WO2013150592A1 - 有機エレクトロルミネッセンスパネル及びその製造方法 - Google Patents

有機エレクトロルミネッセンスパネル及びその製造方法 Download PDF

Info

Publication number
WO2013150592A1
WO2013150592A1 PCT/JP2012/058961 JP2012058961W WO2013150592A1 WO 2013150592 A1 WO2013150592 A1 WO 2013150592A1 JP 2012058961 W JP2012058961 W JP 2012058961W WO 2013150592 A1 WO2013150592 A1 WO 2013150592A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
light emitting
film
substrate
Prior art date
Application number
PCT/JP2012/058961
Other languages
English (en)
French (fr)
Inventor
田中 洋平
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/058961 priority Critical patent/WO2013150592A1/ja
Priority to JP2014508938A priority patent/JP5912174B2/ja
Priority to US14/383,045 priority patent/US20150048336A1/en
Priority to KR1020147025804A priority patent/KR20140146070A/ko
Publication of WO2013150592A1 publication Critical patent/WO2013150592A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3

Definitions

  • the present invention relates to an organic EL panel including an organic electroluminescence (hereinafter referred to as organic EL) material in a light emitting layer and a method for manufacturing the same.
  • organic EL organic electroluminescence
  • Organic EL elements are used in display devices as light emitters in which a plurality of functional layers such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are sandwiched between an anode and a cathode.
  • An organic EL panel is a surface light emitter in which an organic EL element is enlarged.
  • insulating films such as partition walls and banks are provided to partition each element (see Patent Documents 1 to 3).
  • the anode of the organic EL element is often patterned on the substrate by an etching method such as photolithography, and in this case, the edge shape of the anode becomes steep and unstable. Therefore, an insulating film covering the anode edge is necessary for preventing a short circuit between the anode and the cathode and suppressing cathode disconnection.
  • an insulating film covering the anode edge is necessary for preventing a short circuit between the anode and the cathode and suppressing cathode disconnection.
  • the number of steps for forming the insulating film increases, and accordingly, there is a problem that the cost of the organic EL panel cannot be reduced due to an increase in the yield deterioration factor.
  • the auxiliary electrode is often patterned by an etching method such as photolithography. Also in that case, it has been proposed to fill the gaps between the parallel conductive bus lines having steep edges with an electrical insulating material for planarization (see Patent Document 1).
  • an electrical insulating film is provided between the conductive bus lines of the organic EL element, the light generated in the light emitting part is absorbed by the insulating film, so that the area of the region that guides the generated light to the outside is limited. Power is wasted. That is, since the portion partitioned by the insulating film becomes a region that emits light as it is, the aperture ratio decreases, and as a result, there is a problem that power consumption must be increased to obtain a desired light amount. .
  • the present invention has been made in view of such problems, and the problem to be solved by the present invention is to provide an organic EL panel that can be manufactured at a low cost and can increase the aperture ratio, and a method for manufacturing the same. As an example.
  • the organic EL panel of the present invention includes a substrate, a transparent conductive film laminated on the substrate, a functional laminate including at least one light emitting layer laminated on the transparent conductive film, and the functional laminate.
  • An organic EL panel including a counter electrode film stacked on a body, and the light emitting layer sandwiched between the transparent conductive film and the counter electrode film and overlapping the transparent conductive film and the counter electrode film serves as a light emitting portion And having at least one auxiliary electrode formed on the substrate under the light emitting portion and directly covered with the transparent conductive film, wherein the transparent conductive film has a film thickness exceeding the film thickness of the auxiliary electrode.
  • the functional laminate is characterized in that the side surface of the transparent conductive film is covered.
  • the manufacturing method of the present invention for manufacturing the organic EL panel includes a substrate, a transparent conductive film laminated on the substrate, and at least one light emitting layer laminated on the transparent conductive film.
  • the light emitting layer includes a laminate and a counter electrode film laminated on the functional laminate, and is sandwiched between the transparent conductive film and the counter electrode film and overlaps the transparent conductive film and the counter electrode film.
  • a method for manufacturing an organic EL panel to be a light emitting unit comprising: forming at least one auxiliary electrode on a part of a main surface of a substrate; and forming a transparent conductive film on the substrate and the auxiliary electrode And forming a functional laminate that covers the transparent conductive film, and in the step of forming the transparent conductive film, the film thickness of the transparent conductive film is larger than the film thickness of the auxiliary electrode. Thick and under the light emitting part The such that the auxiliary electrode transparent conductive film covers completely the wet coating method or by a sputtering method using a mask, and forming the transparent conductive film.
  • the present invention there is at least one auxiliary electrode formed on the substrate in a part of the light emitting part and directly covered with the transparent conductive film, but since there is no insulating film, the aperture ratio of the organic EL panel Can be improved over conventional devices. Further, since the generated light can be emitted more efficiently, the power consumption can be reduced as compared with the conventional organic EL panel.
  • FIG. 2 is a partial cross-sectional view taken along line AA in FIG. 1. It is sectional drawing which shows the board
  • FIG. 1 is a perspective partially cutaway plan view of a portion of the organic EL panel of the embodiment as viewed from the upper surface on the cathode side
  • FIG. 2 is a partial cross-sectional view showing a cross section of the organic EL panel taken along line AA in FIG. is there.
  • the organic EL panel includes a transparent anode 2 (a so-called transparent conductive film) formed on a flat transparent substrate 1 made of glass or resin on the light extraction side, And a cathode 9 (so-called counter electrode film) laminated thereon.
  • a transparent anode 2 a so-called transparent conductive film
  • a cathode 9 a cathode 9 laminated thereon.
  • the functional layer of the functional laminate FLB capable of emitting white light for example, hole injection layer 3 / hole transport layer 4 / red / green mixed light emitting layer 5 / blue light emitting layer 6 / electron transport layer 7 / electron injection layer 8 Lamination is mentioned.
  • a transparent anode 2 and a cathode 9 extending in the XY direction on the panel plane are formed on the substrate 1 so as to sandwich the functional laminate FLB.
  • the portion of the functional laminate FLB sandwiched between and overlapping the anode 2 of the transparent conductive film such as ITO and the cathode 9 of the counter electrode film becomes a light emitting portion, and light is extracted from the substrate 1 side.
  • a plurality of longitudinal auxiliary electrodes BL extend in the X direction and are formed in parallel stripes. That is, the auxiliary electrode BL on the substrate 1 is directly covered with the anode 2 and is electrically connected.
  • the auxiliary electrode BL is formed to supply power to the anode 2.
  • a plurality of auxiliary electrodes BL exposed from the bottom of the anode 2 to the outside of the light emitting portion and the connection wiring between the end portions of the cathode 9, that is, on the auxiliary electrodes BL other than under the light emitting portion (not shown) ) May be provided.
  • auxiliary electrodes made of a metal material having a low resistivity are juxtaposed in stripes under the transparent electrode.
  • the resistance of the auxiliary electrode BL and the transparent anode 2 is reduced as a whole.
  • auxiliary electrodes BL Under the transparent anode 2 and increasing the film thickness of the transparent anode 2 to the order of 1 ⁇ m exceeding 1 ⁇ m, in the organic EL panel of the embodiment, the resistance effect and the coverage effect of the auxiliary electrode BL are reduced. Is increased to achieve smoothing of the anode itself.
  • Such a smooth main surface by increasing the thickness of the anode contributes to smoothing of the functional layer of the functional laminate FLB to be formed in a later process and to reducing film thickness unevenness.
  • thickening the anode can be expected to reduce interference on the light extraction side.
  • the degree of freedom of the film thickness width that can be made a non-integer multiple of 1/4 of the peak wavelength of each extracted emission color can be expanded.
  • the anode 2 has a film thickness t2 that exceeds the film thickness t1 of the auxiliary electrode BL.
  • the film thickness of the transparent anode 2 is preferably 1 ⁇ m to 5 ⁇ m in order to maintain the transmittance of the transparent anode 2 and ensure panel characteristics.
  • the thickness of the anode 2 gradually decreases toward the edge 2B (most edge) of the anode 2 on the smooth main surface 2A and the main surface of the substrate 1 at the interface with the functional laminate FLB.
  • the film is formed so as to have a tapered side surface 2C.
  • patterning of the anode is usually performed by a photolithography process, and the edge of the ITO anode manufactured by the above process is unstable, and thus needs to be covered with an insulating film.
  • This insulating film process is one of the factors that increase the panel cost and decrease the yield.
  • the anode is preferably patterned by a wet coating method such as screen printing, plateless printing or plate printing, or a sputtering method using a non-contact or contact mask.
  • the functional layer of the functional laminate FLB is preferably formed by coating.
  • the functional laminate FLB is formed on the tapered side surface 2C of the anode 2, the tapered side surface is also formed on the functional laminate FLB, and disconnection of the cathode formed in a later process can be prevented. Therefore, with the above configuration, an organic EL panel suitable for illumination or the like can be manufactured without requiring an insulating film.
  • the functional layer of the functional laminate FLB is formed by coating in order to improve the coverage of the anode 2 and the edge 2B.
  • the first layer (the hole injection layer 3 or the hole transport layer 4) of the functional laminate FLB is preferably applied to be thicker than the auxiliary electrode BL.
  • the total film thickness of the laminated film from the anode 2 to the light emitting layer 5 of the functional laminated body FLB is preferably at least 100 nm in order to ensure embedding with respect to foreign matter on the anode.
  • An example of the organic EL panel of the present embodiment is, as shown in FIG. 2, an anode 2 / hole injection layer 3 / hole transport layer 4 / red-green, which are sequentially laminated on a transparent substrate 1 such as glass.
  • the mixed light-emitting layer 5 / blue light-emitting layer 6 / electron transport layer 7 / electron injection layer 8 / cathode 9 / are configured.
  • the hole transport layer of anode 2 / hole injection layer 3 / red / green mixed light emitting layer 5 / blue light emitting layer 6 / electron transport layer 7 / electron transport layer 8 / cathode 9 / 4 is omitted, and although not shown, hole injection layer of anode 2 / hole transport layer 4 / red / green mixed light emitting layer 5 / blue light emitting layer 6 / electron transport layer 7 / electron injection layer 8 / cathode 9 / 3 is omitted, and although not shown, anode 2 / hole transport layer 4 / red / green mixed light emitting layer 5 / blue light emitting layer 6 / electron injection layer 8 / cathode 9 / hole injection layer 3 and electron transport layer A configuration in which 7 is omitted is also included in the present invention.
  • the present invention also includes a configuration in which a diffusion prevention layer is provided between the red / green mixed light emitting layer 5 and the blue light emitting layer 6 in any of
