WO2017056873A1 - 透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法 - Google Patents

透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法 Download PDF

Info

Publication number
WO2017056873A1
WO2017056873A1 PCT/JP2016/076152 JP2016076152W WO2017056873A1 WO 2017056873 A1 WO2017056873 A1 WO 2017056873A1 JP 2016076152 W JP2016076152 W JP 2016076152W WO 2017056873 A1 WO2017056873 A1 WO 2017056873A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
layer
metal
resin
metal oxide
Prior art date
Application number
PCT/JP2016/076152
Other languages
English (en)
French (fr)
Inventor
孝敏 末松
小島 茂
健 波木井
隼 古川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017543052A priority Critical patent/JP6793654B2/ja
Publication of WO2017056873A1 publication Critical patent/WO2017056873A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a transparent electrode, an organic electronic device using the transparent electrode, and a manufacturing method thereof.
  • a transparent electrode having a conductive layer formed using a conductive material on a resin film is a thin electron such as an organic electroluminescence (EL) element used in a display or lighting panel, a solar cell, or electronic paper.
  • EL organic electroluminescence
  • a large-area electronic device such as an organic EL element for illumination or a solar cell for power generation is required to have a high resistance to light emission or power generation, so that a low-resistance transparent electrode is desired.
  • a transparent electrode using a Zn-added In 2 O 3 film (IZO), W, or Zn-added In 2 O 3 (IWZO) has been proposed as an electrode having a high crystallization temperature and high smoothness ( For example, see Patent Document 1 and Patent Document 2).
  • IZO Zn-added In 2 O 3 film
  • IWZO Zn-added In 2 O 3
  • a low-resistance transparent electrode using a metal fine wire formed by forming metal nanoparticles on a substrate and firing to reduce resistance and a conductive polymer has been proposed (for example, (See Patent Document 3).
  • the present invention provides a transparent electrode having low resistance, excellent flexibility, and hardly scratched during winding, and an organic electronic device using the transparent electrode.
  • the transparent electrode of this invention has a resin base material, a metal fine wire pattern, and the amorphous metal oxide layer provided on the metal fine wire pattern.
  • the organic electronic device of this invention is equipped with the said transparent electrode and an organic functional layer at least.
  • the manufacturing method of the transparent electrode of this invention has the process of forming a metal fine wire pattern on a resin base material, and the process of forming an amorphous metal oxide layer on a metal fine wire pattern. Moreover, the manufacturing method of the organic electronic device of this invention has the process of forming an organic functional layer at least on the said transparent electrode.
  • the present invention it is possible to provide a transparent electrode that has low resistance, excellent flexibility, and is hardly scratched during winding, and an organic electronic device using the transparent electrode.
  • the transparent electrode includes at least a resin base material and a conductive layer provided on the resin base material. And the conductive layer is comprised from the metal fine wire pattern and the amorphous metal oxide layer provided on this metal fine wire pattern.
  • a thin line containing metal is formed in a predetermined pattern having an opening on one surface of the resin base material.
  • a portion where the fine metal wire pattern is not formed on the resin base material becomes an opening (translucent window).
  • the conductive portion may be a stripe pattern, the conductive portion may be a lattice pattern, a random mesh shape, or the like.
  • the amorphous metal oxide layer is formed by covering the fine metal wire pattern and the surface of the resin substrate exposed from the opening of the fine metal wire.
  • the amorphous metal oxide layer is preferably configured to contain at least one selected from IZO, IGO, IWZO, GZO, IGZO, and ZnO.
  • the transparent electrode preferably has a total light transmittance of 70% or more, more preferably 80% or more.
  • the total light transmittance can be measured according to a known method using a spectrophotometer or the like.
  • the surface specific resistance is 100 ⁇ / sq. For use in a large-area organic electronic device. Or less, preferably 10 ⁇ / sq. The following is more preferable.
  • the surface specific resistance can be measured, for example, according to JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.
  • the transparent electrode should just have a resin base material and the conductive layer of the said structure, About other structures, it can provide arbitrarily.
  • the resin base material may have a barrier layer on the surface on which the conductive layer is formed.
  • the transparent electrode may include a configuration other than the resin base material and the conductive layer having the above configuration.
  • FIG. 1 the schematic block diagram of the transparent electrode of this Embodiment is shown.
  • a transparent electrode 10 shown in FIG. 1 includes a resin base material 11 and a conductive layer 12 composed of a metal fine wire pattern 13 and an amorphous metal oxide layer 14 provided on the metal fine wire pattern 13.
  • the fine metal wire pattern 13 has a fine wire pattern including a metal formed in a certain pattern on one surface of the resin base material 11.
  • An amorphous metal oxide layer 14 is formed as a layer continuous in the surface direction on the thin metal wire pattern 13.
  • the transparent electrode 10 may be provided with a base layer 15 between the resin base material 11 and the conductive layer 12.
  • the underlayer 15 is a layer suitable for forming the fine metal wire pattern 13 constituting the conductive layer 12.
  • the particle-containing layer 16 may be provided on the surface (back surface) of the resin base material 11 on which the conductive layer 12 is not provided.
  • the particle-containing layer 16 is preferably disposed in the outermost layer on the surface (back surface) opposite to the surface (front surface) on which the conductive layer 12 of the transparent electrode 10 is formed.
  • a gas barrier layer 17 may be provided on the resin base 11 on the surface on which the conductive layer 12 is formed.
  • the gas barrier layer 17 is formed on the resin base material 11 and is provided closer to the tree material 11 than each layer formed on one surface of the resin base material 11 such as the conductive layer 12 or the base layer 15. preferable.
  • the resin base material 11 with the gas barrier layer 17 such as a gas barrier film in which the gas barrier layer 17 is formed on the resin base material 11 in advance can be used as the support substrate of the transparent electrode 10.
  • the fine metal wire pattern 13 that constitutes the conductive layer 12 is formed with a metal content ratio such that metal is a main component and conductivity can be obtained.
  • the ratio of the metal in the metal fine line pattern is preferably 50% by mass or more.
  • the fine metal wire pattern 13 constituting the conductive layer 12 contains a metal material and is formed in a pattern having an opening on the resin base material 11 or the base layer 15.
  • An opening part is a part which does not have a metal fine wire pattern, and is a translucent part of a metal fine wire pattern.
  • the pattern shape of the fine metal wire pattern 13 is not particularly limited.
  • Examples of the pattern shape of the fine metal wire pattern 13 include a stripe shape (parallel line shape), a lattice shape, a honeycomb shape, a random network shape, and the like, and from the viewpoint of transparency, a stripe shape is particularly preferable. .
  • the ratio of the opening portion is preferably 80% or more from the viewpoint of transparency.
  • the aperture ratio of a stripe pattern having a line width of 100 ⁇ m and a line interval of 1 mm is approximately 90%.
  • the line width of the fine metal line pattern 13 is preferably in the range of 10 to 200 ⁇ m, and more preferably in the range of 10 to 100 ⁇ m. Desired conductivity is obtained when the line width of the fine metal wire pattern 13 is 10 ⁇ m or more, and the transparency of the transparent electrode is improved by setting it to 200 ⁇ m or less.
  • the interval between the fine metal line patterns is preferably in the range of 0.5 to 4 mm.
  • the height (thickness) of the fine metal wire pattern 13 is preferably in the range of 0.1 to 5.0 ⁇ m, and more preferably in the range of 0.1 to 2.0 ⁇ m.
  • the metal fine line pattern 13 has a height of 0.1 ⁇ m or more and a desired conductivity is obtained, and when it is 5.0 ⁇ m or less, the unevenness difference in the thickness distribution of the functional layer is used in an organic electronic device. Can reduce the impact.
  • the metal fine line pattern 13 is prepared by preparing a metal ink composition containing a metal or a metal forming material and applying it, and then selecting a post-treatment such as a drying process or a firing process as appropriate to form the metal fine line pattern 13. It is preferable to do.
  • the metal (single metal or alloy) blended in the metal ink composition is preferably in the form of particles or fibers (tube shape, wire shape, etc.), and more preferably metal nanoparticles. Moreover, it is preferable to form from the metal formation material which has a metal atom (element) and produces a metal by structural changes, such as decomposition
  • the metal and the metal forming material in the metal ink composition may be only one type, or two or more types, and in the case of two or more types, the combination and ratio can be arbitrarily adjusted.
  • metals used for the metal nanoparticles include metals such as gold, silver, copper and platinum, or alloys containing these as main components.
  • gold and silver are preferable from the viewpoints of excellent light reflectance and further improving the efficiency of the obtained organic electronic device.
  • These metals or alloys can be used alone or in combination of two or more.
  • the metal ink composition is preferably a metal colloid or metal nanoparticle dispersion liquid in which the surface of metal nanoparticles is coated with a protective agent and stably dispersed in a solvent.
  • the metal nanoparticles in the metal ink composition those having an atomic scale of 1000 nm or less are preferably applicable.
  • the metal nanoparticles preferably have an average particle size in the range of 3 to 300 nm, and more preferably in the range of 5 to 100 nm.
  • silver nanoparticles having an average particle diameter of 3 to 100 nm are preferable.
  • the metal nanowire one having a width of 1 nm or more and less than 1000 nm is more preferable, and a silver wire in the range of 1 to 100 nm is preferable.
  • the average particle diameter of the metal nanoparticles and the metal colloid and the width of the metal nanowire are obtained by measuring the particle diameter of the metal nanoparticles and the width of the metal nanowire in the dispersion using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average particle diameter can be calculated by measuring the particle diameters of 300 independent metal nanoparticles that are not overlapped among the particles observed in the TEM image.
  • an organic ⁇ -junction ligand is preferable as a protective agent for coating the surface of the metal nanoparticles.
  • Conductivity is imparted to the metal colloid by ⁇ -junction of the organic ⁇ -conjugated ligand to the metal nanoparticles.
  • the organic (pi) junction ligand the 1 type, or 2 or more types of compound chosen from the group which consists of a phthalocyanine derivative, a naphthalocyanine derivative, and a porphyrin derivative is preferable.
  • the organic ⁇ -junction ligand in order to improve coordination to metal nanoparticles and dispersibility in a dispersion medium, an amino group, an alkylamino group, a mercapto group, a hydroxyl group, At least one selected from a carboxyl group, a phosphine group, a phosphonic acid group, a sulfonic acid group, a halogen group, a selenol group, a sulfide group, a selenoether group, an amide group, an imide group, a cyano group, a nitro group, and salts thereof It is preferable to have a substituent.
  • OTAN 2,3,11,12,20,21,29,30-octakis [(2-N, N-dimethylaminoethyl) thio] naphthalocyanine
  • OCAN 2,3,11,12,20,21,29,30-naphthalocyanine octacarboxylic acid
  • a liquid phase reduction method may be mentioned.
  • the production of the organic ⁇ -junction ligand of this embodiment and the preparation of the metal nanoparticle dispersion containing the organic ⁇ -junction ligand are described in paragraphs [0039] to [0060] of International Publication No. 2011/114713. It can be performed according to the method described.
  • the average particle size of the metal colloid is usually 3 nm or more and 500 nm or less, preferably 5 nm or more and 50 nm or less. When the average particle diameter of the metal colloid is within the above range, fusion between the particles is likely to occur, and the conductivity of the obtained fine metal wire pattern 13 can be improved.
  • the protective agent for coating the surface of the metal nanoparticles it is preferable to use a protective agent that removes the ligand at a low temperature of 200 ° C. or lower. As a result, the protective agent is detached by low temperature or low energy, the metal nanoparticles are fused, and conductivity can be imparted.
  • a protective agent that removes the ligand at a low temperature of 200 ° C. or lower.
  • the protective agent is detached by low temperature or low energy, the metal nanoparticles are fused, and conductivity can be imparted.
  • Specific examples include metal nanoparticle dispersions described in JP2013-142173A, JP2012-162767A, JP2014-139343A, Patent No. 5606439, and the like.
  • the metal forming material examples include metal salts, metal complexes, organometallic compounds (compounds having a metal-carbon bond), and the like.
  • the metal salt and metal complex may be either a metal compound having an organic group or a metal compound having no organic group.
  • an organic silver complex compound produced by reacting a silver compound represented by “Ag n X” with an ammonium carbamate compound is preferably used.
  • n is an integer of 1 to 4
  • X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrate, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoroborate, A substituent selected from the group consisting of acetylacetonate and carboxylate.
  • the silver compound examples include silver oxide, thiocyanate silver, silver cyanide, silver cyanate, silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver phosphate, silver perchlorate, silver tetrafluoroborate, acetylacetate. Examples thereof include silver nitrate, silver acetate, silver lactate, and silver oxalate permeation.
  • use of silver oxide or silver carbonate is preferable in terms of reactivity and post-treatment.
  • ammonium carbamate compounds include ammonium carbamate, ethyl ammonium ethyl carbamate, isopropyl ammonium isopropyl carbamate, n-butyl ammonium n-butyl carbamate, isobutyl ammonium isobutyl carbamate, t-butyl ammonium t-butyl carbamate, 2-ethylhexyl ammonium 2 -Ethylhexyl carbamate, octadecyl ammonium octadecyl carbamate, 2-methoxyethyl ammonium 2-methoxyethyl carbamate, 2-cyanoethyl ammonium 2-cyanoethyl carbamate, dibutyl ammonium dibutyl carbamate, dioctadecyl ammonium dioctadecyl carbamate, methyl decyl ammonium methyl dec
  • the organic silver complex compound can be prepared by the method described in JP 2011-48795 A.
  • one or more of the above silver compounds and one or more of the above ammonium carbamate compounds can be directly reacted without using a solvent in a normal pressure or pressurized state of a nitrogen atmosphere.
  • alcohols such as methanol, ethanol, isopropanol and butanol
  • glycols such as ethylene glycol and glycerin
  • acetates such as ethyl acetate, butyl acetate and carbitol acetate
  • ethers such as diethyl ether, tetrahydrofuran and dioxane
  • Ketones such as methyl ethyl ketone and acetone
  • hydrocarbons such as hexane and heptane
  • aromatics such as benzene and toluene
  • halogen substituted solvents such as chloroform, methylene chloride and carbon tetrachloride Can be reacted.
  • the structure of the organic silver complex compound can be represented by “Ag [A] m ”.
  • A is the ammonium carbamate compound, and m is 0.7 to 2.5.
  • organic silver complex compound is well soluble in various solvents including solvents for producing organic silver complex compounds, such as alcohols such as methanol, esters such as ethyl acetate, ether solvents such as tetrahydrofuran, and the like. For this reason, the organic silver complex compound can be easily applied to a coating or printing process as a metal ink composition.
  • solvents for producing organic silver complex compounds such as alcohols such as methanol, esters such as ethyl acetate, ether solvents such as tetrahydrofuran, and the like.
  • examples of the metal silver forming material include silver carboxylate having a group represented by the formula “—COOAg”.
  • the silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”.
  • the number of groups represented by the formula “—COOAg” may be one, or two or more.
  • the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
  • the silver carboxylate is preferably at least one selected from the group consisting of silver ⁇ -ketocarboxylate and silver carboxylate (4) described in JP-A-2015-66695.
  • As the metal silver forming material not only silver ⁇ -ketocarboxylate and silver carboxylate (4), but also silver carboxylate having a group represented by the formula “—COOAg”, which includes them, is used. it can.
  • the metal ink composition contains the above-mentioned silver carboxylate as a metal forming material, together with the silver carboxylate, an amine compound and quaternary ammonium salt having 25 or less carbon atoms, ammonia, an amine compound, and ammonia and an acid It is preferable that at least one nitrogen-containing compound selected from ammonium salts obtained by the above reaction is blended.
  • the amine compound having 25 or less carbon atoms may be any of primary amine, secondary amine and tertiary amine having 1 to 25 carbon atoms. Further, it may be a quaternary ammonium salt having 4 to 25 carbon atoms.
  • the amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group “—NH 2 ” of the primary amine) may be one, or may be two or more.
  • the amorphous metal oxide layer 14 constituting the conductive layer 12 is provided on one main surface of the resin base material 11 or the base layer 15 so as to cover the surface of the fine metal wire pattern 13.
  • the amorphous metal oxide layer 14 is formed using a conductive metal oxide having a volume resistivity lower than 1 ⁇ 10 1 ⁇ ⁇ cm.
  • the volume resistivity can be obtained by measuring the sheet resistance and the film thickness measured in accordance with the resistivity test method of the conductive plastic of JIS K 7194-1994 by the four-probe method.
  • the film thickness can be measured using a contact-type surface shape measuring device (for example, DECTAK) or an optical interference surface shape measuring device (for example, WYKO).
  • the amorphous metal oxide layer 14 has a sheet resistance of 10,000 ⁇ / sq. From the viewpoint of constituting the conductive layer 12 of the transparent electrode 10. Or less, preferably 2000 ⁇ / sq. The following is more preferable.
  • the amorphous metal oxide layer 14 can be formed with a thickness of 10 to 500 nm. From the viewpoint of increasing the conductivity, the thickness is preferably in the range of 100 to 500 nm. From the viewpoint of enhancing the smoothness of the surface, the thickness is preferably 50 nm or more.
  • the amorphous phase is excellent in transparency, conductivity, and flexibility, and the phase change to the crystal phase hardly occurs during the manufacturing process of the transparent electrode 10. If it is a material, it will not specifically limit.
  • the metal oxide that can be used for the amorphous metal oxide layer 14 include IZO (indium oxide / zinc oxide), IGO (gallium doped indium oxide), IWZO (indium oxide / tin oxide), ZnO (zinc oxide), and GZO. (Ga-doped zinc oxide), IGZO (indium / gallium / zinc oxide) and the like.
  • the amorphous metal oxide layer 14 is a layer that does not have a metal oxide crystal phase (crystal grains).
  • the metal oxide is a layer formed not having a crystal phase but having only an amorphous phase.
  • the phase state of the metal oxide can be examined by X-ray diffraction (XRD) measurement. Specifically, X-ray diffraction measurement is performed on the amorphous metal oxide layer 14, and the phase of the metal oxide is determined depending on the presence or absence of a crystalline diffraction peak due to a crystal phase (crystal grain) in the total X-ray scattering intensity. The state can be determined.
  • XRD X-ray diffraction
  • the metal oxide layer is composed only of an amorphous phase, there is no crystalline diffraction peak in the X-ray diffraction spectrum.
  • the metal oxide layer has a crystal phase (crystal grains), a crystalline diffraction peak is generated in the X-ray diffraction spectrum.
  • the metal oxide layer has a lower crystal phase flexibility than the amorphous phase. This is considered to be because the crystal phase is likely to break due to crystal grains or lattice defects. For this reason, in the transparent electrode 10 using the resin base material 11 and requiring flexibility, it is desirable that no crystal phase exists in the metal oxide layer.
  • the smoothness of the surface of the metal oxide layer is reduced by the crystal grain lump.
  • the smoothness of the surface of the conductive layer 12 is lowered, it causes a defect when the transparent electrode 10 is incorporated into an organic electronic device.
  • the transparent electrode 10 is applied to a transparent electrode of an organic EL element, problems such as deterioration of the rectification ratio due to current leakage and current concentration on the protruding part of the agglomerate, which easily causes a short circuit in this part. To do. Therefore, it is desirable that the amorphous metal oxide layer 14 of the transparent electrode 10 does not have a metal oxide crystal phase.
  • the amorphous metal oxide layer 14 preferably has an arithmetic average roughness Ra of 5 nm or less. Furthermore, Ra is preferably 3 nm or less.
  • the arithmetic average roughness Ra is measured using, for example, an atomic force microscope (manufactured by Digital Instruments).
  • the underlayer 15 is preferably formed of a polymer material or a polymer material containing metal oxide fine particles.
  • the thickness of the underlayer 15 is preferably in the range of 0.01 to 1.0 ⁇ m, more preferably in the range of 0.05 to 0.3 ⁇ m. If the thickness of the underlayer 15 is 0.01 ⁇ m or more, the underlayer 15 itself becomes a continuous film and the surface becomes smooth, so that the organic electronic device is hardly affected. On the other hand, when the thickness of the underlayer 15 is 1.0 ⁇ m or less, the transparency of the transparent electrode 10 caused by the underlayer 15 and the adsorbed gas derived from the underlayer 15 can be reduced. Resistance deterioration can be suppressed. Moreover, if the thickness of the base layer 15 is 1.0 ⁇ m or less, the damage of the base layer 15 when the transparent electrode 10 is bent can be suppressed.
  • the transparency of the underlayer 15 can be arbitrarily selected depending on the application, but the higher the transparency, the better the application to the transparent electrode 10, which is preferable from the viewpoint of expanding applications.
  • the total light transmittance of the underlayer 15 is at least 40% or more, preferably 70% or more.
  • the total light transmittance can be measured according to a known method using a spectrophotometer or the like.
  • the metal oxide fine particles constituting the underlayer 15 are not particularly limited as long as they can be applied to the transparent electrode 10. By adding metal oxide fine particles to the polymer material, physical properties such as film strength, stretchability, refractive index and the like of the underlayer 15 can be adjusted as appropriate, and adhesion to the metal fine wire pattern is also improved.
  • the metal oxide fine particles include metal oxides such as magnesium, aluminum, silicon, titanium, zinc, yttrium, zirconium, molybdenum, tin, barium, and tantalum.
  • the metal oxide fine particles are preferably titanium oxide or any of aluminum oxide, silicon oxide, and zirconium oxide. Furthermore, since the lifetime of the organic electronic device is more excellent, it is preferable that at least one kind of fine particles of titanium oxide and zirconium oxide is contained as the metal oxide fine particles.
  • the average particle diameter of the metal oxide fine particles is preferably in the range of 10 to 300 nm, and particularly preferably in the range of 10 to 100 nm because it can be suitably used for the transparent electrode 10.
  • metal oxide fine particles having an average particle diameter in the above range are used, sufficient irregularities can be formed on the surface of the underlayer 15 and the adhesion to the metal fine line pattern is improved.
  • the average particle size is 300 nm or less, the surface becomes smooth and the influence on the organic electronic device is small.
  • the average particle diameter of the metal oxide fine particles can be easily measured using a commercially available measuring device using a light scattering method. Specifically, a value measured by a laser Doppler method at 25 ° C. and a sample dilution amount of 1 ml using a Zetasizer 1000 (manufactured by Malvern) can be used.
  • the metal oxide fine particles are preferably contained in the base layer 15 in an amount of 10 to 70 vol%, more preferably 20 to 60 vol%.
  • titanium oxide fine particles described above examples include JP-A-59-223231, JP-A-10-265223, JP-A-2009-179497, JP-A-2010-058047, JP-A-2008-303126, International The synthesis can be carried out with reference to the synthesis method described in Japanese Patent Publication No. 2001/016027 and the like, and “Titanium oxide—physical properties and applied technology” (Kyoto Seino, Gihodo Publishing Co., Ltd., p. 255-258).
  • the metal oxide fine particles may be subjected to surface treatment from the viewpoint of improving dispersibility and stability when used as a dispersion.
  • the specific materials for the surface treatment include different inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organosiloxane, stearic acid, etc. Organic acids and the like. These surface treatment materials may be used individually by 1 type, and may be used in combination of multiple types. Among these, from the viewpoint of the stability of the dispersion, it is preferable to use at least one of a different inorganic oxide and a metal hydroxide as the surface treatment material, and it is more preferable to use a metal hydroxide.
  • the underlayer 15 may contain an inorganic compound other than the metal oxide fine particles.
  • An inorganic compound is a compound other than an organic compound, specifically, a compound composed of a simple part of a carbon compound and an element other than carbon.
  • Typical examples of the inorganic compound constituting the underlayer 15 include metals, carbides, nitrides, borides, and the like in addition to the metal oxides described above.
  • the polymer material constituting the underlayer 15 is not particularly limited as long as the underlayer 15 can be formed alone or together with the metal oxide fine particles.
  • a known natural polymer material having a monomer repeating structure or a synthetic polymer material can be used. These can use organic polymer materials, inorganic polymer materials, organic-inorganic hybrid polymer materials, and mixtures thereof.
  • the dispersion state of metal oxide fine particles in the polymer material, various coating films It can be selected according to physical properties. These polymer materials can be used in a mixture of two or more.
  • the above polymer material can be synthesized by a known method.
  • Natural polymer materials can be synthesized from microorganisms such as extracted from natural raw materials or cellulose.
  • the synthetic polymer can be obtained by radical polymerization, cationic polymerization, anionic polymerization, coordination polymerization, ring-opening polymerization, polycondensation, addition polymerization, addition condensation, and living polymerization thereof.
  • these polymer materials may be homopolymers or copolymers, and when using a monomer having an asymmetric carbon, they may have any regularity of random, syndiotactic and isotactic. it can.
  • forms such as random copolymerization, alternating copolymerization, block copolymerization, and graft copolymerization, can be taken.
  • the form of the polymer material may be liquid or solid. Further, the polymer material is preferably dissolved in a solvent or uniformly dispersed in the solvent. Furthermore, the polymer material may be a water-soluble resin or a water-dispersible resin.
  • the polymer material may be an ionizing radiation curable resin that is cured by ultraviolet rays or an electron beam, a thermosetting resin that is cured by heat, or may be a resin prepared by a sol-gel method. Furthermore, the polymer material may be crosslinked.
  • the natural polymer material is preferably a natural organic polymer material, and examples thereof include natural fibers such as cotton, hemp, cellulose, silk, and wool, proteins such as gelatin, and natural rubber.
  • Synthetic polymer materials include polyolefin resin, polyacrylic resin, polyvinyl resin, polyether resin, polyester resin, polyamide resin, polyurethane resin, polyphenylene resin, polyimide resin, polyacetal resin, polysulfone resin, fluorine resin, epoxy resin, silicon resin Phenol resin, melamine resin, polyurethane resin, polyurea resin, polycarbonate resin, polyketone resin and the like.
  • polystyrene resin examples include polyethylene, polypropylene, polyisobutylene, poly (1-butene), poly-4-methylpentene, polyvinylcyclohexane, polystyrene, poly (p-methylstyrene), poly ( ⁇ -methylstyrene), polyisoprene. , Polybutadiene, polycyclopentene, polynorbornene and the like.
  • polyacrylic resin include polymethacrylate, polyacrylate, polyacrylamide, polymethacrylamide, polyacrylonitrile and the like.
  • polyvinyl resin examples include polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polymethyl vinyl ether, polyethyl vinyl ether, polyisobutyl vinyl ether, and the like.
  • polyether resin examples include polyalkylene glycols such as polyethylene oxide and polypropylene oxide.
  • polyester resin examples include polyalkylene phthalates such as polyethylene terephthalate and polybutylene terephthalate, polyalkylene naphthalates such as polyethylene naphthalate, and the like.
  • polyamide resin examples include polyamide 6, polyamide 6,6, polyamide 12, and polyamide 11.
  • fluororesin examples include polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, ethylene tetrafluoroethylene copolymer, and polychlorotrifluoroethylene.
  • the above-mentioned water-soluble resin means a resin that dissolves 0.001 g or more in 100 g of water at 25 ° C.
  • the degree of dissolution can be measured with a haze meter, a turbidimeter or the like.
  • the color of the water-soluble resin is not particularly limited, but is preferably transparent.
  • the number average molecular weight of the water-soluble resin is preferably in the range of 3000 to 2000000, more preferably in the range of 4000 to 500000, and still more preferably in the range of 5000 to 100,000.
  • the number average molecular weight and molecular weight distribution of the water-soluble resin can be measured by generally known gel permeation chromatography (GPC).
  • the solvent to be used is not particularly limited as long as the binder dissolves, but tetrahydrofuran (THF), dimethylformamide (DMF), and CH 2 Cl 2 are preferable, THF and DMF are more preferable, and DMF is more preferable.
  • the measurement temperature is not particularly limited, but is preferably 40 ° C.
  • water-soluble resins include natural, synthetic, and polymeric materials such as acrylic, polyester, polyamide, polyurethane, and fluorine resins.
  • examples include casein, starch, and agar. , Carrageenan, cellulose, hydroxylethylcellulose, carboxylmethylcellulose, hydroxylethylcellulose, dextran, dextrin, pullulan, polyvinyl alcohol, gelatin, polyethylene oxide, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid, poly (2-hydroxyethyl acrylate), poly ( 2-hydroxyethyl methacrylate), polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, water-soluble polyvinyl butyral, and the like. That.
  • the above-mentioned water-dispersed resin means a resin that can be uniformly dispersed in an aqueous solvent and in which colloidal particles made of resin are dispersed without being aggregated in the aqueous solvent.
  • the size (average particle diameter) of the colloidal particles is generally in the range of 0.001 to 1 ⁇ m (1 to 1000 nm). The average particle diameter of the colloidal particles can be measured with a light scattering photometer.
  • the aqueous solvent is not only pure water such as distilled water and deionized water, but also an aqueous solution containing an acid, alkali, salt, etc., a water-containing organic solvent, and a hydrophilic organic solvent. And alcohol-based solvents such as methanol and ethanol, mixed solvents of water and alcohol, and the like.
  • the water dispersible resin is preferably transparent.
  • the water-dispersible resin is not particularly limited as long as it is a medium for forming a film. Examples of the water-dispersible resin include an aqueous acrylic resin, an aqueous urethane resin, an aqueous polyester resin, an aqueous polyamide resin, and an aqueous polyolefin resin.
  • the aqueous acrylic resin is made of vinyl acetate, acrylic acid, a polymer of acrylic acid-styrene, or a copolymer with other monomers.
  • the acid moiety responsible for the function of imparting dispersibility to an aqueous solvent is a copolymer of an anionic, nitrogen atom-containing monomer that forms a counter salt with ions such as lithium, sodium, potassium, and ammonium, and nitrogen.
  • water-based urethane resin examples include water-dispersed urethane resin and ionomer-type water-based urethane resin (anionic).
  • the water-dispersed urethane resin includes a polyether-based urethane resin and a polyester-based urethane resin, preferably a polyester-based urethane resin.
  • non-yellowing isocyanate having no aromatic ring.
  • the ionomer type water-based urethane resin includes a polyester-based urethane resin, a polyether-based urethane resin, a polycarbonate-based urethane resin, and the like, and preferably a polyester-based urethane resin and a polyether-based urethane resin.
  • the aqueous polyester resin is synthesized from a polybasic acid component and a polyol component.
  • the polybasic acid component is, for example, terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid, adipic acid, succinic acid, sebacic acid, dodecanedioic acid, etc., and these may be used alone. Two or more kinds may be used in combination.
  • terephthalic acid and isophthalic acid are particularly preferable because they are produced industrially in large quantities and are inexpensive.
  • Typical examples of the polyol component include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, cyclohexanedimethanol, bisphenol, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • ethylene glycol is industrially mass-produced, inexpensive, and further balanced in various performances such as improved solvent resistance and weather resistance of the resin film.
  • Propylene glycol, or neopentyl glycol is particularly preferable.
  • examples of the inorganic polymer material include polysiloxane, polyphosphazene, polysilane, polygermane, polystannane, borazine polymer, polymetalloxane, polysilazane, titanium oligomer, and silane coupling agent.
  • Specific examples of the polysiloxane include silicone, silsesquioxane, and silicone resin.
  • organic / inorganic hybrid polymer materials polycarbosilane, polysilylene arylene, polysilole, polyphosphine, polyphosphine oxide, poly (ferrocenylsilane), silsesquioxane derivatives based on silsesquioxane Examples thereof include a resin in which silica is combined with a resin.
  • silsesquioxane derivatives having silsesquioxane as a basic skeleton include photocuring type SQ series (Toagosei Co., Ltd.), Composelan SQ (Arakawa Chemical Co., Ltd.), Sila-DEC (Chisso Corporation), etc. Can be mentioned.
  • Examples of the resin in which silica is complexed include the Composelan series (Arakawa Chemical).
  • a curable resin such as an ionizing radiation curable resin or a thermosetting resin
  • the ionizing radiation curable resin is a resin that can be cured by an ordinary curing method of an ionizing radiation curable resin composition, that is, by irradiation with an electron beam or ultraviolet rays.
  • keV emitted from various electron beam accelerators such as a Cockrowalton type, a bandegraph type, a resonant transformation type, an insulating core transformer type, a linear type, a dynamitron type, and a high frequency type.
