プロセスの一例を示す概略フロー図である。
 〈ステップ1:下地層の形成〉
 図15のaで示す方法で、前記製造フロー図(上面図)である図4Aで記載したフレキシブル基材F上の位置に、例えば、紫外線硬化型樹脂を含む下地層形成用インク液を、インクジェットヘッド30より吐出してパターン形成した後、紫外線を照射することにより硬化させて、下地層1を形成する。
 〈ステップ2:ガスバリアー層の形成〉
 次いで、図15のbで示す方法で、前記図4A(上面図)で記載した位置に、例えば、ケイ素含有ポリマー等を含むガスバリアー層形成用インク液を、インクジェットヘッド30より吐出してパターン形成し、溶媒を乾燥除去させた後、酸素濃度と水蒸気濃度を制御した環境下において、Xeエキシマランプを用いて172nmの真空紫外光を照射することによって改質処理を行い、ガスバリアー層2を形成する。
 〈ステップ3:グリッドの形成〉
 次いで、図15のcで示す方法で、前記図4A(上面図)で記載したガスバリアー層2上の所定の位置に、例えば、銀ナノ粒子を含むグリッド形成用インク液を、インクジェットヘッド30より吐出して、グリッド3を格子状にパターン形成した後、フレキシブル基材Fにダメージを与えない範囲で加熱処理を施すことで、導電性を高めたグリッド3を形成する。
 〈ステップ4:第1電極の形成〉
 次いで、図15のdで示す方法で、前記図4A(上面図)で記載した所定の発光位置で、かつグリッド3上に、導電性ポリマー、例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合物(PEDOT:PSS)を含む第1電極形成用インク液を、インクジェットヘッド30より吐出してパターン形成した後、溶媒を乾燥除去させることにより、第1電極4を形成する。
 〈ステップ5:絶縁層の形成〉
 次いで、図15のeで示す方法で、前記図4A(上面図)で記載したように、絶縁材料を含む絶縁層形成用インクを用い、インクジェットヘッド30により、電極取り出し部を除くグリッド3上面を被覆するようにパターン形成した後、溶媒を乾燥除去し、絶縁層形成用インクに適した硬化処理を施して、絶縁層5を形成する。この時、図4Bで示すように、次工程で有機機能層群を形成する領域を開口部として設けた。
 〈ステップ6:有機機能層群の形成〉
 次いで、図16のaで示す方法で、前記図4C(上面図)で記載したように、絶縁層5で囲まれた開口部の第1電極4上に、インクジェットヘッド30より、各有機機能層(例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等)形成用材料を含む各有機機能層群形成用インクを順次吐出した後、溶媒を乾燥除去して、有機機能層群6を形成する。
 〈ステップ7:第2電極の形成〉
 次いで、図16のbで示す方法で、前記図5A(上面図)で記載したように、第2電極形成材料を含む第2電極形成用インクを用い、インクジェットヘッド30より、格子状に第2電極7を形成した後、溶媒を乾燥除去し、有機機能層群6にダメージを与えない範囲で加熱処理を施すことで第2電極7を形成する。A-A切断面では、全面での形成となる。
 〈ステップ8:第1封止層の形成〉
 次いで、図16のcで示す方法で、前記図5B(上面図)で記載したように、第1封止層形成材料、例えば、ポリジメチルシロキサン(略称:PDMS)を含む第1封止層形成用インクを用い、インクジェットヘッド30より、有機機能層群6と絶縁層5とを被覆する形態で、第2電極7上にパターン形成し、溶媒を乾燥除去させた後、紫外光を照射することによって改質処理を行い、第1封止層8を形成する。
 〈ステップ9:第2封止層の形成〉
 次いで、図16のdで示す方法で、前記図5C(上面図)で記載したように、第2封止層形成材料、例えば、パーヒドロポリシラザン(略称:PHPS)を含む第2封止層形成用インクを用い、インクジェットヘッド30より、第1封止層8をカバーする形態でパターン形成し、溶媒を乾燥除去させた後、酸素濃度と水蒸気濃度を制御した環境下において、Xeエキシマランプを用いて172nmの真空紫外光を照射することによって改質処理を行い、第2封止層9を形成して、有機EL素子を含む面発光パネルを形成することができる。
 また、封止層の封止性能を高めるために、透明吸湿剤層16を設置してもよい。当該透明吸湿剤層16を設置する場合には、図8に示したように、第1封止層8と第2封止層9の間に設置することが好ましい。
 本発明の面発光パネルにより、封止性能とフレキシブル性を両立し、製造容易性に優れた有機EL素子を具備した面発光パネルを実現することができ、本発明の面発光パネルは、表示装置、ディスプレイ、照明光源等の面発光体として好適に利用できる。
 1 下地層
 2 ガスバリアー層
 3 グリッド(Agグリッド)
 4 第1電極(陽極)
 5 絶縁層
 6 有機機能層群
 7 第2電極(陰極)
 8 第1封止層
 9 第2封止層
 10、30、100ジェットヘッド
 11 第1電極配線
 12、12A 第1粘着層
 12B 第2粘着層
 13、13A 第1保護部材
 13B 第2保護部材
 14 設置部材
 15 封止樹脂層
 16 透明吸湿剤層
 31、39 ポンプ
 32 フィルター
 33 配管分岐
 34 廃液タンク
 35 制御部
 36、37、38A、38B タンク
 56 筐体
 57 キャップ受板
 59 カバー部材
 61 ノズルプレート
 62 キャップ受板取り付け部
 68 取り付け用孔
 71 ノズル用開口部
 81a 第1ジョイト
 81b 第2ジョイント
 82 第3ジョイント
 100 真空紫外線照射装置
 101 チャンバー
 102 Xeエキシマランプ
 104 ステージ
 AP アルペット
 F フレキシブル基材
 L 発光光
 LA 発光エリア
 EL 有機EL素子
 P 面発光パネル
 V 間隙