  • a method for forming a functional layer of an organic EL panel there are dry coating methods such as a sputtering method and a vacuum deposition method, and wet coating methods such as a screen printing, a spray method, an ink jet method, a spin coater method, a gravure printing, and a roll coater method.
  • dry coating methods such as a sputtering method and a vacuum deposition method
  • wet coating methods such as a screen printing, a spray method, an ink jet method, a spin coater method, a gravure printing, and a roll coater method.
  • the hole injection layer, the hole transport layer, and the light emitting layer are uniformly formed as a solid film by a wet coating method
  • the electron transport layer and the electron injection layer are uniformly formed as a solid film by a dry coating method, respectively. You may form into a film sequentially.
  • all the functional layers may be uniformly and sequentially formed as a solid film by a wet coating method.
  • substrate As the substrate 1, a quartz or glass plate, a metal plate or a metal foil, a resin substrate to be bent, a plastic film, a sheet, or the like is used. In particular, a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL panel may be deteriorated by the outside air that has passed through the substrate, which is not preferable. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • the cheap glass substrate which is not an expensive polishing glass substrate for displays can also be used for an organic EL panel substrate.
  • the anode 2 for supplying holes to the functional layers up to the light emitting layer is usually composed of a composite oxide (so-called ITO) of indium oxide and tin oxide.
  • the anode 2 may be ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 —ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2, etc.
  • the transparent conductive film of the anode 2 it is preferable to select a material having a transmittance of at least 10% at the emission wavelength obtained from the organic EL material.
  • the anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the surface of the anode is treated with ultraviolet (UV) / ozone, oxygen plasma, or argon plasma for the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve hole injection. Is preferred.
  • the material of the cathode 9 for supplying electrons to the functional layers up to the light emitting layer is preferably a metal having a low work function in order to perform electron injection efficiently, for example, tin, magnesium, indium, calcium, aluminum, silver, etc. New metals or their alloys are used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • a metal layer having a high work function and stable to the atmosphere on the cathode because the stability of the organic EL panel is increased.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the hole injection layer 3 is preferably a layer containing an electron accepting compound.
  • the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer.
  • the solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (so-called PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, and phenetole.
  • Aromatic ethers such as 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, and 2,4-dimethylanisole.
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3- isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene and the like. Can be mentioned.
  • amide solvent examples include N, N-dimethylformamide and N, N-dimethylacetamide.
  • dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • a polymer or the like may be a monomer or the like. Although it may be a low molecular compound, it is preferably a low molecular compound.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer.
  • hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives represented by phthalocyanine copper (so-called CuPc), porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, tertiary amines with fluorene groups.
  • Examples include linked compounds, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon.
  • the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. There may be.
  • a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene, which is a polythiophene derivative, in high molecular weight polystyrene sulfonic acid is also preferable.
  • the end of the polymer of PEDOT / PSS may be capped with methacrylate or the like.
  • the hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more.
  • the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds.
  • an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
  • the composition for forming a hole injection layer preferably contains an electron-accepting compound, and may further contain other components in addition to the hole-transporting compound and the electron-accepting compound.
  • other components include various organic EL materials, electron transport compounds, binder resins, coatability improvers, and the like.
  • only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and ratios.
  • the material for forming the hole injection layer is usually mixed with an appropriate solvent (solvent for the hole injection layer) to form a composition for film formation (hole injection).
  • an appropriate solvent solvent for the hole injection layer
  • a composition for forming a layer is prepared, and this composition for forming a hole injection layer is coated on the anode by an appropriate technique to form a film and dried to form a hole injection layer.
  • the film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the material of the hole transport layer 4 may be any material that has been conventionally used as a constituent material of the hole transport layer.
  • the hole transport layer is exemplified as the hole transport compound used in the above-described hole injection layer. Things.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
  • a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, and then dried after wet film formation.
  • the hole transporting layer forming composition contains a solvent.
  • the solvent used is the same as that used for the composition for forming the hole injection layer.
  • the film forming conditions, the drying conditions, and the like are the same as in the case of forming the hole injection layer.
  • the hole transport layer may contain various organic EL materials, electron transport compounds, binder resins, coatability improvers, and the like in addition to the hole transport compound.
  • the film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the film thickness of the hole injection layer 3 and / or the hole transport layer 4 from the anode 2 to the light emitting layer 5 Is preferably at least 100 nm.
  • the light-emitting layers of the red-green mixed light-emitting layer and the blue light-emitting layer contain an organic EL material, and preferably a compound having a hole transport property (hole transport compound) or a compound having an electron transport property (electron transport) A functional compound).
  • An organic EL material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be appropriately used as a host material.
  • the organic EL material There is no particular limitation on the organic EL material, and a substance that emits light at a desired emission wavelength and has good emission efficiency may be used.
  • the organic EL material may be a fluorescent material or a phosphorescent material, but it is preferable to use a phosphorescent material from the viewpoint of internal quantum efficiency.
  • the light emitting layer may have a single layer structure or a multilayer structure made of a plurality of materials as desired.
  • a fluorescent material may be used for the blue light emitting layer
  • a phosphorescent material may be used for the green and red light emitting layers.
  • a diffusion preventing layer can be provided between the light emitting layers.
  • fluorescent materials blue fluorescent dyes
  • examples of fluorescent materials that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • fluorescent material green fluorescent dye
  • examples of the fluorescent material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of fluorescent materials that give yellow light emission include rubrene and perimidone derivatives.
  • red fluorescent dyes examples include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, benzoates. Examples thereof include thioxanthene derivatives and azabenzothioxanthene.
  • the phosphorescent material is selected from, for example, the long-period periodic table (hereinafter referred to as the long-period periodic table when referring to “periodic table” unless otherwise specified).
  • An organometallic complex containing a metal can be given.
  • Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a pyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • phosphorescent materials include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenyl).
  • Pyridine) platinum tris (2-phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethyl palladium porphyrin, octaphenyl palladium porphyrin, and the like.
  • the molecular weight of the compound used as the organic EL material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably. Is in the range of 400 or more. If the molecular weight of the organic EL material is too small, the heat resistance will be significantly reduced, gas generation will be caused, the film quality will be deteriorated when the film is formed, or the morphology of the functional layer will be changed due to migration, etc. There is a case. On the other hand, if the molecular weight of the organic EL material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve the organic EL material in a solvent when formed by a wet coating method.
  • the proportion of the organic EL material in the light emitting layer is usually 0.05% by weight or more and usually 35% by weight or less. If the amount of the organic EL material is too small, uneven light emission may occur, and if the amount is too large, the light emission efficiency may be reduced. In addition, when using together 2 or more types of organic EL material, it is made for the total content of these to be contained in the said range.
  • the component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material.
  • the light emitting layer may contain a hole transporting compound as a constituent material.
  • examples of the low molecular weight hole transporting compound include various compounds exemplified as the hole transporting compound in the hole injection layer 3 described above, for example, 2 'or more condensed aromatic rings containing 2 or more tertiary amines represented by 4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (so-called ⁇ -NPD) are nitrogen From aromatic diamines substituted with atoms, aromatic amine compounds having a starburst structure such as 4,4 ′, 4 ′′ -tris (1-naphthylphenylamino) triphenylamine, and tetramers of triphenylamine And spiro compounds such as 2,2 ′, 7,7′-tetrakis- (diphenylamino) -9,9′-spirobifluorene.
  • a hole transportable compound in a light emitting layer, only 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the proportion of the hole transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
  • the light emitting layer may contain an electron transporting compound as a constituent material.
  • examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (so-called BND), 2 , 5-bis (6'- (2 ′, 2 ′′ -bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (so-called PyPySPyPy), bathophenanthroline (so-called BPhen), 2,9-dimethyl-4,7-diphenyl 1,10-phenanthroline (so-called BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (so-called tBu-PBD), 4,4′-bis (9H-carbazol-9-yl) biphenyl (so-called BND), 2,5-
  • the proportion of the electron transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
  • the light emitting layer is prepared by dissolving the above light emitting layer material in an appropriate solvent to prepare a composition for forming a light emitting layer. Is formed. Therefore, in the case of forming by a wet coating method, the light emitting layer coating solution is prepared by dispersing or dissolving at least two kinds of solid contents (host material and guest material) to be the light emitting layer as a solute in a solvent.
  • the solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
  • the ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less.
  • the film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
  • the electron transport layer 7 is provided for the purpose of further improving the light emission efficiency of the organic EL panel, and efficiently transports electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. Formed from a compound capable of
  • the electron transporting compound used for the electron transport layer usually, the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons having high electron mobility can be efficiently transported.