  • An electron beam having an energy within a range of preferably 30 to 300 keV is used.
  • ultraviolet rays emitted from rays of ultra-high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, carbon arc, xenon arc, metal halide lamp, etc. can be used.
  • Specific examples of the ultraviolet irradiation device include a rare gas excimer lamp that emits vacuum ultraviolet rays within a range of 100 to 230 nm. Since the excimer lamp has high light generation efficiency, it can be lit with low power. In addition, the excimer lamp does not emit light with a long wavelength that causes a temperature rise, and irradiates energy with a single wavelength in the ultraviolet region, so that the temperature rise of the irradiated object due to the irradiated light itself can be suppressed. Yes.
  • thermosetting resin is a resin that is cured by heating, and it is more preferable to use a crosslinking agent together with the thermosetting resin.
  • a heating method of the thermosetting resin a conventionally known heating method can be used, and heater heating, oven heating, infrared heating, laser heating, or the like can be used.
  • a low molecular compound containing N (nitrogen) atoms or S (sulfur) atoms may be added to the polymer material used for the underlayer 15.
  • N (nitrogen) atoms or S (sulfur) atoms may be added to the underlayer 15 to the underlayer 15.
  • a surface energy adjusting agent may be added to the polymer material used for the underlayer 15. By adding the surface energy adjusting agent, the adhesion between the fine metal wire pattern 13 and the underlayer 15, the line width of the fine metal wire pattern, and the like can be adjusted.
  • the resin base material 11 has high light transmittance, there will be no restriction
  • a resin substrate, a resin film, and the like are preferably used, but a transparent resin film is preferably used from the viewpoints of productivity and performance such as lightness and flexibility.
  • polyester-type resins such as a polyethylene terephthalate (PET), a polyethylene naphthalate (PEN), a modified polyester, a polyethylene (PE) resin, a polypropylene (PP) resin, a polystyrene resin , Polyolefin resins such as cyclic olefin resins, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin, polysulfone (PSF) resin, polyether sulfone (PES) resin, polycarbonate ( PC) resin, polyamide resin, polyimide resin, acrylic resin, triacetyl cellulose (TAC) resin and the like. These resins may be used alone or in combination.
  • the resin base material 11 may be an unstretched film or a stretched film.
  • the resin base material 11 has high transparency because the transparent electrode 10 can be used as a transparent electrode of an electronic device.
  • High transparency means that the total light transmittance in the visible light wavelength region measured by a method based on JIS K 7361-1: 1997 (plastic-transparent material total light transmittance test method) is 50% or more. This is more preferably 80% or more.
  • the resin substrate 11 may be subjected to a surface activation treatment in order to improve the adhesion with the gas barrier layer 17 and the base layer 15 formed on the resin substrate 11.
  • a hard coat layer may be provided.
  • the surface activation treatment include corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • the material for the hard coat layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • An ultraviolet curable resin can be preferably used.
  • the underlayer 15 may be a single layer, but the adhesiveness is further improved when it has a multilayer structure.
  • Gas barrier layer An organic electronic device such as an organic EL device to which the transparent electrode 10 is applied easily deteriorates in performance when a small amount of moisture or oxygen is present inside the device. For this reason, in order to prevent moisture and oxygen from entering the inside of the device through the resin base material 11, it is preferable to provide a gas barrier layer 17 having a high shielding ability against moisture and oxygen.
  • the composition and structure of the gas barrier layer 17 and the formation method thereof are not particularly limited, and a layer of an inorganic compound such as silica can be formed by vacuum deposition or CVD.
  • the gas barrier layer 17 can be composed of a silicon-containing polymer modified layer, a silicon compound layer, or a transition metal oxide layer described below, alone or in combination.
  • the silicon-containing polymer modification layer applied to the gas barrier layer 17 is a modification treatment of a silicon-containing polymer having a bond of silicon and oxygen (Si—O), silicon and nitrogen (Si—N), etc. in a repetitive structure. Formed by.
  • the silicon-containing polymer is converted to silica or the like by the modification treatment using the ultraviolet irradiation surface or the like, it is not necessary to modify all of the silicon-containing polymer, and at least a part, for example, the ultraviolet irradiation surface side is modified. Just do it.
  • the thickness of the silicon-containing polymer modified layer can be appropriately set according to the purpose, but can generally be in the range of 10 nm to 10 ⁇ m.
  • silicon-containing polymer examples include polysiloxane having a Si—O bond (including polysilsesquioxane), polysilazane having a Si—N bond, Si—O bond and Si—N bond in a repeating structure.
  • examples include polysiloxazan containing both. These can be used in combination of two or more. It is also possible to laminate layers of different types of silicon-containing polymers.
  • the polysiloxane contains-[RaSiO 1/2 ]-,-[RbSiO]-,-[RcSiO 3/2 ]-,-[SiO 2 ]-and the like in the repeating structure.
  • Ra, Rb and Rc are each independently a hydrogen atom, an alkyl group containing 1 to 20 carbon atoms (eg, a methyl group, an ethyl group, a propyl group, etc.), an aryl group (eg, a phenyl group, an unsaturated alkyl group) And the like.
  • Polysilsesquioxane is a compound that includes the same structure as silsesquioxane among the polysiloxanes in its repeated structure.
  • Silsesquioxane is a compound having a structure represented by the above-[RcSiO 3/2 ]-.
  • the structure of polysilazane can be represented by the following general formula (A). — [Si (R 1 ) (R 2 ) —N (R 3 )] — —General formula (A) [In the above general formula (A), R 1 , R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group. To express. ]
  • the polysilazane in which all of R 1 , R 2 and R 3 in the general formula (A) are hydrogen atoms is perhydropolysilazane.
  • Perhydropolysilazane is preferable in that a dense film can be obtained.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on a 6-membered ring and an 8-membered ring.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • a polysilane in which a part of hydrogen atoms bonded to Si is substituted with an alkyl group or the like is an organopolysilazane.
  • Organopolysilazane has improved adhesion to the underlying resin substrate 11 due to an alkyl group such as a methyl group, and can impart toughness to polysilazane having hard and brittle properties, so even if the film is thickened, This has the advantage that the occurrence of Therefore, perhydropolysilazane and organopolysilazane are appropriately selected according to the application, or a mixture of both is used.
  • Polysiloxazan includes a structure represented by — [(SiH 2 ) n (NH) r ] — and — [(SiH 2 ) m O] — in a repeating structure.
  • n, m and r each independently represent 1 to 3.
  • a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a polysilazane having a main skeleton composed of a unit represented by the above general formula (A) (for example, Japanese Patent Laid-Open No. Hei. No.
  • glycidol-added polysilazane obtained by reacting glycidol (for example, see JP-A-6-122852), alcohol-added polysilazane obtained by reacting alcohol (for example, JP-A-6-240208)
  • a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (see, for example, JP-A-6-299118), and an acetylacetonate complex obtained by reacting a metal-containing acetylacetonate complex
  • Additional polysilazanes eg, Unexamined see JP 6-306329
  • fine metal particles added polysilazane obtained by adding metal particles (e.g., Japanese Unexamined see JP 7-196986), and the like.
  • the silicon-containing polymer modified layer can be formed by forming a coating film using the coating solution containing the above-described silicon-containing polymer and subjecting the formed coating film to a modification treatment.
  • the coating film forming method include a roll coating method, a flow coating method, a spray coating method, a printing method, a dip coating method, a bar coating method, a casting film forming method, an ink jet method, and a gravure printing method.
  • examples of the organic solvent that can be used for preparing the coating liquid include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, halogenated hydrocarbon solvents, aliphatic ethers, and alicyclic ethers. And ethers.
  • organic solvents such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to characteristics such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.
  • a commercial product in which polysilazane is dissolved in an organic solvent can be used.
  • Commercial products that can be used include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.
  • the coating solution can also contain a catalyst from the viewpoint of promoting the reforming treatment.
  • the catalyst is preferably a basic catalyst, for example, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetra Amine catalysts such as methyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, Pd compounds such as propionic acid Pd, Examples thereof include metal catalysts such as Rh compounds such as Rh acetylacetonate, N-heterocyclic compounds, and the like.
  • the content of the silicon-containing polymer in the coating solution varies depending on the thickness of the silicon-containing polymer modified layer to be formed and the pot life of the coating solution, but is preferably in the range of 0.2 to 35.0% by mass.
  • the formed coating film can be subjected to a drying treatment by heating in order to remove the organic solvent in the coating film.
  • the temperature during heating can be in the range of 50 to 200 ° C.
  • the heating time is preferably set to a short time in order to prevent deformation of the resin base material 11 and the like.
  • the temperature during the drying treatment is preferably set to 150 ° C. or lower in order to prevent deformation of the resin film.
  • the formed coating film can also be given the drying process which dehumidifies maintaining in a low-humidity environment. Since the humidity in a low humidity environment changes with temperature, the relationship between temperature and humidity is defined by the dew point temperature.
  • a preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is ⁇ 8 ° C. (temperature 25 ° C./humidity 10%) or lower, and a more preferable dew point temperature is ⁇ 31 ° C. (temperature 25 ° C./temperature). Humidity 1%) or less.
  • the pressure for drying under reduced pressure can be selected within the range of normal pressure to 0.1 MPa.
  • a known method with little damage to the resin substrate 11 can be used, and plasma treatment capable of low temperature treatment, ozone treatment, ultraviolet ray or vacuum ultraviolet ray irradiation treatment, etc. Can be used.
  • the irradiation treatment with vacuum ultraviolet rays is preferable because the gas barrier property is hardly lowered due to the influence of the environment from the formation of the silicon-containing polymer modified layer to the formation of the transition metal oxide layer.
  • the vacuum ultraviolet irradiation treatment uses light energy of vacuum ultraviolet light in a wavelength range of 100 to 200 nm which is larger than the interatomic bonding force constituting the silicon-containing polymer. Then, the bonds between atoms are cut directly by the action of only photons called photon processes, and an oxidation reaction with active oxygen or ozone is advanced. Thereby, the silicon-containing polymer can be converted to silica or the like in a relatively low temperature environment of about 200 ° C. or less.
  • the vacuum ultraviolet light source may be any light source that generates light having a wavelength of 100 to 200 nm.
  • the irradiation wavelength is a rare gas excimer lamp having a wavelength of about 172 nm (for example, Xe excimer lamp MODEL manufactured by M.D. : MECL-M-1-200), a low-pressure mercury vapor lamp of about 185 nm, a medium-pressure and high-pressure mercury vapor lamp of 200 nm or less, and the like.
  • the excimer lamp is characterized by the fact that it emits light of a single wavelength, has a very high luminous efficiency, the emitted light has a short wavelength, the temperature of the irradiation target can be kept at a low temperature, and it can be turned on and off instantaneously.
  • This is a light source that can be easily applied to the resin base material 11 that is easily affected by heat.
  • the vacuum ultraviolet light having a short wavelength of 172 nm emitted from the Xe excimer lamp has a large oxygen absorption coefficient, generates a high concentration of active oxygen or ozone from a small amount of oxygen, and has a high dissociation ability with respect to the binding of organic substances. . Therefore, by using the Xe excimer lamp, the reforming process can be performed in a short time.
  • the irradiation condition of vacuum ultraviolet rays may be set within a range in which the resin base material 11 and the like below the silicon-containing polymer modified layer are not deteriorated.
  • the irradiation time of ultraviolet rays is generally within the range of 0.1 second to 10 minutes, and within the range of 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the resin substrate 11 and the coating solution. Preferably there is.
  • the illuminance of the vacuum ultraviolet light can be in the range of 1 mW / cm 2 to 10 W / cm 2 . If it is 1 mW / cm 2 or more, the reforming efficiency is improved, and if it is 10 W / cm 2 or less, ablation that may occur in the coating film, damage to the resin substrate 11, and the like can be reduced.
  • the amount of irradiation energy (irradiation amount) of vacuum ultraviolet rays can be in the range of 0.1 to 10.0 J / cm 2 . If it is this range, generation
  • the vacuum ultraviolet irradiation treatment may be batch treatment or continuous treatment.
  • batch processing it can be processed in an ultraviolet baking furnace (for example, an ultraviolet baking furnace manufactured by Eye Graphics Co., Ltd.) equipped with a vacuum ultraviolet light source.
  • continuous treatment the resin substrate 11 may be conveyed and irradiated with ultraviolet rays continuously in a zone having a vacuum ultraviolet light source.
  • Oxygen is required for the reaction at the time of irradiation with vacuum ultraviolet rays, but since vacuum ultraviolet rays are absorbed by oxygen and the reforming efficiency tends to decrease, irradiation with vacuum ultraviolet rays is performed in an atmosphere with low oxygen concentration and water vapor concentration as much as possible. It is preferable to carry out.
  • the oxygen concentration during vacuum ultraviolet irradiation can be in the range of 10 to 20000 ppm by volume (0.001 to 2% by volume).
  • the water vapor concentration is preferably in the range of 1000 to 4000 ppm by volume.
  • dry inert gas particularly dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by adjusting the flow ratio of oxygen gas and inert gas introduced into the room.
  • silicon compound layer As the gas barrier layer 17, a silicon compound layer containing a silicon compound such as silicon oxide, silicon nitride, silicon oxynitride, or silicon carbide is further disposed under the silicon-containing polymer-modified layer from the viewpoint of further improving gas barrier properties. You can also
  • the silicon-containing polymer modified layer is adjacent to the transition metal oxide layer described later, a structure in which a silicon compound layer is laminated below the silicon-containing polymer modified layer can also be employed.
  • the gas barrier property against the gas entering the transparent electrode 10 can be further enhanced, and the stability of the conductive performance can be further enhanced.
  • the silicon compound layer is made of a silicon-containing polymer (for example, a silicon-containing polymer used for a silicon-containing polymer modified layer such as polysilazane, in addition to a vacuum deposition method using silicon oxide as a raw material, a magnetron sputtering method using a target containing silicon, and an ion plating method.
  • a silicon-containing polymer for example, a silicon-containing polymer used for a silicon-containing polymer modified layer such as polysilazane, in addition to a vacuum deposition method using silicon oxide as a raw material, a magnetron sputtering method using a target containing silicon, and an ion plating method.
  • a silicon-containing polymer for example, a silicon-containing polymer used for a silicon-containing polymer modified layer such as polysilazane, in addition to a vacuum deposition method using silicon oxide as a raw material, a magnetron sputtering method using a target containing silicon, and an
  • the transition metal oxide layer is formed using a transition metal oxide on the silicon-containing polymer modified layer. Since the transition metal oxide layer is adjacent to the silicon-containing polymer modified layer, oxidation of the silicon-containing polymer modified layer can be suppressed, and extremely high gas barrier properties can be exhibited together with the silicon-containing polymer modified layer.
  • the transition metal oxide used for the transition metal oxide layer is an oxide of a metal from Group 3 to Group 12 in the periodic table, and one of them may be used alone, You may use a seed together. From the viewpoint of obtaining higher stability, the transition metal oxide is preferably an oxide of a Group 5 metal in the periodic table. Examples of the Group 5 metal include vanadium (V), niobium (Nb), and tantalum (Ta).
  • the transition metal oxide is preferably niobium oxide.
  • the transparent electrode 10 combining the transition metal oxide layer using niobium oxide and the silicon-containing polymer modified layer not only improves the stability of the conductive performance, but also reduces the angle dependency of the transmittance of incident light. be able to. This is because, by laminating a low refractive index layer and a high refractive index layer, multiple interference of light occurs, the reflectance is reduced, and the optical behavior due to the difference in refractive index is changed. Inferred to be a factor.
  • the transition metal oxide content in the transition metal oxide layer is preferably in the range of 50 to 100% by mass. Within this range, a sufficient gas barrier property can be obtained by the interaction of the transition metal in the transition metal oxide layer with the silicon-containing polymer modified layer.
  • the transition metal oxide layer As a method for forming the transition metal oxide layer, it is easy to adjust the composition ratio between the transition metal and oxygen, so physical vapor deposition (PVD: Physical Vapor Deposition) such as vapor deposition, sputtering, ion plating, etc. And a CVD method such as a plasma CVD method, an atomic layer deposition (ALD) method, and the like. Among these, a sputtering method that does not damage the lower layer and has high productivity is preferable.
  • PVD Physical vapor deposition
  • ALD atomic layer deposition
  • a bipolar sputtering method As the sputtering method, a bipolar sputtering method, a magnetron sputtering method, a dual magnetron (DM) sputtering method, a reactive sputtering method, an ion beam sputtering method, an electron cyclotron resonance (ECR) sputtering method, or the like is used. One of these may be used alone, or two or more may be used in combination.
  • the target application method can be appropriately selected depending on the target type.
  • a transition metal oxide thin film can be formed by using a transition metal as a target and introducing oxygen as a source gas.
  • RF high frequency
  • a transition metal oxide target can be used.
  • the inert gas He, Ne, Ar, Kr, Xe, or the like can be used, and among these, Ar is preferable.
  • the transition metal oxide layer may be a single layer or a multilayer structure of two or more layers. In the case of a multilayer structure, the transition metal oxide used for each layer may be the same or different.
  • the thickness of the transition metal oxide layer is preferably in the range of 1 to 200 nm from the viewpoint of exhibiting uniform gas barrier properties regardless of the position.
  • the particle-containing layer 16 is provided on the surface (back surface) opposite to the surface (front surface) on which the conductive layer 12 is formed in the resin base material 11.
  • the transparent electrodes 10 are in direct contact with each other, such as when the transparent electrodes 10 are stacked or the long transparent electrodes 10 are wound into a roll, the transparent electrodes 10 are in the particle-containing layer 16. Therefore, charging, sticking of the transparent electrodes 10 and the like can be suppressed.
  • the particle-containing layer 16 is composed of particles and a binder resin.
  • the particle-containing layer 16 preferably contains particles in the range of 1 to 900 parts by mass with respect to 100 parts by mass of the binder resin.
  • the particles constituting the particle-containing layer 16 are preferably inorganic fine particles, inorganic oxide particles, conductive polymer particles, conductive carbon fine particles and the like.
  • metal oxide particles such as ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , MgO, BaO, MoO 2 , V 2 O 5 , and inorganic oxide particles such as SiO 2 are used.
  • SnO 2 and SiO 2 are preferable.
  • Binder resin examples of the binder resin constituting the particle-containing layer 16 include cellulose derivatives such as cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate, polyvinyl acetate, polystyrene, polycarbonate, and polybutylene terephthalate.
  • Polyvinyl alcohol derivatives such as polyesters such as copolybutylene / tele / isophthalate, polyvinyl alcohol, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, and polyvinyl benzal, norbornene polymers containing norbornene compounds, polymethyl methacrylate, polyethyl methacrylate , Polypropyltyl methacrylate, polybutyl methacrylate, polymethyl Acrylic resins such as acrylate, or may be a copolymer of acrylic resin and other resins, but it is not particularly limited to these exemplified a resin material. Among these, cellulose derivatives and acrylic resins are preferable, and acrylic resins are most preferably used.
  • thermoplastic resin having a weight average molecular weight of 400,000 or more and a glass transition temperature in the range of 80 to 110 ° C. is preferable in terms of optical characteristics and the quality of the particle-containing layer 16 to be formed.
  • the glass transition temperature can be determined by the method described in JIS K7121.
  • the binder resin used here is 60% by mass or more, more preferably 80% by mass or more of the total resin mass constituting the particle-containing layer, and an actinic radiation curable resin or a thermosetting resin is applied as necessary. You can also
  • the conductive layer 12 is constituted by the fine metal wire pattern 13 and the amorphous metal oxide layer 14.
  • the conductive layer 12 includes the metal fine wire pattern 13, the surface conductivity of the transparent electrode 10 is excellent.
  • the surface side of the conductive layer 12 is composed of the amorphous metal oxide layer 14, the flexibility of the conductive layer 12 can be provided as compared with the case where the metal oxide layer includes a crystal phase. Furthermore, since the conductive layer 12 is composed of the fine metal wire pattern 13 and the amorphous metal oxide layer 14, the pressure applied to the amorphous metal oxide layer 14 when bent can be dispersed, and the amorphous metal oxide layer 14 is used alone. Compared with the case, the transparent electrode 10 excellent in flexibility can be comprised.
  • the amorphous metal oxide layer 14 on the surface side of the conductive layer 12 damage to the conductive layer 12 can be prevented as compared with the case where a conductive polymer is used.
  • damage to the surface of the conductive layer 12 of the transparent electrode 10 can be suppressed.
  • the configuration in which the amorphous metal oxide layer 14 is provided on the surface of the conductive layer 12 is particularly effective in the configuration of the transparent electrode 10 having the particle-containing layer 16.
  • a fine metal wire pattern 13 is formed on the underlayer 15.
  • the adhesion between the underlayer 15 and the fine metal wire pattern 13 is increased, and peeling and damage of the fine metal wire pattern 13 can be suppressed.
  • the base layer 15 functions as a heat insulating layer between the resin base material 11 and the metal fine wire pattern 13, and the resin base material 11 and the metal fine wire pattern 13 are damaged in the firing step performed when the metal fine wire pattern 13 is formed. Can be suppressed.
  • the resin base material 11 functions as a gas barrier film.
  • the resin base material 11 functions as a gas barrier film.
  • the resin base material 11 is prepared.
  • a gas barrier layer 17 is formed on the resin substrate 11 as necessary.
  • the resin base material 11 in which the gas barrier layer 17 was previously formed is prepared.
  • the particle-containing layer 16 is formed on the resin substrate 11 as necessary.
  • the resin base material 11 in which the particle-containing layer 16 was previously formed is prepared.
  • the resin base material 11 on which only one of the gas barrier layer 17 and the particle-containing layer 16 is formed may be used, or the resin base material 11 on which both are formed may be used.
  • the fine metal wire pattern 13 and the amorphous metal oxide layer 14 are formed on the prepared resin base material 11 to form the conductive layer 12.
  • the base layer 15 may be formed as necessary before the formation of the conductive layer 12.
  • the underlayer 15 is formed by preparing a dispersion for forming an underlayer by dispersing the polymer material and the above-described metal oxide fine particles in a solvent, and applying this dispersion for forming the underlayer on the substrate.
  • the dispersion solvent used for the underlayer-forming dispersion liquid is not particularly limited, but it is preferable to select a solvent that does not cause precipitation of the polymer material and aggregation of the metal oxide fine particles.
  • a solvent that does not cause precipitation of the polymer material and aggregation of the metal oxide fine particles By increasing the dispersibility of the metal oxide fine particles, it is possible to prevent metal oxide aggregates from being generated on the substrate after coating and drying. From the viewpoint of dispersibility, it is preferable to disperse a liquid obtained by mixing a polymer material and metal oxide fine particles by a method such as ultrasonic treatment or bead mill treatment, and filter the solution using a filter or the like.
  • any appropriate method can be selected as a method for forming the underlayer 15.
  • various printing methods such as a gravure printing method, a flexographic printing method, an offset printing method, a screen printing method, and an inkjet printing method can be used.
  • various coating methods such as a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, a die coating method, a blade coating method, a curtain coating method, a spray coating method, and a doctor coating method can be used.
  • a gravure printing method, a flexographic printing method, an offset printing, a screen printing method, or an inkjet printing method it is preferable to use a gravure printing method, a flexographic printing method, an offset printing, a screen printing method, or an inkjet printing method.
  • the underlayer 15 is formed by subjecting the coating film formed on the resin base material 11 to known heat drying such as warm air drying or infrared drying, or drying such as natural drying.
  • the temperature at which the heat drying is performed can be appropriately selected according to the resin substrate 11 to be used. Heat drying is preferably performed at a temperature of 200 ° C. or lower. Further, as will be described later, depending on the polymer material to be selected, a treatment such as curing with light energy such as ultraviolet rays or thermal curing with little damage to the resin substrate 11 may be performed.
  • the filament temperature of the light source is in the range of 1600 to 3000 ° C.
  • the infrared heater inside is preferably used for drying. Since the hydroxy group has absorption at a specific wavelength emitted from the infrared heater, the solvent can be heated.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Examples of the polar solvent having a hydroxy group include water (preferably pure water such as distilled water and deionized water), a methanolic solvent, glycols, glycol ethers, and a mixed solvent of water and alcohol. It is done.
  • Examples of glycol ether organic solvents include ethyl carbitol and butyl carbitol.
  • Examples of the alcohol organic solvent include methanol, ethanol, 1-propanol, 2-propanol, n-butanol, 2-butanol, diacetone alcohol, butoxyethanol and the like.
  • the metal fine wire pattern 13 is formed on the resin base material 11.
  • the metal fine line pattern 13 is formed using a metal ink composition.
  • a conventionally well-known method can be utilized.
  • a method for forming the conventionally known fine metal wire pattern 13 for example, a method using a photolithography method, a coating method, a printing method, or the like can be used.
  • the metal ink composition contains the metal nanoparticles described above and a solvent, and may contain additives such as a dispersant, a viscosity modifier, and a binder.
  • additives such as a dispersant, a viscosity modifier, and a binder.
  • Solvents used in the metal nanoparticle-containing composition include water, methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tetradecanol, hexadecanol, hexanediol, Heptanediol, octanediol, nonanediol, decanediol, farnesol, dedecadienol, linalool, geraniol, nerol, heptadienol, tetradecenol, hexadecenol, phytol, oleyl alcohol, dedecenol, decenol, undecylenyl alcohol, nonenol, citronellol , Octenol, hep
  • a method generally used for forming an electrode pattern can be applied.
  • the gravure printing method include those described in JP 2009-295980 A, JP 2009-259826 A, JP 2009-96189 A, and JP 2009-90662 A, and the like.
  • the methods described in JP-A No. 2004-268319 and JP-A No. 2003-168560 are described.
  • Examples of the method described in JP-A-302345 and the ink-jet printing method include methods described in JP-A-2011-180562, JP-A-2000-127410, and JP-A-8-238774.
  • a metal ink composition is formed on the entire surface of the underlayer 15 by printing or coating, and after performing a drying process and a baking process described later, a known photolithography method is applied.
  • the pattern of the desired genus nanoparticle-containing composition is formed by etching.
  • the drying process can be performed using a known drying method. Drying methods include, for example, air cooling drying, convection heat transfer drying using hot air, radiant heat drying using infrared rays, conductive heat transfer drying using a hot plate, vacuum drying, internal using microwaves Exothermic drying, IPA vapor drying, Marangoni drying, Rotagoni drying, freeze drying, and the like can be used.
  • the heat drying is preferably performed in a temperature range of 50 to 200 ° C. and at a temperature at which the resin base material 11 is not deformed. Is more preferable.
  • a PET substrate is used as the substrate, it is particularly preferable to heat it under conditions that provide a temperature range of 100 ° C. or lower.
  • the firing time depends on the temperature and the size of the metal nanoparticles used, but is preferably in the range of 10 seconds to 30 minutes, and in the range of 10 seconds to 15 minutes from the viewpoint of productivity. More preferably, it is in the range of 10 seconds to 5 minutes.
  • the drying treatment it is preferable to perform infrared irradiation.
  • a specific wavelength region By selectively using the specific wavelength region, it is possible to selectively block the wavelength of the absorption region of the resin substrate 11 and to selectively irradiate the specific wavelength effective for the solvent of the metal ink composition.
  • an infrared heater in which the filament temperature of the light source is in the range of 1600 to 3000 ° C.
  • the dried metal ink composition pattern is baked.
  • the type of metal composition contained in the metal ink composition for example, silver colloid having the above-mentioned ⁇ -junction organic ligand
  • sufficient electrical conductivity is exhibited by the drying treatment. It does not have to be.
  • the firing of the pattern of the metal ink composition is preferably performed by light irradiation (flash firing) using a flash lamp in order to suppress thermal deformation or the like of the resin base material 11.
  • flash firing a discharge tube of a flash lamp used in flash firing
  • a discharge tube of xenon, helium, neon, argon or the like can be used, but a xenon lamp is preferably used.
  • the preferable spectral band of the flash lamp is preferably in the range of 240 to 2000 nm. Within this range, there is little damage such as thermal deformation of the resin base material 11 due to flash firing.
  • the light irradiation conditions of the flash lamp are arbitrary, but the total light irradiation energy is preferably in the range of 0.1 to 50 J / cm 2 , and preferably in the range of 0.5 to 10 J / cm 2. More preferred.
  • the light irradiation time is preferably in the range of 10 ⁇ sec to 100 msec, and more preferably in the range of 100 ⁇ sec to 10 msec. Further, the number of times of light irradiation may be one time or a plurality of times, and it is preferably performed in the range of 1-50 times.
  • the flash lamp irradiation on the resin base material 11 is preferably performed from the side of the resin base material 11 on which the pattern of the metal ink composition is formed.
  • the resin base material 11 is transparent, you may irradiate from the resin base material 11 side, and may irradiate from both surfaces of the resin base material 11.
  • the surface temperature of the resin base material 11 at the time of flash firing includes the heat resistance temperature of the resin base material 11, the boiling point (vapor pressure) of a dispersion medium such as a solvent contained in the metal ink composition, the type and pressure of the atmospheric gas.
  • the temperature may be determined in consideration of the thermal behavior such as dispersibility and oxidation of the metal ink composition, and is preferably performed at room temperature or higher and 200 ° C. or lower.
  • the flash lamp light irradiation device only needs to satisfy the above irradiation energy and irradiation time.
  • flash baking may be performed in air
  • an amorphous metal oxide layer 14 is formed on the entire surface of the formation region of the conductive layer 12 so as to cover the metal fine line pattern 13.
  • the amorphous metal oxide layer 14 can be formed by a sputtering method or an ion plating method using the above-described metal oxide sputtering target.
  • the amorphous metal oxide layer 14 is formed by various sputtering methods, ion plating methods, etc., as in the case of conventional metal oxide layer formation, with the temperature in the film forming apparatus being 200 ° C. or lower. Can do. By setting the temperature in the film forming apparatus to 200 ° C. or lower, a crystalline phase is not generated in the metal oxide layer, and the amorphous metal oxide layer 14 can be manufactured.
  • the substrate temperature during film formation is preferably 90 ° C. or lower, particularly 70 ° C. or lower.
  • the substrate temperature at the time of film formation is set to 90 ° C. or lower, preferably 70 ° C. or lower.
  • an amorphous metal oxide layer can be produced without generating a crystal phase, and deformation of the resin base material 11 can be prevented.
  • the temperature in the film forming apparatus is set to 70 ° C. or lower, for example.
  • a cooling mechanism is provided on the substrate side so that the substrate temperature is 70 ° C. or lower.
  • Examples of the sputtering method for forming the amorphous metal oxide layer 14 include DC sputtering, RF sputtering, DC magnetron sputtering, RF magnetron sputtering, ECR plasma sputtering, and ion beam sputtering.
  • the amorphous metal oxide layer 14 can be formed by a direct current magnetron sputtering method with a distance between target substrates of 50 to 100 mm during sputtering and a sputtering gas pressure of 0.5 to 1.5 Pa.
