WO2024045479A1 - 衣物处理设备 - Google Patents

衣物处理设备 Download PDF

Info

Publication number
WO2024045479A1
WO2024045479A1 PCT/CN2023/072662 CN2023072662W WO2024045479A1 WO 2024045479 A1 WO2024045479 A1 WO 2024045479A1 CN 2023072662 W CN2023072662 W CN 2023072662W WO 2024045479 A1 WO2024045479 A1 WO 2024045479A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture absorption
dehumidification
turntable
moisture
airflow
Prior art date
Application number
PCT/CN2023/072662
Other languages
English (en)
French (fr)
Inventor
王伟
赵长见
许明
全刚
Original Assignee
深圳洛克创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111023112.5A external-priority patent/CN113981647A/zh
Application filed by 深圳洛克创新科技有限公司 filed Critical 深圳洛克创新科技有限公司
Priority to TW112132724A priority Critical patent/TW202421885A/zh
Publication of WO2024045479A1 publication Critical patent/WO2024045479A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F18/00Washing machines having receptacles, stationary for washing purposes, and having further drying means 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F29/00Combinations of a washing machine with other separate apparatus in a common frame or the like, e.g. with rinsing apparatus
    • D06F29/005Combinations of a washing machine with other separate apparatus in a common frame or the like, e.g. with rinsing apparatus the other separate apparatus being a drying appliance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/02Domestic laundry dryers having dryer drums rotating about a horizontal axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/22Lint collecting arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/26Heating arrangements, e.g. gas heating equipment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/45Cleaning or disinfection of machine parts, e.g. of heat exchangers or filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present application relates to the technical field of household appliances, and in particular to a clothing processing equipment.
  • the drying device of existing clothing processing equipment usually uses an evaporator or a heat pump to heat and absorb moisture from the humid air in the clothing holding device. After obtaining high-temperature air, it re-enters the clothing holding device for drying, so that the moisture in the clothing can be removed. evaporation. There is a need to provide a drying device with both moisture absorption and moisture removal functions.
  • the purpose of this application is to provide a clothing processing equipment with a moisture absorption and moisture removal turntable that can fully ensure moisture absorption and moisture removal capabilities and improve drying efficiency.
  • the present application provides a clothes processing equipment, including a drying device and a clothes containing device,
  • the drying device includes:
  • a circulation fan operating at a first power to form a circulating airflow flowing through the clothing accommodating device and the moisture absorption space;
  • a regeneration fan operating at a second power to form a regeneration airflow passing through the moisture removal space
  • the laundry treatment equipment further includes: a moisture absorption and dehumidification turntable driving part that drives the moisture absorption and dehumidification turntable to rotate around the rotation axis in the housing at a first rotation speed;
  • the numerical value of the area ratio of the projection of the moisture absorption space and the moisture discharge space in at least one plane perpendicular to the rotation axis differs from the numerical value of the power ratio of the first power and the second power by ⁇ 2 In the range.
  • the ratio of the thickness to the diameter of the moisture absorption and dehumidification rotating disk is 1:20-1:5, preferably 1:15-1:10.
  • the thickness of the moisture absorption and moisture removal turntable is 10mm-100mm; the diameter is 40mm-500mm.
  • the clothes containing device is a drum
  • the drum includes an inner drum and an outer drum
  • the ratio of the diameter of the moisture absorption and moisture removal turntable to the diameter of the inner drum is 1:2-3:4.
  • the area ratio is 2:1-4:1, and the power ratio is 2:1-4:1.
  • the first rotation speed is 2-10 rpm, preferably 4-6 rpm.
  • the drying device further includes: a heating module and a condensation module, the heating module is disposed adjacent to the moisture removal space; the condensation module is disposed on the flow path of the regeneration air flow.
  • the heating module operates between the first heating power and the second heating power, the first heating power is 400W-800W, and the second heating power is 1200W-1600W.
  • the heating module fluctuates between the first heating power and the second heating power in the form of a square wave.
  • the condensation module is a water-cooled condenser, and the water flow rate is 0.2-0.4L/min, preferably 0.35L/min.
  • the application also provides a clothes processing equipment, including a drying device and a clothes containing device,
  • the clothes containing device has a first airflow inlet, and the first airflow inlet is connected with the drying device through an air inlet duct;
  • the clothes containing device has a first airflow outlet, and the first airflow outlet is connected with the drying device through an air outlet duct;
  • the drying device includes:
  • the laundry treatment equipment also includes:
  • a first temperature detection device disposed near the first airflow inlet, is used to detect the temperature of the airflow entering the clothing containing device;
  • a second temperature detection device disposed in the clothes containing device or near the first airflow outlet, for detecting the temperature of the airflow in the clothes containing device or the temperature of the airflow flowing out of the clothes containing device;
  • the difference between the first detection temperature detected by the first temperature detection device and the second detection temperature detected by the second temperature detection device is within 18-30°C. between.
  • the first detection temperature is between 70-85°C, preferably 75°C; the second detection temperature is between 50-60°C, preferably 53°C.
  • the application also provides a clothes processing equipment, including a drying device and a clothes containing device,
  • the drying device includes:
  • the ratio of the thickness to the diameter of the moisture absorption and dehumidification turntable is 1:20-1:5, preferably 1:15-1:10;
  • the rotation speed of the moisture absorption and dehumidification turntable is 2-10 rpm, preferably 4-6 rpm.
  • the application also provides a clothes processing equipment, including a clothes containing device and a drying device;
  • the drying device includes:
  • the area ratio of the projection of the moisture absorption space and the moisture removal space in at least one plane perpendicular to the rotation axis is 2:1-4:1;
  • the drying device further includes: a moisture absorption and moisture removal turntable drive unit that drives the moisture absorption and moisture removal turntable to rotate at a first rotation speed, where the first rotation speed is 2-10 rpm, preferably 4-6 rpm.
  • the application also provides a clothes processing equipment, including a clothes containing device and a drying device;
  • the drying device includes:
  • the moisture absorption and dehumidification turntable driving part drives the moisture absorption and dehumidification turntable to rotate at a first rotation speed, and the first rotation speed is 2-10 rpm, preferably 4-6 rpm;
  • a heating module located adjacent to at least part of the moisture absorption and dehumidification turntable
  • the heating module operates between a first heating power of 400W-800W and a second heating power of 1200W-1600W.
  • 1-3 respectively show a perspective view, a rear view and a top view of an integrated washing and drying machine according to some embodiments of the present disclosure
  • Figures 4 and 5 respectively show a top view and a perspective view of the drying module in Figures 2 and 3;
  • Figure 6 shows the structural diagram of the lower shell of the drying module
  • Figures 7 to 9 show the top view, bottom view and exploded view of the circulation fan respectively;
  • Figure 10 shows a schematic diagram of the cooperation between the circulation fan and the lower shell of the drying module
  • Figure 11 shows a schematic diagram of the connection method between the flexible tube and the lower shell
  • Figure 12 shows a schematic diagram of the flow direction of the circulating air flow
  • Figures 13 and 14 respectively show an exploded view of the moisture absorption and dehumidification component and a three-dimensional view after assembly;
  • Figure 15 shows a top view of the lower shell
  • Figures 16 and 17 respectively show exploded views of the first mounting part of the lower shell and the upper shell used to install the moisture absorption and dehumidification component;
  • Figure 18 shows an exploded view of the installation of the first installation part, the upper shell, and the moisture absorption and dehumidification component
  • Figure 19 shows a schematic diagram of the fixing method of the integrated lower shell and the upper shell of the moisture absorption and dehumidification component
  • Figure 20 shows a schematic diagram of the flow direction of the dehumidification airflow
  • Figures 21 and 22 respectively show an exploded view and a perspective view of the relevant structures of the heating module and the regeneration fan;
  • Figures 23 and 24 respectively show a perspective view and an exploded view of the first connecting member
  • Figures 25 and 26 respectively show a perspective view and an exploded view of the second connecting member
  • Figure 27 shows a schematic diagram of the installation position of the heating module on the upper shell
  • Figures 28 to 30 respectively show a perspective view of the heating module, a schematic view of the mesh plate, and a bottom view of the heating module;
  • Figure 31 shows a schematic diagram of the fixing method of the condensation module and the lower shell
  • Figure 32 shows a cross-sectional view of the condensation module housing.
  • Clothes processing equipment is used for washing, rinsing, ironing, drying and other processing of clothes.
  • Clothes processing equipment includes, but is not limited to, washing machines, dryers, integrated washing and drying machines and other clothes processing equipment.
  • 1 to 3 respectively show a perspective view, a rear view and a top view of an all-in-one washing and drying machine 1000 according to an embodiment of the present disclosure.
  • Figures 4-5 respectively show a top view and a perspective view of the drying device 2000 in Figures 2-3.
  • FIGS. 1 to 3 illustrate the clothes processing equipment according to the embodiment of the present disclosure.
  • the clothes treatment equipment of the embodiments of the present disclosure can be applied to any type of clothes treatment equipment, including but not limited to side-door drum washing machines, top-door drum washing machines, pulsator washing machines, agitator washing machines, small ( mini) washing machine, etc.
  • the washing and drying machine 1000 includes a clothes storage device 1100 for accommodating clothes to be processed ("processing" here may be washing processing or drying processing).
  • the clothing storage device 1100 may be a storage tube, a storage basket, or other devices that can accommodate clothing.
  • the laundry receiving device 110 may be configured as a drum.
  • the drum may include an inner cylinder and an outer cylinder.
  • the inner cylinder is used to place the clothes to be processed and rotates under the action of the driving mechanism, while the outer cylinder is fixed relative to the body through suspension.
  • the inner cylinder has water-permeable and breathable holes.
  • the outer cylinder is neither water-permeable nor air-permeable, and is provided with a first air outlet.
  • a door 1110 is provided on the housing 1200 of the integrated washing and drying machine 1000 at a position corresponding to the clothes accommodating device 1100 .
  • the door body 1110 is pivotally connected to the housing 1200. The opening and closing of the door 1110 can be controlled manually by the user or with the help of an electronic controller.
  • the washing and drying machine 1000 includes a drying device 2000 for drying the clothes in the clothes containing device 1100 .
  • the drying device 2000 is located above the laundry receiving device 1100 .
  • the relative positions of the clothes accommodating device 1100 and the drying device 2000 are not fixed, and may be arranged relative to each other up and down, or front and back.
  • the drying device 2000 is disposed above the clothes accommodating device 1100 (Fig. 2); or the drying device 2000 is disposed behind the clothes accommodating device 1100; or the drying device 2000 is disposed below the clothes accommodating device 1100; or
  • the drying device 2000 is disposed on the side of the clothes containing device 1100 (not shown).
  • the drying device 2000 includes a moisture absorption channel, a regeneration channel, a circulation fan 2100, a moisture absorption and dehumidification member 2200, a moisture absorption and dehumidification turntable driving part 2300, and a regeneration fan 2400.
  • the first air inlet 2901 of the moisture absorption channel is connected with the air outlet duct 1300 of the clothing containing device 1100 .
  • the first air outlet 2902 of the moisture absorption channel is connected with the air inlet duct of the clothing containing device 1100 .
  • the first air outlet 2902 is connected with the air inlet duct (not shown in FIG. 5 ) of the clothing containing device 1100 through the connector 1400 .
  • the circulation fan 2100 is located in the moisture absorption channel and is used to form a circulating air flow in the clothing containing device 1100 and the moisture absorption channel.
  • the regeneration fan 2400 is located in the regeneration channel and is used to form a regeneration air flow/dehumidification air flow in the regeneration channel.
  • the clothing containing device 1100 has a first airflow inlet and a first airflow outlet.
  • the first airflow inlet is the connection point between the air inlet duct and the clothing containing device 1100 .
  • the first airflow inlet on the clothes containing device 1100 is connected to the drying device 2000 through the air inlet duct.
  • the first air flow outlet is the connection point between the air outlet duct 1300 and the clothes containing device 1100.
  • the first air flow outlet on the clothes containing device 1100 is connected to the drying device 2000 through the air outlet duct 1300.
  • a part of the moisture absorption and drainage member 2200 is located on the moisture absorption channel, and the other part is located on the regeneration channel, so that the circulating air flow in the moisture absorption channel and the moisture drainage air flow in the regeneration channel both flow through the moisture absorption and moisture removal member 2200.
  • the moisture absorption and drainage turntable driving part 2300 may be, for example, a driving motor, which is used to move (eg, rotate) the moisture absorption and drainage member 2200 relative to the moisture absorption channel and the regeneration channel. During the rotation of the moisture absorption and dehumidification member 2200, moisture in the circulating air flow is absorbed, and the moisture is discharged through the moisture dehumidification air flow.
  • the moisture management member 2200 may include a moisture management spinner 2201.
  • the moisture absorption and dehumidification rotating disk 2201 is provided with a hygroscopic agent for absorbing moisture.
  • the hygroscopic agent can be, for example, zeolite (molecular sieve), alkali metal aluminosilicate (13X molecular sieve), lithium chloride, silica gel, modified silica gel, activated alumina, etc.
  • the moisture absorption and dehumidification turntable driving part 2300 is used to drive the moisture absorption and dehumidification turntable 2201 to rotate relative to the moisture absorption channel and the regeneration channel.
  • the moisture absorption and dehumidification turntable 2201 flows through the circulating air flow and the dehumidification air flow at the same time.
  • the area on the moisture absorption and dehumidification rotating disk 2201 that the circulating air flows through is the moisture absorption area
  • the area that the moisture dehumidification air flow flows through is the regeneration area.
  • the drying device 2000 may further include a heating module 2500 and a condensation module 2600 disposed on the regeneration channel.
  • the heating module 2500 covers the regeneration area of the moisture absorption and drainage member 2200 (the moisture absorption and drainage rotary disk 2201), and is used to heat the regeneration area of the moisture absorption and drainage member 2200 (the moisture absorption and drainage rotation disk 2201) to desorb the moisture absorption and drainage member 2200 ( The moisture absorbed by the moisture absorption and dehumidification turntable 2201).
  • the condensation module 2600 is used to condense the moisture exhaust air flow flowing out from the regeneration area of the moisture absorption and moisture removal component 2200 to dry the moisture exhaust air flow.
  • a turntable detection device is provided at the position of the moisture absorption and discharge turntable 2201 for monitoring the rotational speed of the moisture absorption and discharge turntable 2201 and sending it to the control device of the clothing processing equipment to ensure that moisture absorption and discharge are maintained during the drying operation.
  • the wet turntable 2201 continues to rotate, preventing the heating module 2500 from continuously heating an area and burning the moisture absorption and dehumidification turntable 2201.
  • the control device of the clothing treatment equipment adjusts the heating power of the heating module 2500, the circulation power of the circulation fan 2100, the regeneration power of the regeneration fan 2400, etc. accordingly based on feedback from the rotation speed of the moisture absorption and dehumidification turntable 2201.
  • the drying device 2000 further includes an upper shell and a lower shell.
  • the upper shell and the lower shell cover and fix the various components of the drying device 2000, so that the drying device 2000 forms an integral module.
  • the drying device 2000 further includes a housing.
  • the shell includes a first shell (lower shell 2700) and a second shell (upper shell 2820) that accommodates the moisture absorption and dehumidification turntable 2201.
  • Two separation ribs are provided on the first shell, as shown in Figure 16.
  • two partition ribs are provided on the second housing, such as the second partition 2822-1 and 2822-2 in Figure 17.
  • the center of the first housing (lower housing 2700) is provided with a short shaft 2721 and a receiving portion for installing the short shaft 2721.
  • a dividing rib 2725-1 of the first housing can be provided to extend from the inner peripheral wall of the housing to the housing volume. Department of Home Affairs.
  • Another dividing rib 2725-2 of the first housing (lower housing 2700) may be provided to extend from another position of the inner peripheral wall of the housing to the housing accommodating portion.
  • At least two separation ribs do not intersect with the short axis 2721, so that the internal space formed by the butt joint of the first shell and the second shell can be divided into two spaces, namely the first space and the second space, or the moisture absorption space and the second space. Regeneration space, or hygroscopic area and regeneration area.
  • the accommodating part is annular, and at least two separation ribs are arranged tangent to the outer periphery of the annular accommodating part.
  • the upper shell and the lower shell of the drying device 2000 may be separate shells corresponding to a single component of the drying device 2000, or may be an integrated shell corresponding to multiple components of the drying device 2000. body.
  • the lower shell 2700 of the drying device 2000 is an integrated shell.
  • Figure 6 further shows a structural diagram of the integrated lower shell 2700.
  • the lower shell 2700 is provided with an installation part 2710 for installing the circulation fan 2100, an installation part 2720 for installing the moisture absorption and dehumidification component 2200 (i.e., the first installation part), and an installation part for installing the regeneration fan 2400. part 2730 and a mounting part 2740 for mounting the condensation module 2600.
  • the upper shell of the drying device 2000 is a separate shell, including an upper shell 2810 for installing the circulation fan 2100, an upper shell 2820 for installing the moisture absorption and dehumidification component 2200, an upper shell 2830 for installing the condensation module 2600, etc.
  • the lower shell 2700 of the drying device 2000 is provided with a plurality of fourth mounting parts 2701
  • the upper shell 2820 is provided with a fifth mounting part 2801.
  • the fourth installation part 2701 and the fifth installation part 2801 are overlapped and fixed on the housing 1200 of the washing and drying machine 1000, thereby realizing the installation and fixation of the entire drying device 2000.
  • there is no direct rigid connection between the drying device 2000 and the clothes accommodating device 1100 thereby preventing the vibration of the clothes accommodating device 1100 from being transmitted to the drying device 2000 (especially the moisture absorption and discharge member 2200) during operation. , improving the stability and reliability of the drying device 2000.
  • the first air inlet 2901 of the moisture absorption channel of the drying device 2000 may be connected to the air outlet duct 1300 of the clothes containing device 1100 through a flexible tube (such as a corrugated hose) 2903.
  • the air outlet duct 1300 may be provided with a filter (such as a filter screen) for filtering debris and lint.
  • the connecting piece 1400 may also be connected to the air inlet duct of the clothing containing device 1100 through a flexible tube (not shown in FIGS. 2 and 5 ). This can prevent the vibration of the clothes containing device 1100 from being transmitted to the drying device 2000 (especially the moisture absorption and discharge member 2200), thereby improving the stability and reliability of the drying device 2000.
  • various components of the drying device 2000 including circulation fan 2100, moisture absorption and dehumidification component 2200, moisture absorption and dehumidification turntable driving part 2300, regeneration fan 2400, heating module 2500, condensation module 2600, etc.
  • circulation fan 2100, the moisture absorption and dehumidification member 2200, the moisture absorption and dehumidification turntable driving part 2300, and the regeneration fan 2400 are generally parallel and generally perpendicular to the washing and drying machine 1000.
  • the upper shell and the rotating shaft of the clothing containing device 1100 According to this embodiment, the height of the washing and drying machine 1000 can be minimized, thereby saving space.
  • the clothing accommodating device 1100 is generally a cylindrical structure with a rotating axis parallel to the ground, so there is more available space above the side of the clothing accommodating device 1100 (compared to directly above).
  • some components of the drying device 2000 can be disposed in the space between the upper side of the clothes accommodating device 1100 and the housing 1200 , so that the internal space of the washing and drying machine 1000 can be fully utilized, and the washing and drying machine can be made more convenient.
  • the structure of 1000 is more compact and smaller. For example, in the embodiment shown in FIGS.
  • components such as the circulation fan 2100 , the moisture absorption and dehumidification turntable drive unit 2300 , the regeneration fan 2400 , and the condensation module 2600 are all disposed on the upper side of the clothing storage device 1100 .
  • the overall height of the washing and drying machine 1000 depends on the diameter of the clothes accommodating device 1100 and the thickness of the component located directly above the clothes accommodating device 1100 (ie, the moisture absorption and drainage member 220).
  • the rotating shafts of the two rotating components with the largest diameters of the drying device 2000 can be respectively disposed on both sides of the rotating shaft of the clothes accommodating device 1100, and both are opposite and perpendicular to the rotating axes of the clothes accommodating device 1100. This can further make full use of the internal space of the washing and drying machine 1000, making the structure more compact and the volume smaller.
  • the two rotating components with the largest diameters are the moisture absorption and dehumidification component 2200 and the circulation fan 2100.
  • the rotating shafts of the moisture absorption and dehumidification component 2200 and the circulation fan 2100 are respectively located on the clothing containing device 1100.
  • the left and right sides of the washing and drying machine 1000 (viewed from the front view direction of the all-in-one washing and drying machine 1000) are opposite and perpendicular to the rotating axis of the clothes accommodating device 1100.
  • the relevant technology does not consider the cooperation of the two parameters: the area ratio of the moisture absorption space and the moisture discharge space of the moisture absorption and dehumidification turntable 2201 and the power ratio of the circulation fan 2100 and the regeneration fan 2400.
  • the cooperation of these two parameters is very important for drying. The efficiency is significantly improved.
  • the moisture absorption and moisture removal turntable 2201 has a reasonable volume, and when the area ratio of the moisture absorption space and the moisture removal space is within an optimal range, both the moisture absorption capacity and the moisture removal capacity can be effectively improved.
  • the circulation fan 2100 is operated at the first power to form a circulation airflow passing between the moisture absorption space of the clothes containing device 1100 and the drying device 2000 .
  • the regeneration fan 2400 operates at the second power to form a regeneration airflow passing through the moisture removal space.
  • the power ratio of the first power and the second power is 2:1-4:1.
  • the power ratio between the first power and the second power is 2:1, 2.4:1, 2.8:1, 3:1, 3.2:1, 3.5:1, 3.8:1, 4:1, etc.
  • the first power of the circulation fan 2100 can be set in the range of 30W-90W.
  • the second power of the regeneration fan 2400 can be set in the range of 10W-30W.
  • the projected area of the moisture absorption space in at least one plane perpendicular to the rotation axis can be understood as the effective area defined by the moisture absorption and dehumidification rotating disc 2201 when it rotates to the moisture absorption area, which can absorb moisture.
  • the projected area of the moisture removal space in at least one plane perpendicular to the rotation axis can be understood as the effective area defined by the moisture absorption and moisture removal rotary disk 2201 that can dehumidify when it rotates to the regeneration area.
  • the area ratio of the projections of the moisture absorption space and the moisture removal space in at least one plane perpendicular to the rotation axis is in the range of 2:1 to 4:1. For example, 2:1, 2.4:1, 2.8:1, 3:1, 3.2:1, 3.6:1 or 4:1, etc.
  • the difference between the area ratio of the projection of the moisture absorption space and the moisture removal space in at least one plane perpendicular to the rotation axis and the power ratio of the first power and the second power is within the range of ⁇ 2, or in other words, the moisture absorption space and the moisture removal space
  • the difference between the area ratio and the power ratio of the first power and the second power is within a small range, that is, the area ratio and the power ratio are numerically equivalent.
  • the area ratio of the projection of the moisture absorption space and the moisture removal space in at least one plane perpendicular to the rotation axis is 2:1
  • the power ratio of the first power to the second power is 3:1
  • the value of the area ratio differs from the power ratio by -1.
  • the value of the area ratio The value differs from the power ratio by 1.
  • the area ratio of the projection of the moisture absorption space and the moisture removal space in at least one plane perpendicular to the rotation axis is 3:1, and the power ratio of the first power and the second power is 3:1, then the area ratio The numerical value differs from the value of the power ratio by 0.
  • the moisture absorption space area accounts for approximately 75% of the entire moisture absorption and moisture removal turntable 2201 area
  • the moisture removal space area accounts for approximately 25% of the entire moisture absorption and dehumidification turntable 2201 area.
  • the power ratio between the first power and the second power is 3:1
  • the power of the circulation fan 2100 can be set to about 60W
  • the power of the regeneration fan 2400 can be set to about 20W.
  • the value difference between the area ratio and the power ratio does not exceed ⁇ 2, which can effectively control the airflow entering the moisture absorption space and the moisture removal space, thereby effectively improving the moisture absorption and moisture removal efficiency.
  • the circulation fan 2100 and the regeneration fan 2400 operate at a suitable power ratio and can provide an appropriate amount of circulating air flow and regeneration air flow to complete moisture absorption and moisture removal.
  • the power of the circulation fan 2100 and the power of the regeneration fan 2400 is reasonable, the moisture absorption and dehumidification efficiency of the drying device 2000 can be maximized.
  • the moisture absorption and discharge turntable driving part 2300 drives the moisture absorption and discharge turntable 2201 at a first rotation speed.
  • the specific first rotation speed may be 2-10 revolutions per minute (rpm).
  • the specific first rotation speed can be set to 2rpm, 3rpm, 4rpm, 5rpm, 6rpm, 7rpm, 7.5rpm, 9rpm, 10rpm, etc.
  • the moisture absorption and dehumidification turntable driving part 2300 drives the moisture absorption and dehumidification turntable 2201 to rotate at the first speed, which can fully utilize the moisture absorption space.
  • the moisture absorption effect and the moisture removal effect of the moisture removal space improve drying efficiency.