  • Use possible compounds include metal complexes of Alq3 and 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, and 5-hydroxyflavones.
  • Metal complex benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene, quinoxaline compound, phenanthroline derivative, 2-t-butyl-9,10-N, N′-dicyanoanthraquinonediimine, n-type hydrogenated amorphous Quality silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like.
  • the formation method of the electron transport layer is not limited, and can be formed by a wet coating method or a dry coating method.
  • the electron transport layer is prepared by dissolving the electron transport layer material in an appropriate solvent to prepare a composition for forming an electron transport layer. It is formed by removing.
  • the solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
  • the film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode into the light emitting layer.
  • the material for forming the electron injection layer is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and their compounds (CsF, Cs 2 CO 3 , Li 2 O, LiF) and the like. .1 nm or more and 5 nm or less are preferable.
  • an organic electron transport compound represented by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium.
  • an alkali metal such as sodium, potassium, cesium, lithium or rubidium.
  • the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
  • 1 type may be used for the material of an electron injection layer, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the formation method of the electron injection layer is not limited, and can be formed by a wet coating method or a dry coating method.
  • the electron injection layer is prepared by dissolving the electron injection layer material in a suitable solvent to prepare a composition for forming an electron injection layer. It is formed by removing.
  • the solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
  • FIG. 3 to 10 are cross-sectional views showing a substrate and a structure formed thereon in the manufacturing process of the organic EL panel manufacturing method to which the present invention is applied.
  • a manufacturing process includes the following (a) auxiliary electrode forming step, (b) anode forming step, (c) hole transport layer forming step, (d) coating light emitting layer forming step, and (e) vapor deposition light emitting layer forming step. This will be explained in order.
  • auxiliary electrode BL of AlNd (aluminum-neodymium alloy) is formed on the main surface of the substrate 1 by sputtering using a non-contact or contact mask (not shown) arranged away from the main surface.
  • the splash material of the AlNd target is attached to a predetermined portion of the substrate through the pattern opening of the mask, and an auxiliary electrode having a predetermined pattern with a tapered edge is obtained.
  • auxiliary electrode BL On the XY surface of the substrate 1, a plurality of strip-like auxiliary electrodes BL extending in parallel with the X direction are formed at a constant pitch.
  • the auxiliary electrode BL is a power supply line to the anode 2 formed in the next step, and is formed so that the width thereof is smaller than the juxtaposed pitch.
  • the auxiliary electrodes BL are formed in the same cross-sectional shape and are arranged in parallel to each other, and the surface of the substrate 1 is exposed between the auxiliary electrodes BL.
  • each auxiliary electrode BL has a thickness of 150 nm, a width of 50 ⁇ m, and a distance between adjacent auxiliary electrodes BL is 300 ⁇ m.
  • FIG. 3 shows a cross section along the juxtaposition direction Y orthogonal to the extension direction X of the auxiliary electrode BL, and this also applies to the following drawings.
  • IZO In 2 O 3 ⁇ is formed on the main surface of the substrate 1 and the auxiliary electrode BL by sputtering using a mask arranged away from the main surface of the substrate 1.
  • a transparent anode 2 of ZnO is formed.
  • a spray material of an IZO target is attached to the substrate 1 including the auxiliary electrode BL through a pattern opening of the mask, and an IZO film having a predetermined pattern with a tapered edge is obtained as the anode 2 (transparent conductive film). Since the splash material wraps around between the mask opening and the mask substrate, a tapered side surface 2C in which the film thickness gradually decreases from the smooth main surface 2A of the main surface of the transparent anode 2 toward the edge portion 2B is formed.
  • the anode 2 is formed so as to cover the substrate region (concave portion) between the auxiliary electrode BL and the adjacent auxiliary electrode, and directly contacts the substrate 1 in the region between the auxiliary electrodes BL.
  • the thickness of the anode 2 is 1000 nm, for example.
  • UV / O 3 ultraviolet / ozone
  • an aqueous dispersion having a fixed concentration of 1 wt% using PEDOT (poly 3,4-ethylenedioxythiophene) as a host and PSS (polystyrene sulfonic acid) as a dopant is prepared.
  • the droplet Lq for the hole injection layer material is applied onto the entire surface of the anode 2 by the inkjet head 12 using an inkjet apparatus.
  • the inkjet head 12 is raster-scanned in the XY plane on the anode 2, the edges of the applied droplet Lq film are connected to each other so as to cover the edge of the anode 2 and the nearby substrate. Is deposited.
  • the droplet film is vacuum-dried at a gas pressure of 0.1 to 50 Pa for 2 minutes using a vacuum drying apparatus, and baked by heat treatment at 230 ° C. for 1 hour.
  • the solvent of the droplets evaporates to obtain a cured hole injection layer 3 that covers the edge of the anode 2. At least a part of the end portion of the hole injection layer 3 of the functional laminate reaches the substrate 1 without being in contact with the auxiliary electrode BL.
  • the hole transport layer 4 is formed by using an organic solvent droplet having a predetermined concentration of 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane by an inkjet method. As shown in FIG. 2, the whole surface of the hole injection layer 3 and a substrate on the vicinity thereof are applied and dried. Each of the hole injection layer 3 and the hole transport layer 4 has a thickness of 50 nm, for example.
  • Balq Bis- (2-methyl-8-quinolinolato) (p-phenylphenolato) aluminum
  • Hex-Ir (phq) 3 An organic solution having a fixed concentration of 6 wt% using Tris [2- (4-n-hexylphenyl) quinoline)] iridium (III) is prepared in advance.
  • the red / green mixed light emitting layer material droplet Lq is applied onto the entire surface of the hole transport layer 4 by the inkjet head 12 in the same manner as the inkjet method described above.
  • the droplet film is vacuum-dried at a gas pressure of 0.1 to 50 Pa for 2 minutes using a vacuum drying apparatus, and baked by heat treatment at 130 ° C. for 10 minutes.
  • a cured red-green mixed light emitting layer 5 covering the hole transport layer 4 is obtained.
  • the thickness of the red / green mixed light emitting layer 5 is, for example, 40 nm.
  • the dopant 4,4′-bis (2,2′-diphenylvinyl) biphenyl (so-called DPVBi) is vacuum-deposited together, whereby the blue light emitting layer 6 is formed with a thickness of, for example, 15 nm.
  • Alq3 is vacuum-deposited on the blue light emitting layer 6 by a vacuum deposition method, whereby an Alq3 electron transport layer 7 is formed to a thickness of, for example, 30 nm.
  • LiF lithium fluoride
  • the electron injection layer 8 is formed with a thickness of, for example, 1 nm.
  • the cathode 9 is formed with a thickness of, for example, 80 nm.
  • the functional laminate FLB is formed from the hole injection layer 3 to the electron injection layer 8 here.
  • the cathode 9 is formed in a strip shape so as to intersect the transparent anode 2 (auxiliary electrode BL) along the juxtaposition direction Y orthogonal to the extending direction X of the auxiliary electrode BL. At least a part of the end portion of the cathode 9 of the counter electrode film reaches the substrate 1 without being in contact with the auxiliary electrode BL and the transparent anode 2.
  • a portion where the anode 2 and the cathode 9 overlap with each other to sandwich the functional laminate FLB defines a light emitting area of the organic EL panel. Thereafter, a sealed organic EL panel can be obtained through a sealing step.
  • auxiliary electrode forming step (b) anode forming step, (c) hole transport layer forming step, (d) coating light emitting layer forming step, and (e) vapor deposition light emitting layer forming.
  • An organic EL panel is manufactured by the process.
  • the blue light-emitting layer 6 is formed by vacuum deposition, but all the light-emitting layers are formed by a combination of an ink jet coating process and a drying process, and coating and drying are performed for each functional layer that performs each function.
  • a multilayer functional laminate FLB (hole injection layer 3 / hole transport layer 4 / red / green mixed light emitting layer 5 / blue light emitting layer 6 / electron transport layer 7) is formed. May be.
  • a metal material such as AlNd is used as the auxiliary electrode BL, the anode 12 of the transparent conductive film is laminated on the auxiliary electrode BL, and the light emitted from the light emitting layer is emitted from the auxiliary electrode BL. Since it is diffused, the aperture ratio of the organic EL panel can be improved.
  • an insulating bank material is used, and since the bank material generally uses a material that absorbs in the visible region such as a polyimide material, the color of the cathode is a metallic color. May damage the appearance. Moreover, since there is an absorbing material in the visible region, the emitted light may be lost in the bank.
  • a metal such as AlNd is used as the auxiliary electrode BL, the appearance is the same as the Al metal color of the cathode 9 and the appearance is not impaired.
  • the auxiliary electrode BL Even if the emitted light is diffused by the auxiliary electrode BL, it is emitted from the organic EL panel without being lost, so that a higher aperture ratio can be obtained than before. Furthermore, the electrical resistivity of the material of the auxiliary electrode BL is smaller than that of the material of the anode 2, and the anode 2 is in direct contact with the auxiliary electrode BL, so that the organic EL panel can be supplied with power efficiently. Furthermore, as described above, light emitted for increasing the aperture ratio can be emitted more efficiently, so that power consumption can be reduced compared to conventional devices in order to obtain a desired amount of light.
  • two layers of the hole injection layer 3 and the hole transport layer 4 are formed on the anode 2 (transparent conductive film), but it is not limited to the formation of two layers, Only one layer of the hole injection layer or the hole transport layer, or three or more layers obtained by adding an electron blocking layer (not shown) to the hole injection layer and the hole transport layer may be formed by the light emitting layer.
  • the materials for the cathode 9 are not limited to those described above.
  • metals such as Al, Ag, Mo, Ti, Pt, Au, or alloys thereof can be used.
  • auxiliary electrodes are not necessarily limited to the same cross-sectional shape, and need not have the same length in the line extending direction.
  • the anode 2 is patterned by a sputtering method using a mask.
  • the anode 2 can be formed by a wet coating method such as a screen printing method, an ink jet method, a spray coating method, a roll coating method, and a plate printing method in addition to the sputtering method.
  • an IZO paste is applied onto the auxiliary electrode BL by ink jet printing to form an IZO paste coating film.
  • a droplet Lq of IZO paste is applied in a predetermined pattern onto the substrate 1 and the auxiliary electrode BL by the inkjet head 12. Then, the substrate 1 is dried (for example, 150 to 200 ° C.) and then fired (for example, 400 to 600 ° C.) to form the anode 2 having a predetermined pattern covering the substrate 1 and the auxiliary electrode BL as shown in FIG.
  • the anode 2 can be formed without a mask or an etching process, the film formation of the anode 2 is simplified.
  • an IZO anode 2 transparent conductive film having a smooth main surface 2A and a tapered side surface 2C whose thickness gradually decreases toward the edge 2B can be easily obtained by sagging by printing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機ELパネルは、基板上に透明導電性膜、少なくとも1層の発光層を含む機能積層体及び対向電極膜が順に積層されてなり、透明導電性膜と対向電極膜に重なる発光層が発光部となる。 有機ELパネルは、発光部下の基板上に形成され且つ透明導電性膜に直接覆われた少なくとも1つの補助電極を有する。透明導電性膜は補助電極の膜厚を超える膜厚を有し且つ機能積層体は透明導電性膜の側面を被覆している。