  • the distance between the target substrates if the distance between the target substrates is shorter than 50 mm, the kinetic energy of the sputtered particles to be deposited increases, so that the damage received by the resin base material 11 increases. In addition, the film thickness becomes non-uniform and the film thickness distribution becomes worse. When the distance between the target substrates is longer than 100 mm, the film thickness distribution is improved, but the kinetic energy of the sputtered particles to be deposited becomes too low, densification due to diffusion hardly occurs, and the density of the amorphous metal oxide layer is not preferable. .
  • the sputtering gas pressure if the sputtering gas pressure is lower than 0.5 Pa, the kinetic energy of the sputtered particles to be deposited increases, so that the resin substrate 11 suffers more damage.
  • the sputtering gas pressure is higher than 1.5 Pa, not only the film forming speed is slowed, but also the kinetic energy of the sputtered particles to be deposited becomes too low, densification due to diffusion does not occur, and the density of the amorphous metal oxide layer increases. Since it becomes low, it is not preferable.
  • the gas barrier layer 17 may be formed on the resin base material 11 as necessary. The formation of the gas barrier layer 17 is performed before the formation of the conductive layer 12 and the base layer 15 described above.
  • the gas barrier layer 17 is preferably formed by vacuum deposition or CVD using the above-described silicon-containing polymer modified layer, silicon compound layer, and transition metal oxide layer alone or in combination.
  • the above-mentioned methods and conditions can be used for forming the silicon-containing polymer modified layer, the silicon compound layer, and the transition metal oxide layer, respectively.
  • the particle-containing layer 16 may be formed on the resin base material 11 (back side) as necessary.
  • the formation of the particle-containing layer 16 is preferably performed before the formation of the conductive layer 12, the base layer 15, and the gas barrier layer 17 described above.
  • the above-described particles and binder resin are dissolved in an appropriate organic solvent to prepare a coating solution for forming a particle-containing layer in a solution state.
  • the particle-containing layer 16 is formed by coating and drying.
  • organic solvent used for the preparation of the particle-containing layer forming coating solution hydrocarbons, alcohols, ketones, esters, glycol ethers and the like can be appropriately mixed and used.
  • the organic solvent is not limited to these.
  • Examples of the hydrocarbons include benzene, toluene, xylene, hexane, and cyclohexane.
  • Examples of the alcohols include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, 2-butanol, tert. -Butanol, pentanol, 2-methyl-2-butanol, cyclohexanol and the like.
  • Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like.
  • Examples of the esters include formic acid.
  • glycol ethers (1 to 4 carbon atoms) include methyl cellosolve and ethyl cellosol.
  • PGME Propylene glycol monomethyl ether
  • propylene glycol monoethyl ether propylene glycol mono-n-propyl ether
  • propylene glycol monoisopropyl ether propylene glycol monobutyl ether, and the like.
  • alkyl ether esters examples include propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, and examples of other solvents include N-methylpyrrolidone.
  • the organic solvent is not limited to these.
  • a solvent in which these are appropriately mixed is also preferably used.
  • the particle-containing layer forming coating solution As a method for applying the particle-containing layer forming coating solution onto the substrate, doctor coating, extrusion coating, slide coating, roll coating, gravure coating, wire bar coating, reverse coating, curtain coating, extrusion coating, or the United States Examples include an extrusion coating method using a hopper described in Japanese Patent No. 2681294.
  • the particle-containing layer 16 having a dry film thickness in the range of 0.1 to 20 ⁇ m, preferably in the range of 0.2 to 5 ⁇ m, can be formed on the substrate. .
  • organic electroluminescence element Organic electroluminescence element
  • organic EL element Organic electroluminescence element
  • the organic EL element of the present embodiment has the above-described transparent electrode as one electrode (transparent electrode), and an organic functional layer (light emitting unit) and the other electrode (counter electrode) are provided on the transparent electrode. It is. For this reason, in the following description of the organic EL element, detailed description of the same configuration as the above-described transparent electrode is omitted.
  • the structure of the organic EL element of this embodiment is shown in FIG.
  • the organic EL element 20 shown in FIG. 2 includes a transparent electrode 10 and a counter electrode 22, and a light emitting unit 21 including an organic functional layer is provided between the electrodes.
  • the transparent electrode 10 has the same configuration as that in FIG.
  • the “light-emitting unit” refers to a light-emitting body (unit) composed mainly of an organic functional layer such as a light-emitting layer, a hole transport layer, and an electron transport layer containing at least various organic compounds.
  • the luminous body is sandwiched between a pair of electrodes composed of an anode and a cathode, and emits light by recombination of holes supplied from the anode and electrons supplied from the cathode in the luminous body.
  • the organic EL element may be provided with a plurality of light emitting units according to a desired emission color.
  • the organic EL element 20 is configured as a bottom emission type in which generated light (hereinafter referred to as emitted light h) is extracted from at least the resin base material 11 side of the transparent electrode 10.
  • Transparent means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the main component is a component having the highest ratio in the entire configuration.
  • extraction electrodes are provided at the ends of the conductive layer 12 and the counter electrode 22 of the transparent electrode 10.
  • the conductive layer 12 and the counter electrode 22 of the transparent electrode 10 and an external power source are electrically connected via an extraction electrode.
  • the layer structure of the organic EL element 20 is not limited and may be a general layer structure.
  • the conductive layer 12 of the transparent electrode 10 functions as an anode (that is, an anode) and the counter electrode 22 functions as a cathode (that is, a cathode)
  • the light-emitting unit 21 has holes in order from the conductive layer 12 side of the transparent electrode 10.
  • a structure in which an injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer is laminated is exemplified, but among these, it is essential to have a light emitting layer composed of at least an organic material.
  • the hole injection layer and the hole transport layer may be provided as a hole transport injection layer.
  • the electron transport layer and the electron injection layer may be provided as an electron transport injection layer.
  • the electron injection layer may be made of an inorganic material.
  • the light-emitting unit 21 may have a hole blocking layer, an electron blocking layer, or the like laminated as necessary.
  • the light emitting layer may have a structure in which each color light emitting layer that generates light emitted in each wavelength region is laminated, and each color light emitting layer is laminated via a non-light emitting auxiliary layer.
  • the auxiliary layer may function as a hole blocking layer or an electron blocking layer.
  • the counter electrode 22 which is a cathode may also have a laminated structure as necessary.
  • the layer structure of the light emitting unit 21 is not limited to these.
  • the organic EL element 20 may be an element having a so-called tandem structure in which a plurality of light emitting units 21 including at least one light emitting layer are stacked.
  • Examples of typical element configurations of the tandem structure include the following configurations. Anode / first light emitting unit / intermediate connector layer / second light emitting unit / intermediate connector layer / third light emitting unit / cathode
  • the first light emitting unit, the second light emitting unit, and the third light emitting unit may all be the same or different. Further, the two light emitting units may be the same, and the remaining one may be different.
  • the plurality of light emitting units 21 may be directly stacked or may be stacked via an intermediate connector layer.
  • the intermediate connector layer is also commonly referred to as an intermediate electrode, intermediate conductive layer, charge generation layer, electron extraction layer, connection layer, or intermediate insulating layer. Electrons are transferred to the anode side adjacent layer and holes are connected to the cathode side adjacent layer.
  • a known material structure can be used as long as the layer has a function of supplying. Examples of materials used for the intermediate connector layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, and GaN.
  • electroconductivity such as oligothiophene
  • examples include organic material layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, and metal-free porphyrins. , But it is not limited to these.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No.
  • the organic EL element 20 includes a light emitting unit 21 sandwiched between a pair of electrodes including a conductive layer 12 and a counter electrode 22 of the transparent electrode 10.
  • One of the conductive layer 12 and the counter electrode 22 of the transparent electrode 10 serves as the anode of the organic EL element 20, and the other serves as the cathode.
  • the conductive layer 12 of the transparent electrode 10 is made of a transparent conductive material
  • the counter electrode 22 is made of a highly reflective material.
  • the counter electrode 22 is also made of a transparent conductive material.
  • the counter electrode 22 when the counter electrode 22 is used as an anode, it is preferable to use a conductive material composed of a metal, an alloy, an electrically conductive compound, and a mixture thereof having a high work function (4 eV or more).
  • the conductive material that can constitute the anode include conductive transparent materials such as metals such as Au and Ag, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • the anode may be formed by forming a thin film from these conductive materials by a method such as vapor deposition or sputtering, and forming a pattern having a desired shape by a photolithography method.
  • a method such as vapor deposition or sputtering
  • the pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the conductive material.
  • a wet film formation method such as a printing method or a coating method can also be used.
  • the transmittance be greater than 10%.
  • the sheet resistance as the anode is several hundred ⁇ / sq. The following is preferred.
  • the film thickness depends on the material, it is usually selected within the range of 10 to 1000 nm, preferably within the range of 10 to 200 nm.
  • a conductive material composed of a metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound
  • a mixture thereof having a small work function (4 eV or less) It is preferable to use a functional material.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering using these conductive materials.
  • the conductive material include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ). Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like can be mentioned.
  • a mixture of an electron injectable metal or an electron injectable metal and a second metal which is a stable metal having a larger work function than this for example, A magnesium / silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum, and the like are suitable.
  • the sheet resistance as a cathode is several hundred ⁇ / sq.
  • the film thickness is usually selected from the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • a transparent or translucent cathode can be manufactured by forming the above metal as a cathode with a film thickness of 1 to 20 nm and then forming a conductive transparent material mentioned in the description of the anode thereon. With this configuration, an element in which both the anode and the cathode are transmissive can be manufactured.
  • the extraction electrode is for electrically connecting the conductive layer 12 of the transparent electrode 10 and an external power source, and the material thereof is not particularly limited, and a known material can be suitably used.
  • a metal film such as a MAM electrode (Mo / Al.Nd alloy / Mo) having a three-layer structure can be used.
  • the organic EL element 20 may be sealed with a sealing member (not shown) in order to prevent deterioration of the light emitting unit 21 configured using an organic material or the like.
  • the sealing member is a plate-like or film-like member that covers the upper surface of the organic EL element 20, and is fixed to the resin substrate 11 side by an adhesive portion.
  • the sealing member may be a sealing film.
  • Such a sealing member is provided in a state in which the electrode terminal portion of the organic EL element 20 is exposed and at least the light emitting unit 21 is covered. Moreover, it is good also as a structure which provides an electrode in a sealing member and makes the electrode terminal part of the organic EL element 20 and the electrode of a sealing member electrically connect.
  • the plate-like (film-like) sealing member examples include a glass substrate, a polymer substrate, a metal substrate, and the like, and these substrates may be further processed into a thin film shape.
  • the glass substrate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal substrate examples include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer substrate or a metal substrate as a thin film as a sealing member.
  • the substrate material may be processed into a concave plate shape and used as a sealing member.
  • the above-described substrate member is subjected to processing such as sand blasting or chemical etching to form a recess.
  • the film-like polymer substrate has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and conforms to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by the above method is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the adhesion part which fixes a sealing member to the resin base material 11 side is used as a sealing agent for sealing the organic EL element 20.
  • the adhesive portion is a light or thermosetting adhesive having a reactive vinyl group of an acrylic acid oligomer or a methacrylic acid oligomer, or a moisture curable adhesive such as 2-cyanoacrylate. Can be mentioned.
  • bonding portion examples include epoxy-based heat and chemical curing types (two-component mixing).
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • coating of the adhesive agent to the adhesion part of the sealing member and the transparent electrode 10 may use commercially available dispenser, and may print it like screen printing.
  • the organic material which comprises an organic EL element may deteriorate with heat processing. For this reason, it is preferable that the bonding portion be bonded and cured at a temperature from room temperature (25 ° C.) to 80 ° C. or less.
  • an inert gas such as nitrogen or argon, an inert liquid such as fluorinated hydrocarbon, or silicon oil is formed in the gap. Is preferably injected. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • the sealing film is formed on the transparent electrode 10 in a state where the light emitting unit 21 in the organic EL element 20 is completely covered and the electrode terminal portion of the organic EL element 20 is exposed. Provided.
  • Such a sealing film is composed of an inorganic material or an organic material.
  • the sealing film is made of a material having a function of suppressing entry of a substance that causes deterioration of the light emitting unit 21 such as moisture or oxygen.
  • a material for example, inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used.
  • a laminated structure may be formed by using a film made of an organic material together with a film made of these inorganic materials.
  • the method for forming these films is not particularly limited.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • a protective member such as a protective film or a protective plate may be provided to mechanically protect the organic EL element 20.
  • the protective member is disposed at a position where the organic EL element 20 and the sealing member are sandwiched between the transparent electrode 10.
  • the sealing member is a sealing film, mechanical protection for the organic EL element 20 is not sufficient, and thus such a protective member is preferably provided.
  • a glass plate, a polymer plate, a thinner polymer film, a metal plate, a thinner metal film, or a polymer material film or a metal material film is applied.
  • a polymer film because it is lightweight and thin.
  • the organic EL element to which the transparent electrode is applied is described as an example of the organic electronic device to which the transparent electrode is applied.
  • the transparent electrode is also transparent to the organic photoelectric conversion element and other organic electronic devices. It can be applied as a conductive member.
  • the transparent electrode 10 is produced by the manufacturing method described above.
  • a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are formed in this order on the transparent electrode 10 to form a light emitting unit 21.
  • a method for forming each of these layers there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, etc. Vacuum deposition or spin coating is preferred. Further, different film formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Each condition is preferably selected as appropriate within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of ⁇ 50 to 300 ° C., and layer thickness of 0.1 to 5 ⁇ m.
  • the counter electrode 22 is formed thereon by a film forming method such as vapor deposition or sputtering.
  • the counter electrode 22 is formed in a pattern in which the terminal portion is drawn from the upper side of the light emitting unit 21 to the periphery of the resin base material 11 while maintaining the insulating state with respect to the conductive layer 12 of the transparent electrode 10 by the light emitting unit 21. To do.
  • the organic EL element 20 is obtained.
  • a sealing member that covers at least the light emitting unit 21 is provided in a state where the terminal portions of the extraction electrode and the counter electrode 22 in the organic EL element 20 are exposed.
  • a desired organic EL element 20 is obtained on the transparent electrode 10.
  • the light emitting unit 21 is consistently produced from the light emitting unit 21 to the counter electrode 22 by a single evacuation.
  • a film method may be applied. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • PET / CHC film As a resin base material, a polyethylene terephthalate (PET / CHC) film (G1SBF, thickness 125 ⁇ m, refractive index 1.59, hereinafter referred to as PET / CHC film) manufactured by Kimoto Co., Ltd. was prepared.
  • particle-containing layer Next, a particle-containing layer was produced on the back surface (surface on which the conductive layer is not formed) of the prepared resin base material.
  • the particle-containing layer was prepared by adjusting the colloidal silica-containing monomer by the following method, and then preparing a particle-containing layer preparation solution from the colloidal silica-containing monomer. And the particle
  • the prepared particle-containing layer preparation liquid was applied and dried on a resin base material under the condition that the thickness after curing was 10 ⁇ m. Thereafter, using a mercury lamp of 80 W / cm 2 , an ultraviolet irradiation treatment was performed under the condition of 300 mJ to form a particle-containing layer.
  • the resin base material was set in a discharge plasma chemical vapor deposition apparatus (Plasma CVD apparatus Precision 5000 manufactured by Applied Materials) and continuously conveyed by roll-to-roll.
  • a magnetic field was applied between the film forming rollers, and electric power was supplied to each film forming roller to generate plasma between the film forming rollers to form a discharge region.
  • a mixed gas of hexamethyldisiloxane (HMDSO), which is a raw material gas, and oxygen gas (which also functions as a discharge gas), which is a reaction gas is supplied from a gas supply pipe as a film forming gas to the formed discharge region.
  • a gas barrier layer having a layer thickness of 120 nm was formed under the following conditions.
  • Source gas hexamethyldisiloxane, HMDSO
  • 50 sccm Standard Cubic Centimeter per Minute
  • Reaction gas (O 2 ) supply amount 500 sccm
  • Degree of vacuum in the vacuum chamber 3Pa
  • Applied power from the power source for plasma generation 0.8 kW
  • Frequency of power source for plasma generation 70 kHz
  • Film transport speed 0.8 m / min
  • an L-430S-FHS sputtering apparatus manufactured by Anelva was used, Ar: 20 sccm, O 2 : 2 sccm, sputtering pressure: 0.25 Pa, room temperature, target side power: 1000 W, target-substrate distance: 86 mm, Fabricated by RF sputtering.
  • the sample 101 was manufactured by the above method.
  • the conductive layer was manufactured at room temperature using an IZO target.
  • the conductive layer was manufactured at room temperature using an IGO target.
  • a silver nanoparticle dispersion (FlowMetal SR6000, manufactured by Bando Chemical Co., Ltd.) was applied as a metal ink composition in a grid pattern with a width of 50 ⁇ m and a pitch of 1 mm using an inkjet printing method. .
  • the area for printing the pattern was 30 mm ⁇ 40 mm.
  • an ink jet printing method an ink jet head having an ink droplet ejection amount of 4 pl was used, and a coating speed and an ejection frequency were adjusted to print a pattern.
  • a desktop robot Shotmaster-300 manufactured by Musashi Engineering
  • an ink jet head manufactured by Konica Minolta
  • an ink jet evaluation apparatus EB150 manufactured by Konica Minolta
  • wavelength control infrared rays in which two quartz glass plates that absorb infrared rays having a wavelength of 3.5 ⁇ m or more are attached to an infrared irradiation device (ultimate heater / carbon, manufactured by Meimitsu Kogyo Co., Ltd.) and cooling air is allowed to flow between the glass plates.
  • an infrared irradiation device (ultimate heater / carbon, manufactured by Meimitsu Kogyo Co., Ltd.) and cooling air is allowed to flow between the glass plates.
  • the pattern of the formed metal ink composition was dried using a heater.
  • a conductive polymer (PEDOT / PSS) -containing liquid was applied and patterned to prepare a conductive polymer layer.
  • the conductive polymer layer is printed on a resin base material on which the fine metal wire pattern is formed using a conductive polymer-containing liquid, which will be described later, using an inkjet method, and then naturally dried at room temperature to a thickness of 500 nm. Formed.
  • the conductive polymer-containing liquid is 0.40 g of a water-soluble binder resin aqueous solution (20% solid content aqueous solution), 1.90 g of PEDOT-PSS CLEVIOS PH750 (solid content 1.03%) (manufactured by Heraeus), and dimethyl sulfoxide. 0.10 g was mixed and adjusted.
  • the water-soluble binder resin aqueous solution is prepared by dissolving the water-soluble binder resin in pure water to a solid content of 20%.
  • the water-soluble binder resin was added to 200 ml of tetrahydrofuran (THF) in a 300 ml three-necked flask and heated to reflux for 10 minutes, and then cooled to room temperature under nitrogen. Next, 2-hydroxyethyl acrylate (10.0 g, 86.2 mmol, molecular weight 116.12) and azobisbutyronitrile (AIBN) (2.8 g, 17.2 mmol, molecular weight 164.11) were added for 5 hours. Heated to reflux. Next, after cooling to room temperature, the reaction solution was added dropwise into 2000 ml of methyl ethyl ketone (MEK) and stirred for 1 hour.
  • THF tetrahydrofuran
  • MEK methyl ethyl ketone
  • this MEK solution was decanted and then washed three times with 100 ml of MEK, and the polymer was dissolved in THF and transferred to a 100 ml flask.
  • the THF solution was distilled off under reduced pressure using a rotary evaporator and then dried under reduced pressure at 50 ° C. for 3 hours.
  • 9.0 g (yield 90%) of a water-soluble binder resin having a number average molecular weight of 22100 and a molecular weight distribution of 1.42 was obtained.
  • the structure and molecular weight of the water-soluble binder resin were measured by 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) and GPC (Waters 2695, manufactured by Waters), respectively.
  • Device Waters 2695 (Separations Module)
  • Detector Waters 2414 (Refractive Index Detector)
  • Column Shodex Asahipak GF-7M HQ
  • Eluent Dimethylformamide (20 mM LiBr) Flow rate: 1.0 ml / min Temperature: 40 ° C
  • the transparent electrode of the sample 105 was produced in the same manner as the sample 104 except that the conductive layer was formed of a thin metal wire pattern and an amorphous metal oxide layer made of IZO.
  • the fine metal wire pattern was produced in the same manner as the sample 104 described above.
  • the amorphous metal oxide layer made of IZO was manufactured in the same manner as the conductive layer of the sample 102 described above.
  • the transparent electrode of the sample 106 was produced in the same manner as the sample 104, except that the conductive layer was formed of a thin metal wire pattern and an amorphous metal oxide layer made of IGO.
  • the fine metal wire pattern was produced in the same manner as the sample 104 described above.
  • the amorphous metal oxide layer made of IGO was manufactured by the same method as the conductive layer of the sample 103 described above.
  • a transparent electrode of Sample 107 was produced in the same manner as Sample 104, except that it was formed with a layer.
  • the fine metal wire pattern was produced in the same manner as the sample 104 described above.
  • the amorphous metal oxide layer made of IWZO was manufactured at room temperature using an IWZO target in the same manner as the conductive layer of the sample 102 described above.
  • a transparent electrode of Sample 108 was produced in the same manner as Sample 104.
  • the fine metal wire pattern was produced in the same manner as the sample 104 described above.
  • the amorphous metal oxide layer made of GZO was manufactured at room temperature using a GZO target in the same manner as the conductive layer of the sample 102 described above.
  • a transparent electrode of Sample 109 was produced in the same manner as Sample 104 except that it was formed.
  • the fine metal wire pattern was produced in the same manner as the sample 104 described above.
  • the amorphous metal oxide layer made of IGZO was manufactured at room temperature using an IGZO target in the same manner as the conductive layer of the sample 102 described above.
  • the transparent electrode of the sample 110 is produced in the same manner as the sample 104, except that the conductive layer is formed of a thin metal wire pattern and an amorphous metal oxide layer made of ZnO doped with Al. did.
  • the fine metal wire pattern was produced in the same manner as the sample 104 described above.
  • the amorphous metal oxide layer made of Al-doped ZnO was produced at room temperature using an Al-doped ZnO target in the same manner as the conductive layer of the sample 102 described above.
  • the transparent electrode of the sample 111 was produced by the same method as the sample 106 described above, except that the substrate temperature at the time of producing the amorphous metal oxide layer made of IGO was 50 ° C. .
  • the transparent electrode of the sample 112 was produced by the same method as the sample 106 described above, except that the substrate temperature at the time of producing the amorphous metal oxide layer made of IGO was 70 ° C. .
  • the transparent electrode of the sample 113 was produced in the same manner as the sample 106 described above, except that the substrate temperature at the time of producing the amorphous metal oxide layer made of IGO was 90 ° C. .
  • ⁇ Preparation of transparent electrode of sample 114> In the preparation of the transparent electrode of the sample 106 described above, the pattern of the metal ink composition was dried using a hot plate (HP), and the sample 114 was transparent in the same manner as the conductive layer of the sample 106 described above. An electrode was produced. In the drying process using the hot plate (HP), the resin substrate 11 side was brought into contact with the hot plate, and a heat treatment was performed at 80 ° C. for 30 minutes.
  • ⁇ Preparation of transparent electrode of sample 115> In the preparation of the transparent electrode of the sample 106 described above, the pattern of the metal ink composition was dried using a hot-air circulating oven, and the sample 115 was transparent using the same method as the conductive layer of the sample 106 described above. An electrode was produced. In the drying process using the oven, the sample was placed in a hot air circulation type oven, and heat treatment was performed at 80 ° C. for 30 minutes.
  • the transparent electrode of Sample 116 was prepared in the same manner as the conductive layer of Sample 106 described above, except that the pattern of the metal ink composition was dried by vacuum drying in the preparation of the transparent electrode of Sample 106 described above. . In the vacuum drying process, the drying process was performed for 30 minutes in a vacuum drying apparatus at 80 ° C.
  • the transparent electrode of the sample 117 was produced in the same manner as the conductive layer of the sample 106 described above, except that the pattern of the metal ink composition was dried by microwave irradiation. did.
  • a sample was placed so that the conductive layer surface was in contact with a foamed nickel sheet (Mitsubishi Materials Corporation, pore size: 600 ⁇ m), and the microwave was irradiated from the film substrate side at 200 W for 5 minutes.
  • ⁇ Preparation of transparent electrode of sample 118> In the production of the transparent electrode of the sample 106 described above, the conductive layer of the sample 106 described above was used except that the drying process and the baking process of the pattern of the metal ink composition were performed by a single process using a hot plate (HP).
  • a transparent electrode of Sample 118 was produced by the same method as described above. In the drying process and baking process using the hot plate (HP), the resin base material 11 side was brought into contact with the hot plate, and a heat treatment was performed at 120 ° C. for 60 minutes.
  • ⁇ Preparation of transparent electrode of sample 120> In the preparation of the transparent electrode of the sample 106 described above, the conductive layer of the sample 106 described above was used except that the silver nanoparticle dispersion used in the metal ink composition was changed to silver colloid dispersion dry cure (manufactured by Colloidal Inc.). A transparent electrode of Sample 120 was produced by the same method.
  • ⁇ Preparation of transparent electrode of sample 121> In the preparation of the transparent electrode of the sample 106 described above, the conductivity of the sample 106 described above was changed except that the silver nanoparticle dispersion used in the metal ink composition was changed to a silver complex dispersion of Tec-IJ-010 (manufactured by Inktec). A transparent electrode of Sample 121 was prepared in the same manner as the layer.
  • UV curing accumulated light amount 250 mJ / cm 2 at a film thickness of 30 ⁇ m and 254 nm was performed to prepare a base layer having a film thickness of 50 nm.
  • the transparent electrode of the sample 125 was formed in the same manner as the conductive layer of the sample 111 described above, except that a gas barrier layer was formed on the substrate and a conductive layer was formed on the gas barrier layer.
  • the gas barrier layer was formed by the same method as that of the sample 101 described above.
  • the transparent electrode of the sample 126 was formed in the same manner as the conductive layer of the sample 107 described above, except that a gas barrier layer was formed on the substrate and a conductive layer was formed on the gas barrier layer.
  • the gas barrier layer was formed by the same method as that of the sample 101 described above.
  • the transparent electrode of the sample 127 was formed in the same manner as the conductive layer of the sample 122 described above, except that a gas barrier layer was formed on the substrate and a conductive layer was formed on the gas barrier layer.
  • the gas barrier layer was formed by the same method as that of the sample 101 described above.
  • the transparent electrode of sample 128 was prepared in the same manner as the conductive layer of sample 101 described above, except that the conductive layer was formed directly on the substrate without forming the gas barrier layer. did.
  • X-ray diffraction (XRD) measurement Using a fully automatic horizontal multipurpose X-ray diffractometer SmartLab (Rigaku), the state of the metal oxide layer of the conductive layer of the transparent electrode of each sample was measured, and the presence or absence of a crystalline diffraction peak was measured. Note that Sample 104 was not subjected to XRD measurement because a conductive polymer layer was formed as the conductive layer.
  • Table 1 below shows the configurations of the transparent electrodes of Samples 101 to 128 and the evaluation results.
  • the crystal phases of Sample 101 and Sample 128 using ITO for the metal oxide layer were confirmed by XRD measurement. For this reason, the transparent electrodes of the sample 101 and the sample 128 have low flexibility. Further, the transparent electrodes of the sample 101 and the sample 128 have a high resistance value because the conductive layer is formed of only ITO.
  • the conductive layer is formed only of an amorphous metal oxide layer. For this reason, the crystal electrodes of the transparent electrodes of the sample 102 and the sample 103 have not been confirmed by XRD measurement. However, since the transparent electrodes of the sample 102 and the sample 103 do not have a metal fine line pattern in the conductive layer, the flexibility is poor and the sheet resistance value is high.
  • the conductive layer is formed of a fine metal wire pattern and a conductive polymer. For this reason, the transparent electrode of the sample 104 has a low resistance value and high flexibility. However, in the transparent electrode of sample 104, the conductive polymer is exposed on the surface of the conductive layer. Therefore, after winding the transparent electrode, the surface of the conductive layer is damaged, and the conductive layer is damaged. ing.
  • the flexibility decreases when the temperature of the resin base material increases during the formation of the amorphous metal oxide layer. This is presumably because a crystalline metal oxide is easily formed when the temperature rises during film formation.
  • the crystal phase was confirmed by XRD measurement. From this result, it is preferable that the surface temperature of the resin base material when forming the amorphous metal oxide layer is 70 ° C. or less.
  • the method for drying the pattern of the metal ink composition is not particularly limited in the production of the thin metal wire pattern.
  • the drying process and the baking process are performed simultaneously like the transparent electrode of the sample 118, the flexibility is lowered. This is because the drying step and the firing step are not performed as separate steps, so that the adhesion between the fine metal wire pattern and the resin base material is difficult to improve, and the conductive layer easily peels off when bent. It is thought to be. Therefore, when producing a metal fine wire pattern, it is preferable to perform a drying process and a baking process as separate processes.
  • the metal constituting the fine metal wire pattern is not limited as long as it has necessary conditions such as conductivity and particle size. It is considered that the same result can be obtained when a material other than silver is used.
  • the resistance values of the transparent electrodes of Samples 122 to 124 provided with the base layer are slightly lower than those of the other samples. ing. For this reason, it is considered that by providing a base layer suitable for forming the conductive layer, in particular, a base layer suitable for forming the fine metal wire pattern, the state of the fine metal wire pattern becomes good and the resistance of the conductive layer is lowered.
  • SYMBOLS 10 Transparent electrode, 11 ... Resin base material, 12 ... Conductive layer, 13 ... Metal fine wire pattern, 14 ... Amorphous metal oxide layer, 15 ... Underlayer, 16 ... -Particle-containing layer, 17 ... gas barrier layer, 20 ... organic EL element, 21 ... light emitting unit, 22 ... counter electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