Claims (5)

  1.  フレキシブル基材の一方の面側に、少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層がこの順で積層されている有機エレクトロルミネッセンス素子を複数個有する面発光パネルであって、
     前記複数の有機エレクトロルミネッセンス素子の1個当たりの発光面積が100mm以下であり、
     前記ガスバリアー層を、前記有機エレクトロルミネッセンス素子ごとに独立して有し、かつ、
     前記複数の有機エレクトロルミネッセンス素子が、配線を介して電気的に接続されていることを特徴とする面発光パネル。
  2.  前記封止層を、前記有機エレクトロルミネッセンス素子ごとに独立して有していることを特徴とする請求項1に記載の面発光パネル。
  3.  前記封止層に隣接して、更に粘着層を有することを特徴とする請求項1又は請求項2に記載の面発光パネル。
  4.  前記フレキシブル基材の前記有機エレクトロルミネッセンス素子を有する面とは反対側の面に、更に粘着層を有することを特徴とする請求項1から請求項3までのいずれか一項に記載の面発光パネル。
  5.  請求項1から請求項4のいずれか一項に記載の面発光パネルを製造する面発光パネルの製造方法であって、
     前記面発光パネルが、フレキシブル基材の一方の面側に、少なくとも、ガスバリアー層、第1電極、有機機能層群、第2電極及び封止層を、湿式塗布法又はインクジェットプリント法により積層して製造することを特徴とする面発光パネルの製造方法。
PCT/JP2019/020792 2018-05-31 2019-05-27 面発光パネル及び面発光パネルの製造方法 WO2019230617A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522165A JPWO2019230617A1 (ja) 2018-05-31 2019-05-27 面発光パネル及び面発光パネルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-104202 2018-05-31
JP2018104202 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230617A1 true WO2019230617A1 (ja) 2019-12-05

Family

ID=68696962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020792 WO2019230617A1 (ja) 2018-05-31 2019-05-27 面発光パネル及び面発光パネルの製造方法

Country Status (2)