Description

有機エレクトロルミネッセンスパネル及びその製造方法
 本発明は、有機エレクトロルミネッセンス(以下、有機ELという)材料を発光層に含む有機ELパネル及びその製造方法に関する。
 有機EL素子は陽極と陰極の間に正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層などの複数の機能層を挟持させた発光体として表示装置に利用されている。有機ELパネルは有機EL素子を大面積化した面発光体である。
 基板上にマトリックス状に配置された複数の有機EL素子からなる表示装置には、各素子を区画するために隔壁やバンクなどの絶縁膜が設けられている(特許文献1~3参照)。
特開2000-195680号公報 特開2007-149578号公報 特開2011-216317号公報
 かかる従来の表示装置の製造工程において有機EL素子の陽極がフォトリソグラフィなどのエッチング法により基板上にパタニングされている場合が多く、その場合は陽極のエッジ形状が急峻となるなど不安定になる。それ故に、陽極エッジを覆う絶縁膜は陽極及び陰極間の短絡防止や陰極断線の抑制のために必要である。しかしながら、絶縁膜があると絶縁膜形成工程が増える故に、その分、歩留まり悪化要因も増えることにより有機ELパネルのコストを低減できないという問題があった。
 また、有機EL素子の透明陽極の比抵抗が大きい故に、電圧降下を抑制するため透明陽極に補助電極を設ける場合でも、補助電極がフォトリソグラフィなどのエッチング法によりパタニングされている場合が多い。その場合も急峻なエッジを有する並行する導電性バスラインの間の隙間に電気絶縁物質を充填して平坦化することが提案されている(特許文献1参照)。しかしながら、有機EL素子の導電性バスライン間に電気絶縁膜を設けた場合、発光部で生成された光が当該絶縁膜で吸収されるので、生成された光を外部に導く領域の面積が制限され、無駄に電力が消費される。すなわち、絶縁膜で区画された部分がそのまま光を外部に放出する領域となるので、開口率が低下し、結果として所望の光量を得るために消費電力を増加しなければならないという問題があった。
 そこで、本発明はかかる問題点に鑑みて為されたもので、本発明が解決しようとする課題は、低コストで製造でき開口率を増加できる有機ELパネル及びその製造方法を提供することが課題の一例としてあげられる。
 本発明の有機ELパネルは、基板と、前記基板上に積層された透明導電性膜と、前記透明導電性膜上に積層された少なくとも1層の発光層を含む機能積層体と、前記機能積層体上に積層された対向電極膜とを含み、前記透明導電性膜と前記対向電極膜に挟まれ且つ前記透明導電性膜と前記対向電極膜に重なる前記発光層が発光部となる有機ELパネルであって、前記発光部下の前記基板上に形成され且つ前記透明導電性膜に直接覆われた少なくとも1つの補助電極を有し、前記透明導電性膜は前記補助電極の膜厚を超える膜厚を有し、
 前記機能積層体は前記透明導電性膜の側面を被覆していることを特徴とする。
 上記の有機ELパネルを製造する本発明の製造方法は、基板と、前記基板上に積層された透明導電性膜と、前記透明導電性膜上に積層された少なくとも1層の発光層を含む機能積層体と、前記機能積層体上に積層された対向電極膜とを含み、前記透明導電性膜と前記対向電極膜に挟まれ且つ前記透明導電性膜と前記対向電極膜に重なる前記発光層が発光部となる有機ELパネルの製造方法であって、基板の主面の一部上に少なくとも1つの補助電極を形成するステップと、前記基板及び前記補助電極上に透明導電性膜を形成するステップと、前記透明導電性膜を被覆する機能積層体を形成するステップと、を含み、前記透明導電性膜を形成するステップにおいて、前記透明導電性膜の膜厚が前記補助電極の膜厚よりも厚く且つ前記発光部下の前記補助電極を前記透明導電性膜が完全に覆うように、湿式塗布法により、又は、マスクを用いたスパッタリング法により、前記透明導電性膜を形成することを特徴とする。
 本発明によれば、前記発光部の一部分における前記基板上に形成され且つ前記透明導電性膜に直接覆われた少なくとも1つの補助電極を有するが、絶縁膜がないので、有機ELパネルの開口率を従来の素子より向上させることができる。また、生成された光を効率より放出させることができるので、従来の有機ELパネルに比べて消費電力を低減させることができる。
本発明の実施形態の有機ELパネルの構造を示す上面透視部分切欠平面図である。 図1のA-A線に沿って切り取った部分的断面図である。 本発明の実施形態の有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。 本発明の実施形態の有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。 本発明の実施形態の有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。 本発明の実施形態の有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。 本発明の実施形態の有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。 本発明の実施形態の有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。 本発明の実施形態の有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。 本発明の実施形態の有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。 本発明の他の実施形態の有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。 本発明の他の実施形態の有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。
 以下、本発明の実施形態の有機ELパネルについて、図面を参照しつつ説明する。
 図1は、実施形態の有機ELパネルの一部分を陰極側上面から眺めた透視部分切欠平面図であり、図2は図1のA-A線における有機ELパネルの断面を示す部分的断面図である。
 有機ELパネルは、図2に示すように、光取り出し側のガラスや樹脂などからなる平板状の透明な基板1上に形成された透明な陽極2(所謂、透明導電性膜)と、この上に積層された機能積層体FLBと、この上に積層された陰極9(所謂、対向電極膜)とから構成される。白色発光可能な機能積層体FLBの機能層としては、例えば、正孔注入層3/正孔輸送層4/赤緑混合発光層5/青発光層6/電子輸送層7/電子注入層8の積層が挙げられる。
 図1及び図2に示すように、基板1上には、パネル平面におけるXY方向に拡がる透明な陽極2と陰極9が機能積層体FLBを挟むように形成されている。ITOなどの透明導電性膜の陽極2と対向電極膜の陰極9に挟まれ且つこれらに重なる機能積層体FLBの部分が発光部となり、基板1側から光が取り出される。
 透明な陽極2下で基板1上には、複数の長手の補助電極BLがX方向に伸長して平行にストライプ状に形成されている。すなわち、基板1上の補助電極BLは、陽極2に直接覆われ電気的に接続される形態で形成されている。補助電極BLは、陽極2に電源電力を供給する為に形成されている。陽極2の下から発光部外部へ露出する複数の補助電極BL及びその連結配線上には陰極9の端部の間に、すなわち、発光部下以外の補助電極BL上に短絡防止膜(図示せず)を設けても良い。面光源用の有機ELパネルにおいては、透明電極の抵抗率が高く広い透明電極面積を必要とする場合でも、抵抗率の低い金属材料からなる補助電極を透明電極下にストライプ状に並置することにより、補助電極BL及び透明陽極2を全体として低抵抗化を達成している。
 複数の補助電極BLを透明陽極2の下部に設けて透明陽極2の膜厚を1μmを超えるμmオーダと厚くすることにより、実施形態の有機ELパネルでは、低抵抗化と共に補助電極BLのカバレッジ効果を大きくし陽極自体の平滑化を達成している。かかる陽極の厚膜化による平滑主面は、後工程で成膜される機能積層体FLBの機能層の平滑化、膜厚ムラの軽減に貢献する。平滑化の他に陽極の厚膜化は光取り出し側の干渉低減効果にも期待できる。例えば、陽極の膜厚設定において、それぞれの取り出し発光色のピーク波長の1/4の非整数倍にできる膜厚幅の自由度が拡大できる。陽極の厚膜化のために、図2に示すように、陽極2は、補助電極BLの膜厚t1を超える膜厚t2を有する。透明陽極2の膜厚は透明陽極2の透過率を維持しかつパネル特性を確保するために1μm~5μmであることが好ましい。
 陽極2は、図2に示すように、機能積層体FLBとの界面に平滑主面2Aと基板1の主面上の陽極2の縁部2B(最縁端)に向けて膜厚が漸次減少するテーパ側面2Cとを有するように成膜される。ここで、陽極のパタニングは通常フォトリソグラフィプロセスにて行われ、上記プロセスで作製したITO陽極のエッジは不安定であるため絶縁膜でカバーする必要がある。この絶縁膜工程がパネルのコストアップ、歩留まり低下の要因の一つになっている。この問題を解決するため陽極はスクリーン印刷や無版印刷若しくは有版印刷などの湿式塗布法又は非密着若しくは密着のマスクを用いたスパッタリング法にてパタニングすることが好ましい。また、機能積層体FLBの機能層は塗布にて形成することが好ましい。陽極2のテーパ側面2C上に機能積層体FLBがされると、機能積層体FLBにもテーパ側面が形成され、後工程で形成される陰極の断線を防止することができる。よって、以上の構成により、絶縁膜を必要とすることなく照明などに適した有機ELパネルを作製することが可能になる。
 陽極2の及び縁部2Bのカバレッジを良化するため機能積層体FLBの機能層は塗布にて形成する。特に機能積層体FLBの1層目(正孔注入層3又は正孔輸送層4)は補助電極BLの膜厚より厚く塗布されることが好ましい。機能積層体FLBにもテーパ側面を厚膜にするほど陽極2の及び縁部2Bのカバレッジ性が上昇するのでリーク抑制効果が上がる。具体的には、陽極2から機能積層体FLBの発光層5までの積層膜の膜厚の合計は陽極上の異物に対する埋包性を確保するため少なくとも100nmであることが好ましい。