樹脂基材と、金属細線パターンと、金属細線パターン上に設けられたアモルファス金属酸化物層とを有し、抵抗が低く、フレキシブル性に優れ、巻き取りの際に傷のつきにくい透明電極を提供する。

Description

透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法
 本発明は、透明電極、及び、透明電極を用いた有機電子デバイス、並びに、これらの製造方法に係わる。
 樹脂フィルム上に導電性物質を用いて形成された導電層を備える透明電極は、ディスプレイや照明パネル等に用いられる有機エレクトロルミネッセンス(EL:Electro Luminescence)素子、太陽電池、電子ペーパー等の薄型の電子デバイスの透明電極として広く用いられている。特に、大面積の電子デバイス、例えば照明用の有機EL素子や発電用の太陽電池等は、高い発光効率又は発電効率が求められるため、低抵抗の透明電極が望まれている。
 従来、一般的に透明電極には、光の透過性が高いことが求められる。このため、光透過性の高いITOを用いた透明電極が多用されている。しかし、ITOは抵抗が高いため、大面積化が求められる有機電気デバイスには好適ではない。また、ITOは結晶化温度が150℃前後と低いため、透明電極の製造工程中や、透明電極を用いたデバイスの製造工程中において、容易に結晶相が生じてしまう。結晶相は、折り曲げ時の割れの原因となるとともに、粒子同士の凝集が生じやすくなり、電極表面の平滑性の低下の原因となる。そのため、有機電子デバイスのフレキシブル化に対応できないといった課題や、有機EL素子等の有機電子デバイスに組み込んだ際に、電流がリークし、整流比が悪化する等の課題が生じる。
 これに対し、結晶化温度が高く、平滑性の高い電極として、Zn添加In膜(IZO)やW、Zn添加In(IWZO)を用いた透明電極が提案されている(例えば、特許文献1、特許文献2参照)。
 また、別の構成として、金属ナノ粒子を基板上に形成し、焼成を行って低抵抗化した金属細線と、導電性高分子とを用いた低抵抗な透明電極が提案されている(例えば、特許文献3参照)。
特開2006-193363号公報 国際公開97/46054号 特開2014-38749号公報
 しかしながら、IZO、IWZOといった金属酸化物を単独で用いた場合には、上述のITOと同様に、抵抗が高いため大面積化が求められる有機電子デバイスには好適ではない。また、結晶相を持つITOと比べると割れにくくはなるが、フレキシブルな有機電子デバイスに用いるには、十分ではない。
 また、樹脂基材上に金属細線と導電性高分子とからなる透明電極を形成し、樹脂基材の積層や、巻き取りを行うと、樹脂基材の裏面と電極表面とが擦れ、表面に傷が入るという課題があった。
 上述した問題の解決のため、本発明においては、抵抗が低く、フレキシブル性に優れ、巻き取りの際に傷のつきにくい透明電極、及び、この透明電極を用いた有機電子デバイスを提供する。
 本発明の透明電極は、樹脂基材と、金属細線パターンと、金属細線パターン上に設けられたアモルファス金属酸化物層とを有する。
 また、本発明の有機電子デバイスは、少なくとも上記透明電極と有機機能層とを備える。
 本発明の透明電極の製造方法は、樹脂基材上に、金属細線パターンを形成する工程と、金属細線パターン上に、アモルファス金属酸化物層を形成する工程とを有する。
 また、本発明の有機電子デバイスの製造方法は、少なくとも上記透明電極上に有機機能層を形成する工程を有する。
 本発明によれば、抵抗が低く、フレキシブル性に優れ、巻き取りの際に傷のつきにくい透明電極、及び、この透明電極を用いた有機電子デバイスを提供することができる。
透明電極の概略構成を示す図である。 有機EL素子の概略構成を示す図である。
 以下、本発明を実施するための形態例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.透明電極
2.透明電極の製造方法
3.有機電子デバイス(有機エレクトロルミネッセンス素子)
4.有機電子デバイスの製造方法
〈1.透明電極〉
 透明電極は、少なくとも樹脂基材と、樹脂基材上に設けられた導電層とを備える。そして、導電層が、金属細線パターンと、この金属細線パターン上に設けられたアモルファス金属酸化物層とから構成されている。
 金属細線パターンは、樹脂基材の一方の面上において、開口部を有する所定のパターンに金属を含む細線が形成されている。樹脂基材上で金属細線パターンが形成されていない部分が開口部(透光性窓部)となる。金属細線パターンの細線パターンの形状には特に制限はない。例えば、導電部がストライプ状のパターンや、導電部が格子状のパターン、又は、ランダムな網目状等とすることができる。
 アモルファス金属酸化物層は、金属細線パターンと金属細線の開口部から露出している樹脂基板の表面とを被覆して形成されている。アモルファス金属酸化物層は、好ましくは、IZO、IGO、IWZO、GZO、IGZO、及び、ZnOから選ばれる少なくとも1種以上を含んで構成される。
 透明電極は、全光線透過率が好ましくは70%以上であり、より好ましくは80%以上である。全光線透過率は、分光光度計等を用いた公知の方法に従って測定することができる。また、透明電極の導電層の電気抵抗値としては、大面積の有機電子デバイスに用いるためには、表面比抵抗は100Ω/sq.以下であることが好ましく、10Ω/sq.以下であることがより好ましい。表面比抵抗は、例えば、JIS K6911、ASTM D257等に準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。
 なお、透明電極は、樹脂基材と上記構成の導電層とを有していればよく、その他の構成については任意に設けることができる。例えば、樹脂基材と金属細線パターンとの間に、金属細線パターンの下地層を有していてもよい。また、樹脂基材は、導電層が形成される側の面に、バリア層を有していてもよい。さらに、樹脂基材の、導電層が形成されない側の面に、粒子含有層を有していてもよい。このように、透明電極は、樹脂基材と上記構成の導電層以外の構成が含まれていてもよい。
[透明電極の構成]
 図1に、本実施の形態の透明電極の概略構成図を示す。図1に示す透明電極10は、樹脂基材11と、金属細線パターン13及び金属細線パターン13上に設けられたアモルファス金属酸化物層14から構成される導電層12とを備える。
 金属細線パターン13は、樹脂基材11の一方の面上において、金属を含む細線パターンが一定のパターンで形成されている。そして、金属細線パターン13上において、面方向に連続した層としてアモルファス金属酸化物層14が形成されている。金属細線パターン13上を被覆してアモルファス金属酸化物層14を形成することにより、低抵抗かつ均一な面抵抗を有する導電層12を構成することができる。
 また、透明電極10は、樹脂基材11と導電層12との間に下地層15が設けられていてもよい。この下地層15は、導電層12を構成する金属細線パターン13の形成に好適な層である。
 さらに、樹脂基材11の導電層12が設けられていない側の面(裏面)に、粒子含有層16が設けられていてもよい。粒子含有層16は、透明電極10の導電層12が形成される側の面(表面)と反対側の面(裏面)において、最も外側の層に配置されることが好ましい。
 また、導電層12が形成される側の面の樹脂基材11上には、ガスバリア層17が設けられていてもよい。ガスバリア層17は、樹脂基材11上に形成され、導電層12や下地層15等の樹脂基材11の一方の面に形成される各層よりも、樹材11側に設けられていることが好ましい。また、透明電極10の支持基板として、予めガスバリア層17が樹脂基材11に形成された、ガスバリアフィルム等のガスバリア層17付きの樹脂基材11を用いることもできる。
[導電層:金属細線パターン]
 導電層12を構成する金属細線パターン13は、金属を主成分とし、導電性を得ることができる程度の金属の含有比率で形成されている。金属細線パターン中の金属の比率は、好ましくは50質量%以上である。
 導電層12を構成する金属細線パターン13は、金属材料を含有し、樹脂基材11、又は、下地層15上に開口部を有するパターンに形成されている。開口部とは、金属細線パターンを有さない部分であり、金属細線パターンの透光性部分である。
 金属細線パターン13のパターン形状は特に制限されない。金属細線パターン13のパターン形状としては、例えば、ストライプ状(平行線状)、格子状、ハニカム状、ランダムな網目状等が挙げられるが、透明性の観点から、特にストライプ状であることが好ましい。
 また、透明な基板を用いる場合、開口部が占める割合、すなわち開口率は透明性の観点から80%以上であることが好ましい。例えば、線幅100μm、線間隔1mmのストライプ状パターンの開口率は、およそ90%である。
 金属細線パターン13の線幅は、好ましくは10~200μmの範囲内であり、更に好ましくは10~100μmの範囲内である。金属細線パターン13の線幅が10μm以上で所望の導電性が得られ、また、200μm以下とすることで透明電極の透明性が向上する。ストライプ状、格子状のパターンにおいて、金属細線パターンの間隔は、0.5~4mmの範囲内であることが好ましい。
 金属細線パターン13の高さ(厚さ)は、0.1~5.0μmの範囲内であることが好ましく、0.1~2.0μmの範囲内であることがより好ましい。金属細線パターン13の高さが0.1μm以上で所望の導電性が得られ、また、5.0μm以下とすることで有機電子デバイスに用いる場合に、その凹凸差が機能層の層厚分布に与える影響を軽減できる。
(金属インク組成物)
 金属細線パターン13は、金属又は金属の形成材料が配合された金属インク組成物を調製し、塗布した後、乾燥処理や焼成処理等の後処理を適宜選択して行い、金属細線パターン13を形成することが好ましい。
 金属インク組成物に配合される金属(単体金属又は合金)としては、粒子状又は繊維状(チューブ状、ワイヤ状等)であることが好ましく、金属ナノ粒子であることがより好ましい。また、金属原子(元素)を有し、分解等の構造変化によって金属を生じる、金属の形成材料から形成されていることが好ましい。金属インク組成物中の金属及び金属の形成材料は、1種のみでもよいし、2種以上でもよく、2種以上である場合、その組み合わせ及び比率は、任意に調節できる。
 金属ナノ粒子に使用される金属としては、例えば、金、銀、銅及び白金等の金属、又は、これらを主成分とした合金等が挙げられる。これらの中でも、光の反射率が優れ、得られる有機電子デバイスの効率をより一層向上できる観点から、金及び銀が好ましい。これらの金属または合金は、いずれか1種を単独でまたは2種以上を適宜組み合わせて用いることができる。
 金属インク組成物としては、金属ナノ粒子の表面を保護剤で被覆し、溶媒に安定して独立分散させた構成の金属コロイドや金属ナノ粒子分散液であることが好ましい。
 金属インク組成物における金属ナノ粒子の平均粒径としては、原子スケールから1000nm以下のものが好ましく適用できる。特に、金属ナノ粒子は、平均粒径が3~300nmの範囲内であるものが好ましく、5~100nmの範囲内であるものがより好ましく用いられる。特に、平均粒径3~100nmの範囲内の銀ナノ粒子が好ましい。また、金属ナノワイヤとしては、幅が1nm以上1000nm未満であるものがより好ましく、1~100nmの範囲内の銀ワイヤが好ましい。
 ここで、金属ナノ粒子及び金属コロイドの平均粒子径、金属ナノワイヤの幅は透過電子顕微鏡(TEM)を用いて、上記分散体中の金属ナノ粒子の粒子径、金属ナノワイヤの幅を測定して求めることができる。例えば、TEMの画像で観察される粒子のうち、重なっていない独立した300個の金属ナノ粒子の粒子径を計測して、平均粒子径を算出することができる。
 金属コロイドにおいて、金属ナノ粒子の表面を被覆する保護剤としては、有機π接合配位子が好ましい。金属ナノ粒子に有機π共役系配位子がπ接合することにより、金属コロイドに導電性が付与される。
 上記有機π接合配位子としては、フタロシアニン誘導体、ナフタロシアニン誘導体及びポルフィリン誘導体からなる群から選ばれる一種または二種以上の化合物が好ましい。
 また、上記有機π接合配位子としては、金属ナノ粒子への配位や、分散媒中での分散性を向上させるために、置換基としてアミノ基、アルキルアミノ基、メルカプト基、ヒドロキシル基、カルボキシル基、ホスフィン基、ホスフォン酸基、スルフォン酸基、ハロゲン基、セレノール基、スルフィド基、セレノエーテル基、アミド基、イミド基、シアノ基、ニトロ基、及び、これらの塩から選ばれる少なくとも1種の置換基を有することが好ましい。また、有機π接合配位子として、国際公開第2011/114713号パンフレットに記載の有機π共役系配位子を用いることができる。
 上記有機π接合配位子の具体的な化合物としては、下記のOTAN、OTAP、及び、OCANから選ばれる1種または2種以上が好ましい。
 OTAN: 2,3,11,12,20,21,29,30-オクタキス[(2-N,N-ジメチルアミノエチル)チオ]ナフタロシアニン
 OTAP: 2,3,9,10,16,17,23,24-オクタキス[(2-N,N-ジメチルアミノエチル)チオ]フタロシアニン
 OCAN:2,3,11,12,20,21,29,30-ナフタロシアニンオクタカルボン酸
 有機π接合配位子を含有する金属ナノ粒子分散液の調製方法としては、液相還元法が挙げられる。また、本実施形態の有機π接合配位子の製造及び有機π接合配位子を含有する金属ナノ粒子分散液の調製は、国際公開第2011/114713号の段落[0039]~[0060]に記載の方法に準じて行なうことができる。
 金属コロイドの平均粒子径は、通常は3nm以上500nm以下であり、好ましくは5nm以上50nm以下である。金属コロイドの平均粒子径が上記範囲内であると、粒子間の融着が起こり易くなり、得られる金属細線パターン13の導電性を向上させることができる。
 金属ナノ粒子分散液において、金属ナノ粒子の表面を被覆する保護剤としては、200℃以下の低い温度にて配位子がはずれる保護剤を用いることが好ましい。これにより、低温又は低エネルギーにより、保護剤がはずれ、金属ナノ粒子の融着がおき、導電性を付与できる。
 具体的には特開2013-142173公報、特開2012-162767号公報、特開2014-139343号公報、特許第5606439号等に記載の金属ナノ粒子分散液が例として挙げられる。
 金属の形成材料としては、例えば、金属塩、金属錯体、有機金属化合物(金属-炭素結合を有する化合物)等を挙げることができる。金属塩及び金属錯体は、有機基を有する金属化合物及び有機基を有しない金属化合物のいずれでもよい。金属インク組成物に金属の形成材料を用いることで、材料から金属が生じ、この金属を含む金属細線パターン13が形成される。
 金属銀の形成材料としては、「AgX」で表される銀化合物と、アンモニウムカルバメート系化合物とを反応させて作製された有機銀錯体化合物を用いることが好ましい。「AgX」において、nは1~4の整数であり、Xは酸素、硫黄、ハロゲン、シアノ、シアネート、カーボネート、ニトレート、ニトライト、サルフェート、ホスフェート、チオシアネート、クロレート、パークロレート、テトラフルオロボレート、アセチルアセトネート、及び、カルボキシレートで構成された群から選択される置換基である。
 上記銀化合物としては、例えば、酸化銀、チオシアネート化銀、シアン化銀、シアネート化銀、炭酸銀、硝酸銀、亜硝酸銀、硫酸銀、燐酸銀、過塩素酸銀、四フッ素ボレート化銀、アセチルアセトネート化銀、酢酸銀、乳酸銀、及び、シュウ酸銀透等を挙げることができる。銀化合物としては、酸化銀や炭酸銀を使用することが反応性や後処理面で好ましい。
 アンモニウムカルバメート系化合物としては、例えば、アンモニウムカルバメート、エチルアンモニウムエチルカルバメート、イソプロピルアンモニウムイソプロピルカルバメート、n-ブチルアンモニウムn-ブチルカルバメート、イソブチルアンモニウムイソブチルカルバメート、t-ブチルアンモニウムt-ブチルカルバメート、2-エチルヘキシルアンモニウム2-エチルヘキシルカルバメート、オクタデシルアンモニウムオクタデシルカルバメート、2-メトキシエチルアンモニウム2-メトキシエチルカルバメート、2-シアノエチルアンモニウム2-シアノエチルカルバメート、ジブチルアンモニウムジブチルカルバメート、ジオクタデシルアンモニウムジオクタデシルカルバメート、メチルデシルアンモニウムメチルデシルカルバメート、ヘキサメチレンイミニウムヘキサメチレンイミンカルバメート、モルホリウムモルホリンカルバメート、ピリジニュムエチルヘキシルカルバメート、トリエチレンジアミニウムイソプロピルバイカルバメート、ベンジルアンモニウムベンジルカルバメート、トリエトキシシリルプロピルアンモニウムトリエトキシシリルプロピルカルバメート等を挙げることができる。上記アンモニウムカルバメート系化合物のうち、1次アミン置換されたアルキルアンモニウムアルキルカルバメートは、反応性及び安定性面で2次または3次アミンより優れるため好ましい。
 上記有機銀錯体化合物は、特開2011-48795号公報に記載の方法により作製することができる。例えば、上記銀化合物の1種以上と、上記アンモニウムカルバメート系化合物の1種以上とを、窒素雰囲気の常圧または加圧状態で、溶媒を使用せずに直接反応させることができる。また、メタノール、エタノール、イソプロパノール、ブタノールのようなアルコール類、エチレングリコール、グリセリンのようなグリコール類、エチルアセテート、ブチルアセテート、カルビトールアセテートのようなアセテート類、ジエチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、メチルエチルケトン、アセトンのようなケトン類、ヘキサン、ヘプタンのような炭化水素系、ベンゼン、トルエンのような芳香族、そしてクロロホルムやメチレンクロライド、カーボンテトラクロライドのようなハロゲン置換溶媒等の溶媒を使用して反応させることができる。
 有機銀錯体化合物の構造は「Ag[A]」で表すことができる。なお、「Ag[A]」において、Aは上記アンモニウムカルバメート系化合物であり、mは0.7~2.5である。
 上記有機銀錯体化合物は、メタノールのようなアルコール類、エチルアセテートのようなエステル類、テトラヒドロフランのようなエーテル類溶媒等、有機銀錯体化合物を製造する溶媒を含む多様な溶媒によく溶ける。このため、有機銀錯体化合物は、金属インク組成物として、塗布やプリンティング工程に容易に適用可能である。
 また、金属銀の形成材料としては、式「-COOAg」で表される基を有するカルボン酸銀が例示できる。カルボン酸銀は、式「-COOAg」で表される基を有していれば特に限定されない。例えば、式「-COOAg」で表される基の数は1個のみでもよいし、2個以上でもよい。また、カルボン酸銀中の式「-COOAg」で表される基の位置も特に限定されない。
 カルボン酸銀としては、特開2015-66695号公報に記載のβ-ケトカルボン酸銀、及び、カルボン酸銀(4)からなる群から選択される1種以上であることが好ましい。なお、金属銀の形成材料としては、β-ケトカルボン酸銀及びカルボン酸銀(4)だけではなく、これらを包括する、式「-COOAg」で表される基を有するカルボン酸銀を用いることができる。
 また、金属インク組成物に金属の形成材料として上記カルボン酸銀を含む場合、カルボン酸銀と共に、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、アミン化合物、及び、アンモニアと酸との反応により得られるアンモニウム塩から選択される一種以上の含窒素化合物が配合されていることが好ましい。
 炭素数25以下のアミン化合物としては、炭素数が1~25の第1級アミン、第2級アミン及び第3級アミンのいずれでもよい。また、炭素数が4~25の第4級アンモニウム塩でもよい。アミン化合物及び第4級アンモニウム塩は、鎖状及び環状のいずれでもよい。また、アミン部位又はアンモニウム塩部位を構成する窒素原子(例えば、第1級アミンのアミノ基「-NH」を構成する窒素原子)の数は1個でもよいし、2個以上でもよい。
[導電層:アモルファス金属酸化物層]
 導電層12を構成するアモルファス金属酸化物層14は、金属細線パターン13の表面を覆うように樹脂基材11又は下地層15の一主面上に設けられている。
 アモルファス金属酸化物層14は、体積抵抗率が1×10Ω・cmより低い導電性の金属酸化物を用いて形成されている。体積抵抗率は、JIS K 7194-1994の導電性プラスチックの4探針法による抵抗率試験方法に準拠して測定されたシート抵抗と、膜厚を測定して求めることができる。膜厚は接触式表面形状測定器(例えばDECTAK)や光干渉表面形状測定器(例えばWYKO)を用いて測定できる。
 アモルファス金属酸化物層14は、透明電極10の導電層12を構成する観点から、シート抵抗が10000Ω/sq.以下であることが好ましく、2000Ω/sq.以下であることがより好ましい。
 アモルファス金属酸化物層14は、10~500nmの厚さで形成することができる。導電性を高める観点からは、厚さが100~500nmの範囲内であることが好ましい。表面の平滑性を高める観点からは、厚さが50nm以上であることが好ましい。
 アモルファス金属酸化物層14に使用できる金属酸化物としては、アモルファス相での透明性、導電性、及び、フレキシブル性に優れ、透明電極10の製造工程中で結晶相への相変化が発生しにくい材料であれば、特に限定されない。アモルファス金属酸化物層14に使用できる金属酸化物としては、例えば、IZO(酸化インジウム・酸化亜鉛)、IGO(ガリウムドープ酸化インジウム)、IWZO(酸化インジウム・酸化スズ)、ZnO(酸化亜鉛)、GZO(Gaドープ酸化亜鉛)、IGZO(インジウム・ガリウム・亜鉛酸化物)等が挙げられる。
 特に、アモルファス金属酸化物層14に使用できる金属酸化物としては、IZO、IGO、IWZOが好ましい。なかでも、IZOとしては、重量比In:ZnO=80~95:5~20で表される組成が好ましい。IGOとしては、重量比In:Ga=70~95:5~30で表される組成が好ましい。IWZOとしては、重量比In:WO:ZnO=95~99.8:0.1~2.5:0.1~2.5で表される組成が好ましい。
 透明電極10において、アモルファス金属酸化物層14とは、金属酸化物の結晶相(結晶粒)を有していない層である。つまり、上記金属酸化物が結晶相を有さず、アモルファス相のみを有して形成されている層である。
 アモルファス金属酸化物層14において、金属酸化物の相状態は、X線回折(XRD)測定により調べることができる。具体的には、アモルファス金属酸化物層14に対してX線回折測定を行い、全X線散乱強度のうち、結晶相(結晶粒)による結晶性の回折ピークの有無により、金属酸化物の相状態を判断することができる。
 金属酸化物層がアモルファス相のみで構成されている場合には、X線回折スペクトルに結晶性の回折ピークが存在しない。一方、金属酸化物層に結晶相(結晶粒)を有している場合には、X線回折スペクトルに結晶性の回折ピークが発生する。
 金属酸化物層は、アモルファス相に比べて結晶相のフレキシブル性が低下する。この原因は、結晶相では結晶粒塊や格子欠陥での破断が発生しやすいためであると考えている。このため、樹脂基材11を用い、フレキシブル性が要求される透明電極10においては、金属酸化物層に結晶相が存在しないことが望ましい。
 さらに、金属酸化物層に結晶粒が存在すると、結晶粒塊により金属酸化物層の表面の平滑性が低下する。
 導電層12の表面の平滑性が低下すると、透明電極10を有機電子デバイスに組み込んだ際に、不良発生の原因となる。例えば、透明電極10を有機EL素子の透明電極に適用した場合には、電流リークによる整流比の悪化や、粒塊の突起部分に電流が集中し、この部分において短絡しやすい等の不具合が発生する。従って、透明電極10のアモルファス金属酸化物層14においては、金属酸化物の結晶相が存在しないことが望ましい。
 アモルファス金属酸化物層14は、算術平均粗さRaが5nm以下であることが好ましい。さらに、Raが3nm以下であることが好ましい。なお、算術平均粗さRaは、例えば原子間力顕微鏡(Digital Instruments社製)を用いて測定する。
[下地層]
 下地層15は、高分子材料、又は、金属酸化物微粒子を含む高分子材料により形成されることが好ましい。
 下地層15の厚さは、0.01~1.0μmの範囲内であることが好ましく、より好ましくは0.05~0.3μmの範囲内である。下地層15の層厚が0.01μm以上であると、下地層15自体が連続膜となり表面が平滑になるため、有機電子デバイスへの影響がすくない。一方、下地層15の厚さが1.0μm以下であると、下地層15に起因する透明電極10の透明性の低下や下地層15に由来する吸着ガスを減らすことができ、金属細線パターンの抵抗悪化を抑制することができる。また、下地層15の厚さが1.0μm以下であれば、透明電極10を屈曲した際の下地層15の破損を抑制することができる。
 下地層15の透明性は、用途によって任意に選択することができるが、透明性が高いほど透明電極10への適用が良好となり、用途拡大の観点で好ましい。下地層15の全光線透過率としては、少なくとも40%以上、好ましくは70%以上である。全光線透過率は、分光光度計等を用いた公知の方法に従って測定することができる。
(金属酸化物微粒子)
 下地層15を構成する金属酸化物微粒子は、透明電極10への適用が可能であれば特に限定されない。高分子材料に金属酸化物微粒子を添加することで、下地層15の膜強度、伸縮性、屈折率等の物性を適宜調節でき、さらに金属細線パターンとの密着性も向上する。金属酸化物微粒子としては、例えば、マグネシウム、アルミニウム、ケイ素、チタン、亜鉛、イットリウム、ジルコニウム、モリブデン、スズ、バリウム、タンタル等の金属の酸化物を挙げることができる。特に、金属酸化物微粒子は、酸化チタン又は、酸化アルミニウム、酸化ケイ素、酸化ジルコニウムのいずれかであることが好ましい。さらに、有機電子デバイスの寿命がより優れることから、金属酸化物微粒子として、酸化チタン及び酸化ジルコニウムの微粒子うち少なくとも1種類が含有されていることが好ましい。
 金属酸化物微粒子の平均粒径は、10~300nmの範囲内であることが好ましく、特に10~100nmの範囲内であることが、透明電極10に好適に用いることができるため好ましい。平均粒径が上記の範囲内にある金属酸化物微粒子を用いると下地層15の表面に十分な凹凸を作ることができ、金属細線パターンとの密着性が向上する。平均粒径が300nm以下であると表面が平滑になり、有機電子デバイスへの影響が少ない。
 金属酸化物微粒子の平均粒径は、光散乱方式を用いた市販の測定装置を使用して簡便に計測することが可能である。具体的には、ゼータサイザー1000(マルバーン社製)を用いて、レーザードップラー法により25℃、サンプル希釈液量1mlにて測定した値を用いることができる。
 金属酸化物微粒子は、下地層15中に10~70vol%含まれていることが好ましく、20~60vol%含まれていることがより好ましい。
 上述の酸化チタン微粒子としては、特開昭59-223231号公報、特開平10-265223号公報、特開2009-179497号公報、特開2010-058047号公報、特開2008-303126号公報、国際公開第2001/016027号等に記載の合成方法や、「酸化チタン-物性と応用技術」(清野学著、技報堂出版(株)、p.255~258)を参考にして合成することができる。
 また、金属酸化物微粒子は、分散液とした場合の分散性や安定性向上の観点から、表面処理を施したものを用いてもよい。金属酸化物微粒子に表面処理を行う場合において、表面処理の具体的な材料としては、酸化ケイ素や酸化ジルコニウム等の異種無機酸化物、水酸化アルミニウム等の金属水酸化物、オルガノシロキサン、ステアリン酸等の有機酸等が挙げられる。これら表面処理材は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。中でも、分散液の安定性の観点から、表面処理材としては、異種無機酸化物及び金属水酸化物のうちの少なくともいずれか一方を用いることが好ましく、金属水酸化物を用いることがより好ましい。
 また、下地層15は、金属酸化物微粒子以外の無機化合物を含有していてもよい。無機化合物とは、有機化合物以外の化合物であり、具体的には単純な一部の炭素化合物と、炭素以外の元素で構成される化合物である。下地層15を構成する無機化合物の代表的な例としては、上述の金属酸化物のほか、金属、炭化物、窒化物、ホウ化物等を挙げることができる。
(高分子材料)
 下地層15を構成する高分子材料は、単独で、又は、金属酸化物微粒子とともに下地層15を形成できれば特に限定されない。例えば、単量体の繰り返し構造を持つ公知の天然高分子材料や、合成高分子材料を使用することができる。これらは、有機高分子材料、無機高分子材料、有機無機ハイブリッド高分子材料、及び、これらの混合物等を使用することができ、高分子材料中の金属酸化物微粒子の分散状態、塗布膜の各種物性等により選定することができる。これらの高分子材料は、2種以上混合して使用することもできる。
 上記高分子材料は、公知の方法により合成することができる。天然高分子材料は、天然原料からの抽出や、セルロース等のように微生物により合成することができる。合成高分子は、ラジカル重合、カチオン重合、アニオン重合、配位重合、開環重合、重縮合、付加重合、付加縮合及びこれらのリビング重合等で得ることができる。
 また、これらの高分子材料は、単独重合体でも共重合体でも良く、不斉炭素を有するモノマーを使用する場合、ランダム、シンジオタックチック、アイソタックチックのいずれかの規則性を持つことができる。また、共重合体の場合、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合等の形態をとることができる。
 高分子材料の形態は、高分子材料自体が液体でも固体でもよい。また、高分子材料は、溶媒に溶解しているか、溶媒中に均一に分散していることが好ましい。さらに、高分子材料は、水溶性樹脂、又は、水分散性樹脂であってもよい。