  • the circulation fan 2100 operates at the first power to transport the air flow in the clothes containing device 1100 to the moisture absorption space through the air outlet duct 1300.
  • the moisture absorption and dehumidification turntable 2201 rotates to the moisture absorption space at the first rotation speed and absorbs water vapor in the circulating air flow during the rotation process.
  • the circulating air flow passes through the moisture absorption and dehumidification turntable 2201 from one side of the moisture absorption and dehumidification turntable 2201 to the other side of the moisture absorption and dehumidification turntable 2201, thereby achieving the purpose of absorbing water vapor in the circulating air flow.
  • the regeneration fan 2400 operating at the second power delivers the regeneration air flow/dehumidified air flow to the regeneration area.
  • the moisture absorption and dehumidification turntable 2201 that rotates to the moisture removal space at the first rotation speed encounters the regeneration air flow/moisture removal air flow to discharge the water vapor in the moisture absorption and dehumidification turntable 2201, so that the moisture absorption and dehumidification turntable 2201 that rotates out of the moisture removal space regains its Moisture absorbing ability.
  • the regeneration airflow/moisture removal airflow will also pass through one side of the moisture absorption and dehumidification turntable 2201 in the thickness direction of the moisture absorption and dehumidification turntable 2201
  • the moisture absorption and dehumidification rotary disk 2201 reaches the other side of the moisture absorption and dehumidification rotary disk 2201, thereby achieving the purpose of discharging the water vapor in the moisture absorption and dehumidification rotary disk 2201.
  • the above-mentioned area ratio in the moisture absorption and dehumidification turntable 2201, the power ratio of the two fans, and the first rotation speed of the moisture absorption and dehumidification turntable 2201 can fully exert the hygroscopic effect of the moisture absorption and dehumidification turntable 2201 located in the moisture absorption space and the moisture absorption and dehumidification turntable 2201 located in the moisture removal space.
  • the moisture absorption and dehumidification turntable 2201 in the space can dehumidify, thus improving the drying efficiency of the drying device 2000.
  • the heating module 2100 operates between a first heating power and a second heating power.
  • the heating module 2100 may operate between the first heating power and the second heating power in the form of a sine wave, a square wave, a sawtooth wave, etc.
  • the heating module 2100 may also operate between the first heating power and the second heating power in other irregular forms.
  • the specific operating mode of the heating module 2100 can be adjusted according to the actual situation. For example, different operating modes are performed at different heating stages of the drying process.
  • the first heating power can be set to 400W-800W, and the second heating power can be set to 1200W-1600W.
  • the first heating power is 400W and the second heating power is 1600W.
  • the first heating power is 550W
  • the second heating power is 1450W.
  • the heating power of the heating module 2100 may fluctuate in the form of a rectangular wave between 600W and 1400W.
  • the heating module 2100 can be operated according to the following operation cycle T, such as running 3/4T with the second heating power 1300W, and then running 1/4T with the first heating power 550W, and then cyclically running with the operation cycle T, until drying is complete.
  • the heater can alternately operate according to the operation period T1 and the operation period T2, such as running 1/2T1 with the second heating power 1400W, and then running 1/2T1 with the first heating power 600W; and then running with the second heating power 600W.
  • the heating power is 1250W to run 1/2T2, and then the first heating power is 750W to run 1/2T2, so as to alternately run according to the operation cycle T1 and the operation cycle T2 until the drying is completed.
  • the heating module 2100 operates according to appropriate heating rules, which can avoid uneven heating of the moisture absorption and dehumidification turntable 2201, shorten the heating time or drying time, and improve the moisture absorption effect of the moisture absorption space and the dehumidification effect of the moisture removal space. , thereby improving drying efficiency.
  • the condensation module 2600 can be disposed at the rear end/downstream of the dehumidification space, connected to the regeneration air outlet of the regeneration fan 2400, and used to condense the high-temperature and high-humidity regeneration air flow output from the regeneration air outlet to form a low-temperature Drying airflow.
  • the condensation module 2600 is a water-cooled condenser, which uses water cooling to condense the gas discharged from the moisture removal space.
  • the flow rate of water flow is 0.2-0.4L/min. In one embodiment, the flow rate of the water flow is 0.35L/min.
  • This embodiment provides a condensation processing method for the condensation module 2600.
  • the gas discharged from the dehumidification space can be condensed, so that part of the water vapor is condensed into liquid water and then discharged. Thereby reducing the moisture content in the air flow, the water removal efficiency of the drying device 2000 can be improved.
  • the moisture absorption and discharge rotary disk drive unit 2300 drives the moisture absorption and discharge rotary disk 2201 to rotate.
  • the moisture absorption and dehumidification turntable 2201 rotates to the moisture absorption area, it absorbs moisture in the air flow, and the moisture absorption and dehumidification turntable 2201 continues to rotate to the position of the regeneration area after moisture absorption.
  • the moisture absorption and dehumidification rotating disk 2201 performs moisture dehumidification at the location of the regeneration area. After moisture removal, the moisture absorption and moisture removal turntable 2201 resumes the moisture absorption function, and continues to rotate to the position of the moisture absorption area to absorb moisture, and the cycle continues.
  • the thickness to diameter ratio of the moisture absorbing and wicking disk 2201 is 1:20-1:5.
  • the rotation speed of the moisture absorption and dehumidification turntable 2201 is 2-10 rpm.
  • the ratio of the thickness to the diameter of the moisture absorption and dehumidification rotating disk 2201 can be respectively set to 1:15, 1:13, 1:12, 1:10 or other values.
  • the first rotation speed can be respectively set to 3rpm, 4rpm, 5rpm, 6rpm, 7rpm, 8rpm, 9rpm, 10rpm or other non-integer numbers (such as 3.5rpm, 4.5rpm, 5.5rpm, 6.5rpm, etc.) .
  • the moisture absorption and discharge rotating disc 2201 may be configured in a cylindrical shape.
  • the thickness of the moisture absorption and dehumidification turntable 2201 can be set to 10mm-100mm.
  • the diameter of the moisture absorption and dehumidification turntable 2201 can be set to 40mm-500mm.
  • the thickness of the moisture absorption and dehumidification rotating disk 2201 can be set to 25mm, and the diameter can be set to 320mm.
  • the thickness of the moisture absorption and dehumidification rotating disk 2201 can be set to 30mm, and the diameter can be set to 200mm.
  • the thickness of the moisture absorption and dehumidification rotating disk 2201 can be set to 35mm, and the diameter can be set to 300mm. In another embodiment, the thickness of the moisture absorption and dehumidification rotating disk 2201 can be set to 40mm, and the diameter can be set to 350mm.
  • the diameter of the moisture absorption and dehumidification rotary disk 2201 can be set to 175 mm-750 mm. In one embodiment, when the thickness of the moisture absorption and dehumidification rotary disk 2201 is set to 42 mm, the diameter of the moisture absorption and dehumidification rotary disk 2201 can be set to 210 mm-840 mm. In one embodiment, when the thickness of the moisture absorption and dehumidification rotary disk 2201 is set to 25 mm, the diameter of the moisture absorption and dehumidification rotary disk 2201 can be set to 125 mm-500 mm. The thickness and diameter of the moisture absorption and dehumidification rotating disk 2201 can also be other combinations.
  • a suitable thickness and diameter ratio and a suitable rotation speed of the moisture absorption and dehumidification turntable 2201 are set for the moisture absorption and dehumidification turntable 2201, thereby clarifying the structure and movement state of the moisture absorption and dehumidification turntable 2201, and achieving better results. drying effect.
  • the ratio of the thickness to the diameter of the moisture absorption and dehumidification turntable 2201 is set to 1:15-1:10, the rotation speed of the moisture absorption and dehumidification turntable 2201 is 4-6 rpm, and the areas of the moisture absorption and dehumidification spaces are further determined.
  • the ratio is 2:1-4:1.
  • the area ratios of moisture absorption space and moisture removal space are 2:1, 5:2, 7:2, and 4:1.
  • the ratio of the diameter of the moisture absorption and dehumidification rotating disk 2201 to the diameter of the inner cylinder is 1:2-3:4. In other embodiments, the ratio of the diameter of the moisture absorption and dehumidification rotating disk 2201 to the diameter of the inner cylinder can also be set to 2:4, 2.2:4, 2.5:4, 2.6:4, 2.8:4, or 3:4.
  • the diameter range of the moisture absorption and dehumidification turntable 2201 can be set to 40mm-500mm.
  • the diameter of the inner cylinder can be set in the range of 400-800mm.
  • the specific diameter of the inner cylinder can be adjusted according to the capacity of the clothes/the washing weight it can bear.
  • the diameter of the moisture absorption and dehumidification turntable is 300mm, and the diameter of the inner cylinder is 480mm.
  • the diameter of the moisture absorption and dehumidification turntable is 320mm, and the diameter of the inner cylinder is 580mm.
  • the diameter of the moisture absorption and dehumidification turntable is 350mm, and the diameter of the inner cylinder is 470mm.
  • the diameter of the moisture absorption and dehumidification turntable is 320mm, and the diameter of the inner cylinder is 580mm.
  • the overall structure of the clothes treatment equipment needs to be limited to a suitable volume. Since the drying device 2000 needs to be provided with other structural parts in addition to the moisture absorption and dehumidification turntable 2201, the moisture absorption and dehumidification turntable 2201 The diameter should be smaller than the diameter of the inner cylinder. On the other hand, in order to improve the drying efficiency of the whole machine, the area of the moisture absorption and dehumidification turntable 2201 needs to be increased to improve the moisture absorption and dehumidification capabilities of the moisture absorption and dehumidification turntable 2201. Therefore, the moisture absorption and dehumidification turntable 2201 should be set as large as possible.
  • the ratio of the diameter of the moisture absorption and dehumidification turntable 2201 to the diameter of the inner cylinder is set to 1:2-3:4, which can take into account the size of the entire machine structure and the drying efficiency of the entire machine (by improving the moisture absorption and dehumidification capabilities to improve drying efficiency).
  • the size of the diameter of the outer cylinder is further selected.
  • the diameter of the inner cylinder is set to 600mm and the diameter of the outer cylinder is set to 800mm.
  • the diameter of the inner cylinder is set to 510mm and the diameter of the outer cylinder is set to 680mm.
  • the drying device 2000 and the clothes storage device 1100 are connected through the air outlet duct 1300.
  • the diameter of the inner cylinder, the diameter of the outer cylinder and the diameter of the moisture absorption and dehumidification turntable 2201 should be set so that the diameter of the inner cylinder (the clothes storage device 1100)
  • the gas can be smoothly guided to the moisture absorption and dehumidification turntable 2201 (drying device 2000).
  • the cooperation of other structural components is also required.
  • the air outlet duct 1300 needs to have a suitable inner diameter (to achieve a certain amount of air output per unit time), moisture absorption
  • the dehumidification turntable 2201 needs to have good moisture absorption and dehumidification effects, and the circulation fan 2100 needs to work at a suitable power, etc.
  • the diameter of the inner cylinder is set to 510mm
  • the diameter of the moisture absorption and dehumidification turntable 2201 is set to 320mm.
  • the capacity/weight of the clothes in the inner cylinder, the air outlet volume of the air outlet duct 1300, the moisture absorption and dehumidification function of the moisture absorption and dehumidification turntable 2201 and other conditions are considered, and the diameter of the inner cylinder, the diameter of the outer cylinder, the moisture absorption and dehumidification function are reasonably configured.
  • the diameter of the wet turntable 2201 allows the gas in the inner cylinder to be smoothly guided to the moisture absorption and dehumidification turntable 2201, thereby effectively improving the efficiency of moisture absorption and dehumidification.
  • the settings of the first power and the second power can be adjusted in combination with the ratio of the thickness to the diameter of the moisture absorption and dehumidification rotating disk 2201 and the rotation speed. For example, if the rotation speed of the moisture absorption and dehumidification turntable 2201 is accelerated, the first power and/or the second power can be appropriately increased. In one embodiment, the power ratio of the first power and the second power is 2:1-4:1. For example, the moisture absorption and dehumidification turntable 2201 has a thickness of 25mm and a diameter of 320mm. The rotation speed of the moisture absorption and dehumidification turntable 2201 is 5 rpm. The first power setting is 40W and the second power setting is 10W.
  • the moisture absorption and dehumidification turntable 2201 has a thickness of 25mm and a diameter of 320mm.
  • the rotation speed of the moisture absorption and dehumidification turntable 2201 is 6 rpm.
  • the first power setting is 50W and the second power setting is 12W.
  • the moisture absorption and dehumidification turntable 2201 has a thickness of 25mm and a diameter of 320mm.
  • the rotation speed of the moisture absorption and dehumidification turntable 2201 is 7 rpm.
  • the first power setting is 60W and the second power setting is 18W.
  • the ratio of the thickness to the diameter of the moisture absorption and dehumidification turntable 2201, the rotation speed, the first power and the second power can be set, and can be adjusted according to the actual operating conditions of the clothing treatment equipment, and the coordination relationship is not The only certainty.
  • a condensation module 2600 is further provided on the premise that the ratio of the thickness to the diameter of the moisture absorption and dehumidification turntable 2201 is set to 1:20-1:5, and the rotation speed of the moisture absorption and dehumidification turntable 2201 is 2-10 rpm.
  • the ratio of the thickness to the diameter of the moisture absorption and dehumidification turntable 2201 is set to 1:15, the rotation speed of the moisture absorption and dehumidification turntable 2201 is 7 rpm, and the flow rate of the condensed water is 0.4L/min. Under different thickness-to-diameter ratios and different rotation speeds, reasonable adjustment of the parameter settings of the condensation module 2600 can achieve an orderly conversion of high-temperature and high-humidity airflow to low-temperature drying airflow and improve drying efficiency.
  • the current related art only considers the direct operating temperature of the drying device 2000 during the heating and drying process, and does not consider the changing relationship between the temperature in the clothes containing device 1100 or near the first air flow outlet and the temperature near the first air flow inlet. .
  • the laundry treatment equipment further includes a first temperature detection device (not shown) and a second temperature detection device (not shown).
  • the first temperature detection device is disposed near the first air flow inlet and is used to detect the temperature of the air flow entering the clothes containing device 1100 .
  • the second temperature detection device is disposed in the clothes accommodating device 1100 or near the first air flow outlet, and is used to detect the temperature of the air flow in the clothes accommodating device 1100 or the temperature of the air flow out of the clothes accommodating device 1100 .
  • the first detection temperature detected by the first detection temperature detection device and the second detection temperature detected by the second detection temperature detection device The temperature difference is between 18-30°C.
  • the first detected temperature can be understood as the temperature value at any point in the temperature field of the first airflow inlet section.
  • the second detected temperature can be understood as the temperature value at any point in the temperature field of the first airflow outlet section, or the temperature value at any point within the clothing containing device 1100 .
  • the clothes storage device includes an air outlet duct 1300 connecting the clothes storage device 1100 and the drying device 2000 .
  • the air outlet duct 1300 is configured to guide the air flow from the clothes containing device 1100 to the drying device 2000 .
  • the moist airflow in the clothes containing device 1100 continuously flows to the moisture absorption and dehumidification turntable 2201.
  • the moisture absorption and dehumidification turntable 2201 absorbs the moisture in the moist airflow and delivers the dry airflow to the clothes storage device. 1100 to achieve system stability (the temperature maintains a basically stable changing state).
  • the first detection temperature and the second detection temperature are respectively detected by the first temperature detection device and the second temperature detection device to ensure that the difference between the first detection temperature and the second detection temperature is between 18-30°C. time to achieve stable heating and drying of the clothes in the clothes containing device 1100, and steadily improve the drying efficiency of the drying device 2000.
  • the first detection temperature is between 70-85°C, and the second detection temperature is between 50-60°C. In one embodiment, the first detection temperature is between 73-82°C, and the second detection temperature is between 53-56°C. In one embodiment, the first detection temperature is 75°C, the second detection temperature is 53°C, and the difference between the first detection temperature and the second detection temperature is 22°C. In one embodiment, the first detection temperature is 80°C, the second detection temperature is 55°C, and the difference between the first detection temperature and the second detection temperature is 25°C. In one embodiment, the first detection temperature is 73°C, the second detection temperature is 53°C, and the difference between the first detection temperature and the second detection temperature is 20°C. In one embodiment, the first detection temperature is 70°C, the second detection temperature is 52°C, and the difference between the first detection temperature and the second detection temperature is 18°C.
  • the drying device 2000 works within 85°C, so that the clothes in the drum can be dried in a low temperature range.
  • the heating module 2100 operates between a first heating power of 650W and a second heating power of 1450W for dehumidifying the dehumidification space.
  • the condensation module 2600 uses a water-cooled condenser, and the water flow rate is 0.38L/min.
  • the temperature difference between the first detection temperature and the second detection temperature is maintained at 18-30°C.
  • the specific variation range or variation form of the first heating power and the second heating power may adopt the heating power provided by any of the above embodiments.
  • Figures 7-9 respectively show a top view, a bottom view and an exploded view of the circulation fan 2100.
  • the circulation fan 2100 includes a motor 2110, an upper shell 2810, a fan impeller 2120 and a sealing gasket 2130.
  • the upper shell 2810 is in the shape of a volute, which meets the fluid design requirements and can serve as a flow channel to provide maximum air volume and wind speed for the moisture absorption channel of the drying device 2000.
  • the upper shell 2810 is provided with a pipeline fixing card 2811 for fixing pipelines and a line fixing card 2812 for fixing circuits (such as power lines, control lines of the motor 2110, etc.).
  • the motor 2110 and the upper shell 2810 can be fixed with screws.
  • Figure 10 shows the cooperation mode between the circulation fan 2100 and the integrated lower shell 2700 of the drying device 2000.
  • the upper shell 2810 can be fixed on the mounting portion 2710 through screws 2904, thereby fixedly connecting the circulation fan 2100 and the lower shell 2700.
  • the sealing gasket 2130 is located at the connection between the upper shell 2810 and the mounting part 2710.
  • a sink groove for placing the sealing gasket 2130 may be provided at the edge of the mounting part 2710 or the edge of the upper shell 2810 ( (not shown in Figure 10).
  • the air inlet of the circulation fan 2100 may be the first air inlet 2901 of the moisture absorption channel.
  • the air inlet of the circulation fan 2100 can be connected with the air outlet duct of the inner cylinder through the flexible pipe 2903.
  • the flexible pipe 2903 and the pressure plate 2905 can be connected through positioning pins, and the pressure plate 2905 can be fixed to the mounting portion 2710 of the lower shell 2700 using screws 2906, thereby connecting the flexible pipe 2903 to the circulation fan 2100.
  • the other end of the flexible pipe 2903 can also be connected to the air outlet of the air outlet duct in the same manner.
  • FIG 12 shows the flow direction of the circulating air flow according to the embodiment of the present disclosure.
  • the air flow in the inner cylinder enters the first air inlet 2901 of the moisture absorption channel through the air outlet duct of the inner cylinder (with a filter inside) and the flexible tube 2903, that is, it enters the circulation The air inlet of the fan 2100 (as shown by arrow A).
  • the airflow flows out from the air outlet of the circulation fan 2100 to the lower side of the moisture absorption and dehumidification turntable 2201 (as shown by arrow B), passes through the moisture absorption and dehumidification turntable 2201 to reach the upper side of the moisture absorption and dehumidification turntable 2201 (as shown by arrow C) , flows in the upper space (corresponding to the moisture absorption area/moisture absorption space) of the moisture absorption and dehumidification turntable 2201 (as indicated by arrow D), and enters the inner cylinder (as indicated by arrow E) through the first air outlet 2902 of the moisture absorption channel and the connector 1400. Show).
  • Figures 13 and 14 respectively show an exploded view and a three-dimensional view of the moisture absorption and discharge member 2200 after assembly.
  • Figure 15 shows a top view of lower housing 2700.
  • the moisture absorbing and wicking member 2200 includes a moisture absorbing and wicking rotating disc 2201 , a peripheral upper clip housing 2202 , a peripheral lower clip housing 2203 and a circumferential shock absorber 2204 .
  • the circumferential damping member 2204 is provided on the outer periphery of the moisture absorption and dehumidification turntable 2201 or the inner peripheral wall of the outer peripheral upper clamping housing 2202 and/or the outer peripheral lower clamping housing 2203.
  • the outer circumferential upper clamp housing 2202 and the outer peripheral lower clamp housing 2203 clamp and fix the moisture absorption and dehumidification turntable 2201 and the circumferential shock absorbing member 2204. Clamping and fixing can be achieved by buckles, screws, glue, etc., for example.
  • the circumferential shock-absorbing member 2204 may be made of materials such as foam, soft rubber, tops, etc., for example.
  • the circumferential damping member 2204 is attached to the outer periphery of the moisture absorption and dehumidification turntable 2201, or is attached to the inner peripheral wall of the outer peripheral upper clamp housing 2202 and/or the outer peripheral lower clip housing 2203, and can connect the outer ring of the moisture absorption and dehumidification turntable 2201 to A buffer is formed between the inner ring of the outer peripheral upper clamp housing 2202 and the outer peripheral lower clamp housing 2203, which protects the moisture absorption and dehumidification turntable 2201 and prevents the moisture absorption and dehumidification turntable 2201 (especially when the moisture absorption and dehumidification turntable 2201 is implemented as a molecular sieve, etc. When the material is relatively brittle), it collides with the outer peripheral upper clamp housing 2202 and the outer peripheral lower clamp housing 2203 during rotation and is damaged.
  • the junction of the outer peripheral upper clamp housing 2202 and the outer peripheral lower clamp housing 2203 is either a separate outer peripheral upper clamp housing 2202 or an outer periphery of a separate outer peripheral lower clamp housing 2203
  • a first sealing ring 2205 is provided.
  • the first sealing ring 2205 may be made of foam, soft rubber, tops, or other materials, for example.
  • the first sealing ring 2205 can seal the joint between the outer peripheral upper clamp housing 2202 and the outer peripheral lower clamp housing 2203, and on the other hand, it can seal with the housing sealing ring 2724 provided in the first mounting portion 2720 of the lower housing 2700.
  • a rotary seal is formed so that most of the moist airflow rising from the inner cylinder can pass through the moisture absorption and dehumidification turntable 2201 and be absorbed without leaking from the gap between the outer circumference of the moisture absorption and dehumidification turntable 2201 and the inner circumference of the lower shell 2700, thereby Guaranteed moisture absorption effect.
  • the moisture absorption and drainage component 2200 further includes a central upper clamp 2206 , a central lower clamp 2207 and a central end surface shock absorber 2208 .
  • the moisture absorption and dehumidification rotating disk 2201 is provided with a first hole 2209 in the center
  • the center upper clamp 2206 is provided with a second hole 2210 in the center
  • the center lower clamp 2207 is provided with a third hole 2211 in the center.
  • the upper center clamp 2206 and the lower center clamp 2207 pass through the first hole 2209 to clamp and fix the moisture absorption and dehumidification turntable 2201. Clamping and fixing can be achieved by buckles, screws, glue, etc., for example.
  • the first hole 2209, the second hole 2210, and the third hole 2211 are all sleeved on the short axis 2721 at the center of the first mounting portion 2720 of the lower shell 2700, thereby rotatably connecting the moisture absorption and discharge component 2200 to the lower shell 2700.
  • the central end face shock absorber 2208 is sleeved on the central lower clamp 2207, and is located between the central lower clamp 2207 and the moisture absorption and dehumidification turntable 2201, for protecting the moisture absorption and dehumidification turntable 2201 to prevent the moisture absorption and dehumidification turntable 2201 from being During the rotation process, friction occurred with the center lower clamp 2207 and was damaged.
  • driving teeth are provided on the outer periphery of the upper peripheral clamp housing 2202 .
  • the moisture absorption and dehumidification turntable driving part 2300 may be a driving motor, and the output end of the driving motor is provided with a gear.
  • the gear of the driving motor meshes with the driving teeth on the outer peripheral upper clamp housing 2202, thereby driving the moisture absorption and dehumidification member 2200 to rotate.
  • a belt groove may also be provided on the outer periphery of the clamping housing 2202, and the driving motor drives the moisture absorption and dehumidification member 2200 to rotate through belt transmission.
  • the driving method of the moisture absorption and discharge member 2200 is not limited to the peripheral driving method shown in FIG. 14 .
  • other methods may be used to drive the moisture absorption and drainage member 2200 to rotate.
  • the output end of the moisture absorption and dehumidification turntable driving part 2300 can also be connected to the upper central clamp 2206 or the lower central clamp 2207, and the upper central clamp 2206 or the lower central clamp 2207 can be driven to rotate the moisture absorption and dehumidification member 2200, That is, a central driving method is used to drive the moisture absorption and desorption member 2200 to rotate.
  • the moisture absorption and discharge turntable driving part 2300 needs to be arranged in the vertical direction (upper or lower) of the moisture absorption and discharge member 2200.
  • the moisture absorption and discharge turntable driving part 2300 and the moisture absorption and discharge member 2200 are arranged horizontally. It can be understood that the center-driven driving method takes up more space in the vertical direction than the peripheral driving method, which increases the height and volume of the washing and drying machine.
  • the moisture absorption and moisture removal turntable driving part 2300 can directly drive the moisture absorption and moisture removal component 2200 to rotate, without having to drive the moisture absorption and moisture removal component 2200 by additionally setting a gear or belt at the output end of the driving mechanism like the peripheral drive. , thereby simplifying the structure of the moisture absorption and dehumidification turntable driving part 2300 and reducing the moment of the central axis.
  • Those skilled in the art can select an appropriate driving method to drive the moisture absorption and dehumidification member 2200 to rotate according to actual needs.
  • an auxiliary rotating ring 2212 is provided on the outer periphery of the upper clamp housing 2202 .