 本実施形態の有機ELパネルの一例は、図2に示すように、ガラスなどの透明基板1上にて、順に、積層された陽極2/正孔注入層3/正孔輸送層4/赤緑混合発光層5/青発光層6/電子輸送層7/電子注入層8/陰極9/の構成である。この積層構成の他に、図示しないが、陽極2/正孔注入層3/赤緑混合発光層5/青発光層6/電子輸送層7/電子注入層8/陰極9/の正孔輸送層4を省いた構成や、図示しないが、陽極2/正孔輸送層4/赤緑混合発光層5/青発光層6/電子輸送層7/電子注入層8/陰極9/の正孔注入層3を省いた構成や、図示しないが、陽極2/正孔輸送層4/赤緑混合発光層5/青発光層6/電子注入層8/陰極9/の正孔注入層3、電子輸送層7を省いた構成も本発明に含まれる。上記いずれの積層構造において赤緑混合発光層5と青発光層6上記の間に拡散防止層を設ける構成も本発明に含まれる。
 有機ELパネルの機能層を成膜する手法として、スパッタリング法や真空蒸着法などの乾式塗布法や、スクリーン印刷、スプレイ法、インクジェット法、スピンコータ法、グラビア印刷、ロールコータ法などの湿式塗布法が知られている。例えば、正孔注入層、正孔輸送層、発光層を湿式塗布法でベタ膜として一様に成膜して、電子輸送層及び電子注入層を、それぞれ乾式塗布法でベタ膜として一様に順次成膜してもよい。また、すべての機能層を湿式塗布法でベタ膜として一様に順次成膜してもよい。
 [基板]
 基板1としては、石英やガラスの板、金属板や金属箔、曲げられる樹脂基板、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの合成樹脂の透明板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機ELパネルが劣化することがあるので好ましくない。よって、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜などを設けてガスバリア性を確保する方法も好ましい方法の一つである。
 なお、湿式塗布法にて透明陽極を厚膜で形成する場合、基板表面の凹凸を緩和できるので、高価なディスプレイ用研磨ガラス基板でない廉価なガラス基板も有機ELパネル基板に用いることができる。
 [陽極及び陰極]
 発光層までの機能層に正孔を供給する陽極2は、通常、インジウム酸化物とスズ酸化物の複合酸化物(所謂、ITO)などにより構成される。ITOの他に、陽極2はZnO、ZnO-Al23(所謂、AZO)、In23-ZnO(所謂、IZO)、SnO2-Sb23(所謂、ATO)、RuO2などにより構成され得る。さらに、陽極2の透明導電性膜は、有機EL材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。
 陽極は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
 陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることが好ましい。
 発光層までの機能層に電子を供給する陰極9の材料としては、効率良く電子注入を行う為に仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。
 なお、陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 さらに、低仕事関数金属から成る陰極を保護する目的で、陰極の上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、有機ELパネルの安定性が増すので好ましい。この目的のために、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 [機能積層体の機能層]
 [正孔注入層]
 正孔注入層3は、電子受容性化合物を含有する層とすることが好ましい。
 湿式塗布法で形成する場合、正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物及び溶媒を含有する。溶媒としては、限定されるものではないが、例えば、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒などが挙げられる。エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート(所謂、PGMEA)などの脂肪族エーテル、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソールなどの芳香族エーテル、などが挙げられる。
 エステル系溶媒としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチルなどの芳香族エステル、などが挙げられる。
 芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イロプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレンなどが挙げられる。
 アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、などが挙げられる。その他、ジメチルスルホキシド、なども用いることができる。これらの溶媒は1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。
 正孔輸送性化合物は、通常、有機ELパネルの正孔注入層に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、低分子化合物であることが好ましい。
 正孔輸送性化合物としては、陽極から正孔注入層への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン銅(所謂、CuPc)に代表されるフタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボンなどが挙げられる。ここで誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。
 また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-エチレンジオキシチオフェンを高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(所謂、PEDOT/PSS)もまた好ましい。さらに、PEDOT/PSSのポリマーの末端をメタクリレートなどでキャップしたものであってもよい。
 正孔注入層の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送性化合物1種又は2種以上とを併用することもできる。非晶質性、可視光の透過率の点から、正孔注入層には芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が高すぎると膜厚ムラが生じる可能性があり、また、低すぎると成膜された正孔注入層に欠陥が生じる可能性がある。
 正孔注入層形成用組成物は電子受容性化合物を含有することが好ましく、また、正孔輸送性化合物や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の有機EL材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 湿式塗布法により正孔注入層を形成する場合、通常は、正孔注入層を構成する材料を適切な溶媒(正孔注入層用溶媒)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、陽極上に塗布して成膜し、乾燥することにより正孔注入層を形成する。
 正孔注入層の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
 [正孔輸送層]
 正孔輸送層4の材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、例えば、前述の正孔注入層に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体などが挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
 湿式塗布法で正孔輸送層を形成する場合は、正孔注入層の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、乾燥させる。
 正孔輸送層形成用組成物に、正孔輸送性化合物の他、溶媒を含有する。用いる溶媒は正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、乾燥条件なども正孔注入層の形成の場合と同様である。
 正孔輸送層は、正孔輸送性化合物の他、各種の有機EL材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。
 正孔輸送層の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。
 上記したように少なくとも正孔注入層3又は正孔輸送層4は厚く塗布されることが好ましいので、陽極2から発光層5までの正孔注入層3及び/又は正孔輸送層4の膜厚の合計は少なくとも100nmであることが好ましい。
 [発光層]
 赤緑混合発光層と青発光層の発光層は有機EL材料を含み、好ましくは、正孔輸送の性質を有する化合物(正孔輸送性化合物)、或いは、電子輸送の性質を有する化合物(電子輸送性化合物)を含有させることもできる。有機EL材料をドーパント材料として使用し、正孔輸送性化合物や電子輸送性化合物などをホスト材料として適宜使用してもよい。有機EL材料については特に限定はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。
 有機EL材料としては、任意の公知の材料を適用可能である。例えば、蛍光材料であってもよく、燐光材料であってもよいが、内部量子効率の観点から燐光材料を用いることが好ましい。発光層は単層構造としても、或いは所望により複数の材料からなる多層構造とすることもできる。例えば、青色発光層は蛍光材料を用い、緑色や赤色の発光層は燐光材料を用いるなど、様々組み合わせて用いてもよい。また、発光層の間に拡散防止層を設けることもできる。