 また、高分子材料は紫外線・電子線によって硬化する電離放射線硬化型樹脂や、熱により硬化する熱硬化性樹脂であってよく、ゾル-ゲル法により作製される樹脂であってもよい。さらに、高分子材料は架橋していてもよい。
 上述の高分子材料において、天然高分子及び合成高分子は、大木道則、大沢利昭、田中元治、千原秀昭編「化学大辞典」(東京化学同人、1989年刊)1551及び769ページのそれぞれの項に記載されているものを一例として使用することができる。
 具体的には、天然高分子材料としては、天然有機高分子材料が好ましく、綿、麻、セルロース、絹、羊毛等の天然繊維や、ゼラチン等のたんぱく質、天然ゴム等を挙げることができる。合成高分子材料としては、ポリオレフィン樹脂、ポリアクリル樹脂、ポリビニル樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリフェニレン樹脂、ポリイミド樹脂、ポリアセタール樹脂、ポリスルホン樹脂、フッ素樹脂、エポキシ樹脂、シリコン樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、ポリ尿素樹脂、ポリカーボネート樹脂、ポリケトン樹脂等を挙げることができる。
 ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(1-ブテン)、ポリ4-メチルペンテン、ポリビニルシクロヘキサン、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(α-メチルスチレン)、ポリイソプレン、ポリブタジエン、ポリシクロペンテン、ポリノルボルネン等を挙げることができる。
 ポリアクリル樹脂としては、例えば、ポリメタクリレート、ポリアクリレート、ポリアクリルアミド、ポリメタクリルアミド、ポリアクリロニトリル等を挙げることができる。
 ポリビニル樹脂としては、例えば、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルビニルエーテル、ポリエチルビニルエーテル、ポリイソブチルビニルエーテル等を挙げることができる。
 ポリエーテル樹脂としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリアルキレングリコール等を挙げることができる。
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリアルキレンフタレート、ポリエチレンナフタレート等のポリアルキレンナフタレート等を挙げることができる。
 ポリアミド樹脂としては、例えば、ポリアミド6、ポリアミド6,6、ポリアミド12、ポリアミド11等を挙げることができる。
 フッ素樹脂としては、例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレンコポリマー、ポリクロロトリフルオロエチレン等を挙げることができる。
 なお、上述の水溶性樹脂とは、25℃の水100gに0.001g以上溶解する樹脂を意味する。溶解の度合いは、ヘイズメーター、濁度計等で測定することができる。水溶性樹脂の色は特に限定されないが、透明であることが好ましい。また、水溶性樹脂の数平均分子量は、3000~2000000の範囲内であることが好ましく、より好ましくは4000~500000の範囲内、更に好ましくは5000~100000の範囲内である。
 水溶性樹脂の数平均分子量、分子量分布の測定は、一般的に知られているゲルパーミエーションクロマトグラフィー(GPC)により行うことができる。使用する溶媒は、バインダが溶解すれば特に限りはないが、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、CHClが好ましく、より好ましくはTHF、DMFであり、更に好ましくはDMFである。また、測定温度も特に制限はないが、40℃であることが好ましい。
 水溶性樹脂としては、具体的には、天然高分子材料及び合成高分子材料として、アクリル系、ポリエステル系、ポリアミド系、ポリウレタン系、フッ素系等の樹脂が挙げられ、例えば、カゼイン、デンプン、寒天、カラギーナン、セルロース、ヒドロキシルエチルセルロース、カルボキシルメチルセルロース、ヒドロキシルエチルセルロース、デキストラン、デキストリン、プルラン、ポリビニルアルコール、ゼラチン、ポリエチレンオキサイド、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸、ポリ(2-ヒドロキシエチルアクリレート)、ポリ(2-ヒドロキシエチルメタクリレート)、ポリアクリルアミド、ポリメタクリルアミド、ポリスチレンスルホン酸、水溶性ポリビニルブチラール等のポリマーを挙げることができる。
 上述の水分散樹脂とは、水系溶剤に均一分散可能なものであり、水系溶剤中に凝集せずに、樹脂からなるコロイド粒子が分散している樹脂を意味する。コロイド粒子の大きさ(平均粒径)は、一般的に0.001~1μm(1~1000nm)の範囲内程度である。上記のコロイド粒子の平均粒径は、光散乱光度計により測定することができる。
 また、上記水系溶剤とは、蒸留水及び脱イオン水等の純水のみならず、酸、アルカリ、塩等を含む水溶液、含水の有機溶媒、更には親水性の有機溶媒等の溶媒であることを意味し、メタノール、エタノール等のアルコール系溶媒、水とアルコールとの混合溶媒等が挙げられる。水分散性樹脂は、透明であることが好ましい。また、水分散性樹脂は、フィルムを形成する媒体であれば、特に限定はない。水分散性樹脂としては、例えば、水性アクリル系樹脂、水性ウレタン樹脂、水性ポリエステル樹脂、水性ポリアミド樹脂、水性ポリオレフィン樹脂等が挙げられる。
 水性アクリル樹脂は、酢酸ビニル、アクリル酸、アクリル酸-スチレンの重合体、又は、その他のモノマーとの共重合体からなる。また、水系溶媒への分散性を付与する機能を担う酸部分がリチウム、ナトリウム、カリウム、アンモニウム等のイオンと対塩を形成したアニオン性、窒素原子を有するモノマーとの共重合体からなり、窒素原子が塩酸塩等を形成したカチオン性、ヒドロキシ基やエチレンオキシド等の部位を導入したノニオン系があるが、好ましくはアニオン性である。
 水性ウレタン樹脂としては、水分散型ウレタン樹脂、アイオノマー型水性ウレタン樹脂(アニオン性)等がある。水分散型ウレタン樹脂には、ポリエーテル系ウレタン樹脂、ポリエステル系ウレタン樹脂があり、好ましくはポリエステル系ウレタン樹脂である。また、光学用途への使用では、芳香環を持たない無黄変イソシアネートを用いることが好ましい。
 アイオノマー型水性ウレタン樹脂には、ポリエステル系ウレタン樹脂、ポリエーテル系ウレタン樹脂、ポリカーボネート系ウレタン樹脂等があり、好ましくはポリエステル系ウレタン樹脂、ポリエーテル系ウレタン樹脂である。
 水性ポリエステル樹脂は、多塩基酸成分とポリオール成分とから合成される。
 多塩基酸成分とは、例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタリンジカルボン酸、アジピン酸、コハク酸、セバチン酸、ドデカン二酸等であり、これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。特に好適に用いることのできる多塩基酸成分としては、工業的に多量に生産されており、安価であることなどから、テレフタル酸やイソフタル酸が特に好ましい。
 ポリオール成分として代表的なものを挙げれば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、シクロヘキサンジメタノール、ビスフェノール等であり、これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。特に好適に用いることのできるポリオール成分としては、工業的に量産され、安価であり、さらに樹脂被膜の耐溶剤性や耐候性が向上するなど、諸性能にバランスがとれていることから、エチレングリコール、プロピレングリコール、又は、ネオペンチルグリコールが特に好ましい。
 無機高分子材料としては、ポリシロキサン、ポリホスファゼン、ポリシラン、ポリゲルマン、ポリスタナン、ボラジン系ポリマー、ポリメタロキサン、ポリシラザン、チタンオリゴマー、シランカップリング剤等を挙げることができる。ポリシロキサンとしては、具体的に、シリコーン、シルセスキオキサン、シリコーン樹脂等を挙げることができる。
 有機無機ハイブリッド高分子材料としては、ポリカルボシラン、ポリシリレンアリレン、ポリシロール、ポリホスフィン、ポリホスフィンオキシド、ポリ(フェロセニルシラン)、シルセスキオキサンを基本骨格としたシルセスキオキサン誘導体、樹脂にシリカを複合化させた樹脂等を挙げることができる。
 シルセスキオキサンを基本骨格としたシルセスキオキサン誘導体としては、例えば、光硬化型SQシリーズ(東亞合成株式会社)、コンポセランSQ(荒川化学株式会社)、Sila-DEC(チッソ株式会社)等を挙げることができる。また、シリカを複合化させた樹脂としては、例えば、コンポセランシリーズ(荒川化学)等を挙げることができる。
 また、高分子材料としては、電離放射線硬化型樹脂、熱硬化型樹脂等の硬化性樹脂を用いることができる。電離放射線硬化型樹脂とは、電離放射線硬化型樹脂組成物の通常の硬化方法、すなわち、電子線又は紫外線の照射によって硬化することができる樹脂である。
 例えば、電子線硬化の場合には、コックロフワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される10~1000keVの範囲内、好ましくは30~300keVの範囲内のエネルギーを有する電子線等が使用される。
 紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。紫外線照射装置としては、具体的には、100~230nmの範囲内の真空紫外線を発する希ガスエキシマランプが挙げられる。エキシマランプは、光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、エキシマランプは、温度上昇の要因となる波長の長い光は発せず、紫外線領域の単一波長でエネルギーを照射するため、照射光自体による照射対象物の温度上昇を抑えられる特徴を持っている。
 熱硬化型樹脂とは加熱により硬化する樹脂であり、熱硬化型樹脂とともに架橋剤を用いることがより好ましい。熱硬化型樹脂の加熱方法としては、従来公知の加熱方法を用いることができ、ヒータ加熱、オーブン加熱、赤外線加熱、レーザー加熱等を用いることができる。
 また、下地層15に用いる高分子材料には、N(窒素)原子やS(硫黄)原子を含有する低分子化合物を添加してもよい。N(窒素)原子やS(硫黄)原子を下地層15に添加することで、金属細線パターン13と下地層15との密着性が向上する。
 さらに、下地層15に用いる高分子材料には、表面エネルギー調整剤を添加してもよい。表面エネルギー調整剤を添加することで、金属細線パターン13と下地層15との密着性、金属細線パターンの線幅等を調整できる。
[樹脂基材]
 樹脂基材11は、高い光透過性を有していれば、特に制限はない。例えば樹脂基板、樹脂フィルム等が好適に挙げられるが、生産性の観点や、軽量性及び柔軟性といった性能の観点から透明樹脂フィルムを用いることが好ましい。
 樹脂基材11に用いる樹脂としては特に制限はなく、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリスチレン樹脂、環状オレフィン系樹脂等のポリオレフィン類樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリサルホン(PSF)樹脂、ポリエーテルサルホン(PES)樹脂、ポリカーボネート(PC)樹脂、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、トリアセチルセルロース(TAC)樹脂等が挙げられる。これらの樹脂を単独で使用してもよいし、複数を併用してもよい。
 また、樹脂基材11は、未延伸フィルムでもよいし、延伸フィルムでもよい。
 樹脂基材11は透明性が高いと、透明電極10を電子デバイスの透明電極として使用することができるため好ましい。透明性が高いとは、JIS K 7361-1:1997(プラスチック-透明材料の全光線透過率の試験方法)に準拠した方法で測定した可視光波長領域における全光線透過率が50%以上であることをいい、80%以上であるとより好ましい。
 樹脂基材11は、樹脂基材11上に形成されるガスバリア層17や下地層15等との密着性を高めるため、表面活性化処理が施されていてもよい。また、耐衝撃性を高めるため、ハードコート層が設けられていてもよい。表面活性化処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等が挙げられる。ハードコート層の材料としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等が挙げられ、なかでも紫外線硬化型樹脂を好ましく使用できる。下地層15は単層でもよいが、多層構造であると密着性がより向上する。
[ガスバリア層]
 透明電極10が適用される有機ELデバイス等の有機電子デバイスは、デバイス内部に微量の水分や酸素が存在すると容易に性能劣化が生じてしまう。このため、樹脂基材11を通してデバイス内部に水分や酸素が侵入することを防止するため、水分や酸素に対して高い遮蔽能を有するガスバリア層17を設けることが好ましい。
 ガスバリア層17の組成や構造及びその形成方法には特に制限はなく、シリカ等の無機化合物による層を真空蒸着やCVD法により形成することができる。例えば、以下に示すケイ素含有ポリマー改質層や、ケイ素化合物層、遷移金属酸化物層を、単独又は組み合わせてガスバリア層17を構成することができる。
(ケイ素含有ポリマー改質層)
 ガスバリア層17に適用されるケイ素含有ポリマー改質層は、繰り返し構造中にケイ素と酸素(Si-O)、ケイ素と窒素(Si-N)等の結合を有するケイ素含有ポリマーを改質処理することによって形成される。なお、紫外線照射面等を用いた改質処理によりケイ素含有ポリマーをシリカ等に転化させるが、ケイ素含有ポリマーの全てを改質する必要はなく、少なくとも一部、例えば紫外線照射面側が改質されていればよい。
 ケイ素含有ポリマー改質層の厚さは、目的に応じて適宜設定することができるが、一般的には、10nm~10μmの範囲内とすることができる。
 ケイ素含有ポリマーの具体例としては、繰り返し構造中に、Si-O結合を有するポリシロキサン(ポリシルセスキオキサンを含む)、Si-N結合を有するポリシラザン、Si-O結合とSi-N結合の両方を含むポリシロキサザン等が挙げられる。これらは2種以上を混合して使用することができる。また、異なる種類のケイ素含有ポリマーの層を積層することもできる。
 ポリシロキサンは、繰り返し構造中に、-〔RaSiO1/2〕-、-〔RbSiO〕-、-〔RcSiO3/2〕-、-〔SiO〕-等を含む。Ra、Rb及びRcは、それぞれ独立に、水素原子、1~20の炭素原子を含むアルキル基(例えば、メチル基、エチル基、プロピル基等)、アリール基(例えばフェニル基、不飽和アルキル基)等の置換基を表す。
 ポリシルセスキオキサンは、上記ポリシロキサンのなかでもシルセスキオキサンと同じ構造を繰り返し構造中に含む化合物である。シルセスキオキサンは、上記-[RcSiO3/2]-で表される構造を有する化合物である。
 ポリシラザンの構造は、下記一般式(A)で表すことができる。
 -[Si(R)(R)-N(R)]- ・・・一般式(A)
〔上記一般式(A)において、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基又はアルコキシ基を表す。〕
 上記一般式(A)中のR、R及びRの全てが水素原子であるポリシラザンが、パーヒドロポリシラザンである。パーヒドロポリシラザンは、緻密な膜が得られる点で好ましい。
 パーヒドロポリシラザンは、直鎖構造と、6員環及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は、数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体又は固体の物質があり、その状態は分子量により異なる。
 一方、上記一般式(A)において、Siと結合する水素原子の一部がアルキル基等で置換されたポリシランがオルガノポリシラザンである。オルガノポリシラザンは、メチル基等のアルキル基によって下層の樹脂基材11との密着性が向上し、かつ硬くてもろい特性を有するポリシラザンに靭性を付与することができるため、膜を厚くした場合でもクラックの発生が抑えられるという利点がある。したがって、用途に応じて適宜、パーヒドロポリシラザンとオルガノポリシラザンを選択するか、又は両者を混合して使用する。
 ポリシロキサザンは、繰り返し構造中に、-[(SiH(NH)]-と-[(SiHO]-で表される構造を含む。n、m及びrは、それぞれ独立に、1~3を表す。
 低温でセラミック化するポリシラザンの他の例としては、上記一般式(A)で表される単位からなる主骨格を有するポリシラザンに、ケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報参照)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報参照)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報参照)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報参照)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報参照)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報参照)等が挙げられる。
 ケイ素含有ポリマー改質層は、上述したケイ素含有ポリマーを含有する塗布液を用いて塗膜を形成し、形成した塗膜に改質処理を施すことにより形成することができる。
 塗膜の形成方法としては、ロールコート法、フローコート法、スプレーコート法、プリント法、ディップコート法、バーコート法、流延成膜法、インクジェット法、グラビア印刷法等が挙げられる。
 塗布液の調製には、ポリシラザンと容易に反応するアルコール系有機溶媒又は水分を含む有機溶媒の使用を避けることが好ましい。したがって、塗布液の調製に使用できる有機溶媒としては、例えば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類等が挙げられる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素類、塩化メチレン、トリクロロエタン等のハロゲン炭化水素類、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。これらの有機溶媒は、ポリシラザンの溶解度や有機溶媒の蒸発速度等の特性に合わせて選択し、複数の有機溶媒を混合してもよい。
 塗布液としては、ポリシラザンを有機溶媒中に溶解させた市販品を使用することができる。使用できる市販品としては、AZエレクトロニックマテリアルズ社製のアクアミカNAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140等が挙げられる。
 塗布液は、改質処理を促進する観点から、触媒を含有することもできる。
 触媒としては、塩基性触媒が好ましく、例えばN,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N′,N′-テトラメチル-1,3-ジアミノプロパン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物等が挙げられる。
 塗布液におけるケイ素含有ポリマーの含有量は、形成するケイ素含有ポリマー改質層の厚さや塗布液のポットライフによっても異なるが、0.2~35.0質量%の範囲内であることが好ましい。
 形成した塗膜には、塗膜中の有機溶媒を除去するために、加熱による乾燥処理を施すことができる。
 加熱時の温度は、50~200℃の範囲内とすることができる。加熱時間は、樹脂基材11の変形等を防ぐため、短時間に設定することが好ましい。例えば、ガラス転移温度が70℃のポリエチレンテレフタレートを樹脂基材11に用いる場合、乾燥処理時の温度は樹脂フィルムの変形を防止するため、150℃以下に設定することが好ましい。
 また、形成した塗膜には、塗膜中の水分を取り除くために、低湿度環境に維持して除湿する乾燥処理を施すこともできる。
 低湿度環境における湿度は温度により変化するため、温度と湿度の関係は露点温度により規定される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-8℃(温度25℃/湿度10%)以下、さらに好ましい露点温度は-31℃(温度25℃/湿度1%)以下である。水分を取り除きやすくするため、減圧乾燥してもよい。減圧乾燥における圧力は常圧~0.1MPaの範囲内で選ぶことができる。
 塗膜の改質処理の方法としては、樹脂基材11へのダメージが少ない公知の方法を使用することができ、低温処理が可能なプラズマ処理、オゾン処理、紫外線又は真空紫外線の照射処理等を用いることができる。なかでも、真空紫外線の照射処理は、ケイ素含有ポリマー改質層を形成してから遷移金属酸化物層を形成するまでの間の環境の影響によってガスバリア性が低下しにくいことから好ましい。
 真空紫外線照射処理は、ケイ素含有ポリマーを構成する原子間結合力より大きい100~200nmの波長範囲にある真空紫外光の光エネルギーを用いる。そして、原子間の結合を、光量子プロセスと呼ばれる光子のみの作用で直接切断するとともに、活性酸素やオゾンによる酸化反応を進行させる。これにより、ケイ素含有ポリマーを、約200℃以下の比較的低温の環境下でシリカ等に転化させることができる。
 真空紫外光の光源としては、100~200nmの波長の光を発生させるものであればよく、照射波長が、約172nmの希ガスエキシマランプ(例えば、エム・ディ・コム社製のXeエキシマランプ MODEL:MECL-M-1-200)、約185nmの低圧水銀蒸気ランプ、200nm以下の中圧及び高圧水銀蒸気ランプ等が挙げられる。
 エキシマランプの特徴としては、単一波長の光を放射し、発光効率が極めて高いこと、放射する光が短波長で照射対象の温度を低温状態に保てること、瞬時の点灯及び点滅が可能であること等が挙げられ、熱の影響を受けやすい樹脂基材11にも適用しやすい光源である。
 特に、Xeエキシマランプが放射する172nmという短い単一波長の真空紫外光は、酸素の吸収係数が大きく、微量な酸素から高濃度の活性酸素又はオゾンを発生させ、有機物の結合に対する解離能力が高い。こんため、Xeエキシマランプを用いることにより、短時間での改質処理が可能となる。
 真空紫外線の照射条件は、ケイ素含有ポリマー改質層より下の樹脂基材11等を劣化させない範囲内で設定すればよい。
 例えば、紫外線の照射時間は、樹脂基材11や塗布液の組成、濃度等にもよるが、一般に0.1秒~10分の範囲内であり、0.5秒~3分の範囲内であることが好ましい。なお、均一に紫外線を照射する観点から、光源からの紫外線を反射板で反射させた反射光をケイ素含有ポリマー改質層の塗膜に照射することが好ましい。
 真空紫外線の照度は、1mW/cm~10W/cmの範囲内とすることができる。1mW/cm以上であれば、改質効率が向上し、10W/cm以下であれば、塗膜に生じ得るアブレーション、樹脂基材11のダメージ等を低減することができる。
 真空紫外線の照射エネルギー量(照射量)は、0.1~10.0J/cmの範囲内にすることができる。この範囲であれば、過剰な改質によるクラックの発生、樹脂基材11の熱変形等を防止することができ、生産性も向上する。
 真空紫外線照射処理は、バッチ処理でも連続処理でもよい。バッチ処理の場合、真空紫外線の光源を備える紫外線焼成炉(例えば、アイグラフィクス社製の紫外線焼成炉)において処理することができる。連続処理の場合、樹脂基材11を搬送して真空紫外線の光源を備えるゾーン内で連続的に紫外線を照射すればよい。
 真空紫外線照射時の反応には酸素が必要であるが、真空紫外線は酸素による吸収があり、改質効率が低下しやすいことから、できる限り酸素濃度及び水蒸気濃度の低い雰囲気内で真空紫外線の照射を行うことが好ましい。例えば、真空紫外線照射時の酸素濃度は、10~20000体積ppm(0.001~2体積%)の範囲内とすることができる。水蒸気濃度は、好ましくは1000~4000体積ppmの範囲内である。
 上記雰囲気の調整には、乾燥不活性ガス、特にコストの観点から乾燥窒素ガスを用いることが好ましい。酸素濃度の調整は、室内に導入する酸素ガス及び不活性ガスの流量比を調整することにより、行うことができる。
(ケイ素化合物層)
 ガスバリア層17としては、ガスバリア性をより高める観点から、ケイ素含有ポリマー改質層の下に、酸化ケイ素、窒化ケイ素、酸化窒化ケイ素、炭化ケイ素等のケイ素化合物を含有するケイ素化合物層をさらに配置することもできる。
 層ケイ素含有ポリマー改質層が後述する遷移金属酸化物層と隣接する構成であれば、このケイ素含有ポリマー改質層よりも下層に、ケイ素化合物層を積層する構造とすることもできる。多層構造によって、透明電極10に浸入するガスに対するガスバリア性をより高めることができ、導電性能の安定性をさらに高めることができる。
 ケイ素化合物層は、酸化ケイ素を原料とする真空蒸着法、ケイ素を含むターゲットを用いたマグネトロンスパッタ法、イオンプレーティング法の他、ポリシラザン等のケイ素含有ポリマー改質層に用いられるケイ素含有ポリマー(例えば、ヘキサメチルジシロキサン、パーヒドロポリシラザン等)、二酸化ケイ素等を原料としてプラズマCVD(Chemical Vapor Deposition)法等により形成することができる。
(遷移金属酸化物層)
 遷移金属酸化物層は、ケイ素含有ポリマー改質層上において、遷移金属酸化物を用いて形成される。遷移金属酸化物層がケイ素含有ポリマー改質層と隣接することによりケイ素含有ポリマー改質層の酸化を抑制し、ケイ素含有ポリマー改質層とともに非常に高いガスバリア性を発揮することができる。
 遷移金属酸化物層に使用される遷移金属酸化物は、元素周期表における第3族から第12族までの金属の酸化物であり、そのうちの1種を単独で使用してもよいし、複数種を併用してもよい。
 より高い安定性を得る観点からは、遷移金属酸化物が、元素周期表における第5族の金属の酸化物であることが好ましい。第5族の金属としては、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)等が挙げられる。
 なかでも、遷移金属酸化物が、酸化ニオブであることが好ましい。酸化ニオブが用いられた遷移金属酸化物層とケイ素含有ポリマー改質層とを組み合わせた透明電極10は、導電性能の安定性が向上するだけでなく、入射光の透過率の角度依存性を減らすことができる。これは、低屈折率層と高屈折率層を積層させることで、光の多重干渉を生じさせ、反射率が低減すること、また屈折率差による光学的な挙動が変化していること等が要因と推察される。
 遷移金属酸化物層における遷移金属酸化物の含有量は、50~100質量%の範囲内であることが好ましい。この範囲内であれば、遷移金属酸化物層中の遷移金属がケイ素含有ポリマー改質層との相互作用により、十分なガスバリア性を得ることができる。
 遷移金属酸化物層の形成方法としては、遷移金属と酸素との組成比の調整がしやすいことから、蒸着法、スパッタ法、イオンプレーティング法等の物理気相成長(PVD:Physical Vapor Deposition)法、プラズマCVD法等のCVD法、原子層堆積(ALD:Atomic Layer Deposition)法等が挙げられる。なかでも、下層へのダメージがなく、生産性が高いスパッタ法が好ましい。
 スパッタ法としては、2極スパッタ法、マグネトロンスパッタ法、デュアルマグネトロン(DM:Dual Magnetron)スパッタ法、反応性スパッタ法、イオンビームスパッタ法、電子サイクロトロン共鳴(ECR:Electron Cyclotron Resonance)スパッタ法等を用いることができ、このうちの1種を単独で使用してもよいし、2種以上を併用してもよい。
 ターゲットの印加方式はターゲット種に応じて適宜選択することができる。DC(直流)方式又はDM方式の場合には、そのターゲットに遷移金属を用い、酸素を原料ガスとして導入することにより、遷移金属酸化物の薄膜を形成することができる。RF(高周波)方式の場合は、遷移金属酸化物のターゲットを用いることができる。不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、なかでもArが好ましい。
 遷移金属酸化物層は、単層であってもよいし、2層以上の多層構造であってもよい。多層構造の場合、各層に用いられる遷移金属酸化物は同じであってもよいし、異なっていてもよい。遷移金属酸化物層の厚さは、位置によらず均一なガスバリア性を発揮する観点から、1~200nmの範囲内にあることが好ましい。
[粒子含有層]
 粒子含有層16は、樹脂基材11において、導電層12が形成される面(表面)と反対側の面(裏面)に設けられる。透明電極10を重ねた際や、長尺の透明電極10をロール状に巻回した際のように、透明電極10同士が直接接触する状態となった場合において、透明電極10が粒子含有層16を有することにより、帯電や、透明電極10同士の固着等を抑制することができる。
 透明電極10において、粒子含有層16は、粒子とバインダ樹脂とから構成される。粒子含有層16は、バインダ樹脂100質量部に対して、粒子を1~900質量部の範囲で含有することが好ましい。
(粒子)