  • the lower shell 2700 is provided with a first installation part 2720 for installing the moisture absorption and dehumidification component 2200, and a flexible roller 2722 is provided on the inner wall of the first installation part 2720.
  • the flexible roller 2722 may, for example, be disposed on a mounting portion where the inner side wall of the first mounting portion 2720 protrudes outward.
  • the rotating axis of the flexible roller 2722 is parallel to the rotating axis of the moisture absorbing and discharging member 2200 .
  • the auxiliary rotating ring 2212 and the flexible roller 2722 are in rolling cooperation, which can ensure the stable rotation of the moisture absorption and discharge member 2200 and eliminate the sliding friction between the moisture absorption and discharge member 2200 and the inner ring of the lower shell 2700.
  • the diameter of the flexible roller 2722 is elastically variable, that is, when the flexible roller 2722 is squeezed in the radial direction, the distance between the extrusion point and the rotation axis of the flexible roller 2722 is variable.
  • the auxiliary rotating ring 2212 can squeeze the flexible roller 2722 to cause its deformation without causing the auxiliary force to deform.
  • the pressure between the rotating ring 2212 and the flexible roller 2722 generates sliding friction.
  • the cooperation of the auxiliary rotating ring 2212 and the flexible roller 2722 can reduce the collision with the inner ring of the lower shell 2700 due to unstable and uneven rotation of the moisture absorption and drainage member 2200, and avoid damage to the moisture absorption and drainage member 2200 (especially the moisture absorption and drainage member 2200) due to collision.
  • Wet turntable 2201 wet turntable 2201).
  • auxiliary rotating ring 2212 in addition to the auxiliary rotating ring 2212 being provided on the outer periphery of the upper outer clamp housing 2202 as shown in FIGS. 13 and 14 , the auxiliary rotating ring 2212 can also be provided on the outer periphery of the lower outer clamp housing 2203 . Furthermore, embodiments of the present disclosure do not limit the number of flexible rollers 2722. Those skilled in the art can set five flexible rollers 2722 as shown in Figure 15, or can also set a greater or smaller number of flexible rollers 2722.
  • a rigid roller 2723 is provided on the bottom surface of the first mounting part 2720 .
  • the rigid roller 2723 may be provided, for example, at the edge of the bottom surface of the first mounting part 2720 .
  • the diameter of the rigid roller 2723 is fixed.
  • the rotation axis of the rigid roller 2723 is perpendicular to the rotation axis of the moisture absorption and discharge member 2200.
  • the rigid roller 2723 can roll with the lower surface of the outer peripheral lower clamp housing 2203 to support the outer peripheral lower clamp housing 2203 and eliminate the friction between the moisture absorption and drainage member 2200 and the bottom surface of the lower shell 2700. friction.
  • embodiments of the present disclosure do not limit the number of rigid rollers 2723.
  • Those skilled in the art can set four rigid rollers 2723 as shown in Figure 15, or can also set a greater or smaller number of rigid rollers 2723.
  • FIG. 16 and 17 respectively show exploded views of the first mounting portion 2720 of the lower shell and the upper shell 2820 for mounting the moisture absorption and dehumidification member 2200.
  • FIG. 18 shows an exploded view of the installation of the first installation part 2720, the upper shell 2820, and the moisture absorption and discharge member 2200.
  • the lower shell 2700 of the drying device 2000 may be an integrated lower shell, with a first mounting portion 2720 for mounting the moisture absorption and drainage member 2200 disposed thereon.
  • the drying device 2000 also includes a separate upper shell 2820 for mounting the moisture absorption and drainage member 2200.
  • the upper shell 2820 also includes a first air outlet 2902 of the moisture absorption channel.
  • the moisture absorption and drainage member 2200 is rotatably connected to the short axis 2721 of the first mounting part 2720, so that the moisture absorption and moisture removal member 2200 is rotatably connected to the substantially cylindrical space formed by the first mounting part 2720 and the second mounting part 2821.
  • the first mounting part 2720 is provided with a first partition 2725
  • the second mounting part 2821 is provided with a second partition 2822.
  • the second partition 2822 is located directly above the first partition 2725, thereby dividing the cylindrical space where the moisture absorption and moisture removal member 2200 is located into a moisture absorption area 2907 and a regeneration area 2908, that is, The first partition 2725 and the second partition 2822 can separate the moisture absorption and moisture removal rotating disk 2201 into a moisture absorption area 2907 and a regeneration area 2908.
  • the circulating air flow flows into the moisture absorption area 2907 of the moisture absorption and dehumidification rotating disc 2201 from the bottom of the moisture absorption and dehumidification rotating disc 2201.
  • the moisture absorption area 2907 is used to absorb moisture in the circulating air flow.
  • the dehumidification airflow flows from the top of the moisture absorption and dehumidification turntable 2201 into the regeneration area 2908 of the moisture absorption and dehumidification turntable 2201, and is used to discharge the moisture absorbed by the moisture absorption and dehumidification turntable 2201 through the dehumidification airflow, thereby realizing the regeneration and regeneration of the moisture absorption and dehumidification turntable 2201. Reuse.
  • the first mounting portion 2720 of the lower housing 2700 is further provided with at least one third partition 2726 .
  • At least one third partition 2726 separates the hygroscopic area 2907 into at least a first hygroscopic area 2907-1 and a second hygroscopic area 2907-2, thereby being able to separate the circulating airflow flowing into the hygroscopic area 2907.
  • the circulating airflow After the circulating airflow enters the space between the lower shell 2700 and the moisture absorption and dehumidification component 2200 through the circulating fan, it is relatively evenly divided into at least two parts by the third partition 2726 (that is, the airflow of the two parts is approximately the same), thus avoiding the Under the action of centrifugal force, the circulating airflow flows more toward the circumference of the moisture absorption and dehumidification member 2200, while the airflow near the center of the circle is smaller. According to this embodiment, the moisture absorption efficiency of the moisture absorption and discharge member 2200 can be improved, and uniform and stable moisture absorption can be achieved.
  • a first sealing member is provided between the moisture absorption and dehumidification member 2200 and the first partition 2725 of the lower shell 2700.
  • the first sealing member (for example, can be through screws, buckles , gluing, etc.) is fixed on the upper end surface of the first partition 2725.
  • the first sealing member may include a sealing strip 2728 and a metal pressing piece 2727, for example.
  • the sealing strip 2728 may be made of rubber, foam, top, or other materials, for example.
  • the metal pressing piece 2727 can be connected to the sealing strip 2728 by screws or glue and fix the sealing strip 2728 on the first partition 2725 .
  • a second sealing member is provided between the moisture absorption and dehumidification member 2200 and the second partition 2822 of the upper shell 2820 .
  • the second sealing member (for example, can be through screws, snap, glue, etc.) is fixed to the lower end surface of the second partition 2822 and is located directly above the first seals 2727 and 2728.
  • the second sealing member may include, for example, a sealing ring 2824 and a metal pressing piece 2823.
  • the sealing ring 2824 may be made of rubber, foam, top, or other materials, for example.
  • the metal pressing piece 2823 can be connected to the sealing ring 2824 by screws or glue and fix the sealing ring 2824 on the second partition 2822.
  • the first seals 2727, 2728 and the second seals 2823, 2824 can achieve dynamic sealing between the moisture absorption and drainage member 2200 and the lower shell 2700, that is, during the rotation of the moisture absorption and drainage member 2200, the moisture absorption area 2907 and the regeneration Zone 2908 separates and remains relatively sealed.
  • the circulating airflow in the moisture absorption area 2907 passes through the first partition 2725 and the second partition 2822 as little as possible to reach the regeneration area 2908, and the moisture discharge airflow in the regeneration area 2908 also passes through the first partition 2725 and the second partition as little as possible 2822 reaches the hygroscopic area 2907.
  • the distance between the first sealing member and the second sealing member, especially the sealing strip 2728 and the sealing ring 2824, and the moisture absorption and drainage member 2200 can be set within a reasonable smaller interval, such as between 0.2-5 mm. time, or 0.6-0.8mm is relatively easy to achieve. In this way, during the rotation of the moisture absorption and dehumidification turntable, it will not come into contact with the first sealing member and the second sealing member to cause an increase in rotational resistance, and a better dynamic sealing effect can be achieved.
  • FIG. 19 shows an exemplary fixing manner of the integrated lower shell 2700 and the upper shell 2820 of the moisture absorption and drainage member 2200. As shown in FIG.
  • a housing sealing ring 2724 is provided at the connection between the upper housing 2820 and the first mounting portion 2720 of the lower housing 2700 .
  • the shell sealing ring 2724 is used to ensure the sealing of the space where the moisture absorption and dehumidification component 2200 is located.
  • the housing sealing ring 2724 may be, for example, a rubber gasket, a silicone gasket, or the like.
  • a groove for installing the housing sealing ring 2724 is provided in the first mounting portion 2720 of the upper shell 2820 or the lower shell 2700 . Install the housing sealing ring 2724 to the groove, fasten the upper housing 2820 and the first mounting part 2720 with bolts.
  • the integrated lower shell 2700 of the drying device 2000 is provided with an installation portion 2730 for installing the regeneration fan 2400 .
  • the mounting part 2730 may cooperate with a separate upper shell corresponding to the regeneration fan 2400 to fix the regeneration fan 2400 in the mounting part 2730 of the lower shell 2700.
  • the regeneration fan 2400 may be, for example, a packaged fan module.
  • FIG. 20 shows the flow direction of the dehumidification airflow according to the embodiment of the present disclosure.
  • the dehumidified airflow enters the air inlet of the regeneration fan 2400 (as shown by arrow A), passes through the regeneration fan 2400, and enters the heating module 2500 (such as Indicated by arrows B and C).
  • the heating module 2500 is located above the regeneration area of the moisture absorption and dehumidification turntable 2201 .
  • the dehumidification airflow flows into the heating module 2500, it passes through the regeneration area of the moisture absorption and dehumidification turntable 2201 from top to bottom (as shown by arrow D), and then flows into the condensation module 2600 (as shown by arrow E).
  • the air outlet of the housing (not shown in Figure 20) of the condensation module 2600 is connected with the air inlet of the regeneration fan 2400 through the second connecting piece 2910, so that the regeneration channel forms a closed loop.
  • the dehumidified airflow condensed by the condensation module 2600 flows into the air inlet of the regeneration fan 2400 again through the second connector 2910 (as shown by arrow A), so that the dehumidified airflow can circulate in the regeneration channel.
  • the closed-loop regeneration channel can avoid the interaction between the moisture exhaust airflow and the external environment of the washing and drying machine, and reduce the impact on the external environment (such as affecting the humidity of the external air, etc.).
  • the regeneration channel may also be an open-loop channel.
  • a second air outlet 102 and a second air inlet 103 are provided on the side of the housing 10 of the washing and drying machine.
  • the second air outlet 102 is connected to the outlet of the regeneration channel 202 .
  • the air end 621 is connected, and the second air inlet 103 is connected with the air inlet end 622 of the regeneration channel 202 .
  • at least one of the air outlet end 621 and the air inlet end 622 is provided with a condensation module.
  • the condensation module provided at the air outlet end 621 can condense and dry the dehumidified airflow discharged to the outside, thereby reducing the humidity of the airflow discharged to the outside and avoiding any impact on the external environment.
  • the condensation module provided at the air inlet end 622 can dry the external air flow flowing into the regeneration channel, thereby improving the dehumidification effect of the regeneration area.
  • an electric auxiliary heating component may be provided at the air inlet end 622 .
  • the electric auxiliary heating component is used to preheat the dehumidification airflow flowing into the regeneration channel 202 to improve the dehumidification effect in the regeneration area.
  • each part of the moisture absorption and dehumidification rotary disk 2201 rotates from the moisture absorption channel to the regeneration channel, and then rotates from the regeneration channel to the moisture absorption channel. In this way, the part of the moisture absorption and dehumidification rotary disk 2201 located in the moisture absorption area absorbs the moisture absorption channel. Moisture is removed from the humidified circulating air stream and the section is then rotated to the regeneration area.
  • the heating module 2500 heats this part to quickly desorb the moisture in this part into the dehumidified airflow, thereby turning the dehumidified airflow into a high-temperature airflow containing water vapor (ie, a high-temperature moisture-containing airflow).
  • the condensation module 2600 condenses the high-temperature moist air flow into a low-temperature dry air flow, and discharges the condensed water out of the condensing module 2600 through the condensed water outlet.
  • the low-temperature dry air flow processed by the condensation module 2600 enters the air inlet of the regeneration fan 2400 again (corresponding to the above-mentioned closed-loop regeneration channel), or is discharged to the outside (corresponding to the above-mentioned open-loop regeneration channel).
  • the heating module 2500 is disposed above the regeneration area of the moisture absorption and dehumidification turntable 2201 and covers the regeneration area.
  • Figures 21 and 22 respectively show an exploded view and a perspective view of the relevant structures of the heating module 2500 and the regeneration fan 2400.
  • the regeneration fan 2400 is fixed in the regeneration fan upper shell 2410 and the regeneration fan lower shell 2420.
  • the heating module 2500 is connected with the air outlet of the regeneration fan 2400 through the first connecting piece 2909.
  • a first sealing gasket 2912 is provided at the connection between the heating module 2500 and the first connector 2909 .
  • the heating module 2500 can be connected to the upper module shell corresponding to the moisture absorption and dehumidification component through the third connector 2911, for example, to the sector-shaped notch on the upper end surface of the upper shell 2820 shown in Figure 18.
  • the air inlet of the regeneration fan 2400 is connected to the housing of the condensation module 2600 through the second connection piece 2910 (not shown in Figures 21 and 28).
  • a second sealing gasket 2913 is provided at the connection between the second connecting member 2910 and the shell of the condensation module 2600.
  • Figures 23 and 24 respectively show a perspective view and an exploded view of the first connecting member 2909
  • Figures 25 and 26 respectively show a perspective view and an exploded view of the second connecting member 2910.
  • the first connecting member 2909 can be split into two upper and lower parts, namely the upper first connecting member 2914 and the lower first connecting member 2915.
  • the first connecting member upper part 2914 and the first connecting member lower part 2915 can be processed separately, and then the two are welded or bolted to obtain the first connecting member 2909.
  • the second connecting member 2910 can also be split into two upper and lower parts, namely, an upper second connecting member 2916 and a lower second connecting member 2917 .
  • the second connecting member upper part 2916 and the second connecting member lower part 2917 can be processed separately, and then the two are welded or bolted to obtain the second connecting member 2910.
  • the processing difficulty of the two parts can be reduced and the manufacturability of the two parts can be ensured.
  • the shapes of the first connector 2909 and the second connector 2910 are determined based on the structure and arrangement of the regeneration fan 2400, the heating module 2500, the condensation module 2600 and other components in the regeneration channel, so that they can be connected with the components in the regeneration channel. Other components cooperate to achieve the effect of sealing the regeneration channel and adjusting the flow direction of the moisture removal airflow.
  • the first connector 2909 can be a flexible integrated structure.
  • the air inlet and outlet at both ends can be deformed and extended into the air outlet of the condensation module housing and the air inlet housing of the regeneration fan. After the deformation is restored, A sealed connection is formed by bolt tightening.
  • FIG. 27 shows a schematic diagram of the installation position of the heating module 2500 on the upper shell 2820.
  • the heating module 2500 is disposed on the upper shell 2820, and a heat insulation ring 2918 and a second sealing ring 2919 are disposed between the heating module 2500 and the upper shell 2820.
  • the heat insulation ring 2918 is made of heat insulation or thermal insulation material. In some embodiments, the heat insulation ring 2918 may be made of metal.
  • the second sealing ring 2919 can be made of silicone, rubber, foam or other materials.
  • the second sealing ring 2919 covers the heat insulation ring 2918, and the second sealing ring 2919 is in direct contact with the upper shell 2820 and the heat insulation ring 2918.
  • the regeneration area of the moisture absorption and dehumidification carousel is located below the heating module 2500.
  • Figures 28-30 show a perspective view of the heating module 2500, a schematic view of the mesh plate 2550, and a bottom view of the heating module 2500, respectively.
  • the heating module 2500 includes a sector-shaped housing 2510, a mesh plate 2520 and a heating tube 2530 disposed in the sector-shaped housing 2510.
  • the heating pipe 2530 is arranged below the mesh plate 2520, and the mesh plate 2520 is provided with a plurality of air holes 2521.
  • An air inlet 2540 is provided on the circumferential or radial side of the fan-shaped housing 2510.
  • the dehumidification airflow flowing out from the first connector 2909 flows from the air inlet 2540 into the top of the mesh plate 2520 in the fan-shaped housing 2510. space, then passes through the mesh 2521 on the mesh plate 2520, and after being heated by the heating tube 2530, flows downward to the regeneration area on the moisture absorption and dehumidification turntable.
  • the high-temperature dehumidification airflow heated by the heating pipe 2530 can desorb moisture in the regeneration area.
  • the diameters of the plurality of air holes 2521 on the mesh plate 2520 may not be exactly the same.
  • the diameters of the plurality of air holes 2521 may be sequentially reduced along the flow direction of the dehumidification airflow in the heating module 2500 .
  • the air volume can be adjusted to allow the moisture-exhausted air flow to pass through the mesh plate 2520 evenly, so that the heating pipe 2530 can evenly heat the moisture-exhausted air flow. For example, as shown in FIG.
  • the flow direction of the dehumidified airflow inside the fan-shaped housing 2510 is from the circumference to the center of the circle.
  • the diameters of the plurality of air holes 2521 on the mesh plate 2520 tend to decrease along the direction from the circumference to the center of the fan-shaped housing, whereby the air volume can be adjusted so that the heating pipe 2530 can uniformly discharge the moisture airflow. heating.
  • the air inlet 2540 may also be provided on the radial side of the sector-shaped housing 2510.
  • the dehumidification airflow flows inside the fan-shaped housing 2510 along a direction that is approximately perpendicular to the radius (circumferential direction).
  • the diameters of the plurality of air holes 2521 on the mesh plate 2520 tend to decrease.
  • the air volume passing through the mesh plate 2520 can be adjusted, so that the heating pipe 2530 can evenly heat the dehumidification airflow, so that the heated high-temperature dehumidification airflow can evenly dehumidify the regeneration area of the moisture absorption and dehumidification turntable, thereby Improve moisture removal effect.
  • the heating tube 2530 is not disposed directly below the air hole 2521 , but is offset relative to the air hole 2521 toward the center direction of the sector-shaped housing. Since the position of the heating pipe 2530 is offset to a certain extent relative to the air hole 2521, the heating pipe 2530 will not form a large resistance to the dehumidification airflow passing through the air hole 2521. In addition, when the dehumidified airflow enters the air inlet 2540 and passes through the air hole 2521, the dehumidified airflow has a speed from the circumference of the fan-shaped housing to the center of the circle.
  • the dehumidification airflow passing through the air hole 2521 can be directed towards the heating pipe 2530, thereby improving the effect of the heating pipe 2530 on the dehumidification airflow. heating efficiency.
  • the lower wall of the sector-shaped housing 2510 extends outward to form a third mounting portion 2550 .
  • the heating module 2500 also includes a temperature sensor 2560 covered with a thermally conductive sheet 2570. After the temperature sensor 2560 is covered by the thermal conductive sheet 2570, it is arranged on the third mounting part 2550.
  • the temperature sensor 2560 is used to detect the temperature of the heating module 2500 to control the switch of the heating tube 2530. It can be understood that since the heated dehumidification air flow may form turbulent flow in the heating module 2500, the temperature in the heating module 2500 is not stable. If the temperature sensor 2560 is directly used to detect the temperature of the air flow in the heating module 2500, the temperature value detected by the temperature sensor 2560 will be jumpy and unstable, which is not conducive to effective control of the heating tube 2530.
  • the temperature in the heating module 2500 is first conducted to the thermally conductive sheet 2570 through thermal conduction, and the temperature sensor 2560 detects the temperature of the thermally conductive sheet 2570.
  • the temperature of the thermal conductive sheet 2570 is more stable relative to the temperature of the air flow. Therefore, compared with the temperature sensor 2560 directly detecting the temperature of the air flow, the temperature sensor 2560 detects the temperature value of the thermal conductive sheet 2570, which can improve the stability and accuracy of temperature detection, so that the heating tube 2530 can be effectively controlled.
  • the heating module 2500 heats the dehumidification airflow to obtain high-temperature airflow.
  • This high-temperature air flow can desorb moisture in the regeneration area of the moisture absorption and dehumidification turntable to obtain a high-temperature moisture-containing air flow.
  • the high-temperature moist air flow heated by the condensation module 2600 continues to flow into the condensation module 2600 to condense the high-temperature moist air flow into a low-temperature dry air flow, and the condensed water is discharged from the condensation module 2600 through the condensed water outlet.
  • the low-temperature dry air flow processed by the condensation module 2600 enters the air inlet of the regeneration fan 2400 again (corresponding to the above-mentioned closed-loop regeneration channel), or is discharged to the outside (corresponding to the above-mentioned open-loop regeneration channel).
  • Figure 31 shows a schematic diagram of the fixing manner of the condensation module 2600 and the lower shell 2700.
  • the condensation module upper shell 2830 is matched with the mounting portion 2740 (ie, the condensation module lower shell) in the lower shell 2700 for installing the condensation module.
  • the condensation module upper shell 2830 covers the condensation module 2600, presses downward the sealing strip 2920 around the condensation module 2600, and is sealed and fixed with the installation part 2740.
  • the condensation module upper shell 2830 and the mounting portion 2740 form a complete shell of the condensation module 2600, that is, the condensation module shell.
  • An air outlet 2631 is formed on the shell of the condensation module, and the air outlet 2631 is connected to the air inlet of the regeneration fan 2400 through the second connector 2910 (see Figures 20-28).
  • Figure 32 shows a cross-sectional view of the condensation module housing 2630.
  • the high-temperature and high-humidity dehumidified airflow passing through the regeneration area 2908 enters the condensation module housing 2630 (as shown by arrow A), and undergoes the drying process (as shown by the arrow) of the condensation module 2600 (not shown in Figure 32).
  • B) flows out from the air outlet 2631 to the second connecting member 2910 (shown by arrow C).
  • a baffle 2632 is provided on the bottom surface of the condensation module housing 2630 near the air outlet 2631 .
  • the baffle 2632 can improve the condensation effect of the condensation module 2600, so that the dehumidified air flow can be fully dried by the condensation module 2600.
  • the baffle 2632 can prevent the dehumidified airflow entering the condensation module housing 2630 from flowing out directly from the gap between the condensation module 2600 and the bottom surface of the condensation module housing 2630 without passing through the condensation module 2600, causing this part of the airflow to be unable to be condensed and dried.
  • the condensation module 2600 is provided with a condensation water pipe 2640 for circulating condensation water.
  • the condensate water pipe 2640 further includes a water inlet 2610 and a water outlet 2620.
  • the direction indicated by arrow A in Figure 31 is the flow direction of the dehumidified air flow in the condensation module 2600.
  • a sensor for detecting the status of the condensed water such as a temperature sensor, a flow sensor, etc.
  • a sensor for detecting the status of the condensed water such as a temperature sensor, a flow sensor, etc.
  • an inductive sensor may be provided outside the condensed water inlet pipe to detect whether there is condensed water flowing through the condensed water pipe 2640.
  • the water flow in the condensation water pipe 2640 can be adjusted or a warning can be issued to ensure the normal operation of the condensation module 2600 and improve the condensation effect. For example, if the temperature sensor detects that the temperature of the condensed water is too high, the current condensation effect may be poor.
  • the flow rate of the condensed water can be increased accordingly, thereby lowering the temperature of the condensed water and improving the condensation effect.
  • the flow sensor detects that the flow rate of the condensed water is too small, the condensed water pipe 2640 may be at risk of leakage, and a warning message may be issued to remind the user to inspect or repair the condensed water pipe 2640 .
  • a temperature sensor can also be provided at the air inlet and/or air outlet of the condensation module housing to determine whether the condensation module is operating normally based on the temperature detection value or temperature detection difference or the temperature difference between the air inlet and the air outlet.
  • the condensation water pipe 2640 may be a serpentine pipe.
  • the condensation water pipe 2640 is arranged in a circuitous manner in the condensation module 2600 , thereby increasing the contact area between the dehumidification airflow and the condensation water pipe 2640 , thereby fully condensing the dehumidification airflow.
  • the condensation module 2600 includes a first side and a second side opposite to each other in the flow direction of the moisture removal airflow (see arrow A), wherein the first side is located downstream of the second side.
  • the water inlet 2610 and the water outlet 2620 of the condensation water pipe 2640 are both located on the side wall of the condensation module 2600, which connects the first side and the second side of the condensation module 2600, and is smaller than the first side of the condensation module 2600. On the two sides, the water inlet 2610 and the water outlet 2620 are closer to the first side.
  • the condensate water pipe 2640 extends from the water inlet 2610 along a first zig-zag path toward the second side of the condensation module 2600 to a location away from the first side, and from that location along a second zig-zag path.
  • the path extends toward the first side to the water outlet 2620, wherein the length of the first zigzag path is greater than the length of the second zigzag path, for example, twice the length of the second zigzag path. It will be appreciated that such an arrangement may be advantageous in that the temperature of the condensate water gradually increases from the first side of the condensation module 2600 to the second side of the condensation module 2600 due to heat release from the moisture exhaust airflow, and vice versa.
  • the temperature of the dehumidified airflow gradually decreases from the second side of the condensing module 2600 to the first side of the condensing module 2600, so that a certain temperature difference between the dehumidified airflow and the condensed water is maintained during the entire condensation process. Thereby improving the condensation effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Drying Of Solid Materials (AREA)
  • Drying Of Gases (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Abstract