 青色発光を与える蛍光材料(青色蛍光色素)としては、例えば、ナフタレン、ペリレン、ピレン、クリセン、アントラセン、クマリン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体などが挙げられる。
 緑色発光を与える蛍光材料(緑色蛍光色素)としては、例えば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。
 黄色発光を与える蛍光材料(黄色蛍光色素)としては、例えば、ルブレン、ペリミドン誘導体などが挙げられる。
 赤色発光を与える蛍光材料(赤色蛍光色素)としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテンなどが挙げられる。
 燐光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を含む有機金属錯体が挙げられる。周期表第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金などが挙げられる。錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。
 燐光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(所謂、Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリンなどが挙げられる。
 有機EL材料として用いる化合物の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。有機EL材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる機能層のモルフォロジー変化を招来する場合がある。一方、有機EL材料の分子量が大き過ぎると、有機化合物の精製が困難となってしまったり、湿式塗布法で形成する場合の溶媒に溶解させる際に時間を要したりする傾向がある。
 なお、有機EL材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせと比率で併用してもよい。発光層における有機EL材料の割合は、通常0.05重量%以上、通常35重量%以下である。有機EL材料が少なすぎると発光ムラを生じる可能性があり、多すぎると発光効率が低下する可能性がある。なお、2種以上の有機EL材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。発光層における含有量が最も多い成分をホスト材料とより少ない成分をゲスト材料と呼ぶ。
 発光層には、その構成材料として、正孔輸送性化合物を含有させてもよい。ここで、正孔輸送性化合物のうち、低分子量の正孔輸送性化合物の例としては、前述の正孔注入層3における正孔輸送性化合物として例示した各種の化合物のほか、例えば、4,4’-ビス
[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(所謂、α-NPD)に代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン類や、4,4’,4”-トリス(1-ナフチルフェニルアミノ)トリフェニル
アミンなどのスターバースト構造を有する芳香族アミン化合物や、トリフェニルアミンの四量体から成る芳香族アミン化合物や、2,2’,7,7’-テトラキス-(ジフェニル
アミノ)-9,9’-スピロビフルオレンなどのスピロ化合物などが挙げられる。
 なお、発光層において、正孔輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 発光層における正孔輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下である。正孔輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の正孔輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
 発光層には、その構成材料として、電子輸送性化合物を含有させてもよい。ここで、電子輸送性化合物のうち、低分子量の電子輸送性化合物の例としては、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(所謂、BND)や、2,5-ビス(6’-
(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(所謂
、PyPySPyPy)や、バソフェナントロリン(所謂、BPhen)や、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(所謂、BCP、バソクプロイン)、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(所謂、tBu-PBD)や、4,4’-ビス(9H-カルバゾー
ル-9-イル)ビフェニル(所謂、CBP)などが挙げられる。なお、発光層において、電子輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 発光層における電子輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下である。電子輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の電子輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
 湿式塗布法で形成する場合、発光層は、上記発光層材料を適切な溶媒に溶解させて発光層形成用組成物を調製し、それを用いて湿式成膜後、乾燥させ、溶媒を除去することにより、形成される。よって、湿式塗布法で形成する場合、発光層塗布液には、発光層となるべき少なくとも2種類の固形分(ホスト材料とゲスト材料)が溶質として溶媒に分散又は溶解されて、調製される。用いる溶媒は正孔注入層形成用組成物に用い得る上記溶媒から選択され得る。
 発光層を形成するための発光層形成用組成物に対する発光層用溶媒の比率は、通常0.01重量%以上、通常70重量%以下、である。なお、発光層用溶媒として2種以上の溶媒を混合して用いる場合には、これらの溶媒の合計がこの範囲を満たすようにする。
 発光層の膜厚は通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。
 [電子輸送層]
 電子輸送層7は、有機ELパネルの発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極から注入された電子を効率よく発光層の方向に輸送することができる化合物より形成される。
 電子輸送層に用いられる電子輸送性化合物としては、通常、陰極9又は電子注入層8からの電子注入効率が高く、且つ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、Alq3や10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン、キノキサリン化合物、フェナントロリン誘導体、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶
質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
 なお、電子輸送層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 電子輸送層の形成方法に制限はなく、湿式塗布法または乾式塗布法で形成することができる。湿式塗布法で形成する場合、電子輸送層は、上記電子輸送層材料を適切な溶媒に溶解させて電子輸送層形成用組成物を調製し、それを用いて湿式成膜後、乾燥させ、溶媒を除去することにより、形成される。用いる溶媒は正孔注入層形成用組成物に用い得る上記溶媒から選択され得る。
 電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。
 [電子注入層]
 電子注入層8は、陰極から注入された電子を効率良く発光層へ注入する役割を果たす。電子注入を効率よく行うには、電子注入層を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウムなどのアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属、それらの化合物(CsF、Cs2CO3、Li2O、LiF)などが用いられ、その膜厚は通常0.1nm以上、5nm以下が好ましい。
 更に、バソフェナントロリンなどの含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウムなどのアルカリ金属をドープすることにより、電子注入輸送性が向上し優れた膜質を両立させることが可能となる。この場合の膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。
 なお、電子注入層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 電子注入層の形成方法に制限はなく、湿式塗布法または乾式塗布法で形成することができる。湿式塗布法で形成する場合、電子注入層は、上記電子注入層材料を適切な溶媒に溶解させて電子注入層形成用組成物を調製し、それを用いて湿式成膜後、乾燥させ、溶媒を除去することにより、形成される。用いる溶媒は正孔注入層形成用組成物に用い得る上記溶媒から選択され得る。
 以下、本発明の実施例の一例を図面を参照しつつ詳細に説明する。
 図3~図10は本発明が適用された有機ELパネルの製造方法の製造過程における基板とその上に形成された構造物を示す断面図である。かかる製造過程を下記の(a)補助電極形成工程、(b)陽極形成工程、(c)正孔輸送層形成工程、(d)塗布発光層形成工程、及び(e)蒸着発光層形成工程の順に説明する。