 粒子含有層16を構成する粒子は、無機微粒子、無機酸化物粒子、導電性ポリマー粒子、導電性カーボン微粒子等が好ましい。なかでも、ZnO、TiO、SnO、Al、In、MgO、BaO、MoO、V等の金属酸化物粒子、及び、SiO等の無機酸化物粒子が好ましい。特に、SnO、SiOが好ましい。
(バインダ樹脂)
 粒子含有層16を構成するバインダ樹脂としては、例えば、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースナイトレート等のセルロース誘導体、ポリ酢酸ビニル、ポリスチレン、ポリカーボネート、ポリブチレンテレフタレート、及びコポリブチレン/テレ/イソフタレート等のポリエステル、ポリビニルアルコール、ポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール、及びポリビニルベンザール等のポリビニルアルコール誘導体、ノルボルネン化合物を含有するノルボルネン系ポリマー、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリプロピルチルメタクリレート、ポリブチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、又は、アクリル樹脂とその他樹脂との共重合体を用いることができるが、特にこれら例示する樹脂材料に限定されるものではない。この中では、セルロース誘導体、及び、アクリル樹脂が好ましく、さらにアクリル樹脂が最も好ましく用いられる。
 バインダ樹脂としては、重量平均分子量が40万以上で、ガラス転移温度が80~110℃の範囲内にある熱可塑性樹脂が、光学特性及び形成する粒子含有層16の品質の点で好ましい。
 ガラス転移温度は、JIS K 7121に記載の方法で求めることができる。ここで使用するバインダ樹脂は、粒子含有層を構成する全樹脂質量の60質量%以上、さらに好ましくは80質量%以上であり、必要に応じて活性線硬化性樹脂、又は、熱硬化樹脂を適用することもできる。
[効果]
 上述の構成の透明電極10によれば、導電層12が、金属細線パターン13とアモルファス金属酸化物層14とにより構成されている。導電層12が金属細線パターン13を含むことにより、透明電極10の面方向の導電性に優れる。
 さらに、導電層12の表面側がアモルファス金属酸化物層14により構成されていることにより、金属酸化物層に結晶相が含まれる場合に比べて、導電層12のフレキシブル性を付与することができる。さらに、導電層12が金属細線パターン13とアモルファス金属酸化物層14からなることで、折り曲げたときにアモルファス金属酸化物層14にかかる圧力を分散でき、単独でアモルファス金属酸化物層14を用いた場合に比べて、フレキシブル性に優れた透明電極10を構成することができる。
 また、導電層12の表面側にアモルファス金属酸化物層14を用いることにより、導電性高分子を用いた場合に比べて導電層12への損傷を防ぐことができる。特に、透明電極10を重ねた際や、長尺の透明電極10をロール状に巻回した際において、透明電極10の導電層12の表面の損傷を抑制することができる。
 特に、粒子含有層16を有する透明電極10のような構成の場合には、透明電極10の裏面側の粒子含有層16と、透明電極10の表面側との擦過が発生しやすい。このため、アモルファス金属酸化物層14を導電層12の表面に設けることにより、擦過による損傷を抑制することができる。このように、導電層12の表面にアモルファス金属酸化物層14を設ける構成は、粒子含有層16を有する透明電極10の構成において特に有効である。
 また、透明電極10は、下地層15上に金属細線パターン13が形成されている。下地層15上に金属細線パターン13が形成されることにより、下地層15と金属細線パターン13との密着性が増加し、金属細線パターン13の剥離や損傷を抑制できる。
 さらに、下地層15が樹脂基材11と金属細線パターン13との間で断熱層として機能し、金属細線パターン13の形成の際に行なう焼成工程での樹脂基材11と金属細線パターン13の損傷を抑制することができる。
 また、透明電極10において、樹脂基材11上にガスバリア層17を有することにより、樹脂基材11がガスバリアフィルムとして機能する。このため、透明電極10が適用される有機EL素子等の有機電子デバイスにおいて、保存性を向上させることができる。従って、ガスバリア層17を有する透明電極10を用いることにより、有機電子デバイスの信頼性の向上が可能となる。
〈2.透明電極の製造方法〉
 次に、上述の構成の透明電極10の製造方法を説明する。
 透明電極10の作製においては、まず樹脂基材11を準備する。樹脂基材11には、必要に応じてガスバリア層17を形成する。或いは、予めガスバリア層17が形成された樹脂基材11を準備する。さらに、必要に応じて、樹脂基材11上に粒子含有層16を形成する。或いは、予め粒子含有層16が形成された樹脂基材11を準備する。
 ガスバリア層17、及び、粒子含有層16の一方のみが形成された樹脂基材11を用いてもよく、両方が形成された樹脂基材11を用いてもよい。
 そして、準備した樹脂基材11上に、金属細線パターン13とアモルファス金属酸化物層14とを形成して、導電層12を形成する。また、導電層12の形成前に、必要に応じて、下地層15を形成してもよい。
[下地層形成]
 次に、準備した樹脂基材11上に、下地層15を形成する。下地層15は、溶媒に高分子材料と上述の金属酸化物微粒子を分散することで下地層形成用分散液を作製し、この下地層形成用分散液を基板上に塗布することで形成する。
 下地層形成用分散液に用いる分散溶媒には特に制限はないが、高分子材料の析出と金属酸化物微粒子の凝集が起こらない溶媒を選択することが好ましい。金属酸化物微粒子の分散性を高めることにより、塗布乾燥後の基板上に金属酸化物の凝集物が発生することを防ぐことができる。分散性の観点からは、高分子材料と金属酸化物微粒子とを混合した液を超音波処理やビーズミル処理といった方法で分散させ、フィルター等でろ過することが好ましい。
 下地層15の形成方法は、任意の適切な方法を選択することができ、例えば、塗工方法として、グラビア印刷法、フレキソ印刷法、オフセット印刷、スクリーン印刷法、インクジェット印刷等の各種印刷方法に加えて、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、カーテンコート法、スプレーコート法、ドクターコート法等の各種塗布法を用いることができる。
 下地層15を所定のパターンに形成する場合には、グラビア印刷法、フレキソ印刷法、オフセット印刷、スクリーン印刷法、インクジェット印刷法を用いることが好ましい。
 下地層15は、樹脂基材11上に形成した上記塗布膜を、温風乾燥や赤外線乾燥等の公知の加熱乾燥や、自然乾燥等の乾燥を行い形成する。加熱乾燥を行なう場合の温度は、使用する樹脂基材11に応じて適宜選択することができる。加熱乾燥は、200℃以下の温度で行なうことが好ましい。また、後述のように、選択する高分子材料によっては、紫外線等の光エネルギーによる硬化や、樹脂基材11へのダメージの少ない熱硬化等の処理を行ってもよい。
 また、下地層形成用分散液に用いる分散溶媒として、水等のヒドロキシ基を有する極性溶媒や沸点が200℃以下の低沸点溶媒を選択する場合は、光源のフィラメント温度が1600~3000℃の範囲内にある赤外線ヒータを乾燥に用いることが好ましい。ヒドロキシ基が赤外線ヒータから発せられる特定の波長に吸収を持つため、溶媒の加熱が可能となる。一方、樹脂基材11を構成するポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)は、赤外線ヒータから発せられる特定の波長の吸収が少ないため、樹脂基材11に対する熱ダメージが少ない。
 ヒドロキシ基を有する極性溶媒としては、水(蒸留水、脱イオン水等の純水が好ましい)の他、メアルコール系溶媒、グリコール類、グリコールエーテル類、及び、水とアルコールの混合溶媒等が挙げられる。グリコールエーテル類系有機溶媒としては、例えば、エチルカルビトール、ブチルカルビトール等が挙げられる。また、アルコール系有機溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、ジアセトンアルコール、ブトキシエタノール等が挙げられる。
[金属細線パターンの形成工程:パターン形成]
 次に、樹脂基材11上に金属細線パターン13を形成する。金属細線パターン13は、金属インク組成物を用いて形成する。金属細線パターン13の形成方法としては、特に制限はなく、従来公知の方法が利用できる。この従来公知の金属細線パターン13の形成方法としては、例えば、フォトリソグラフィー法、塗布法、印刷法を応用した方法等を利用できる。
 金属インク組成物は、上述の金属ナノ粒子と、溶媒とを含有し、分散剤、粘度調整剤、バインダ等の添加剤が含有されてもよい。金属ナノ粒子含有組成物に含有される溶媒としては特に制限はないが、中赤外線照射により効率的に溶媒を揮発できる点で、ヒドロキシ基を有する化合物が好ましく、水、アルコール、グリコールエーテルが好ましい。
 金属ナノ粒子含有組成物に用いる溶媒としては、水、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、テトラデカノール、ヘキサデカノール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ファルネソール、デデカジエノール、リナロール、ゲラニオール、ネロール、ヘプタジエノール、テトラデセノール、ヘキサデセネオール、フィトール、オレイルアルコール、デデセノール、デセノール、ウンデシレニルアルコール、ノネノール、シトロネロール、オクテノール、ヘプテノール、メチルシクロヘキサノール、メントール、ジメチルシクロヘキサノール、メチルシクロヘキセノール、テルピネオール、ジヒドロカルベオール、イソプレゴール、クレゾール、トリメチルシクロヘキセノール、グリセリン、エチレングリコール、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ヘキシレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ネオペンチルグリコール、ブタンジオール、ペンタンジオール、ヘプタンジオール、プロパンジオール、ヘキサンジオール、オクタンジオール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等が挙げられる。
 印刷法による金属ナノ粒子含有組成物のパターンの形成には、一般的に電極パターンの形成に使われる方法を適用できる。具体的な例としては、グラビア印刷法については特開2009-295980号公報、特開2009-259826号公報、特開2009-96189号公報、特開2009-90662号公報記載の方法等が、フレキソ印刷法については特開2004-268319号公報、特開2003-168560号公報記載の方法等が、スクリーン印刷法については特開2010-34161号公報、特開2010-10245号公報、特開2009-302345号公報記載の方法等が、インクジェット印刷法については特開2011-180562号公報、特開2000-127410号公報、特開平8-238774号公報記載の方法等が挙げられる。
 フォトリソグラフィー法を用いる場合は、下地層15上の全面に、印刷又は塗布にて金属インク組成物を成膜し、後述する乾燥処理及び焼成処理を行った後、公知のフォトリソグラフィー法を適用してエッチングすることにより、所望の属ナノ粒子含有組成物のパターンを形成する。
[金属細線パターンの形成工程:乾燥]
 次に、樹脂基材11上に塗布された金属ナノ粒子含有組成物の乾燥処理を行なう。乾燥処理は、公知の乾燥法を用いて行うことができる。乾燥法としては、例えば、空冷乾燥、温風等を用いた対流伝熱乾燥、赤外線等を用いた輻射電熱乾燥、ホットプレート等を用いた伝導伝熱乾燥、真空乾燥、マイクロ波を用いた内部発熱乾燥、IPA蒸気乾燥、マランゴニ乾燥、ロタゴニ乾燥、凍結乾燥等を用いることができる。
 加熱乾燥では、50~200℃の温度範囲で、樹脂基材11の変形がない温度で行なうことが好ましく、樹脂基材11の表面温度が50~150℃の温度範囲となる条件で加熱することがより好ましい。基板にPET基板を用いる場合は、100℃以下の温度範囲となる条件で加熱することが特に好ましい。焼成時間は温度や使用する金属ナノ粒子の大きさにもよるが、10秒~30分の範囲内であることが好ましく、生産性の観点から、10秒~15分の範囲内であることがより好ましく、10秒~5分の範囲内であることが特に好ましい。
 乾燥処理としては、赤外線照射を行なうことが好ましい。特に、波長制御赤外線ヒータ等により特定の波長領域を選択的に照射することが好ましい。特定の波長領域を選択的に用いることにより、樹脂基材11の吸収領域の波長の選択的な遮断や、金属インク組成物の溶媒に有効な特定の波長の選択的な照射が可能となる。また、乾燥処理では、光源のフィラメント温度が1600~3000℃の範囲内にある赤外線ヒータを用いることが好ましい。
[金属細線パターンの形成工程:焼成]
 次に、乾燥させた金属インク組成物のパターンの焼成処理を行なう。なお、金属インク組成物に含まれる金属組成物の種類(例えば、上述のπ接合有機配位子を有する銀コロイド等)によっては、乾燥処理で十分な導電性が発現するため、焼成工程を行わなくてもよい。
(フラッシュ光の照射による焼成)
 金属インク組成物のパターンの焼成は、樹脂基材11の熱変形等の抑制のため、フラッシュランプを用いた光照射(フラッシュ焼成)により行なうことが好ましい。フラッシュ焼成で用いられるフラッシュランプの放電管としては、キセノン、ヘリウム、ネオン、アルゴン等の放電管を用いることができるが、キセノンランプを用いることが好ましい。
 フラッシュランプの好ましいスペクトル帯域としては、240~2000nmの範囲内であることが好ましい。この範囲内であれば、フラッシュ焼成による樹脂基材11の熱変形等のダメージが少ない。
 フラッシュランプの光照射条件は任意であるが、光照射エネルギーの総計が0.1~50J/cmの範囲内であることが好ましく、0.5~10J/cmの範囲内であることがより好ましい。光照射時間は、10μ秒~100m秒の範囲内が好ましく、100μ秒~10m秒の範囲内がより好ましい。また、光照射回数は1回でも複数回でも良く、1~50回の範囲で行うことが好ましい。上記条件でフラッシュ光照射を行うことにより、樹脂基材11熱変形等を抑制して、金属細線パターンを形成できる。
 樹脂基材11に対するフラッシュランプ照射は、樹脂基材11の金属インク組成物のパターンが形成されている側から行なうことが好ましい。なお、樹脂基材11が透明な場合には、樹脂基材11側から照射してもよく、樹脂基材11の両面から照射してもよい。
 また、フラッシュ焼成の際の樹脂基材11の表面温度は、樹脂基材11の耐熱温度や、金属インク組成物に含まれる溶媒等の分散媒の沸点(蒸気圧)、雰囲気ガスの種類や圧力、金属インク組成物の分散性や酸化性等の熱的挙動等を考慮して決定すればよく、室温以上200℃以下で行うことが好ましい。
 フラッシュランプの光照射装置は上記の照射エネルギー、照射時間を満足するものであればよい。また、フラッシュ焼成は大気中で行ってもよいが、必要に応じ、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気中で行うこともできる。
[アモルファス金属酸化物層の形成工程]
 次に、金属細線パターン13を覆って、導電層12の形成領域の全面にアモルファス金属酸化物層14を形成する。アモルファス金属酸化物層14は、上述の金属酸化物のスパッタリングターゲットを用いたスパッタリング法やイオンプレーティング法等によって形成することができる。
 例えば、アモルファス金属酸化物層14は、成膜装置内の温度を200℃以下として、従来の金属酸化物層の製膜と同様に、各種のスパッタリング法やイオンプレーティング法等によって製膜することができる。成膜装置内の温度を200℃以下とすることにより、金属酸化物層に結晶相が発生せず、アモルファス金属酸化物層14を作製することができる。
 特に、成膜時の基板温度を90℃以下、特に70℃以下とすることが好ましい。成膜時の基板温度を90℃以下、好ましくは70℃以下とすることにより、結晶相を発生させずにアモルファス金属酸化物層を作製できると共に、樹脂基材11の変形を防ぐことができる。成膜時の基板温度を70℃以下とするためには、成膜装置内の温度を例えば70℃以下に設定する。または、基板側に冷却機構をつけ、基板温度を70℃以下にする。
 アモルファス金属酸化物層14を形成するスパッタリング法としては、例えば、DCスパッタリング、RFスパッタリング、DCマグネトロンスパッタリング、RFマグネトロンスパッタリング、ECRプラズマスパッタリング、イオンビームスパッタリング等を用いることができる。
 例えば、アモルファス金属酸化物層14は、スパッタリングの際のターゲット基板間距離を50~100mmとし、スパッタリングガス圧を0.5~1.5Paとして、直流マグネトロンスパッタリング法により成膜することができる。
 ターゲット基板間距離については、ターゲット基板間距離が50mmよりも短くなると、堆積するスパッタ粒子の運動エネルギーが大きくなるため、樹脂基材11の受けるダメージが大きくなってしまう。また、膜厚も不均一となり膜厚分布が悪くなる。ターゲット基板間距離が100mmより長いと、膜厚分布はよくなるが、堆積するスパッタ粒子の運動エネルギーが低くなりすぎ、拡散による緻密化が起きにくく、アモルファス金属酸化物層の密度が低くなるため好ましくない。
 スパッタリングガス圧については、スパッタリングガス圧が0.5Paより低いと堆積するスパッタ粒子の運動エネルギーが大きくなるため、樹脂基材11の受けるダメージが大きくなってしまう。スパッタリングガス圧が1.5Paより高いと、成膜速度が遅くなるだけでなく、堆積するスパッタ粒子の運動エネルギーが低くなりすぎて、拡散による緻密化が起きず、アモルファス金属酸化物層の密度が低くなるため好ましくない。
[ガスバリア層の形成工程]
 透明電極10の作製においては、必要に応じて樹脂基材11上にガスバリア層17を形成してもよい。ガスバリア層17の形成は、上述の導電層12、及び、下地層15の形成前に行なう。
 ガスバリア層17の形成は、上述のケイ素含有ポリマー改質層、ケイ素化合物層、遷移金属酸化物層を、単独又は組み合わせて真空蒸着やCVD法により形成することが好ましい。ケイ素含有ポリマー改質層、ケイ素化合物層、及び、遷移金属酸化物層の形成方法は、それぞれ上述の方法や条件を用いることができる。
[粒子含有層の形成工程]
 透明電極10の作製においては、必要に応じて樹脂基材11上(裏面側)に粒子含有層16を形成してもよい。粒子含有層16の形成は、上述の導電層12、下地層15、及び、ガスバリア層17の形成前に行なうことが好ましい。
 粒子含有層16の形成では、上述の粒子とバインダ樹脂とを、適当な有機溶剤に溶解して、溶液状態の粒子含有層形成用塗布液を調製し、これら湿式塗布方式により、基材上に塗布及び乾燥して、粒子含有層16を形成する。
 粒子含有層形成用塗布液の調製に用いる有機溶剤としては、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類等を適宜混合して使用することができる。なお、有機溶剤は、これらに限定されるものではない。
 炭化水素類としては、例えば、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン等が挙げられ、アルコール類としては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール、2-ブタノール、tert-ブタノール、ペンタノール、2-メチル-2-ブタノール、シクロヘキサノール等が挙げられ、ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられ、エステル類としては、例えば、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、乳酸エチル、乳酸メチル等が挙げられ、グリコールエーテル(炭素数1~4)類としては、例えば、メチルセルソルブ、エチルセルソルブ、プロピレングリコールモノメチルエーテル(略称:PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル等が挙げられ、プロピレングリコールモノ(炭素数1~4)アルキルエーテルエステル類としては、例えば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等が挙げられ、その他の溶媒として、例えば、N-メチルピロリドン等が挙げられる。有機溶剤は、これらに限定されるものではない。これらを適宜混合した溶媒も好ましく用いられる。
 粒子含有層形成用塗布液を基材上に塗布する方法としては、ドクターコート、エクストルージョンコート、スライドコート、ロールコート、グラビアコート、ワイヤーバーコート、リバースコート、カーテンコート、押し出しコート、又は、米国特許第2681294号明細書に記載のホッパーを使用するエクストルージョンコート方法等が挙げられる。これら湿式塗布方法を適宜用いることにより、基材上に、乾燥膜厚が、0.1~20μmの範囲内、好ましくは0.2~5μmの範囲内の粒子含有層16を形成することができる。
〈3.有機電子デバイス(有機エレクトロルミネッセンス素子)〉
 次に、上述の透明電極を用いた有機電子デバイスの一例として、有機エレクトロルミネッセンス素子(有機EL素子)の実施形態について説明する。本実施形態の有機EL素子は、上述の透明電極を一方の電極(透明電極)とし、この透明電極上に、有機機能層(発光ユニット)と他方の電極(対向電極)とが設けられた構成である。このため、以下の有機EL素子の説明では、上述の透明電極と同じ構成については、詳細な説明を省略する。
[有機EL素子の構成]
 本実施形態の有機EL素子の構成を図2に示す。図2に示す有機EL素子20は、透明電極10と、対向電極22とを備え、この電極間に有機機能層を含む発光ユニット21が設けられている。透明電極10は、上述の図1と同様の構成である。
 ここで、「発光ユニット」とは、少なくとも、各種有機化合物を含有する、発光層、正孔輸送層、電子輸送層等の有機機能層を主体として構成される発光体(単位)をいう。発光体は、陽極と陰極とからなる一対の電極間に挟持され、陽極から供給される正孔(ホール)と陰極から供給される電子とが発光体内で再結合することにより発光する。なお、有機EL素子は、所望の発光色に応じて、発光ユニットを複数備えていてもよい
 透明電極10の導電層12と対向電極22とで発光ユニット21が挟持されている部分のみが、有機EL素子20における発光領域となる。そして、有機EL素子20は、発生させた光(以下、発光光hと記す)を、少なくとも透明電極10の樹脂基材11側から取り出すボトムエミッション型として構成されている。なお、透明(透光性)とは波長550nmでの光透過率が50%以上であることをいう。主成分とは、構成全体の中で占める割合が最も高い成分である。
 また、有機EL素子20において、透明電極10の導電層12及び対向電極22の端部には、図示しない取り出し電極が設けられている。透明電極10の導電層12及び対向電極22と外部電源(図示略)とは、取り出し電極を介して、電気的に接続される。
 有機EL素子20の層構造が限定されることはなく、一般的な層構造であってよい。例えば、透明電極10の導電層12がアノード(すなわち陽極)として機能し、対向電極22がカソード(すなわち陰極)として機能する場合、発光ユニット21は、透明電極10の導電層12側から順に正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層を積層した構成が例示されるが、このうち、少なくとも有機材料を用いて構成された発光層を有することが必須である。正孔注入層及び正孔輸送層は、正孔輸送注入層として設けられてもよい。電子輸送層及び電子注入層は、電子輸送注入層として設けられてもよい。また、これらの発光ユニット21のうち、例えば、電子注入層は無機材料で構成されていてもよい。
 発光ユニット21は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていてもよい。さらに、発光層は、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の補助層を介して積層させた構造としてもよい。補助層は、正孔阻止層、電子阻止層として機能してもよい。さらに、カソードである対向電極22も、必要に応じた積層構造であってもよい。発光ユニット21の層構造は、これらに限定されない。
 また、有機EL素子20は、少なくとも1層の発光層を含む発光ユニット21を複数積層した、いわゆるタンデム構造の素子であってもよい。タンデム構造の代表的な素子構成としては、例えば、以下の構成を挙げることができる。
 陽極/第1発光ユニット/中間コネクタ層/第2発光ユニット/中間コネクタ層/第3発光ユニット/陰極
 ここで、上記第1発光ユニット、第2発光ユニット、及び、第3発光ユニットは全て同じであっても、異なっていてもよい。また、二つの発光ユニットが同じであり、残る一つが異なっていてもよい。複数の発光ユニット21は、直接積層されていても、中間コネクタ層を介して積層されていてもよい。
 中間コネクタ層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。中間コネクタ層に用いられる材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiO、VO、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機材料層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、C60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、これらに限定されない。
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられる。
[電極]
 有機EL素子20は、透明電極10の導電層12と対向電極22とからなる一対の電極に挟持された発光ユニット21を有する。透明電極10の導電層12と対向電極22とは、いずれか一方が有機EL素子20の陽極となり、他方が陰極となる。
 また、図2に示す有機EL素子20では、透明電極10の導電層12が透明導電材料により構成され、対向電極22が高反射材料により構成されている。なお、有機EL素子20が両面発光型の場合には、対向電極22も透明導電材料により構成される。
[対向電極]
 有機EL素子20において、対向電極22を陽極として用いる場合には、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物からなる導電性材料を用いることが好ましい。陽極を構成可能な導電性材料の具体例としては、Au、Ag等の金属、CuI、酸化インジウムスズ(Indium Tin Oxide:ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成し、フォトリソグラフィー法で所望の形状のパターンを形成してもよい。また、パターン精度をあまり必要としない場合は(100μm以上程度)、上記導電性材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等の湿式成膜法を用いることもできる。陽極側から発光を取り出す場合には、透過率を10%より大きくすることが望ましい。また、陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。膜厚は材料にもよるが、通常10~1000nmの範囲内、好ましくは10~200nmの範囲内で選ばれる。
 また、有機EL素子20において、対向電極22を陰極として用いる場合には、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物からなる導電性材料を用いることが好ましい。陰極は、これらの導電性材料を用いて、蒸着やスパッタリング等の方法で薄膜を形成することにより、作製することができる。
 導電性材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属や、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物やアルミニウム等が好適である。
 陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、膜厚は通常10nm~5μmの範囲内、好ましくは50~200nmの範囲内で選ばれる。また、陰極として上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができる。この構成により、陽極と陰極の両方が透過性を有する素子を作製することができる。
[取り出し電極]
 取り出し電極は、透明電極10の導電層12と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく、公知の素材を好適に使用できる。取り出し電極としては、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を使用できる。
[封止部材]
 有機EL素子20は、有機材料等を用いて構成された発光ユニット21の劣化を防止するために、図示しない封止部材で封止されていてもよい。封止部材は、有機EL素子20の上面を覆う板状又はフィルム状の部材であって、接着部によって樹脂基材11側に固定される。また、封止部材は、封止膜であってもよい。このような封止部材は、有機EL素子20の電極端子部分を露出させ、少なくとも発光ユニット21を覆う状態で設けられている。また、封止部材に電極を設け、有機EL素子20の電極端子部分と、封止部材の電極とを導通させる構成としてもよい。