一种衣物处理设备,包括烘干装置(2000)和衣物容纳装置(1100)。烘干装置(2000)包括内部空间至少被分隔为吸湿空间和排湿空间的壳体、吸湿排湿转盘(2201)、吸湿排湿转盘驱动部(2300)、以第一功率运行的循环风机(2100)、以第二功率运行的再生风机(2400)。吸湿空间和排湿空间在垂直于旋转轴的至少一个平面内的投影的面积比的数值与第一功率和第二功率的功率比的数值相差在±2的范围内。还涉及检测进入衣物容纳装置的气流温度的第一温度检测装置和检测衣物容纳装置(1100)内的气流温度或流出衣物容纳装置(1100)的气流温度的第二温度检测装置,两个温度检测装置的温度差值在18-30℃之间。该衣物处理设备能实现烘干装置(2000)吸湿效率和排湿效率的最大化。

Description

衣物处理设备
相关申请的交叉引用
本申请要求于2022年8月31日提交的中国专利申请202211057592.1以及于2022年8月31日提交的PCT国际专利申请PCT/CN2022/116242的优先权,其全部内容通过引用整体结合在本申请中。
技术领域
本申请涉及家用电器技术领域,特别涉及一种衣物处理设备。
背景技术
现有衣物处理设备的烘干装置通常利用蒸发器或热泵对衣物容纳装置中的潮湿空气进行加热吸湿,得到高温空气之后,再重新进入衣物容纳装置中进行烘干,从而使衣物中的水分得以蒸发。需要提供一种同时具有吸湿和排湿功能的烘干装置。
发明内容
本申请的目的是提供一种具有吸湿排湿转盘的衣物处理设备,能够充分保证吸湿和排湿能力,提升烘干效率。
为了实现上述目的,本申请提供了一种衣物处理设备,包括烘干装置和衣物容纳装置,
所述烘干装置包括:
吸湿排湿转盘;
壳体,容纳所述吸湿排湿转盘;所述壳体内部空间至少被分隔为吸湿空间和排湿空间;
循环风机,以第一功率运行从而形成流经所述衣物容纳装置和所述吸湿空间的循环气流;
再生风机,以第二功率运行从而形成穿过所述排湿空间的再生气流;
所述衣物处理设备还包括:吸湿排湿转盘驱动部,以第一转速驱动所述吸湿排湿转盘在所述壳体内绕旋转轴旋转;
所述吸湿空间和所述排湿空间在垂直于所述旋转轴的至少一个平面内的投影的面积比的数值与所述第一功率和所述第二功率的功率比的数值相差在±2的范围内。
进一步的,所述吸湿排湿转盘的厚度与直径的比值为1:20-1:5,优选1:15-1:10。
进一步的,所述吸湿排湿转盘的厚度为10mm-100mm;直径为40mm-500mm。
进一步的,所述衣物容纳装置为滚筒,所述滚筒包括内筒和外筒,所述吸湿排湿转盘的直径与所述内筒的直径的比为1:2-3:4。
进一步的,所述面积比为2:1-4:1,所述功率比为2:1-4:1。
进一步的,所述第一转速为2-10转/分钟,优选4-6转/分钟。
进一步的,所述烘干装置还包括:加热模块和冷凝模块,所述加热模块临近设置于所述排湿空间;所述冷凝模块设置于所述再生气流的流路上。
进一步的,所述加热模块运行在第一加热功率和第二加热功率之间,所述第一加热功率为400W-800W,所述第二加热功率为1200W-1600W。
进一步的,所述加热模块按照方波的形式在所述第一加热功率和所述第二加热功率之间波动。
进一步的,所述冷凝模块为水冷式冷凝器,水流流速为0.2-0.4L/min,优选0.35L/min。
本申请还提供一种衣物处理设备,包括烘干装置和衣物容纳装置,
所述衣物容纳装置具有第一气流入口,所述第一气流入口与所述烘干装置通过进风管道连通;
所述衣物容纳装置具有第一气流出口,所述第一气流出口与所述烘干装置通过出风管道连通;
所述烘干装置包括:
吸湿排湿转盘和驱动所述吸湿排湿转盘旋转的吸湿排湿转盘驱动部;
所述衣物处理设备还包括:
第一温度检测装置,设置于所述第一气流入口附近,用于检测进入所述衣物容纳装置的气流温度;
第二温度检测装置,设置于所述衣物容纳装置内或所述第一气流出口附近,用于检测所述衣物容纳装置内的气流温度或流出所述衣物容纳装置的气流温度;
至少在所述衣物处理设备工作过程的一个阶段,所述第一温度检测装置检测得到的第一检测温度与所述第二温度检测装置检测得到的第二检测温度的差值在18-30℃之间。
进一步的,所述第一检测温度为70-85℃之间,优选75℃;所述第二检测温度为50-60℃之间,优选53℃。
本申请还提供一种衣物处理设备,包括烘干装置和衣物容纳装置,
所述烘干装置包括:
吸湿排湿转盘和驱动所述吸湿排湿转盘旋转的吸湿排湿转盘驱动部;
壳体,容纳所述吸湿排湿转盘;所述壳体内部空间至少被分隔为吸湿空间和排湿空间;
所述吸湿排湿转盘的厚度与直径的比值为1:20-1:5,优选1:15-1:10;
所述吸湿排湿转盘的旋转速度为2-10转/分钟,优选4-6转/分钟。
本申请还提供一种衣物处理设备,包括衣物容纳装置和烘干装置;
所述烘干装置包括:
吸湿排湿转盘;
壳体,容纳所述吸湿排湿转盘;所述壳体内部空间至少被分隔为吸湿空间和排湿空间;
所述吸湿空间和所述排湿空间在垂直于所述旋转轴的至少一个平面内的投影的面积比为2:1-4:1;
所述烘干装置还包括:吸湿排湿转盘驱动部,以第一转速驱动所述吸湿排湿转盘旋转,所述第一转速为2-10转/分钟,优选4-6转/分钟。
本申请还提供一种衣物处理设备,包括衣物容纳装置和烘干装置;
所述烘干装置包括:
吸湿排湿转盘;
吸湿排湿转盘驱动部,以第一转速驱动所述吸湿排湿转盘旋转,所述第一转速为2-10转/分钟,优选4-6转/分钟;
加热模块,临近设置于至少部分所述吸湿排湿转盘;
所述加热模块运行在第一加热功率和第二加热功率之间,所述第一加热功率为400W-800W,所述第二加热功率为1200W-1600W。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-图3分别示出了根据本公开一些实施例的洗烘一体机的立体图、后视图和顶视图;
图4、图5分别示出了图2-图3中的烘干模组的顶视图和立体图;
图6示出了烘干模组的下壳的结构图;
图7-图9分别示出了循环风机的顶视图、底视图和爆炸图;
图10示出了循环风机与烘干模组的下壳的配合方式的示意图;
图11示出了柔性管与下壳的连接方式的示意图;
图12示出了循环气流的流向的示意图;
图13、图14分别示出了吸湿排湿构件的爆炸图和组装完成后的立体图;
图15示出了下壳的俯视图;
图16、图17分别示出了用于安装吸湿排湿构件的下壳第一安装部和上壳的爆炸图;
图18示出了第一安装部、上壳、吸湿排湿构件的安装爆炸图;
图19示出了一体化下壳与吸湿排湿构件的上壳的固定方式的示意图;
图20示出了排湿气流的流向的示意图;
图21、图22分别示出了加热模块与再生风机相关结构的爆炸图和立体图;
图23、图24分别示出了第一连接件的立体图和爆炸图;
图25、图26分别示出了第二连接件的立体图和爆炸图;
图27示出了加热模块在上壳上的安装位置的示意图;
图28-图30分别示出了加热模块的立体图、网孔板的示意图以及加热模块的底视图;
图31示出了冷凝模块与下壳的固定方式的示意图;
图32示出了冷凝模块外壳的剖视图。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例,不同的实施例中所包括的特征之间可以相互组合。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例(包括不同的实施例中所包括的特征之间相互组合形成新的实施例),都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
本申请提供一种衣物处理设备。衣物处理设备用于对衣物进行洗涤、漂洗、熨烫、烘干等处理。衣物处理设备包括但不限定于洗衣机、烘干机、洗烘一体机等衣物处理设备。图1-图3分别示出了根据本公开实施例的洗烘一体机1000的立体图、后视图和顶视图。图4-图5分别示出了图2-图3中的烘干装置2000的顶视图和立体图。
需要说明的是,尽管本说明书中以图1-图3所示的侧开门式的洗烘一体机1000来说明本公开实施例的衣物处理设备。但应当理解,本公开实施例的衣物处理设备可以适用于任意类型的衣物处理设备,包括但不限于侧开门式的滚筒洗衣机、顶开门式的滚筒洗衣机、波轮洗衣机、搅拌式洗衣机、小型(mini)洗衣机等。
如图1-图3所示,洗烘一体机1000包括用于容纳待处理(这里的“处理”可以是洗涤处理,也可以是烘干处理)衣物的衣物容纳装置1100。衣物容纳装置1100可以是容纳筒、容纳筐或者其他可实现衣物容纳的装置。比如,衣物容纳装置110可以设置为滚筒。滚筒可以包括内筒及外筒,内筒用于放置待处理的衣服,在驱动机构的作用下旋转,而外筒通过悬挂的方式相对于机体固定。内筒具有透水透气孔。外筒不透水也不透气,外筒设有第一出风口。内筒直径小于外筒直径。洗烘一体机1000的外壳1200上对应于衣物容纳装置1100的位置开设有门体1110。门体1110与外壳1200枢转连接。门体1110的开闭可以由用户手动控制或者借助电子控制器来控制。
如图1-图3所示,洗烘一体机1000包括用于对衣物容纳装置1100中的衣物进行烘干的烘干装置2000。烘干装置2000位于衣物容纳装置1100的上方。衣物容纳装置1100和烘干装置2000的相对位置并不固定,可以上下相对设置,也可以前后相对设置。比如,烘干装置2000设置于衣物容纳装置1100的上方(图2);或者烘干装置2000设置于衣物容纳装置1100的后方,或者烘干装置2000设置于衣物容纳装置1100的下方,再或者烘干装置2000设置于衣物容纳装置1100的侧方(图未示)。
如图4、图5所示,在本公开的实施例中,烘干装置2000包括吸湿通道、再生通道、循环风机2100、吸湿排湿构件2200、吸湿排湿转盘驱动部2300和再生风机2400。
如图2所示,吸湿通道的第一进风口2901与衣物容纳装置1100的出风管道1300连通。吸湿通道的第一出风口2902与衣物容纳装置1100的进风管道连通。例如,如图5所示,第一出风口2902通过连接件1400与衣物容纳装置1100的进风管道(图5未示出)连通。循环风机2100位于吸湿通道内,用于使衣物容纳装置1100和吸湿通道内形成循环气流。再生风机2400位于再生通道内,用于使再生通道内形成再生气流/排湿气流。
继续参考图2和图5,衣物容纳装置1100具有第一气流入口和第一气流出口。第一气流入口为进风管道与衣物容纳装置1100的连接处。或者说:衣物容纳装置1100上的第一气流入口与烘干装置2000通过进风管道连通。第一气流出口为出风管道1300与衣物容纳装置1100的连接处.或者说,衣物容纳装置1100上的第一气流出口与烘干装置2000通过出风管道1300连通。
吸湿排湿构件2200的一部分位于吸湿通道上,另一部分位于再生通道上,使得吸湿通道中的循环气流和再生通道中的排湿气流均流经吸湿排湿构件2200。吸湿排湿转盘驱动部2300例如可以是驱动电机,其用于使吸湿排湿构件2200相对于吸湿通道和再生通道运动(例如旋转)。在吸湿排湿构件2200旋转的过程中,吸收循环气流中的水分,并且将该水分通过排湿气流排出。
根据一些实施例,吸湿排湿构件2200可以包括吸湿排湿转盘2201。吸湿排湿转盘2201上设置有用于吸收水分的吸湿剂。吸湿剂例如可以是沸石(分子筛)、碱金属硅铝酸盐(13X分子筛)、氯化锂、硅胶、改性硅胶、活性氧化铝等。
吸湿排湿转盘驱动部2300用于驱动吸湿排湿转盘2201相对于吸湿通道和再生通道旋转。吸湿排湿转盘2201上同时流过循环气流和排湿气流。其中,吸湿排湿转盘2201上被循环气流流经的区域为吸湿区域,被排湿气流流经的区域为再生区域。
根据一些实施例,如图4、图5所示,烘干装置2000还可以包括设置于再生通道上的加热模块2500和冷凝模块2600。加热模块2500覆盖吸湿排湿构件2200(吸湿排湿转盘2201)的再生区域,用于对吸湿排湿构件2200(吸湿排湿转盘2201)的再生区域进行加热,以脱附吸湿排湿构件2200(吸湿排湿转盘2201)所吸收的水分。冷凝模块2600用于对从吸湿排湿构件2200的再生区域流出的排湿气流进行冷凝,以干燥排湿气流。
根据一些实施例,在吸湿排湿转盘2201位置处设置转盘检测装置,用于监测吸湿排湿转盘2201的转速并发送给衣物处理设备的控制装置,以此来确保在烘干工作中保持吸湿排湿转盘2201在持续转动,避免加热模块2500持续对一个区域加热烧毁吸湿排湿转盘2201。衣物处理设备的控制装置通过吸湿排湿转盘2201转速的反馈相应调整加热模块2500的加热功率、循环风机2100的循环功率、再生风机2400的再生功率等。
根据一些实施例,烘干装置2000还包括上壳和下壳。上壳和下壳将烘干装置2000的各个部件包覆并固定,使烘干装置2000形成一个整体模块。根据一些实施例,烘干装置2000还包括壳体。壳体包括容纳吸湿排湿转盘2201的第一壳体(下壳2700)和第二壳体(上壳2820),在第一壳体上设置有两条分隔肋,如图16所示的第一分隔件2725-1和2725-2),在第二壳体上设置有两条分隔肋,如图17中的第二分隔件2822-1和2822-2。第一壳体(下壳2700)的中心位置设置有短轴2721和安装短轴2721的容置部,第一壳体的一条分隔肋2725-1可以设置为从壳体内周壁延伸至壳体容置部。第一壳体(下壳2700)的另一条分隔肋2725-2可以设置为从壳体内周壁的另外一位置延伸至壳体容置部。至少两条分隔肋与短轴2721不相交,从而能够将第一壳体和第二壳体对接所形成的内部空间分隔为两个空间,即第一空间和第二空间,或即吸湿空间和再生空间,或即吸湿区域和再生区域。根据一些示例,容置部为圆环形,至少两条分隔肋以与圆环容置部的外周相切的方式设置。
根据一些实施例,烘干装置2000的上壳和下壳可以是分别对应于烘干装置2000的单个部件的分立的壳体,也可以是对应于烘干装置2000的多个部件的一体化壳体。例如,在图4、图5所示的实施例中,烘干装置2000的下壳2700为一体化壳体。图6进一步示出了该一体化的下壳2700的结构图。如图6所示,下壳2700上设置有用于安装循环风机2100的安装部2710、用于安装吸湿排湿构件2200的安装部2720(即第一安装部)、用于安装再生风机2400的安装部2730、用于安装冷凝模块2600的安装部2740。烘干装置2000的上壳为分立的壳体,包括用于安装循环风机2100的上壳2810、用于安装吸湿排湿构件2200的上壳2820、用于安装冷凝模块2600的上壳2830等。
根据一些实施例,如图3-图5所示,烘干装置2000的下壳2700上设置有多个第四安装部2701,上壳2820上设置有第五安装部2801。第四安装部2701和第五安装部2801搭接固定于洗烘一体机1000的外壳1200上,从而实现整个烘干装置2000的安装固定。在该实施例中,烘干装置2000与衣物容纳装置1100不存在直接的刚性连接,从而能够避免衣物容纳装置1100在工作过程中的振动传递至烘干装置2000(尤其是吸湿排湿构件2200),提高了烘干装置2000的稳定性和可靠性。
根据一些实施例,如图2、图5所示,烘干装置2000的吸湿通道的第一进风口2901可以通过柔性管(例如波纹软管)2903与衣物容纳装置1100的出风管道1300连通。根据一些实施例,出风管道1300中可以设置有用于过滤杂物和衣絮的过滤器(例如滤网)。此外,连接件1400也可以通过柔性管与衣物容纳装置1100的进风管道连通(图2、图5中未示出)。由此能够避免衣物容纳装置1100的振动传递至烘干装置2000(尤其是吸湿排湿构件2200),从而提高烘干装置2000的稳定性和可靠性。
根据一些实施例,如图4、图5所示,烘干装置2000的各个部件(包括循环风机2100、吸湿排湿构件2200、吸湿排湿转盘驱动部2300、再生风机2400、加热模块2500、冷凝模块2600等)水平布置,其中的旋转部件(包括循环风机2100、吸湿排湿构件2200、吸湿排湿转盘驱动部2300、再生风机2400)的转轴大致平行,并且大致垂直于洗烘一体机1000的上壳和衣物容纳装置1100的转轴。根据该实施例,能够最大限度地降低洗烘一体机1000的高度,节省空间。
应当理解,衣物容纳装置1100通常为转轴平行于地面的圆柱形结构,因此在衣物容纳装置1100的侧上方(相较于正上方来说)有更大的可利用的空间。根据一些实施例,可以将烘干装置2000的一些部件设置于衣物容纳装置1100的侧上方与外壳1200之间的空间中,从而能够充分利用洗烘一体机1000的内部空间,使洗烘一体机1000的结构更加紧凑,体积更小。例如,在图3-图5所示的实施例中,循环风机2100、吸湿排湿转盘驱动部2300、再生风机2400、冷凝模块2600等部件均设置于衣物容纳装置1100的侧上方。在该实施例中,洗烘一体机1000的整体高度取决于衣物容纳装置1100的直径和位于衣物容纳装置1100正上方的部件(即吸湿排湿构件220)的厚度。
根据一些实施例,可以将烘干装置2000的直径最大的两个旋转部件的转轴分别设置于衣物容纳装置1100的转轴的两侧,并且二者均与衣物容纳装置1100的转轴异面且垂直。由此可以进一步充分利用洗烘一体机1000的内部空间,使其结构更加紧凑,体积更小。例如,在图3-图5所示的实施例中,直径最大的两个旋转部件为吸湿排湿构件2200和循环风机2100,吸湿排湿构件2200和循环风机2100的转轴分别位于衣物容纳装置1100的左侧和右侧(从洗烘一体机1000的正视图方向看),并且均与衣物容纳装置1100的转轴异面且垂直。
目前相关技术中并没有考虑吸湿排湿转盘2201的吸湿空间和排湿空间的面积比和循环风机2100与再生风机2400的功率比这两个参数的配合,而这两种参数的配合对于烘干效率具有明显提升,在吸湿排湿转盘2201具有合理体积的前提下,当吸湿空间和排湿空间的面积比处于较佳范围内,吸湿能力和排湿能力均可以有效的提升。
根据一些实施例,循环风机2100以第一功率运行从而形成穿过衣物容纳装置1100和烘干装置2000的吸湿空间之间的循环气流。再生风机2400以第二功率运行从而形成穿过排湿空间的再生气流。在一个实施例中,第一功率和第二功率的功率比为2:1-4:1。比如第一功率和第二功率的功率比为2:1、2.4:1、2.8:1、3:1、3.2:1、3.5:1、3.8:1、4:1等。更具体的,循环风机2100的第一功率可以设置在30W-90W的范围内。再生风机2400的第二功率可以设置在10W-30W的范围内。
需要明确的是,吸湿空间在垂直于旋转轴的至少一个平面内的投影的面积可以理解为吸湿排湿转盘2201旋转至吸湿区域时,限定出的能够起到吸湿作用的有效面积。排湿空间在垂直于旋转轴的至少一个平面内的投影的面积可以理解为吸湿排湿转盘2201旋转至再生区域时,限定出的能够起到排湿作用的有效面积。吸湿空间和排湿空间在垂直于旋转轴的至少一个平面内的投影的面积比在2:1至4:1的范围内。比如2:1、2.4:1、2.8:1、3:1、3.2:1、3.6:1或4:1等。
吸湿空间和排湿空间在垂直于旋转轴的至少一个平面内的投影的面积比与第一功率和第二功率的功率比的数值相差在±2的范围内,或者说吸湿空间和排湿空间的面积比与第一功率和第二功率的功率比之间的差值在一个很小的范围内,即面积比与功率比在数值上相当。比如,当吸湿空间和排湿空间在垂直于旋转轴的至少一个平面内的投影的面积比为2:1,第一功率和第二功率的功率比为3:1时,则面积比的数值与功率比的数值相差-1。比如,当吸湿空间和排湿空间在垂直于旋转轴的至少一个平面内的投影的面积比为3:1,第一功率和第二功率的功率比为2:1时,则面积比的数值与功率比的数值相差1。再比如,当吸湿空间和排湿空间在垂直于旋转轴的至少一个平面内的投影的面积比为3:1,第一功率和第二功率的功率比为3:1时,则面积比的数值与功率比的数值相差0。当吸湿空间和排湿空间在垂直于旋转轴的至少一个平面内的投影的面积比为3:1时,吸湿空间面积约占整个吸湿排湿转盘2201面积的75%,排湿空间面积约占整个吸湿排湿转盘2201面积的25%。当第一功率和第二功率的功率比为3:1时,可以设置循环风机2100的功率为60W左右,再生风机2400的功率为20W左右。
本实施例中,面积比与功率比的数值相差不超过±2,可以有效的控制进入吸湿空间和排湿空间的气流,进而有效的提高吸湿和排湿效率。循环风机2100和再生风机2400以合适的功率比运行,可以提供适量的循环气流和再生气流以完成吸湿和排湿。在吸湿排湿转盘2201结构、循环风机2100功率和再生风机2400功率之间的设计配合合理时,可以实现烘干装置2000吸湿和排湿效率的最大化。
在一个实施例中,吸湿排湿转盘驱动部2300以第一转速驱动吸湿排湿转盘2201。具体的第一转速可以为2-10转/分钟(rpm)。具体的第一转速可以设置为2rpm、3rpm、4rpm、5rpm、6rpm、7rpm、7.5rpm、9rpm、10rpm等。