 (a)補助電極形成工程
 先ず、例えば、図3に示すように、洗浄された厚さ0.7mmのガラス板からなる透明な基板1を用意する。基板1の主面上に、該主面から離れて配置された非密着若しくは密着のマスク(図示せず)を用いたスパッタリング法によってAlNd(アルミニウム-ネオジウム合金)の補助電極BLが形成される。マスクのパターン開口を介してAlNdターゲットの飛沫材料を基板の所定部分に付着させて、エッジにテーパが付いた所定パターンの補助電極が得られる。基板1のXY表面上においてX方向に平行に伸長する複数の帯状の補助電極BLが一定ピッチで形成される。なお、補助電極BLは次工程で成膜される陽極2への給電ラインであり、その幅がその並置されるピッチよりも小さくなるように形成される。
 補助電極BLは同一断面形状で形成されており、互いに平行に配置されており、補助電極BL同士の間に基板1の表面が露出される。例えば、各補助電極BLの厚さは150nmであり、その幅は50μmであり、隣接の補助電極BLの離間距離は300μmである。
 また、図3においては、補助電極BLの伸張方向Xに直交する並置方向Yに沿った断面を示しており、このことは以下の図においても同様である。
 (b)陽極形成工程
 図4に示すように、基板1の主面から離れて配置されたマスクを用いたスパッタリング法によって、基板1の主面及び補助電極BL上にIZO(In23-ZnO)の透明陽極2が形成される。補助電極BLを含む基板1上にマスクのパターン開口を介してIZOターゲットの飛沫材料を付着させて、エッジにテーパが付いた所定パターンのIZO膜が陽極2(透明導電性膜)として得られる。該飛沫材料がマスク開口からマスク基板間に回り込むために、透明陽極2の主面の平滑主面2Aからその縁部2Bに向けて膜厚が漸次減少するテーパ側面2Cが形成される。
 陽極2は補助電極BLと隣接の補助電極間の基板領域(凹部)に亘ってこれらを覆うように形成され、補助電極BL間の領域では基板1上に直接接触する。陽極2の厚さは例えば、1000nmである。
 (c)正孔注入・輸送層形成工程
 先ず、エキシマ光照射装置(図示せず)を用いて前処理として、陽極2上にUV/O3(紫外線/オゾン)が照射され、IZO表面を洗浄する。
 正孔注入層材料として、ホストとしてPEDOT(ポリ3,4-エチレンジオキシチオフェン)とドーパントとしてPSS(ポリスチレンスルホン酸)を用いた固定分濃度1wt%の水分散溶液を調製しておく。
 前処理後、図5に示すようにインクジェット装置にて正孔注入層材料用の液滴Lqがインクジェットヘッド12により陽極2の全面上へ塗布される。例えば、インクジェットヘッド12を陽極2上のXY平面においてラスタスキャン移動させることにより、塗布された液滴Lqの膜の縁部同士が繋がって陽極2の縁部と近傍の基板をも覆う液滴膜が成膜される。
 次に、真空乾燥装置を用いてかかる液滴膜は気体圧力0.1~50Paにて2分間に亘り真空乾燥され、230℃での1時間に亘る加熱処理により焼成される。図6に示すように液滴の溶媒が蒸発して陽極2の縁部をも覆う硬化した正孔注入層3が得られる。機能積層体の正孔注入層3の端部の少なくとも一部は補助電極BLに接することなく基板1に達している。
 かかる正孔注入層と同様に、インクジェット法により、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサンの所定濃度の有機溶媒液滴を用いて、正孔輸送層4が図7に示すように正孔注入層3の全面と近傍の基板上に塗布、乾燥される。これら正孔注入層3及び正孔輸送層4の厚さは例えば、それぞれ50nmである。
 (d)塗布発光層形成工程
 赤緑混合発光層材料として、ホストとしてBalq(Bis-(2-methyl-8- quinolinolato)(p-phenylphenolato)aluminum)を、ドーパントとしてHex-Ir(phq)3(Tris[2-(4-n-hexylphenyl)quinoline)]iridium(III))を用いた固定分濃度6wt%の有機溶液を調製しておく。
 上述のインクジェット法と同様にインクジェットヘッド12により、図8に示すように、かかる赤緑混合発光層材料液滴Lqが正孔輸送層4の全面上へ塗布される。
 次に、真空乾燥装置を用いて液滴膜は気体圧力0.1~50Paにて2分間に亘って真空乾燥され、そして、10分間に亘る130℃での加熱処理により焼成される。この結果、図9に示すように、正孔輸送層4を覆う硬化した赤緑混合発光層5が得られる。赤緑混合発光層5の厚さは例えば、40nmである。
 (e)蒸着発光層形成工程
 真空蒸着装置を用いて、赤緑混合発光層5上に、ホストの9,10-ジ(2-ナフチル)アントラセン(所謂、ADN)と、濃度6wt%となるようにドーパントの4,4’-ビス(2、2’-ジフェニルビニル)ビフェニル(所謂、DPVBi)とが共に真空蒸着され、これにより青発光層6が例えば、15nmの厚さで形成される。
 次に、青発光層6上に真空蒸着法にてAlq3が真空蒸着され、これによりAlq3の電子輸送層7が例えば、30nmの厚さで形成される。
 次いで、電子輸送層7上に真空蒸着法にてLiF(フッ化リチウム)が真空蒸着され、これにより電子注入層8が例えば、1nmの厚さで形成される。
 最後に、電子注入層8上に真空蒸着法にて所定パターン開口のマスクを用いてAl(アルミニウム)が真空蒸着され、これにより陰極9が例えば、80nmの厚さで形成される。図10に示すように、ここで正孔注入層3から電子注入層8まで機能積層体FLBが形成される。陰極9は、補助電極BLの伸張方向Xに直交する並置方向Yに沿って透明陽極2(補助電極BL)と交差するように帯状に成膜される。対向電極膜の陰極9の端部の少なくとも一部は補助電極BL及び透明陽極2に接することなく基板1に達している。機能積層体FLBを挟む陽極2と陰極9が重なる部分は有機ELパネルの発光エリアを画定する。その後、封止工程を経て、封止された有機ELパネルを得ることができる。
 このように実施例によれば、(a)補助電極形成工程、(b)陽極形成工程、(c)正孔輸送層形成工程、(d)塗布発光層形成工程及び(e)蒸着発光層形成工程によって有機ELパネルが製造されている。上記実施例では、青発光層6を真空蒸着法により成膜したが、発光層すべてをインクジェット塗布工程と乾燥工程の組で成膜して、それぞれの機能を果たす機能層ごとに塗布と乾燥を順次繰り返して、図10に示すように、多層の機能積層体FLB(正孔注入層3/正孔輸送層4/赤緑混合発光層5/青発光層6/電子輸送層7)が形成されてもよい。
 上記した実施例においては、補助電極BLとしてAlNdなどの金属材料が用いられ、その補助電極BLの上に透明導電性膜の陽極12が積層されて、発光層で発光した光が補助電極BLで拡散されるので、有機ELパネルの開口率を向上させることができる。
 例えば、従来の有機LEDでは絶縁性のバンク材が用いられており、そのバンク材は一般的にポリイミド材質など可視域に吸収がある材料の使用が多いため、陰極の金属色である色合いに対して外観を損ねる場合がある。また、可視域に吸収材料があるため、発光した光がバンクで損失する可能性がある。これに対し、上記した実施例においては補助電極BLとしてAlNdなどの金属が用いられているので、陰極9のAlの金属色と同等で外観を損ねることがない。また、発光した光が補助電極BLで拡散しても損失することなく、有機ELパネルから放出されるので従来よりも高開口率を得ることができる。更に、補助電極BLの材料の電気抵抗率は陽極2の材料のそれより小さく、また補助電極BLに陽極2が直接接触するので、有機ELパネルに効率よく給電することができる。更に、上記したように開口率の増加のために発光した光を効率より放出させることができるので、所望の光量を得るために従来の素子より消費電力を低減させることができる。
 上記した実施例においては、陽極2(透明導電性膜)上に正孔注入層3及び正孔輸送層4の2層が形成されているが、2層が形成されることに限定されず、正孔注入層又は正孔輸送層の1層だけ、或いは正孔注入層と正孔輸送層に電子阻止層(図示せず)を加えた3層以上が発光層までに形成されても良い。
 なお、上記した実施例における基板1、補助電極BL、陽極2、正孔注入層3及び正孔輸送層4、赤緑混合発光層5、青発光層6、電子輸送層7、電子注入層8及び陰極9の各材料は上記したものに限定されない。例えば、補助電極BLの材料としてはAl、Ag、Mo、Ti、Pt、Auなどの金属又はそれらの合金を用いることができる。
 また、上記した実施例において示した各工程での各膜の形成方法、各膜の幅及び厚さ、加熱温度、加熱時間などの条件は一例に過ぎず、本発明はこれに限定されない。
 更に、補助電極は必ずしも同一断面形状に限定されず、またライン伸張方向において同一の長さである必要はない。
 [他の実施例]
 上記の実施例においては、陽極2は、マスクを用いたスパッタリング法にてパタニングされている。陽極2はスパッタリング法の他、スクリーン印刷、インクジェット法、スプレーコート法、ロールコート法、有版印刷など湿式塗布法により形成することもできる。
 例えば、図3に示す補助電極形成工程による補助電極BLの形成後、インクジェット法の印刷により、補助電極BLの上にIZOペーストを塗布してIZOペースト塗布膜を成膜する。
 例えば、図11に示すようにIZOペーストの液滴Lqがインクジェットヘッド12により基板1と補助電極BL上へ所定パターンで塗布される。そして基板1を乾燥(例えば150~200℃)後に、焼成(例えば400~600℃)を施して、図12に示すように基板1と補助電極BLを覆う所定パターンの陽極2を形成できる。この製造方法の場合には、陽極2がマスクやエッチング工程なしで形成できる故に、陽極2の成膜が簡単になる。さらに、印刷によるダレによって容易に、平滑主面2Aと縁部2Bに向けて膜厚が漸次減少するテーパ側面2Cとを有するIZOの陽極2(透明導電性膜)が得られる。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 赤緑混合発光層
 6 青発光層
 7 電子輸送層
 8 電子注入層
 9 陰極
 BL 補助電極