 板状(フィルム状)の封止部材としては、具体的には、ガラス基板、ポリマー基板、金属基板等が挙げられ、これらの基板をさらに薄型のフィルム状に加工して用いてもよい。ガラス基板としては、特に、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー基板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属基板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金を挙げることができる。
 特に、素子の薄膜化のために、封止部材としてポリマー基板や金属基板を薄型のフィルム状にして使用することが好ましい。
 また、基板材料は、凹板状に加工して封止部材として用いてもよい。この場合、上述した基板部材に対して、サンドブラスト加工、化学エッチング加工等の加工が施され、凹部が形成される。
 さらに、フィルム状のポリマー基板は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下であることが好ましい。
 また、封止部材を樹脂基材11側に固定する接着部は、有機EL素子20を封止するためのシール剤として用いられる。接着部としては、具体的には、アクリル酸系オリゴマーやメタクリル酸系オリゴマーの反応性ビニル基等を有する光又は熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。
 また、接着部としては、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 封止部材と透明電極10との接着部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 なお、有機EL素子を構成する有機材料は、熱処理により劣化する場合がある。このため、接着部は、室温(25℃)から80℃以下で接着硬化することが好ましい。また、接着部中に乾燥剤を分散させておいてもよい。
 また、板状の封止部材と透明電極10との間に間隙が形成される場合、この間隙には、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 一方、封止部材として封止膜を用いる場合、有機EL素子20における発光ユニット21を完全に覆い、かつ有機EL素子20の電極端子部分を露出させる状態で、透明電極10上に封止膜が設けられる。
 このような封止膜は、無機材料や有機材料を用いて構成される。特に、封止膜は、水分や酸素等の発光ユニット21に劣化をもたらす物質の浸入を抑制する機能を有する材料で構成される。このような材料としては、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等の無機材料が用いられる。さらに、封止膜の脆弱性を改良するために、これら無機材料からなる膜とともに、有機材料からなる膜を用いて積層構造としてもよい。
 これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
[保護部材]
 また、有機EL素子20を機械的に保護するために、保護膜又は保護板等の保護部材(図示省略)を設けてもよい。保護部材は、有機EL素子20及び封止部材を、透明電極10とで挟む位置に配置される。特に封止部材が封止膜である場合には、有機EL素子20に対する機械的な保護が十分ではないため、このような保護部材を設けることが好ましい。
 以上のような保護部材は、ガラス板、ポリマー板、これよりも薄型のポリマーフィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。このうち、特に、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 なお、上述の説明では、透明電極を適用した有機電子デバイスの一例として、透明電極を適用した有機EL素子について説明しているが、透明電極は有機光電変換素子やその他の有機電子デバイスにも透明導電部材として適用可能である。
〈4.有機電子デバイスの製造方法〉
 次に、図2に示す有機EL素子20の製造方法の一例を説明する。
 まず、上述の製造方法により透明電極10を作製する。
 次に、透明電極10上に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の順に成膜し、発光ユニット21を形成する。これらの各層の成膜方法としては、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が好ましい。さらに、層ごとに異なる成膜法を適用してもよい。これらの各層の成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが好ましい。
 次に、発光ユニット21を形成した後、この上部に対向電極22を、蒸着法やスパッタ法等の成膜法によって形成する。この際、対向電極22は、発光ユニット21によって透明電極10の導電層12に対して絶縁状態を保ちつつ、発光ユニット21の上方から樹脂基材11の周縁に端子部分を引き出した形状にパターン形成する。これにより、有機EL素子20が得られる。
 さらに、有機EL素子20における取り出し電極及び対向電極22の端子部分を露出させた状態で、少なくとも発光ユニット21を覆う封止部材を設ける。
 以上の工程により、透明電極10上に所望の有機EL素子20が得られる。このような有機EL素子20の作製においては、1回の真空引きで一貫して発光ユニット21から対向電極22まで作製することが好ましいが、途中で真空雰囲気から樹脂基材11を取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
〈試料101の透明電極の作製〉
[樹脂基材]
 樹脂基材として、株式会社きもと製のクリアハードコート付きポリエチレンテレフタレート(PET/CHC)フィルム(G1SBF、厚さ125μm、屈折率1.59、以下PET/CHCフィルムと称する)を準備した。
[粒子含有層]
 次に、準備した樹脂基材の裏面(導電層を形成しない側の面)上に粒子含有層を作製した。
 粒子含有層は、下記の方法でコロイダルシリカ含有単量体を調整した後、このコロイダルシリカ含有単量体から、粒子含有層調製液を調整した。そして、粒子含有層調製液を用いて粒子含有層を形成した。
(コロイダルシリカ含有単量体の調整)
 溶媒として酢酸エチルを用いて分散したコロイダルシリカ(SiO成分30質量%、平均粒子径20nm、日産化学(株)製)の130質量部に、2-メタクリロイルオキシエチルイソシアネート(略称:MOI、分子量155、昭和電工(株)製)の30質量部と、触媒としてジラウリン酸ジ-n-ブチル錫(略称:DBTDL)を0.1質量部加えて、室温で24時間撹拌した。赤外分光法(IR)によりイソシアネート基の反応の確認を行い、エバボレーターで溶媒である酢酸エチルを除去して、コロイダルシリカ含有単量体を得た。
(粒子含有層調製液の調整)
 上記で製造したコロイダルシリカ含有単量体(不揮発分:36質量%)の100質量部に、Li/CFSO のメチルエチルケトン溶液(不揮発分:50質量%、三光化学工業(株)製)の5質量部を混合して撹拌した。開始剤としては、Irgacure907(BASFジャパン社製)を1質量部加え、粒子含有層調製液を調製した。
(粒子含有層の形成)
 次に、樹脂基材上に、調製した粒子含有層調製液を、硬化後の厚さが10μmとなる条件で、塗布及び乾燥した。この後、80W/cmの水銀灯を用い、300mJの条件で紫外線照射処理を行い、粒子含有層を形成した。
[ガスバリア層]
 次に、上記樹脂基材の表面(導電層を形成する側の面)上に、ガスバリア層を作製した。
 放電プラズマ化学気相成長装置(アプライドマテリアルズ社製プラズマCVD装置 Precision5000)に、樹脂基材をセットし、ロールtoロールで連続搬送させた。次に、成膜ローラー間に磁場を印加するとともに、各成膜ローラーに電力を供給して、成膜ローラー間にプラズマを発生させ、放電領域を形成した。次に、形成した放電領域に、成膜ガスとして、原料ガスであるヘキサメチルジシロキサン(HMDSO)と反応ガスである酸素ガス(放電ガスとしても機能する)との混合ガスを、ガス供給管から供給し、下記条件にて、層厚120nmのガスバリア層を成膜した。
 (成膜条件)
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
 反応ガス(O)の供給量:500sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 フィルムの搬送速度:0.8m/min
[導電層]
 次に、上記樹脂基材のガスバリア層を形成した面上に、導電層としてITO(In:SnO=90:10(重量比))膜を、200nmの厚さで作製した。ITO膜は、アネルバ社のL-430S-FHSスパッタ装置を用い、Ar:20sccm、O:2sccm、スパッタ圧:0.25Pa、室温下、ターゲット側電力:1000W、ターゲット-基板距離:86mmで、RFスパッタにて作製した。
 以上の方法により、試料101を作製した。
〈試料102の透明電極の作製〉
 上述の試料101の透明電極の作製において、導電層をIZO(重量比In:ZnO=90:10)で形成した以外は、試料101と同様の方法で試料102の透明電極を作製した。導電層の作製は、IZOのターゲットを用いて、室温下で行なった。
〈試料103の透明電極の作製〉
 上述の試料101の透明電極の作製において、導電層をIGO(重量比In:Ga=90:10)で形成した以外は、試料101と同様の方法で試料103の透明電極を作製した。導電層の作製は、IGOのターゲットを用いて、室温下で行なった。
〈試料104の透明電極の作製〉
 上述のPET/CHCフィルム上に、導電層として金属細線パターンと導電性高分子層を形成し、試料104の透明電極を作製した。
[金属細線パターン]
 PET/CHCフィルム上に、金属インク組成物として銀ナノ粒子分散液(FlowMetal SR6000、バンドー化学株式会社製)をインクジェット印刷法を用いて、50μm幅、1mmピッチで格子状に塗布してパターン形成した。パターンを印刷するエリアは30mm×40mmとした。インクジェット印刷法としては、インク液滴の射出量が4plのインクジェットヘッドを使用し、塗布速度と射出周波数を調整して、パターンを印刷した。インクジェット印刷装置としては、インクジェットヘッド(コニカミノルタ社製)を取り付けた卓上型ロボットShotmaster-300(武蔵エンジニアリング社製)を用い、インクジェット評価装置EB150(コニカミノルタ社製)にて制御した。
 次に、赤外線照射装置(アルティメットヒーター/カーボン,明々工業株式会社製)に、波長3.5μm以上の赤外線を吸収する石英ガラス板2枚を取り付け、ガラス板間に冷却空気を流した波長制御赤外線ヒータを用いて、形成した金属インク組成物のパターンの乾燥処理を行った。
 次に、250nm以下の短波長カットフィルターを装着したキセノンフラッシュランプ2400WS(COMET社製)を用いて、光照射エネルギーの総計が3.5J/cmのフラッシュ光を、照射時間2m秒で金属インク組成物のパターン側から1回照射して、乾燥後の金属インク組成物のパターンの焼成処理を行った。
[導電性高分子]
 次に、導電性高分子(PEDOT/PSS)含有液を塗布・パターニングし、導電性高分子層を作製した。導電性高分子層は、上記金属細線パターンが形成された樹脂基材上に、インクジェット法を用いて後述する導電性ポリマー含有液を印刷した後、室温下で自然乾燥し、500nmの厚さに形成した。
 導電性ポリマー含有液は、水溶性バインダ樹脂水溶液(固形分20%水溶液)を0.40g、PEDOT-PSS CLEVIOS PH750(固形分1.03%)(Heraeus社製)を1.90g、ジメチルスルホキシドを0.10g混合して調整した。なお、水溶性バインダ樹脂水溶液は、水溶性バインダ樹脂を純水に溶解し、固形分20%に調製されている。
 また、水溶性バインダ樹脂は、300ml三ツ口フラスコにテトラヒドロフラン(THF)200mlを加え10分間加熱還流させた後、窒素下で室温に冷却した。次に、2-ヒドロキシエチルアクリレート(10.0g、86.2mmol、分子量116.12)、アゾビスブチロニトリル(AIBN)(2.8g、17.2mmol、分子量164.11)を加え、5時間加熱還流した。次に、室温に冷却した後、2000mlのメチルエチルケトン(MEK)中に反応溶液を滴下し、1時間撹拌した。次に、このMEK溶液をデカンテーション後、100mlのMEKで3回洗浄し、THFでポリマーを溶解し、100mlフラスコへ移した。次に、THF溶液をロータリーエバポレーターにより減圧留去後、50℃で3時間減圧乾燥した。その結果、数平均分子量22100、分子量分布1.42の水溶性バインダ樹脂を9.0g(収率90%)得た。
 ここで、水溶性バインダ樹脂の構造、分子量は各々H-NMR(400MHz、日本電子社製)、GPC(Waters2695、Waters社製)で測定した。
(GPC測定条件)
装置:Waters2695(Separations Module)
検出器:Waters 2414 (Refractive Index Detector)
カラム:Shodex Asahipak GF-7M HQ
溶離液:ジメチルホルムアミド(20mM LiBr)
流速:1.0ml/min
温度:40℃
〈試料105の透明電極の作製〉
 上述の試料104の透明電極の作製において、導電層を金属細線パターンとIZOからなるアモルファス金属酸化物層とで形成した以外は、試料104と同様の方法で試料105の透明電極を作製した。なお、金属細線パターンの作製は、上述の試料104と同様の方法で行なった。IZOからなるアモルファス金属酸化物層の作製は、上述の試料102の導電層と同じ方法で行なった。
〈試料106の透明電極の作製〉
 上述の試料104の透明電極の作製において、導電層を金属細線パターンとIGOからなるアモルファス金属酸化物層とで形成した以外は、試料104と同様の方法で試料106の透明電極を作製した。なお、金属細線パターンの作製は、上述の試料104と同様の方法で行なった。IGOからなるアモルファス金属酸化物層の作製は、上述の試料103の導電層と同じ方法で行なった。
〈試料107の透明電極の作製〉
 上述の試料104の透明電極の作製において、導電層を金属細線パターンとIWZO(重量比In:WO:ZnO=98.5:1.0:0.5)からなるアモルファス金属酸化物層とで形成した以外は、試料104と同様の方法で試料107の透明電極を作製した。なお、金属細線パターンの作製は、上述の試料104と同様の方法で行なった。IWZOからなるアモルファス金属酸化物層の作製は、上述の試料102の導電層と同じ方法において、IWZOのターゲットを用いて、室温下で行なった。
〈試料108の透明電極の作製〉
 上述の試料104の透明電極の作製において、導電層を金属細線パターンとGZO(重量比ZnO:Ga=94.3:5.7)からなるアモルファス金属酸化物層とで形成した以外は、試料104と同様の方法で試料108の透明電極を作製した。なお、金属細線パターンの作製は、上述の試料104と同様の方法で行なった。GZOからなるアモルファス金属酸化物層の作製は、上述の試料102の導電層と同じ方法において、GZOのターゲットを用いて、室温下で行なった。
〈試料109の透明電極の作製〉
 上述の試料104の透明電極の作製において、導電層を金属細線パターンとIGZO(In:Ga:Zn:O=1:1:1:4(at%比))からなるアモルファス金属酸化物層とで形成した以外は、試料104と同様の方法で試料109の透明電極を作製した。なお、金属細線パターンの作製は、上述の試料104と同様の方法で行なった。IGZOからなるアモルファス金属酸化物層の作製は、上述の試料102の導電層と同じ方法において、IGZOのターゲットを用いて、室温下で行なった。
〈試料110の透明電極の作製〉
 上述の試料104の透明電極の作製において、導電層を金属細線パターンとAlドープしたZnOからなるアモルファス金属酸化物層とで形成した以外は、試料104と同様の方法で試料110の透明電極を作製した。なお、金属細線パターンの作製は、上述の試料104と同様の方法で行なった。AlドープZnOからなるアモルファス金属酸化物層の作製は、上述の試料102の導電層と同じ方法において、AlドープZnOのターゲットを用いて、室温下で行なった。
〈試料111の透明電極の作製〉
 上述の試料106の透明電極の作製において、IGOからなるアモルファス金属酸化物層を作製する際の基板温度を50℃とした以外は、上述の試料106と同じ方法で試料111の透明電極を作製した。
〈試料112の透明電極の作製〉
 上述の試料106の透明電極の作製において、IGOからなるアモルファス金属酸化物層を作製する際の基板温度を70℃とした以外は、上述の試料106と同じ方法で試料112の透明電極を作製した。
〈試料113の透明電極の作製〉
 上述の試料106の透明電極の作製において、IGOからなるアモルファス金属酸化物層を作製する際の基板温度を90℃とした以外は、上述の試料106と同じ方法で試料113の透明電極を作製した。
〈試料114の透明電極の作製〉
 上述の試料106の透明電極の作製において、金属インク組成物のパターンの乾燥処理を、ホットプレート(HP)を用いて行なった以外は、上述の試料106の導電層と同じ方法で試料114の透明電極を作製した。ホットプレート(HP)を用いた乾燥処理は、樹脂基材11側をホットプレート上に接触させ、80℃で30分の熱処理を行なった。
〈試料115の透明電極の作製〉
 上述の試料106の透明電極の作製において、金属インク組成物のパターンの乾燥処理を、熱風循環型のオーブンを用いて行なった以外は、上述の試料106の導電層と同じ方法で試料115の透明電極を作製した。オーブンを用いた乾燥処理は、熱風循環型のオーブン内に試料を載置し、80℃で30分の熱処理を行なった。
〈試料116の透明電極の作製〉
 上述の試料106の透明電極の作製において、金属インク組成物のパターンの乾燥処理を、真空乾燥処理により行なった以外は、上述の試料106の導電層と同じ方法で試料116の透明電極を作製した。真空乾燥処理では、80℃の真空乾燥装置内で30分の乾燥処理を行なった。
〈試料117の透明電極の作製〉
 上述の試料106の透明電極の作製において、金属インク組成物のパターンの乾燥処理を、マイクロ波の照射により行なった以外は、上述の試料106の導電層と同じ方法で試料117の透明電極を作製した。マイクロ波の照射は、発泡ニッケルシート((株)三菱マテリアル、孔径600μm)に導電層面が接触するように試料を設置し、200W、5分間マイクロ波をフィルム基板側から照射した。
〈試料118の透明電極の作製〉
 上述の試料106の透明電極の作製において、金属インク組成物のパターンの乾燥処理と焼成処理とを、ホットプレート(HP)を用いて単一処理で行なった以外は、上述の試料106の導電層と同じ方法で試料118の透明電極を作製した。ホットプレート(HP)を用いた乾燥処理及び焼成処理は、樹脂基材11側をホットプレート上に接触させ、120℃で60分の熱処理を行なった。
〈試料119の透明電極の作製〉
 上述の試料106の透明電極の作製において、金属インク組成物に用いる銀ナノ粒子分散液を、銀ナノ粒子分散液(FlowMetal SW1000、バンドー化学株式会社製)に変更した以外は、上述の試料106の導電層と同じ方法で試料119の透明電極を作製した。
〈試料120の透明電極の作製〉
 上述の試料106の透明電極の作製において、金属インク組成物に用いる銀ナノ粒子分散液を銀コロイド分散液ドライキュア(株式会社コロイダルインク製)に変更した以外は、上述の試料106の導電層と同じ方法で試料120の透明電極を作製した。
〈試料121の透明電極の作製〉
 上述の試料106の透明電極の作製において、金属インク組成物に用いる銀ナノ粒子分散液をTec-IJ-010(Inktec社製)の銀錯体分散液に変更した以外は、上述の試料106の導電層と同じ方法で試料121の透明電極を作製した。
〈試料122の透明電極の作製〉
 上述の試料106の透明電極の作製において、樹脂基材上に下記の方法で下地層を形成し、この下地層上に導電層を形成した以外は、上述の試料106の導電層と同じ方法で試料122の透明電極を作製した。
[下地層]
 上述のPET/CHCフィルム上に、特開2014-135364号公報の実施例2と同様の方法で、下地層を形成した。下地層は、乾燥後の膜厚が50nmとなるように、固形分3%の希釈液を作製し、スピンコーターを用いて2000rpmで成膜した。
〈試料123の透明電極の作製〉
 上述の試料106の透明電極の作製において、樹脂基材上に下記の方法で下地層を形成し、この下地層上に導電層を形成した以外は、上述の試料106の導電層と同じ方法で試料123の透明電極を作製した。
[下地層]
 上述の樹脂基材上に、コンポセランSQ105(荒川化学株式会社製)と多官能アクリレートタイク(日本化成株式会社製)を用いて下地層を形成した。
 コンポセランSQ105と1当量の多官能アクリレートタイク(日本化成株式会社製)とを混合し、固形分0.2%になる量の重合開始剤イルガキュア184(BASF社製)を混合して、メチルイソブチルケトン(MIBK)で固形分3%の希釈液を作製した。これをスピンコーターを用いて2000rpmで成膜後、上述の赤外線照射装置を用いて乾燥した。その後、UV硬化(膜厚30μm、254nmでの積算光量250mJ/cm)を行い、膜厚50nmの下地層を作製した。
〈試料124の透明電極の作製〉
 上述の試料106の透明電極の作製において、樹脂基材上に下記の方法で下地層を形成し、この下地層上に導電層を形成した以外は、上述の試料106の導電層と同じ方法で試料124の透明電極を作製した。
[下地層]
 上述のPET/CHCフィルム上に、特開2014-135364号公報の実施例6と同様の方法で、下地層を形成した。下地層は、乾燥後の膜厚が50nmとなるように、固形分3%の希釈液を作製し、スピンコーターを用いて2000rpmで成膜した。
〈試料125の透明電極の作製〉
 上述の試料111の透明電極の作製において、基材上にガスバリア層を形成し、このガスバリア層上に導電層を形成した以外は、上述の試料111の導電層と同じ方法で試料125の透明電極を作製した。なお、ガスバリア層の形成は、上述の試料101と同様の方法で行なった。
〈試料126の透明電極の作製〉
 上述の試料107の透明電極の作製において、基材上にガスバリア層を形成し、このガスバリア層上に導電層を形成した以外は、上述の試料107の導電層と同じ方法で試料126の透明電極を作製した。なお、ガスバリア層の形成は、上述の試料101と同様の方法で行なった。
〈試料127の透明電極の作製〉
 上述の試料122の透明電極の作製において、基材上にガスバリア層を形成し、このガスバリア層上に導電層を形成した以外は、上述の試料122の導電層と同じ方法で試料127の透明電極を作製した。なお、ガスバリア層の形成は、上述の試料101と同様の方法で行なった。
〈試料128の透明電極の作製〉
 上述の試料101の透明電極の作製において、ガスバリア層を形成せずに、基材上に直接導電層を形成した以外は、上述の試料101の導電層と同じ方法で試料128の透明電極を作製した。
〈評価〉
 特に断りの無い限り、以下の測定条件は23℃55%RHである。
[体積抵抗値・シート抵抗値]
 各透明電極の導電層表面に、三菱化学アナリテック社製の抵抗率計「ロレスタEP MCP-T360」を接触させてシート抵抗値(Ω/sq.)を測定し、これを各試料の透明電極の抵抗値(Ω/sq.)とした。
 また金属酸化物層の体積抵抗率は、金属酸化物単膜を200nmで作製し、抵抗率計「ロレスタEP MCP-T360」を接触させてシート抵抗を測定し、さらに接触式表面形状測定器(DECTAK)にて膜厚を測定し、シート抵抗値と膜厚とから、体積抵抗値(Ω・cm)を求めた。
[フレキシブル性(折り曲げ試験)]
 折り曲げ試験は、ガスバリア性フィルムを屈曲直径6mmφの曲率で連続して1000往復折り曲げ、光学顕微鏡で金属酸化物層又は導電性高分子層を観察し、割れの程度の差を4段階[(良)4>1(悪)]で評価した。
4:5cmsq.中に割れがない。
3:5cmsq.中に割れまたは傷が1か所。
2:5cmsq.中に割れまたは傷が2か所。
1:5cmsq.中に割れまたは傷が3か所以上。
[巻き取り後の傷の有無]
 直径20cmのロール芯と、裏面に粒子含有層を含む300mの樹脂基材を用意し、中間である150mの部分に5cmsq.で作製した試料101~128の透明電極を貼り付け、巻き取りを行った後、試料の表面を光学顕微鏡で観察し、傷の度合いを4段階[(良)4>1(悪)]で評価した。
4:5cmsq.中に傷がない。
3:5cmsq.中に割れまたは傷が1か所。
2:5cmsq.中に割れまたは傷が2か所。
1:5cmsq.中に割れまたは傷が3か所以上。
[X線回折(XRD)測定]
 全自動水平型多目的X線回折装置 SmartLab(リガク)を用いて、各々試料の透明電極の導電層の金属酸化物層の状態を測定し、結晶性の回折ピークの有無を測定した。なお、試料104は、導電層として導電性高分子層を作製したため、XRD測定を行なっていない。
 下記表1に、試料101~128の透明電極の各構成、及び、評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、金属酸化物層にITOを用いた試料101及び試料128は、XRD測定により結晶相が確認された。このため、試料101及び試料128の透明電極は、フレキシブル性が低い。また、試料101及び試料128の透明電極は、導電層がITOのみで形成されているため、抵抗値が高い。
 試料102及び試料103の透明電極は、導電層がアモルファス金属酸化物層のみで形成されている。このため、試料102及び試料103の透明電極は、XRD測定で結晶相が確認されていない。しかし、試料102及び試料103の透明電極は、導電層に金属細線パターンを有していないため、フレキシブル性が悪く、シート抵抗値も高い。
 試料104の透明電極は、導電層が金属細線パターンと導電性高分子とから形成されている。このため、試料104の透明電極は、抵抗値が低く、フレキシブル性も高い。しかし、試料104の透明電極は、導電層の表面に導電性高分子が露出しているため、透明電極を巻き取った後、導電層の表面に傷が発生し、導電層の損傷が発生している。
 試料105~112、及び、試料114~127の透明電極は、導電層が金属細線パターンとアモルファス金属酸化物層とから形成されているため、抵抗値が低く、フレキシブル性が高く、巻き取り後の傷も発生していない。
 上記の結果から、導電層として、金属細線パターンとアモルファス金属酸化物層とを組み合わせて用いることにより、屈曲の際の導電層の破損や剥離を抑制し、透明電極のフレキシブル性を向上させることができる。また、導電層の表面がアモルファス金属酸化物層であることにより、巻き取り後の傷の発生を抑制することができ、導電層の損傷を抑制することができる。
 また、試料105~110の透明電極では、アモルファス金属酸化物層を構成する材料が、IZO、IGO、IWZO、GZO、IGZO、及び、AlドープZnOに替えられた場合においても、結果に大きな差が発生していない。このことから、導電層に用いるアモルファス金属酸化物層には、導電性とフレキシブル性が確保でき、製造工程中に結晶相が発生しない材料であれば、種々の材料を適用できることが分かる。
 試料106の透明電極と、試料111~113の透明電極とを比較すると、アモルファス金属酸化物層の成膜時に、樹脂基材の温度が高くなると、フレキシブル性が低下している。これは、成膜の際、温度が高くなると結晶性の金属酸化物が形成されやすくなるためと考えられる。特に、アモルファス金属酸化物層の成膜の際の基板温度が90℃の試料113では、XRD測定により結晶相が確認された。この結果から、アモルファス金属酸化物層の成膜の際の樹脂基材の表面温度は、70℃以下とすることが好ましい。
 試料106の透明電極と、試料114~117の透明電極の結果からは、金属細線パターンの作製において、金属インク組成物のパターンの乾燥方法は、特に問わないことがわかる。
 しかし、試料118の透明電極のように、乾燥工程と焼成工程とが同時に行なわれていると、フレキシブル性が低くなる。これは、乾燥工程と焼成工程とを、それぞれ別の工程として行なわないことにより、金属細線パターンと樹脂基材との密着性が向上しにくく、屈曲の際に導電層の剥離等が発生しやすくなるためと考えられる。
 従って、金属細線パターンを作製する際には、乾燥工程と焼成工程とをそれぞれ別の工程として行なうことが好ましい。
 試料106の透明電極と、試料119~121の透明電極の結果から、金属細線パターンを構成する金属は、導電性や粒径等の必要な条件を備えれば、種類を問わないことがわかる。これは、銀以外の材料を用いた場合にも同様の結果が得られるものと考えられる。
 試料107、試料122~124、及び、試料127の透明電極の抵抗値の測定結果では、下地層を設けた試料122~124の透明電極の抵抗値が、他の試料に比べて僅かに低下している。このため、導電層の形成に好適な下地層、特に、金属細線パターンの形成に好適な下地層を設けることにより、金属細線パターンの状態が良好となり、導電層の抵抗が低くなると考えられる。
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。
 10・・・透明電極、11・・・樹脂基材、12・・・導電層、13・・・金属細線パターン、14・・・アモルファス金属酸化物層、15・・・下地層、16・・・粒子含有層、17・・・ガスバリア層、20・・・有機EL素子、21・・・発光ユニット、22・・・対向電極