本实施例中,在吸湿排湿转盘2201中面积比和两个风机的功率比满足合适范围时,吸湿排湿转盘驱动部2300驱动吸湿排湿转盘2201以第一转速旋转,可以充分发挥吸湿空间的吸湿作用和排湿空间的排湿作用,提高烘干效率。具体的,可理解为循环风机2100以第一功率运行,将衣物容纳装置1100中的气流通过出风管道1300向吸湿空间输送循环气流。以第一转速旋转至吸湿空间的吸湿排湿转盘2201,在旋转过程中吸收循环气流中的水汽。在吸湿排湿转盘2201的厚度方向上,循环气流从吸湿排湿转盘2201的一侧穿过吸湿排湿转盘2201到达吸湿排湿转盘2201的另一侧,从而达到吸收循环气流中的水汽的目的。以第二功率运行的再生风机2400将再生气流/排湿气流输送至再生区域。以第一转速旋转至排湿空间的吸湿排湿转盘2201遇到再生气流/排湿气流,以将吸湿排湿转盘2201中的水汽排出,使得旋转出排湿空间的吸湿排湿转盘2201重新具有吸湿能力。在排湿空间的吸湿排湿转盘2201遇到再生气流/排湿气流时,再生气流/排湿气流也会在吸湿排湿转盘2201的厚度方向上,从吸湿排湿转盘2201的一侧穿过吸湿排湿转盘2201到达吸湿排湿转盘2201的另一侧,从而达到将吸湿排湿转盘2201中的水汽排出的目的。因此,上述吸湿排湿转盘2201中的面积比、两个风机的功率比以及吸湿排湿转盘2201的第一转速相互配合可以充分发挥位于吸湿空间的吸湿排湿转盘2201的吸湿作用和位于排湿空间的吸湿排湿转盘2201的排湿作用,进而提高烘干装置2000的烘干效率。
在一个实施例中,加热模块2100运行在第一加热功率和第二加热功率之间。加热模块2100可以按照正弦波、方波、锯齿波等的形式运行在第一加热功率和第二加热功率之间。加热模块2100也可以按照其他非规则的形式运行在第一加热功率和第二加热功率之间。加热模块2100具体的运行方式可以按照实际情况进行调整,比如:在烘干过程的不同加热阶段,按照不同的运行方式进行。
第一加热功率可设置为400W-800W,第二加热功率可设置为1200W-1600W。在一个实施例中,第一加热功率为400W,第二加热功率为1600W。一个实施例中,第一加热功率为550W,第二加热功率为1450W。一个实施例中,加热模块2100的加热功率可以在600W和1400W之间按照矩形波的形式波动。另一个实施例中,加热模块2100可以按照以下运行周期T运行,比如以第二加热功率1300W运行3/4T,再以第一加热功率550W运行1/4T,之后以该运行周期T循环运行,直至烘干完成。在另一个实施例中,加热器可以按照运行周期T1和运行周期T2交替循环运行,比如以第二加热功率1400W运行1/2T1,再以第一加热功率600W运行1/2T1;之后以第二加热功率1250W运行1/2T2,再以第一加热功率750W运行1/2T2,以此按照运行周期T1和运行周期T2交替循环运行,直至烘干完成。
本实施例中,加热模块2100按照合适的加热规律运行,可以避免吸湿排湿转盘2201受热不均匀,也可以缩短加热时间或烘干时间,提高吸湿空间的吸湿效果和排湿空间的排湿效果,进而提高烘干效率。
在一个实施例中,冷凝模块2600可以设置在排湿空间的后端/下游,连通至再生风机2400的再生气流出口,用于对再生气流出口输出的高温高湿的再生气流进行冷凝以形成低温干燥气流。冷凝模块2600为水冷式冷凝器,采用水冷对排湿空间排出的气体进行冷凝。水流的流速为0.2-0.4L/min。一个实施例中水流的流速为0.35L/min。
本实施例中提供了冷凝模块2600的一种冷凝处理方法,在此冷凝处理方法下可以将排湿空间排出的气体进行冷凝,使得部分水蒸气被冷凝成液态水,之后被排出。从而降低了气流中的水分含量,能够提升烘干装置2000的除水效率。
吸湿排湿转盘驱动部2300驱动吸湿排湿转盘2201进行旋转。当吸湿排湿转盘2201旋转至吸湿区域,则对气流进行吸湿,吸湿后的吸湿排湿转盘2201继续旋转至再生区域所在位置。吸湿排湿转盘2201在再生区域所在位置进行排湿。排湿后的吸湿排湿转盘2201恢复吸湿功能,继续旋转至吸湿区域所在位置进行吸湿,以此循环下去。因此,吸湿排湿转盘2201的厚度和直径的不同设置会影响其对气流的吸湿排湿效果。另外,吸湿排湿转盘2201的旋转速度也会影响对气流的吸湿排湿效果。
在一组实施例中,吸湿排湿转盘2201的厚度与直径的比为1:20-1:5。吸湿排湿转盘2201的旋转速度为2-10rpm。在其他不同的实施例中,吸湿排湿转盘2201的厚度与直径的比可以分别设置为1:15、1:13、1:12、1:10或其他数值。在其他不同的实施例中,第一转速可以分别设置为3rpm、4rpm、5rpm、6rpm、7rpm、8rpm、9rpm、10rpm或其他的非整数(如3.5rpm、4.5rpm、5.5rpm、6.5rpm等)。
在一个实施例中,吸湿排湿转盘2201可以设置为圆柱形。吸湿排湿转盘2201的厚度可以设置为10mm-100mm。吸湿排湿转盘2201的直径可以设置为40mm-500mm。比如,一个实施例中,吸湿排湿转盘2201的厚度可以设置为25mm,直径可以设置为320mm。一个实施例中,吸湿排湿转盘2201的厚度可以设置为30mm,直径可以设置为200mm。另一个实施例中,吸湿排湿转盘2201的厚度可以设置为35mm,直径可以设置为300mm。再一个实施例中,吸湿排湿转盘2201的厚度可以设置为40mm,直径可以设置为350mm。
一个实施例中,吸湿排湿转盘2201的厚度设置为35mm时,吸湿排湿转盘2201的直径设置可以设置为175mm-750mm。一个实施例中,吸湿排湿转盘2201的厚度设置为42mm时,吸湿排湿转盘2201的直径设置可以设置为210mm-840mm。一个实施例中,吸湿排湿转盘2201的厚度设置为25mm时,吸湿排湿转盘2201的直径设置可以设置为125mm-500mm。吸湿排湿转盘2201的厚度和直径还可以是其他的组合。
本实施例中,为吸湿排湿转盘2201设置了合适的厚度和直径的比以及合适的吸湿排湿转盘2201的旋转速度,从而明确了吸湿排湿转盘2201的结构及运动状态,能够实现较好的烘干效果。
在一个实施例中,吸湿排湿转盘2201的厚度与直径的比设置为1:15-1:10,吸湿排湿转盘2201的旋转速度为4-6rpm,进一步的吸湿空间和排湿空间的面积比为2:1-4:1。比如吸湿空间和排湿空间的面积比为2:1、5:2、7:2、4:1。吸湿排湿转盘2201的厚度与直径的比、旋转速度、吸湿空间和排湿空间的面积比,三个参数值的结合可以进一步的提升烘干效率。
在一个实施例中,吸湿排湿转盘2201的直径与内筒的直径的比为1:2-3:4。其他实施例中,吸湿排湿转盘2201的直径与内筒直径的比还可以设置为2:4、2.2:4、2.5:4、2.6:4、2.8:4、3:4。吸湿排湿转盘2201的直径范围可以设置为40mm-500mm。内筒直径的范围可以设置在400-800mm,具体内筒直径的大小可以根据衣物容量/承受的洗涤重量进行调节。比如,吸湿排湿转盘的直径为300mm,内筒直径480mm。比如,吸湿排湿转盘的直径为320mm,内筒直径580mm。再比如,吸湿排湿转盘的直径为350mm,内筒直径470mm。吸湿排湿转盘的直径为320mm,内筒直径580mm。
本实施例中,一方面需要将衣物处理设备的整机结构限定在一个合适体积下,由于烘干装置2000中除了吸湿排湿转盘2201之外还需要设置其他结构件,因此吸湿排湿转盘2201的直径要小于内筒直径。另一方面为了提升整机的烘干效率,需要增大吸湿排湿转盘2201的面积以提高吸湿排湿转盘2201的吸湿和排湿能力,因此吸湿排湿转盘2201要设置的尽可能大一些。本实施例中,吸湿排湿转盘2201的直径与内筒直径的比设置为1:2-3:4,可以兼顾整机结构的大小和整机的烘干效率(通过提高吸湿和排湿能力来提高烘干效率)。
在一个实施例中,在确定内筒直径后,进一步选择外筒直径的大小。比如,内筒直径设置为600mm,外筒直径设置为800mm。再比如,内筒直径设置为510mm,外筒直径设置为680mm。烘干装置2000与衣物容纳装置1100之间通过出风管道1300连通,因此,内筒直径、外筒直径与吸湿排湿转盘2201的直径的设置,应该使得内筒(衣物容纳装置1100)中的气体可以顺畅的导出至吸湿排湿转盘2201(烘干装置2000)。当然,要使得内筒中的气体可以顺畅的导出至吸湿排湿转盘2201还需要其他结构件的配合,比如出风管道1300需具有合适的内径(在单位时间内能够达到一定的出气量)、吸湿排湿转盘2201需具有良好的吸湿排湿作用、循环风机2100需工作在合适的功率等等。比如当内筒直径设置为510mm,吸湿排湿转盘2201的直径设置为320mm。
本实施例中,考虑了内筒中衣物的容量/重量、出风管道1300的出气量、吸湿排湿转盘2201的吸湿排湿作用等条件,合理的配置了内筒直径、外筒直径、吸湿排湿转盘2201的直径,在多方参数有有效配合下,使得内筒中的气体可以顺畅的导出至吸湿排湿转盘2201,以有效的提高吸湿排湿效率。
在一个实施例中,第一功率和第二功率的设置可以结合吸湿排湿转盘2201的厚度与直径的比、旋转速度进行调整。比如吸湿排湿转盘2201的旋转速度加快,可以适当的增加第一功率和/或第二功率。在一个实施例中,第一功率和第二功率的功率比为2:1-4:1。比如,吸湿排湿转盘2201的厚度为25mm,直径为320mm。吸湿排湿转盘2201的转速为5rpm。第一功率设置为40W,第二功率设置为10W。比如,吸湿排湿转盘2201的厚度为25mm,直径为320mm。吸湿排湿转盘2201的转速为6rpm。第一功率设置为50W,第二功率设置为12W。再比如,吸湿排湿转盘2201的厚度为25mm,直径为320mm。吸湿排湿转盘2201的转速为7rpm。第一功率设置为60W,第二功率设置为18W。
本实施例中,可以结合吸湿排湿转盘2201的厚度与直径的比、旋转速度、第一功率和第二功率的大小设置,可以根据衣物处理设备实际的运行情况进行调整,其配合关系并不唯一确定。
在一个实施例中,在吸湿排湿转盘2201的厚度与直径的比设置为1:20-1:5、吸湿排湿转盘2201的旋转速度为2-10rpm的前提下,进一步设置冷凝模块2600。比如,吸湿排湿转盘2201的厚度与直径的比设置为1:15,吸湿排湿转盘2201的旋转速度为7rpm,冷凝水的流速为0.4L/min。在不同的厚度与直径的比、不同的旋转速度下,合理的调整冷凝模块2600的参数设置,可以实现高温高湿气流到低温干燥气流的有序转换,提升烘干效率。
目前相关技术中仅考虑烘干装置2000在加热烘干过程中的直接工作温度,并没有考虑衣物容纳装置1100内或第一气流出口附近的温度与第一气流入口附近的温度之间的变化关系。而申请人发现当控制衣物容纳装置1100内或第一气流出口附近的温度与第一气流入口附近的温度之间实现满足一定关系时,可以提高烘干效率。
在一组实施例中,衣物处理设备还包括第一检测温度检测装置(图未示)和第二检测温度检测装置(图未示)。第一检测温度检测装置设置于第一气流入口附近,用于检测进入衣物容纳装置1100的气流温度。第二检测温度检测装置设置于衣物容纳装置1100内或第一气流出口附近,用于检测衣物容纳装置1100内的气流温度或流出衣物容纳装置1100的气流温度。
至少在衣物处理设备工作过程的一个阶段(比如在烘干过程中的加热烘干阶段),第一检测温度检测装置检测得到的第一检测温度与第二检测温度检测装置检测得到的第二检测温度的差值在18-30℃之间。第一检测温度可以理解为在第一气流入口截面的温度场中的任一点的温度值。第二检测温度可以理解为在第一气流出口截面的温度场中的任一点的温度值,或者衣物容纳装置1100内任一点的温度值。
本实施例中,衣物容纳设备包括连通衣物容纳装置1100和烘干装置2000的出风管道1300。出风管道1300被构造成将来自衣物容纳装置1100的气流引导至烘干装置2000。至少在衣物处理设备工作过程的一个阶段,衣物容纳装置1100内的潮湿气流不断的流向吸湿排湿转盘2201,吸湿排湿转盘2201吸收潮湿气流中的水分,并将干燥的气流输送至衣物容纳装置1100,以实现系统稳定(温度保持基本稳定的变化状态)。本实施例中,通过第一温度检测装置和第二温度检测装置分别检测第一检测温度和第二检测温度,保证第一检测温度和第二检测温度之间的差值在18-30℃之间,以实现对衣物容纳装置1100中的衣物进行稳定的加热烘干,稳步提升烘干装置2000的烘干效率。
在一个实施例中,第一检测温度在70-85℃之间,第二检测温度在50-60℃之间。一个实施例中第一检测温度在73-82℃之间,第二检测温度在53-56℃之间。一个实施例中,第一检测温度为75℃,第二检测温度为53℃,第一检测温度和第二检测温度之间的差值为22℃。一个实施例中,第一检测温度为80℃,第二检测温度为55℃,第一检测温度和第二检测温度之间的差值为25℃。一个实施例中,第一检测温度为73℃,第二检测温度为53℃,第一检测温度和第二检测温度之间的差值为20℃。一个实施例中,第一检测温度为70℃,第二检测温度为52℃,第一检测温度和第二检测温度之间的差值为18℃。
本实施例中,在第一检测温度和第二检测温度之间的温度差保持在18-30℃时,进一步设置第一检测温度的范围和第二检测温度的范围,可以使得衣物处理设备的烘干装置2000工作在85℃以内,以使得滚筒内的衣物在低温烘干范围。
在一个实施例中,加热模块2100运行在第一加热功率650W和第二加热功率1450W之间,用于对排湿空间进行排湿。冷凝模块2600采用水冷式冷凝器,水流流速为0.38L/min。
本实施例中,通过设置加热模块2100的功率变化和冷凝模块2600的冷凝配合实现第一检测温度和第二检测温度之间的温度差保持在18-30℃。具体第一加热功率和第二加热功率的变化范围或变化形式可以采用上述任一个实施例所提供的加热功率。
图7-图9分别示出了循环风机2100的顶视图、底视图和爆炸图。如图7-15所示,循环风机2100包括电机2110、上壳2810、风机叶轮2120和密封垫圈2130。
根据一些实施例,上壳2810呈蜗壳形状,符合流体设计要求,能够作为流道为烘干装置2000的吸湿通道提供最大限度的风量和风速。上壳2810上设置有用于固定管路的管路固定卡2811和用于固定线路(例如电机2110的电源线、控制线等)的线路固定卡2812。电机2110与上壳2810可以采用螺丝固定。
图10示出了循环风机2100与烘干装置2000的一体化下壳2700的配合方式。如图10所示,上壳2810可以通过螺丝2904固定于安装部2710上,从而将循环风机2100与下壳2700固定连接。密封垫圈2130位于上壳2810与安装部2710的连接处。根据一些实施例,为了便于将循环风机2100安装至下壳2700以及提高循环风机2100的密封性,安装部2710的边缘处或上壳2810的边缘处可以设置有用于放置密封垫圈2130的沉槽(图10中未示出)。
根据一些实施例,循环风机2100的进风口可以是吸湿通道的第一进风口2901。相应地,循环风机2100的进风口可以通过柔性管2903与内筒的出风管道连通。根据一些实施例,如图11所示,可以通过定位销连接柔性管2903和压板2905,采用螺钉2906将压板2905固定于下壳2700的安装部2710上,从而将柔性管2903连接至循环风机2100的进风口,柔性管2903的另一端也可以采用相同的方式连接至出风管道的出风口处。
在循环风机2100的作用下,可以在吸湿通道与内筒之间形成循环气流。图12示出了本公开实施例的循环气流的流向。如图12所示,在循环风机2100的作用下,内筒中的气流依次通过内筒的出风管道(内设有过滤器)和柔性管2903进入吸湿通道的第一进风口2901,即进入循环风机2100的进风口(如箭头A所示)。气流从循环风机2100的出风口流出到吸湿排湿转盘2201的下侧(如箭头B所示),穿过吸湿排湿转盘2201以到达吸湿排湿转盘2201的上侧(如箭头C所示),在吸湿排湿转盘2201的上侧空间(对应于吸湿区域/吸湿空间)流动(如箭头D所示),经吸湿通道的第一出风口2902和连接件1400进入内筒(如箭头E所示)。
图13、图14分别示出了吸湿排湿构件2200的爆炸图和组装完成后的立体图。图15示出了下壳2700的俯视图。
根据一些实施例,如图13所示,吸湿排湿构件2200包括吸湿排湿转盘2201、外周上夹壳体2202、外周下夹壳体2203和圆周减震件2204。圆周减震件2204设置于吸湿排湿转盘2201的外周或外周上夹壳体2202并且/或者外周下夹壳体2203的内周壁。外周上夹壳体2202和外周下夹壳体2203将吸湿排湿转盘2201和圆周减震件2204夹持固定。夹持固定例如可以通过卡扣、螺钉、胶粘等方式实现。
圆周减震件2204例如可以是泡棉、软胶、毛条等材料。圆周减震件2204贴附于吸湿排湿转盘2201的外周,或者贴附于外周上夹壳体2202并且/或者外周下夹壳体2203的内周壁,能够在吸湿排湿转盘2201的外圈与外周上夹壳体2202和外周下夹壳体2203的内圈之间形成缓冲,对吸湿排湿转盘2201起到保护作用,避免吸湿排湿转盘2201(尤其在吸湿排湿转盘2201实现为分子筛等较脆的材料时)在旋转的过程中与外周上夹壳体2202和外周下夹壳体2203发生碰撞而损坏。
根据一些实施例,如图13、图14所示,外周上夹壳体2202和外周下夹壳体2203的结合处或者单独的外周上夹壳体2202或者单独的外周下夹壳体2203的外周设置有第一密封圈2205。第一密封圈2205例如可以是泡棉、软胶、毛条等材料。第一密封圈2205一方面可以对外周上夹壳体2202和外周下夹壳体2203的结合处进行密封,另一方面可以与设置在下壳2700的第一安装部2720中的壳体密封圈2724形成转动密封,使得从内筒上行的潮湿气流能够绝大部分穿过吸湿排湿转盘2201被吸湿,而不会从吸湿排湿转盘2201外周与下壳2700的内周之间的间隙漏出,从而保证吸湿效果。
根据一些实施例,如图13、图14所示,吸湿排湿构件2200还包括中心上夹件2206、中心下夹件2207和中心端面减震件2208。吸湿排湿转盘2201的中心开设有第一孔2209,中心上夹件2206的中心开设有第二孔2210,中心下夹件2207的中心开设有第三孔2211。中心上夹件2206和中心下夹件2207穿过第一孔2209,将吸湿排湿转盘2201夹持固定。夹持固定例如可以通过卡扣、螺钉、胶粘等方式实现。第一孔2209、第二孔2210和第三孔2211均套设于下壳2700的第一安装部2720中心的短轴2721上,由此将吸湿排湿构件2200与下壳2700旋转连接。中心端面减震件2208套设于中心下夹件2207上,并且位于中心下夹件2207与吸湿排湿转盘2201之间,用于对吸湿排湿转盘2201进行保护,避免吸湿排湿转盘2201在旋转过程中与中心下夹件2207发生摩擦而损坏。
根据一些实施例,如图13、图14所示,外周上夹壳体2202的外周设置有驱动齿。吸湿排湿转盘驱动部2300可以是驱动电机,该驱动电机的输出端设置有齿轮。驱动电机的齿轮与外周上夹壳体2202上的驱动齿啮合,从而带动吸湿排湿构件2200旋转。也可以在外周上夹壳体2202外周设置皮带槽,驱动电机通过皮带传动的方式驱动吸湿排湿构件2200旋转。
需要说明的是,吸湿排湿构件2200的驱动方式不限于图14所示的外周驱动方式。在另一些实施例中,也可以采用其他的方式来驱动吸湿排湿构件2200旋转。例如,也可以使吸湿排湿转盘驱动部2300的输出端连接中心上夹件2206或中心下夹件2207,通过驱动中心上夹件2206或中心下夹件2207来带动吸湿排湿构件2200旋转,即,采用中心驱动的方式来驱动吸湿排湿构件2200旋转。通常地,在中心驱动的驱动方式中,需要将吸湿排湿转盘驱动部2300设置在吸湿排湿构件2200的垂直方向(上方或下方)。而在图14所示的外周驱动的驱动方式中,吸湿排湿转盘驱动部2300与吸湿排湿构件2200水平设置。可以理解,中心驱动的驱动方式相较于外周驱动的驱动方式来说,占用的垂直方向的空间更多,由此会增加洗烘一体机的高度和体积。但是,中心驱动的驱动方式可以由吸湿排湿转盘驱动部2300直接驱动吸湿排湿构件2200旋转,而不必像外周驱动一样通过在驱动机构的输出端额外设置齿轮或皮带来驱动吸湿排湿构件2200,由此能够简化吸湿排湿转盘驱动部2300的结构并且减少中心轴的力矩。本领域技术人员可以根据实际需要,选择合适的驱动方式来驱动吸湿排湿构件2200旋转。
根据一些实施例,如图13、图14所示,外周上夹壳体2202的外周设置有辅助转动圈2212。如图15所示,下壳2700上设置有用于安装吸湿排湿构件2200的第一安装部2720,第一安装部2720的内侧壁设置有柔性滚轮2722。柔性滚轮2722例如可以设置在第一安装部2720的内侧壁向外凸出的安装部上。柔性滚轮2722转轴与吸湿排湿构件2200的转轴平行。
在吸湿排湿构件2200旋转的过程中,辅助转动圈2212与柔性滚轮2722滚动配合,能够保证吸湿排湿构件2200稳定旋转,消除吸湿排湿构件2200与下壳2700内圈之间的滑动摩擦。柔性滚轮2722的直径是弹性可变的,即,在柔性滚轮2722受到径向的挤压时,挤压点与柔性滚轮2722的转轴之间的距离可变。在吸湿排湿构件2200的旋转过程中,吸湿排湿构件2200的转轴相对于短轴2721存在偏移的情况下,辅助转动圈2212可以挤压柔性滚轮2722致其变形,而又不会因为辅助转动圈2212与柔性滚轮2722的抵压而产生滑动摩擦力。辅助转动圈2212与柔性滚轮2722的配合能够减轻因吸湿排湿构件2200的旋转不稳定、不均匀而与下壳2700内圈的碰撞,避免因碰撞而损坏吸湿排湿构件2200(尤其是吸湿排湿转盘2201)。