Claims (9)

  1.  基板と、前記基板上に積層された透明導電性膜と、前記透明導電性膜上に積層された少なくとも1層の発光層を含む機能積層体と、前記機能積層体上に積層された対向電極膜とを含み、前記透明導電性膜と前記対向電極膜に挟まれ且つ前記透明導電性膜と前記対向電極膜に重なる前記発光層が発光部となる有機ELパネルであって、
     前記発光部下の前記基板上に形成され且つ前記透明導電性膜に直接覆われた少なくとも1つの補助電極を有し、
     前記透明導電性膜は前記補助電極の膜厚を超える膜厚を有し、
     前記機能積層体は前記透明導電性膜の側面を被覆していることを特徴とする有機ELパネル。
  2.  前記機能積層体の内の前記透明導電性膜に接する層は、湿式塗布法で形成され且つ少なくとも前記補助電極の膜厚よりも厚い膜厚を有することを特徴とする請求項1記載の有機ELパネル。
  3.  前記透明導電性膜は湿式塗布法又はマスクを用いたスパッタリング法で形成されていることを特徴とする請求項1記載の有機ELパネル。
  4.  前記透明導電性膜の少なくとも一部はその最縁端に向けて膜厚が漸次減少するテーパ側面を有し、
     前記機能積層体は前記透明導電性膜の前記テーパ側面を被覆していることを特徴とする請求項1記載の有機ELパネル。
  5.  前記機能積層体の端部の少なくとも一部が前記補助電極に接することなく前記基板に達していることを特徴とする請求項4記載の有機ELパネル。
  6.  前記対向電極膜の端部の少なくとも一部が前記補助電極に接することなく前記基板に達していることを特徴とする請求項4記載の有機ELパネル。
  7.  前記透明導電性膜の膜厚は1μm~5μmであることを特徴とする請求項1~6のいずれか1つに記載の有機ELパネル。
  8.  基板と、前記基板上に積層された透明導電性膜と、前記透明導電性膜上に積層された少なくとも1層の発光層を含む機能積層体と、前記機能積層体上に積層された対向電極膜とを含み、前記透明導電性膜と前記対向電極膜に挟まれ且つ前記透明導電性膜と前記対向電極膜に重なる前記発光層が発光部となる有機ELパネルの製造方法であって、
     基板の主面の一部上に少なくとも1つの補助電極を形成するステップと、
     前記基板及び前記補助電極上に透明導電性膜を形成するステップと、
     前記透明導電性膜を被覆する機能積層体を形成するステップと、を含み、
     前記透明導電性膜を形成するステップにおいて、前記透明導電性膜の膜厚が前記補助電極の膜厚よりも厚く且つ前記発光部下の前記補助電極を前記透明導電性膜が完全に覆うように、湿式塗布法により、前記透明導電性膜を形成することを特徴とする有機ELパネルの製造方法。
  9.  基板と、前記基板上に積層された透明導電性膜と、前記透明導電性膜上に積層された少なくとも1層の発光層を含む機能積層体と、前記機能積層体上に積層された対向電極膜とを含み、前記透明導電性膜と前記対向電極膜に挟まれ且つ前記透明導電性膜と前記対向電極膜に重なる前記発光層が発光部となる有機ELパネルの製造方法であって、
     基板の主面の一部上に少なくとも1つの補助電極を形成するステップと、
     前記基板及び前記補助電極上に透明導電性膜を形成するステップと、
     前記透明導電性膜を被覆する機能積層体を形成するステップと、を含み、
     前記透明導電性膜を形成するステップにおいて、前記透明導電性膜の膜厚が前記補助電極の膜厚よりも厚く且つ前記発光部下の前記補助電極を前記透明導電性膜が完全に覆うように、マスクを用いたスパッタリング法により、前記透明導電性膜を形成することを特徴とする有機ELパネルの製造方法。
PCT/JP2012/058961 2012-04-02 2012-04-02 有機エレクトロルミネッセンスパネル及びその製造方法 WO2013150592A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2012/058961 WO2013150592A1 (ja) 2012-04-02 2012-04-02 有機エレクトロルミネッセンスパネル及びその製造方法
JP2014508938A JP5912174B2 (ja) 2012-04-02 2012-04-02 有機エレクトロルミネッセンスパネル及びその製造方法
US14/383,045 US20150048336A1 (en) 2012-04-02 2012-04-02 Organic electroluminescence panel and method for producing the same
KR1020147025804A KR20140146070A (ko) 2012-04-02 2012-04-02 유기 일렉트로루미네선스 패널 및 그의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058961 WO2013150592A1 (ja) 2012-04-02 2012-04-02 有機エレクトロルミネッセンスパネル及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013150592A1 true WO2013150592A1 (ja) 2013-10-10

Family

ID=49300120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058961 WO2013150592A1 (ja) 2012-04-02 2012-04-02 有機エレクトロルミネッセンスパネル及びその製造方法

Country Status (4)

Country Link
US (1) US20150048336A1 (ja)
JP (1) JP5912174B2 (ja)
KR (1) KR20140146070A (ja)
WO (1) WO2013150592A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230883A (ja) * 2014-06-06 2015-12-21 パイオニア株式会社 発光装置
WO2017056873A1 (ja) * 2015-09-29 2017-04-06 コニカミノルタ株式会社 透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法
WO2020111205A1 (ja) * 2018-11-30 2020-06-04 株式会社Kyulux 有機発光素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102570552B1 (ko) 2016-06-03 2023-08-25 삼성디스플레이 주식회사 유기발광표시장치 및 유기발광표시장치의 제조방법
EP4105201A1 (en) * 2021-06-18 2022-12-21 Novaled GmbH An organic electroluminescent device comprising a substrate, an anode layer and a cathode layer, at least one light emitting layer, and at least one semiconductor layer that comprises at least one metal compound of a metal and at least one ligand

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199680A (ja) * 1996-12-28 1998-07-31 Casio Comput Co Ltd 電界発光素子
JP2000268980A (ja) * 1999-03-19 2000-09-29 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2003133080A (ja) * 2001-10-30 2003-05-09 Fuji Photo Film Co Ltd 発光素子
JP2004055453A (ja) * 2002-07-23 2004-02-19 Canon Inc 有機elデバイスおよび製造方法
WO2011001567A1 (ja) * 2009-07-01 2011-01-06 シャープ株式会社 有機el発光体、有機el照明装置、及び有機el発光体の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115334A (ja) * 1995-10-23 1997-05-02 Mitsubishi Materiais Corp 透明導電膜および膜形成用組成物
US6624839B2 (en) * 2000-12-20 2003-09-23 Polaroid Corporation Integral organic light emitting diode printhead utilizing color filters
WO2008126269A1 (ja) * 2007-03-30 2008-10-23 Pioneer Corporation 発光装置
WO2009126943A2 (en) * 2008-04-11 2009-10-15 Thin Film Devices, Inc. Flexible photovoltaic device
JP2012018867A (ja) * 2010-07-09 2012-01-26 Seiko Epson Corp 照明装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199680A (ja) * 1996-12-28 1998-07-31 Casio Comput Co Ltd 電界発光素子
JP2000268980A (ja) * 1999-03-19 2000-09-29 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2003133080A (ja) * 2001-10-30 2003-05-09 Fuji Photo Film Co Ltd 発光素子
JP2004055453A (ja) * 2002-07-23 2004-02-19 Canon Inc 有機elデバイスおよび製造方法
WO2011001567A1 (ja) * 2009-07-01 2011-01-06 シャープ株式会社 有機el発光体、有機el照明装置、及び有機el発光体の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230883A (ja) * 2014-06-06 2015-12-21 パイオニア株式会社 発光装置
WO2017056873A1 (ja) * 2015-09-29 2017-04-06 コニカミノルタ株式会社 透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法
JPWO2017056873A1 (ja) * 2015-09-29 2018-07-12 コニカミノルタ株式会社 透明電極、及び、有機電子デバイス、並びに、透明電極の製造方法、及び、有機電子デバイスの製造方法
WO2020111205A1 (ja) * 2018-11-30 2020-06-04 株式会社Kyulux 有機発光素子
JP7418794B2 (ja) 2018-11-30 2024-01-22 株式会社Kyulux 有機発光素子

Also Published As

Publication number Publication date
JPWO2013150592A1 (ja) 2015-12-14
KR20140146070A (ko) 2014-12-24
JP5912174B2 (ja) 2016-04-27
US20150048336A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP6201538B2 (ja) 機能層形成用インクの製造方法、有機el素子の製造方法
JP5694019B2 (ja) 有機電界発光素子、表示装置および照明装置
KR101704842B1 (ko) 유기 el 표시 장치 및 그 제조 방법
KR102122188B1 (ko) 유기 전계 발광 소자 및 유기 전계 발광 디바이스
CN107431137B (zh) 功能层形成用组合物及其制造方法、有机el元件的制造方法、有机el装置、电子设备
JP6060361B2 (ja) 有機発光素子
US10109819B2 (en) Light-emitting device
JP5912174B2 (ja) 有機エレクトロルミネッセンスパネル及びその製造方法
JP6375600B2 (ja) 有機el素子の製造方法、有機el素子、有機el装置、電子機器
KR20150136539A (ko) 유기 el 표시 장치
WO2012090560A1 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP6185109B2 (ja) 有機エレクトロルミネッセンスパネル及びその製造方法
WO2013150593A1 (ja) 有機エレクトロルミネッセンスパネル及びその製造方法
WO2013035143A1 (ja) 有機エレクトロルミネッセンスパネルの製造方法
JP5456282B2 (ja) 有機電界発光素子
WO2012176276A1 (ja) 有機電界発光素子
JP6340404B2 (ja) 発光装置
WO2013190656A1 (ja) 有機エレクトロルミネッセンス素子
WO2014073072A1 (ja) ミラー装置
WO2013114552A1 (ja) 有機エレクトロルミネッセンスパネル及びその製造方法
WO2013121505A1 (ja) 有機エレクトロルミネッセンスパネル及びその製造方法
JP2023052941A (ja) 発光装置
JP2018139223A (ja) 発光装置
WO2014013566A1 (ja) ミラー装置
WO2013190620A1 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147025804

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014508938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14383045

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12873794

Country of ref document: EP

Kind code of ref document: A1