Country Link
JP (1) JPWO2019230617A1 (ja)
WO (1) WO2019230617A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112843A1 (ja) * 2021-12-15 2023-06-22 株式会社東海理化電機製作所 有機el素子の封止方法、有機el素子、有機el装置、及び車両用装置
WO2024047806A1 (ja) * 2022-08-31 2024-03-07 株式会社レニアス 透明積層体の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212778A (ja) * 2011-03-31 2012-11-01 Panasonic Corp 有機el素子
JP2013531337A (ja) * 2010-05-18 2013-08-01 ゼネラル・エレクトリック・カンパニイ 大面積可撓性oled光源
JP2014089825A (ja) * 2012-10-29 2014-05-15 Nitto Denko Corp 有機エレクトロルミネッセンス発光装置、及びその製造方法
JP2015115199A (ja) * 2013-12-11 2015-06-22 パナソニックIpマネジメント株式会社 建材ユニット
JP2016520963A (ja) * 2013-04-29 2016-07-14 エルジー・ケム・リミテッド 有機発光素子およびその製造方法
JP2016178010A (ja) * 2015-03-20 2016-10-06 コニカミノルタ株式会社 面発光モジュール
JP2017050153A (ja) * 2015-09-02 2017-03-09 コニカミノルタ株式会社 発光装置
JP2017091730A (ja) * 2015-11-06 2017-05-25 凸版印刷株式会社 発光パネルモジュール、発光装置、及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531337A (ja) * 2010-05-18 2013-08-01 ゼネラル・エレクトリック・カンパニイ 大面積可撓性oled光源
JP2012212778A (ja) * 2011-03-31 2012-11-01 Panasonic Corp 有機el素子
JP2014089825A (ja) * 2012-10-29 2014-05-15 Nitto Denko Corp 有機エレクトロルミネッセンス発光装置、及びその製造方法
JP2016520963A (ja) * 2013-04-29 2016-07-14 エルジー・ケム・リミテッド 有機発光素子およびその製造方法
JP2015115199A (ja) * 2013-12-11 2015-06-22 パナソニックIpマネジメント株式会社 建材ユニット
JP2016178010A (ja) * 2015-03-20 2016-10-06 コニカミノルタ株式会社 面発光モジュール
JP2017050153A (ja) * 2015-09-02 2017-03-09 コニカミノルタ株式会社 発光装置
JP2017091730A (ja) * 2015-11-06 2017-05-25 凸版印刷株式会社 発光パネルモジュール、発光装置、及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112843A1 (ja) * 2021-12-15 2023-06-22 株式会社東海理化電機製作所 有機el素子の封止方法、有機el素子、有機el装置、及び車両用装置
WO2024047806A1 (ja) * 2022-08-31 2024-03-07 株式会社レニアス 透明積層体の製造方法

Also Published As

Publication number Publication date
JPWO2019230617A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
JP5835344B2 (ja) ガスバリアーフィルム及び電子機器
JP5888329B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法、および電子デバイス
JP5761203B2 (ja) ガスバリア性フィルム及び電子デバイス
WO2012090665A1 (ja) ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス
JP6783294B2 (ja) 透明電極及びこれを備えた有機電子デバイス
WO2019230617A1 (ja) 面発光パネル及び面発光パネルの製造方法
JP5405391B2 (ja) 透明フレキシブルプリント配線板及びその製造方法
KR20120092019A (ko) 발광 장치
JP5540788B2 (ja) ガスバリアフィルム、その製造方法、それを用いた有機光電変換素子及び太陽電池
EP3185249A1 (en) Transparent electrode, method for producing transparent electrode and electronic device
JPWO2014185256A1 (ja) 導電性樹脂基板の製造方法
JP5741489B2 (ja) ガスバリア性フィルムおよび電子デバイス
JP5692230B2 (ja) ガスバリアフィルムの製造方法
JP5761058B2 (ja) 透明導電膜の製造方法及び有機エレクトロルミネッセンス素子
JP2011146226A (ja) バリア性フィルム及び有機電子デバイス
JP5549448B2 (ja) バリア性フィルム、バリア性フィルムの製造方法及び有機電子デバイス
JP6073681B2 (ja) 有機エレクトロルミネッセンス素子
JP5928634B2 (ja) ガスバリア性フィルムおよび電子デバイス
JP5594099B2 (ja) ガスバリア性フィルムの製造方法
JP2016171038A (ja) 電子デバイスの製造方法
KR102152159B1 (ko) 투명 도전 부재 및 유기 일렉트로 루미네센스 소자
WO2016152822A1 (ja) 導電性フィルム及び有機エレクトロルミネッセンス素子
WO2017056873A1 (ja) 透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法
WO2015141522A1 (ja) 3次元曲面部を有する有機エレクトロルミネッセンス素子の製造方法及び発光装置
JP6802842B2 (ja) 透明電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522165

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811079

Country of ref document: EP

Kind code of ref document: A1