需要说明的是,除了可以如图13、图14所示将辅助转动圈2212设置于外周上夹壳体2202的外周之外,也可以将辅助转动圈2212设置在外周下夹壳体2203的外周。此外,本公开的实施例不限制柔性滚轮2722的数量。本领域技术人员可以如图15所示,设置5个柔性滚轮2722,也可以设置数量更多或更少的柔性滚轮2722。
根据一些实施例,如图15所示,第一安装部2720的底面设置有刚性滚轮2723。刚性滚轮2723例如可以设置在第一安装部2720的底面的边缘处。刚性滚轮2723的直径是固定的。刚性滚轮2723的转轴与吸湿排湿构件2200的转轴垂直。在吸湿排湿构件2200旋转的过程中,刚性滚轮2723能够与外周下夹壳体2203的下表面滚动配合,对外周下夹壳体2203进行支撑,消除吸湿排湿构件2200与下壳2700底面的摩擦。
需要说明的是,本公开的实施例不限制刚性滚轮2723的数量。本领域技术人员可以如图15所示,设置4个刚性滚轮2723,也可以设置数量更多或更少的刚性滚轮2723。
图16、图17分别示出了用于安装吸湿排湿构件2200的下壳第一安装部2720和上壳2820的爆炸图。图18示出了第一安装部2720、上壳2820、吸湿排湿构件2200的安装爆炸图。
根据一些实施例,如图16-图18所示,烘干装置2000的下壳2700可以是一体化下壳,其上设置有用于安装吸湿排湿构件2200的第一安装部2720。烘干装置2000还包括用于安装吸湿排湿构件2200的单独的上壳2820。上壳2820除了包括用于安装吸湿排湿构件2200的圆形的第二安装部2821之外,还包括吸湿通道的第一出风口2902。吸湿排湿构件2200旋转连接于第一安装部2720的短轴2721上,从而使吸湿排湿构件2200旋转连接于由第一安装部2720和第二安装部2821所形成的大致圆柱形空间中。
根据一些实施例,如图16-24所示,第一安装部2720设置有第一分隔件2725,第二安装部2821设置有第二分隔件2822。在下壳2700与上壳2820固定连接后,第二分隔件2822位于第一分隔件2725的正上方,从而将吸湿排湿构件2200所在的圆柱形空间分隔成吸湿区域2907和再生区域2908,即,第一分隔件2725和第二分隔件2822可以将吸湿排湿转盘2201分隔为吸湿区域2907和再生区域2908。循环气流从吸湿排湿转盘2201的下方流入吸湿排湿转盘2201的吸湿区域2907,吸湿区域2907用于吸收循环气流中的水分。排湿气流从吸湿排湿转盘2201的上方流入吸湿排湿转盘2201的再生区域2908,用于将吸湿排湿转盘2201所吸收的水分通过排湿气流排出,从而实现吸湿排湿转盘2201的再生和重复利用。
根据一些实施例,如图16和图18所示,下壳2700的第一安装部2720还设置有至少一个第三分隔件2726。至少一个第三分隔件2726将吸湿区域2907分隔为至少第一吸湿区域2907-1和第二吸湿区域2907-2两部分,从而能够分隔流入吸湿区域2907的循环气流。循环气流经由循环风机进入到下壳2700与吸湿排湿构件2200的空间后,被第三分隔件2726较为均匀地划分成至少两部分(即,两部分的气流量大致相同),由此能够避免循环气流在离心力的作用下较多地流向吸湿排湿构件2200的圆周处,而靠近圆心处的气流较小。根据该实施例,能够提高吸湿排湿构件2200的吸湿效率,实现均匀、稳定的吸湿。
根据一些实施例,如图16、图18所示,吸湿排湿构件2200与下壳2700的第一分隔件2725之间设置有第一密封件,第一密封件(例如可以通过螺钉、卡扣、胶粘等方式)固定于第一分隔件2725的上端面。第一密封件例如可以包括密封条2728和金属压片2727。密封条2728例如可以是橡胶、泡棉、毛条等材料。金属压片2727可以通过螺钉或胶黏的方式与密封条2728连接并将密封条2728固定于第一分隔件2725上。
与上述实施例类似地,如图17、图18所示,吸湿排湿构件2200与上壳2820的第二分隔件2822之间设置有第二密封件,第二密封件(例如可以通过螺钉、卡扣、胶粘等方式)固定于第二分隔件2822的下端面,并且位于第一密封件2727和2728的正上方。第二密封件例如可以包括密封圈2824和金属压片2823。密封圈2824例如可以是橡胶、泡棉、毛条等材料。金属压片2823可以通过螺钉或胶黏的方式与密封圈2824连接并将密封圈2824固定于第二分隔件2822上。
第一密封件2727、2728和第二密封件2823、2824能够实现吸湿排湿构件2200与下壳2700之间的动态密封,即,在吸湿排湿构件2200的旋转过程中,吸湿区域2907和再生区域2908分隔并保持相对的密封。吸湿区域2907的循环气流尽量少地穿过第一分隔件2725和第二分隔件2822到达再生区域2908,再生区域2908的排湿气流也尽量少地穿过第一分隔件2725和第二分隔件2822到达吸湿区域2907。
根据一些实施例,可以将第一密封件和第二密封件,特别是密封条2728和密封圈2824与吸湿排湿构件2200的间距设置在一个合理的较小区间内,例如0.2-5毫米之间,或者0.6-0.8mm是比较容易实现的。这样,在吸湿排湿转盘旋转的过程中既不会与第一密封件和第二密封件相接触而造成旋转阻力增加,也能够达到较好的动态密封效果。图19示出了一体化下壳2700与吸湿排湿构件2200的上壳2820的示例性固定方式。如图19所示,上壳2820与下壳2700的第一安装部2720的连接处设置有壳体密封圈2724。壳体密封圈2724用于保证吸湿排湿构件2200所在空间的密封性。壳体密封圈2724例如可以是橡胶垫、硅胶垫等。上壳2820或下壳2700的第一安装部2720内设置有用于安装壳体密封圈2724的凹槽。将壳体密封圈2724安装至该凹槽,将上壳2820与第一安装部2720扣接后通过螺栓紧固。
参见图6,烘干装置2000的一体化下壳2700上设置有用于安装再生风机2400的安装部2730。安装部2730可以与对应于再生风机2400的单独的上壳相配合,以将再生风机2400固定于下壳2700的安装部2730中。再生风机2400例如可以是已经封装好的风机模块。
在再生风机2400的作用下,可以在再生通道中形成排湿气流。图20示出了本公开实施例的排湿气流的流向。如图20所示,在再生风机2400的作用下,排湿气流进入再生风机2400的进风口(如箭头A所示),穿过再生风机2400,经由第一连接件2909进入加热模块2500(如箭头B、C所示)。加热模块2500位于吸湿排湿转盘2201的再生区域的上方。排湿气流流入加热模块2500后,由上到下穿过吸湿排湿转盘2201的再生区域(如箭头D所示),随后流入冷凝模块2600(如箭头E所示)。冷凝模块2600的外壳(图20未示出)的出风口通过第二连接件2910与再生风机2400的进风口连通,使再生通道形成闭环。经冷凝模块2600冷凝后的排湿气流经由第二连接件2910再次流入再生风机2400的进风口(如箭头A所示),使排湿气流能够在再生通道中循环流动。闭环的再生通道能够避免排湿气流与洗烘一体机的外部环境的交互,减少对外部环境的影响(例如影响外部空气的湿度等)。
在另一些实施例中,再生通道也可以是开环的通道。例如,在前述图1和图5所示的实施例中,洗烘一体机的外壳10的侧面设置有第二出风口102及第二进风口103,第二出风口102与再生通道202的出风端621连通,第二进风口103与再生通道202的进风端622连通。在该实施例中,出风端621和进风端622中的至少之一设置有冷凝模块。其中,设置于出风端621的冷凝模块可以对排出至外界的排湿气流进行冷凝干燥,从而降低排放至外界的气流的湿度,避免对外界环境造成影响。设置于进风端622的冷凝模块可以对流入再生通道的外界气流进行干燥,从而提高对再生区域的排湿效果。
根据一些实施例,可以在进风端622处设置电辅热组件。电辅热组件用于对流入再生通道202的排湿气流进行预热,以提高再生区域的排湿效果。
在吸湿排湿转盘2201旋转的过程中,吸湿排湿转盘2201的各部分由吸湿通道旋转至再生通道,再由再生通道旋转至吸湿通道,这样吸湿排湿转盘2201位于吸湿区域的部分吸收吸湿通道内的潮湿的循环气流中的水分,然后该部分旋转至再生区域。加热模块2500对该部分进行加热,使该部分的水分快速脱附至排湿气流中,从而使排湿气流成为高温的、含有水蒸气的气流(即高温含湿气流)。冷凝模块2600将高温含湿气流冷凝成为低温干燥气流,将冷凝水通过冷凝水出口排出冷凝模块2600。经冷凝模块2600处理所得到的低温干燥气流再次进入再生风机2400的进风口(对应于上述闭环的再生通道),或者排出至外界(对应于上述开环的再生通道)。
加热模块2500设置于吸湿排湿转盘2201的再生区域的上方,并且覆盖再生区域。图21、图22分别示出了加热模块2500与再生风机2400相关结构的爆炸图和立体图。如图20-28所示,再生风机2400固定于再生风机上壳2410和再生风机下壳2420中。加热模块2500通过第一连接件2909与再生风机2400的出风口连通。加热模块2500与第一连接件2909的连接处设置有第一密封垫圈2912。加热模块2500可以通过第三连接件2911连接至吸湿排湿构件对应的模组上壳上,例如,连接至图18所示的上壳2820上端面的扇形缺口处。再生风机2400的进风口通过第二连接件2910连接至冷凝模块2600的外壳(图21、28中未示出)。第二连接件2910与冷凝模块2600外壳的连接处设置有第二密封垫圈2913。
图23、图24分别示出了第一连接件2909的立体图和爆炸图,图25、图26分别示出了第二连接件2910的立体图和爆炸图。如图23-32所示,第一连接件2909可以拆分为上下两个部分,即第一连接件上部2914和第一连接件下部2915。第一连接件上部2914和第一连接件下部2915可以分别进行加工,然后将二者进行焊接或螺栓紧固,以得到第一连接件2909。类似地,第二连接件2910也可以拆分为上下两个部分,即第二连接件上部2916和第二连接件下部2917。第二连接件上部2916和第二连接件下部2917可以分别进行加工,然后将二者进行焊接或螺栓紧固,以得到第二连接件2910。
通过将第一连接件2909和第二连接件2910拆分为两个部分,可以降低二者的加工难度,保证二者的可制造性。并且,第一连接件2909和第二连接件2910的形状是基于再生通道中的再生风机2400、加热模块2500、冷凝模块2600等部件的结构和排列方式确定的,由此能够与再生通道中的其他部件相配合,实现密封再生通道以及调整排湿气流流向的效果。
[根据细则91更正 09.05.2023]
第一连接件2909可以是柔性的一体化结构,两端的进气口部和出气口部可以通过变形的方式伸入到冷凝模块壳体的出气口和再生风机的进风口壳体内,恢复变形后通过螺栓紧固的方式形成密封连接。
[根据细则91更正 09.05.2023]
图27示出了加热模块2500在上壳2820上的安装位置的示意图。如图27所示,加热模块2500设置于上壳2820上,并且在加热模块2500和上壳2820之间设置有隔热圈2918和第二密封圈2919。隔热圈2918采用隔热或绝热材料制成。在一些实施例中,隔热圈2918可以采用金属材料。第二密封圈2919可以是硅胶、橡胶、泡棉等材料。
[根据细则91更正 09.05.2023]
如图27所示,第二密封圈2919包覆隔热圈2918,第二密封圈2919与上壳2820和隔热圈2918直接接触。吸湿排湿转盘的再生区域位于加热模块2500的下方。通过在加热模块2500和上壳2820之间设置隔热圈2918和第二密封圈2919,能够将吸湿排湿转盘从空间上分隔为吸湿区域和再生区域,使排湿气流能够顺利通过吸湿排湿转盘。
[根据细则91更正 09.05.2023]
可以理解,由于加热模块2500的温度较高,如果加热模块2500直接与上壳2820(上壳2820例如可以是塑料材料)相接触,时间长了会造成上壳2820的变形或损坏。通过设置隔热圈2918和第二密封圈2919,能够在加热模块2500与上壳2820之间形成一个温度传递的缓冲区,避免上壳2820因高温而变形或损坏。
[根据细则91更正 09.05.2023]
图28-30分别示出了加热模块2500的立体图、网孔板2550的示意图以及加热模块2500的底视图。如图28-30所示,加热模块2500包括扇形壳体2510和设置于扇形壳体2510内的网孔板2520和加热管2530。加热管2530设置于网孔板2520的下方,网孔板2520上设置有多个风孔2521。
[根据细则91更正 09.05.2023]
扇形壳体2510的圆周侧或半径侧开设有入风口2540,从第一连接件2909(参见图20-28)流出的排湿气流从入风口2540流入扇形壳体2510内的网孔板2520上方的空间,随后穿过网孔板2520上的网孔2521,被加热管2530加热后,向下流向吸湿排湿转盘上的再生区域。被加热管2530加热后的高温的排湿气流能够对再生区域的水分进行脱附。
[根据细则91更正 09.05.2023]
根据一些实施例,网孔板2520上的多个风孔2521的直径可以不完全相同。多个风孔2521的直径可以沿排湿气流在加热模块2500中的流向依次减小。由此可以调节风量,使排湿气流均匀穿过网孔板2520,从而使加热管2530能够对排湿气流进行均匀加热。例如,如图28所示,在入风口2540开设于扇形壳体2510的圆周侧的情况下,排湿气流在扇形壳体2510内部的流向为由圆周到圆心的方向。相应地,网孔板2520上的多个风孔2521的直径沿着扇形壳体的圆周到圆心的方向有减小的趋势,由此可以调节风量,使加热管2530能够对排湿气流进行均匀加热。
[根据细则91更正 09.05.2023]
在另一些实施例中,入风口2540也可以设置于扇形壳体2510的半径侧。在这种情况下,排湿气流在扇形壳体2510的内部沿着与半径近似垂直的方向(周向)流动,换言之,沿着由入风口所在的半径侧到扇形壳体2510的另一个半径侧的方向流动。相应地,沿着入风口所在的半径侧到另一个半径侧的方向,网孔板2520上的多个风孔2521的直径有减小的趋势。由此能够调节穿过网孔板2520的风量,使加热管2530能够对排湿气流进行均匀加热,进而使加热后的高温排湿气流对吸湿排湿转盘的再生区域进行均匀地排湿,从而提高排湿效果。
[根据细则91更正 09.05.2023]
根据一些实施例,如图30所示,加热管2530不是设置在风孔2521的正下方,而是相对于风孔2521向扇形壳体的圆心方向偏移。由于加热管2530的位置相对于风孔2521来说存在一定的偏移,因此加热管2530不会对排湿气流穿过风孔2521形成较大的阻力。此外,当排湿气流进入入风口2540并穿过风孔2521时,排湿气流存在从扇形壳体的圆周到圆心方向的速度。通过将加热管2530设置于相对于风孔2521向扇形壳体的圆心方向偏移的位置,能够使穿过风孔2521的排湿气流正对加热管2530,从而提高加热管2530对排湿气流的加热效率。
[根据细则91更正 09.05.2023]
根据一些实施例,如图28、图30所示,扇形壳体2510的下壁向外延伸形成第三安装部2550。加热模块2500还包括包覆有导热片2570的温度传感器2560。温度传感器2560被导热片2570包覆后,设置于第三安装部2550上。
[根据细则91更正 09.05.2023]
温度传感器2560用于对加热模块2500的温度进行检测,以实现对加热管2530开关的控制。可以理解,由于被加热后的排湿气流在加热模块2500内可能形成乱流,因此加热模块2500内的温度并不是稳定的。如果直接采用温度传感器2560来检测加热模块2500内的气流的温度,那么温度传感器2560所检测到的温度值将是跳动的、不稳定的,不利于对加热管2530进行有效控制。通过将温度传感器2560设置在导热片2570内,加热模块2500内的温度通过热传导的方式先传导至导热片2570,温度传感器2560检测导热片2570的温度。导热片2570的温度相对于气流的温度来说更加稳定。因此,相较于温度传感器2560直接检测气流的温度来说,温度传感器2560检测导热片2570的温度值,能够提高温度检测的稳定性和准确性,从而能够对加热管2530进行有效控制。
[根据细则91更正 09.05.2023]
如上所述,加热模块2500对排湿气流进行加热,得到高温气流。该高温气流能够使吸湿排湿转盘的再生区域的水分脱附,得到高温含湿气流。高温含湿气流经冷凝模块2600加热所得到的高温含湿气流继续流入冷凝模块2600将高温含湿气流冷凝成为低温干燥气流,将冷凝水通过冷凝水出口排出冷凝模块2600。经冷凝模块2600处理所得到的低温干燥气流再次进入再生风机2400的进风口(对应于上述闭环的再生通道),或者排出至外界(对应于上述开环的再生通道)。
[根据细则91更正 09.05.2023]
图31示出了冷凝模块2600与下壳2700的固定方式的示意图。如图31所示,冷凝模块上壳2830与下壳2700中的用于安装冷凝模块的安装部2740(即,冷凝模块下壳)相配合。冷凝模块上壳2830包覆冷凝模块2600,向下挤压冷凝模块2600周围的密封条2920,与安装部2740密封固定。冷凝模块上壳2830与安装部2740形成冷凝模块2600的完整外壳,即冷凝模块外壳。冷凝模块外壳上形成有出风口2631,出风口2631通过第二连接件2910连接至再生风机2400的进风口(参见图20-28)。
图32示出了冷凝模块外壳2630的剖视图。如图32所示,穿过再生区域2908的高温高湿的排湿气流进入冷凝模块外壳2630(如箭头A所示),经过冷凝模块2600(图32中未示出)的干燥处理(如箭头B所示),从出风口2631流出至第二连接件2910(如箭头C所示)。
根据一些实施例,如图32所示,冷凝模块外壳2630的底面靠近出风口2631的位置设置有挡板2632。挡板2632能够提高冷凝模块2600的冷凝效果,使排湿气流被冷凝模块2600充分干燥。例如,挡板2632能够避免进入冷凝模块外壳2630的排湿气流不经过冷凝模块2600,而直接从冷凝模块2600与冷凝模块外壳2630底面之间的缝隙流出,导致这部分气流无法被冷凝干燥。
如图31所示,冷凝模块2600中设置有用于流通冷凝水的冷凝水管2640。冷凝水管2640进一步包括进水口2610和出水口2620。图31中箭头A所示的方向为排湿气流在冷凝模块2600中的流向。
根据一些实施例,可以在冷凝水管2640中设置用于检测冷凝水状态的传感器,例如温度传感器、流量传感器等、或者在冷凝水进水管外设置电感传感器用于检测是否有冷凝水流过冷凝水管2640。基于传感器检测到的状态数据,可以对冷凝水管2640中的水流进行调节或发出警示,从而保证冷凝模块2600正常工作,提高冷凝效果。例如,若温度传感器检测到冷凝水的温度过高,则当前冷凝效果可能较差,可以相应地提高冷凝水的流速,从而降低冷凝水的水温,提高冷凝效果。又例如,若流量传感器检测到冷凝水的流量过小,则冷凝水管2640可能存在漏液风险,可以发出警示消息,以提醒用户对冷凝水管2640进行检查或维修。当然,也可以在冷凝模块壳体的进风口和/或出风口处设置温度传感器,根据温度检测值或温度检测差值或进风口与出风口的温差值来确定冷凝模块是否正常工作。
根据一些实施例,如图31所示,冷凝水管2640可以是蛇形管(serpentine pipe)。在图31的示例中,冷凝水管2640在冷凝模块2600中迂回地布置,由此能够增大排湿气流与冷凝水管2640的接触面积,从而对排湿气流进行充分冷凝。如图31所示,冷凝模块2600包括在排湿气流的流向(参见箭头A)上彼此相对的第一侧和第二侧,其中第一侧位于第二侧的下游。在一个未示出的示例中,冷凝水管2640的进水口2610和出水口2620均位于冷凝模块2600的侧壁上,该侧壁连接冷凝模块2600的第一侧和第二侧,而且比起第二侧,进水口2610和出水口2620更接近第一侧。在这样的示例中,冷凝水管2640从进水口2610沿第一之字形(zig-zag)路径朝向冷凝模块2600的第二侧延伸到远离第一侧的位置,并且从该位置沿第二之字形路径朝向第一侧延伸到出水口2620,其中第一之字形路径的长度大于第二之字形路径的长度,例如为第二之字形路径的2倍。将理解的是,这样的布置可以是有利的,因为由于排湿气流放热的原因,从冷凝模块2600的第一侧到冷凝模块2600的第二侧,冷凝水的温度逐步升高,而反过来由于冷凝水吸热的原因,从冷凝模块2600的第二侧到冷凝模块2600的第一侧,排湿气流的温度逐渐降低,使得整个冷凝过程中排湿气流和冷凝水维持一定的温差,从而提高冷凝效果。
在本申请上述任一组/任一项实施例中,所涉及的一个/多个特征之间均可以相互组合,以提高烘干装置的烘干效率。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (12)