Claims (14)

  1.  樹脂基材と、
     金属細線パターンと、
     前記金属細線パターン上に設けられたアモルファス金属酸化物層と、を有する
     透明電極。
  2.  前記樹脂基材と、前記金属細線パターンとの間に下地層を備える請求項1に記載の透明電極。
  3.  前記樹脂基材上にバリア層を備える請求項1に記載の透明電極。
  4.  前記アモルファス金属酸化物層が、IZO、IWZO、IGO、GZO、IGZO、及び、ZnOから選ばれる少なくとも1種以上を含む請求項1に記載の透明電極。
  5.  前記樹脂基材の前記金属細線パターンが形成されない側の面に、粒子含有層を備える請求項1に記載の透明電極。
  6.  透明電極と、有機機能層とを備え、
     前記透明電極が、
     樹脂基材と、
     金属細線パターンと、
     前記金属細線パターン上に設けられたアモルファス金属酸化物層と、を有する
     有機電子デバイス。
  7.  前記有機機能層として、有機発光材料を含む発光層を有し、
     前記有機機能層を介して前記透明電極に対向する位置に設けられた対向電極を有する、
     請求項6に記載の有機電子デバイス。
  8.  樹脂基材上に、金属細線パターンを形成する工程と、
     前記金属細線パターン上に、アモルファス金属酸化物層を形成する工程と、を有する
     透明電極の製造方法。
  9.  前記アモルファス金属酸化物層を形成する工程において、前記樹脂基材の表面温度が70℃以下で前記アモルファス金属酸化物層を形成する請求項8に記載の透明電極の製造方法。
  10.  前記金属細線パターンを形成する工程が、金属インク組成物を塗布して細線パターンを形成する工程と、前記細線パターンを乾燥する工程と、前記細線パターンを焼成する工程とからなる請求項8に記載の透明電極の製造方法。
  11.  前記細線パターンを乾燥する工程において、前記細線パターンの乾燥を、波長制御IRを用いて行なう請求項10に記載の透明電極の製造方法。
  12.  下地層を形成する工程を有する請求項8に記載の透明電極の製造方法。
  13.  粒子含有層を形成する工程を有する請求項8に記載の透明電極の製造方法。
  14.  透明電極を形成する工程と、有機機能層とを形成する工程とを、有し、
     前記透明電極を形成する工程は、樹脂基材上に、金属細線パターンを形成する工程と、前記金属細線パターン上に、アモルファス金属酸化物層を形成する工程と、を含み、
     前記有機機能層を形成する工程は、前記透明電極上に、有機機能層を形成する工程を含む
     有機電子デバイスの製造方法。
PCT/JP2016/076152 2015-09-29 2016-09-06 透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法 WO2017056873A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543052A JP6793654B2 (ja) 2015-09-29 2016-09-06 透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-190767 2015-09-29
JP2015190767 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017056873A1 true WO2017056873A1 (ja) 2017-04-06

Family

ID=58423407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076152 WO2017056873A1 (ja) 2015-09-29 2016-09-06 透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法

Country Status (2)

Country Link
JP (1) JP6793654B2 (ja)
WO (1) WO2017056873A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235227A (zh) * 2021-12-03 2022-03-25 明鑫(深圳)技术研究有限公司 一种柔性应力电极及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170431A (ja) * 2000-11-29 2002-06-14 Idemitsu Kosan Co Ltd 電極基板およびその製造方法
JP2004119216A (ja) * 2002-09-26 2004-04-15 Fuji Electric Holdings Co Ltd 有機el発光ディスプレイ
JP2010108851A (ja) * 2008-10-31 2010-05-13 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子の製造方法
CN103219475A (zh) * 2013-04-02 2013-07-24 华映视讯(吴江)有限公司 电致发光装置的制作方法及其电极基板的制作方法
WO2013150592A1 (ja) * 2012-04-02 2013-10-10 パイオニア株式会社 有機エレクトロルミネッセンスパネル及びその製造方法
WO2015050081A1 (ja) * 2013-10-01 2015-04-09 コニカミノルタ株式会社 導電性基板、その製造方法及び当該導電性基板が備えられている有機電子デバイス
JP2015099636A (ja) * 2013-11-18 2015-05-28 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905595B2 (ja) * 2010-02-05 2012-03-28 大日本印刷株式会社 有機薄膜太陽電池、有機薄膜太陽電池モジュールおよび有機薄膜太陽電池の製造方法
KR101504839B1 (ko) * 2012-11-30 2015-03-23 주식회사 엘지화학 전도성 기판 및 이의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170431A (ja) * 2000-11-29 2002-06-14 Idemitsu Kosan Co Ltd 電極基板およびその製造方法
JP2004119216A (ja) * 2002-09-26 2004-04-15 Fuji Electric Holdings Co Ltd 有機el発光ディスプレイ
JP2010108851A (ja) * 2008-10-31 2010-05-13 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子の製造方法
WO2013150592A1 (ja) * 2012-04-02 2013-10-10 パイオニア株式会社 有機エレクトロルミネッセンスパネル及びその製造方法
CN103219475A (zh) * 2013-04-02 2013-07-24 华映视讯(吴江)有限公司 电致发光装置的制作方法及其电极基板的制作方法
WO2015050081A1 (ja) * 2013-10-01 2015-04-09 コニカミノルタ株式会社 導電性基板、その製造方法及び当該導電性基板が備えられている有機電子デバイス
JP2015099636A (ja) * 2013-11-18 2015-05-28 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235227A (zh) * 2021-12-03 2022-03-25 明鑫(深圳)技术研究有限公司 一种柔性应力电极及其制备方法

Also Published As

Publication number Publication date
JPWO2017056873A1 (ja) 2018-07-12
JP6793654B2 (ja) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6783294B2 (ja) 透明電極及びこれを備えた有機電子デバイス
JP5895687B2 (ja) ガスバリア性フィルム
JP5857452B2 (ja) バリアーフィルムの製造方法
JP6233401B2 (ja) 有機発光素子の製造方法
WO2013002026A1 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法、および電子デバイス
WO2013077255A1 (ja) ガスバリアーフィルム及び電子機器
WO2018190010A1 (ja) 有機エレクトロルミネッセンス素子
WO2016043141A1 (ja) ガスバリア性フィルム
EP3185249A1 (en) Transparent electrode, method for producing transparent electrode and electronic device
JP5849790B2 (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
WO2017056873A1 (ja) 透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法
WO2016163215A1 (ja) 有機エレクトロルミネッセンス素子
JP2013226732A (ja) ガスバリアフィルムの製造方法
JP2013123893A (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
JP6927968B2 (ja) 透明導電部材、及び、有機エレクトロルミネッセンス素子
JP7093725B2 (ja) 有機エレクトロルミネッセンス素子
WO2017047346A1 (ja) 電子デバイス及び電子デバイスの封止方法
JP6802842B2 (ja) 透明電極の製造方法
JP2016171038A (ja) 電子デバイスの製造方法
JP2017107707A (ja) 透明電極、及び、有機電子デバイス
JP6376134B2 (ja) 有機エレクトロルミネッセンス素子
JP6102986B2 (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム、電子機器及び有機エレクトロルミネッセンスパネル
JP2016087951A (ja) ガスバリアーフィルム、ガスバリアーフィルムの製造方法及び電子デバイス
WO2016136843A1 (ja) ガスバリア性フィルムおよび該ガスバリア性フィルムを用いた電子デバイス
JP2013039706A (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851049

Country of ref document: EP

Kind code of ref document: A1