  1. 一种衣物处理设备,其特征在于,包括烘干装置和衣物容纳装置,
    所述烘干装置包括:
    吸湿排湿转盘;
    壳体,容纳所述吸湿排湿转盘;所述壳体内部空间至少被分隔为吸湿空间和排湿空间;
    循环风机,以第一功率运行从而形成流经所述衣物容纳装置和所述吸湿空间的循环气流;
    再生风机,以第二功率运行从而形成穿过所述排湿空间的再生气流;
    所述衣物处理设备还包括:吸湿排湿转盘驱动部,以第一转速驱动所述吸湿排湿转盘在所述壳体内绕旋转轴旋转;
    所述吸湿空间和所述排湿空间在垂直于所述旋转轴的至少一个平面内的投影的面积比的数值与所述第一功率和所述第二功率的功率比的数值相差在±2的范围内。
  2. 如权利要求1所述的衣物处理设备,其特征在于,所述吸湿排湿转盘的厚度与直径的比值为1:20-1:5,优选1:15-1:10。
  3. 如权利要求2所述的衣物处理设备,其特征在于,所述吸湿排湿转盘的厚度为10mm-100mm;直径为40mm-500mm。
  4. 如权利要求3所述的衣物处理设备,其特征在于,所述衣物容纳装置为滚筒,所述滚筒包括内筒和外筒,所述吸湿排湿转盘的直径与所述内筒的直径的比为1:2-3:4。
  5. 如权利要求1所述的衣物处理设备,其特征在于,所述面积比为2:1-4:1;所述功率比为2:1-4:1。
  6. 如权利要求1所述的衣物处理设备,其特征在于,所述第一转速为2-10转/分钟,优选4-6转/分钟。
  7. 如权利要求1所述的衣物处理设备,其特征在于,所述烘干装置还包括:加热模块和冷凝模块,所述加热模块临近设置于所述排湿空间;所述冷凝模块设置于所述再生气流的流路上。
  8. 如权利要求7所述的衣物处理设备,其特征在于,所述加热模块运行在第一加热功率和第二加热功率之间,所述第一加热功率为400W-800W,所述第二加热功率为1200W-1600W。
  9. 如权利要求8所述的衣物处理设备,其特征在于,所述加热模块按照方波的形式在所述第一加热功率和所述第二加热功率之间波动。
  10. 如权利要求7所述的衣物处理设备,其特征在于,所述冷凝模块为水冷式冷凝器,水流流速为0.2-0.4L/min,优选0.35L/min。
  11. 一种衣物处理设备,其特征在于,包括烘干装置和衣物容纳装置,
    所述衣物容纳装置具有第一气流入口,所述第一气流入口与所述烘干装置通过进风管道连通;
    所述衣物容纳装置具有第一气流出口,所述第一气流出口与所述烘干装置通过出风管道连通;
    所述烘干装置包括:
    吸湿排湿转盘和驱动所述吸湿排湿转盘旋转的吸湿排湿转盘驱动部;
    所述衣物处理设备还包括:
    第一温度检测装置,设置于所述第一气流入口附近,用于检测进入所述衣物容纳装置的气流温度;
    第二温度检测装置,设置于所述衣物容纳装置内或所述第一气流出口附近,用于检测所述衣物容纳装置内的气流温度或流出所述衣物容纳装置的气流温度;
    至少在所述衣物处理设备工作过程的一个阶段,所述第一温度检测装置检测得到的第一检测温度与所述第二温度检测装置检测得到的第二检测温度的差值在18-30℃之间。
  12. 如权利要求11所述的衣物处理设备,其特征在于,所述第一检测温度为70-85℃之间,优选75℃;所述第二检测温度为50-60℃之间,优选53℃。
PCT/CN2023/072662 2021-09-01 2023-01-17 衣物处理设备 WO2024045479A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112132724A TW202421885A (zh) 2021-09-01 2023-08-30 衣物處理設備

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111023112.5A CN113981647A (zh) 2021-09-01 2021-09-01 一种洗烘一体机
CN202111450553 2021-11-30
PCT/CN2022/116242 WO2023030394A1 (zh) 2021-09-01 2022-08-31 衣物处理设备
CN202211057592.1A CN115726127B (zh) 2021-09-01 2022-08-31 洗烘一体机的控制方法、装置、洗烘一体机及存储介质
CNPCT/CN2022/116242 2022-08-31
CN202211057592.1 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045479A1 true WO2024045479A1 (zh) 2024-03-07

Family

ID=83438804

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/CN2022/116387 WO2023030421A1 (zh) 2021-09-01 2022-08-31 一种烘干装置及洗烘一体机
PCT/CN2022/116142 WO2023030375A1 (zh) 2021-09-01 2022-08-31 洗烘一体机
PCT/CN2022/116242 WO2023030394A1 (zh) 2021-09-01 2022-08-31 衣物处理设备
PCT/IB2022/058200 WO2023031837A1 (en) 2021-09-01 2022-09-01 Drying system and laundry machines using the same
PCT/CN2023/072661 WO2024045478A1 (zh) 2021-09-01 2023-01-17 衣物处理设备及其控制方法
PCT/CN2023/072662 WO2024045479A1 (zh) 2021-09-01 2023-01-17 衣物处理设备

Family Applications Before (5)

Application Number Title Priority Date Filing Date
PCT/CN2022/116387 WO2023030421A1 (zh) 2021-09-01 2022-08-31 一种烘干装置及洗烘一体机
PCT/CN2022/116142 WO2023030375A1 (zh) 2021-09-01 2022-08-31 洗烘一体机
PCT/CN2022/116242 WO2023030394A1 (zh) 2021-09-01 2022-08-31 衣物处理设备
PCT/IB2022/058200 WO2023031837A1 (en) 2021-09-01 2022-09-01 Drying system and laundry machines using the same
PCT/CN2023/072661 WO2024045478A1 (zh) 2021-09-01 2023-01-17 衣物处理设备及其控制方法

Country Status (8)

Country Link
EP (4) EP4397804A1 (zh)
JP (4) JP2024530799A (zh)
KR (4) KR20240046831A (zh)
CN (16) CN115726133A (zh)
AU (4) AU2022336912A1 (zh)
CA (3) CA3230580A1 (zh)
TW (7) TWI844459B (zh)
WO (6) WO2023030421A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113981647A (zh) * 2021-09-01 2022-01-28 北京石头世纪科技股份有限公司 一种洗烘一体机
WO2024046325A1 (zh) * 2022-08-31 2024-03-07 深圳洛克创新科技有限公司 一种餐具处理装置
WO2024046358A1 (zh) * 2022-08-31 2024-03-07 深圳洛克创新科技有限公司 一种烘干模组及洗烘一体机
CN118360769A (zh) * 2023-01-17 2024-07-19 深圳洛克创新科技有限公司 一种过滤器清洁装置、衣物处理设备及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403180A (zh) * 2007-10-02 2009-04-08 日立空调·家用电器株式会社 干燥机及洗涤干燥机
CN102206916A (zh) * 2011-06-23 2011-10-05 海尔集团公司 一种用于滚筒干衣的热泵烘干系统及控制方法
US20120102781A1 (en) * 2010-10-29 2012-05-03 David Beers Apparatus and method for using a hybrid dryer tub for airflow improvement
US20130019495A1 (en) * 2011-07-21 2013-01-24 Whirlpool Corporation Method for controlling a clothes dryer and clothes dryer using such method
CN105324528A (zh) * 2013-07-19 2016-02-10 Lg电子株式会社 烘干机
CN106917221A (zh) * 2015-10-26 2017-07-04 东芝生活电器株式会社 衣物烘干机
CN113584800A (zh) * 2021-08-02 2021-11-02 珠海格力电器股份有限公司 一种内衣烘干方法及洗烘一体设备
CN113981647A (zh) * 2021-09-01 2022-01-28 北京石头世纪科技股份有限公司 一种洗烘一体机
CN114318814A (zh) * 2021-12-07 2022-04-12 珠海格力电器股份有限公司 烘干风道、洗干一体机及烘干风道的控制方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753291B2 (ja) * 1988-12-14 1998-05-18 株式会社日立製作所 衣類乾燥機用水冷式熱交換器
JP2806542B2 (ja) * 1989-02-17 1998-09-30 株式会社日立製作所 衣類乾燥機
JPH0510669A (ja) * 1991-07-04 1993-01-19 Matsushita Electric Ind Co Ltd 衣類乾燥機
JP3043126B2 (ja) * 1991-08-28 2000-05-22 三洋電機株式会社 衣類乾燥機
JP2000225288A (ja) * 1999-02-04 2000-08-15 Matsushita Electric Ind Co Ltd 洗濯乾燥機
JP2002340372A (ja) * 2001-05-17 2002-11-27 Matsushita Electric Ind Co Ltd 除湿デバイス
JP4196075B2 (ja) * 2003-04-11 2008-12-17 パナソニック株式会社 洗濯乾燥機
JP3650104B2 (ja) * 2003-05-21 2005-05-18 シャープ株式会社 衣類乾燥機
JP2005021601A (ja) * 2003-07-03 2005-01-27 Toshiba Corp 洗濯乾燥機
KR20050012100A (ko) * 2003-07-24 2005-01-31 삼성전자주식회사 세탁기용 건조장치 및 이를 포함한 세탁기
WO2005012624A1 (en) * 2003-07-30 2005-02-10 John Edward Gough Drying apparatus
CN1886628B (zh) * 2003-09-29 2011-09-07 自推进研发专家公司 热泵式干衣机
JP3920299B2 (ja) * 2005-09-22 2007-05-30 松下電器産業株式会社 衣類乾燥装置
JP4972612B2 (ja) * 2008-05-30 2012-07-11 日立アプライアンス株式会社 洗濯機、および洗濯乾燥機
EP2246470B1 (en) * 2009-04-28 2014-06-04 Candy S.p.A. Washer-drier machine
EP2471994B1 (en) * 2011-01-04 2019-06-26 Electrolux Home Products Corporation N.V. Appliance for drying laundry
JP5068295B2 (ja) * 2009-09-24 2012-11-07 シャープ株式会社 乾燥機
JP4698750B2 (ja) * 2009-09-24 2011-06-08 シャープ株式会社 洗濯機及び乾燥機
CN202116896U (zh) * 2011-03-31 2012-01-18 无锡小天鹅股份有限公司 洗烘一体机的烘干冷凝装置
CN102286872B (zh) * 2011-07-12 2016-11-16 青岛海尔滚筒洗衣机有限公司 一种带热泵烘干和除湿功能的洗衣干衣机
CN105297372B (zh) * 2014-07-31 2019-02-19 青岛海尔洗衣机有限公司 一种衣物烘干系统及烘干方法、洗衣干衣一体机、干衣机
CN204491256U (zh) * 2014-12-24 2015-07-22 珠海格力电器股份有限公司 干衣机及其调湿装置
KR102053323B1 (ko) * 2015-07-31 2019-12-06 주식회사 엘지화학 흡습 부재가 구비된 세탁기
CN105463812B (zh) * 2015-12-30 2019-03-01 Tcl家用电器(合肥)有限公司 洗烘一体机
KR20180014615A (ko) * 2016-08-01 2018-02-09 엘지전자 주식회사 의류처리장치
CN108004733B (zh) * 2016-10-31 2020-04-17 众智光电科技股份有限公司 烘衣机
KR102613562B1 (ko) * 2016-12-29 2023-12-14 엘지전자 주식회사 듀얼 타입 건조기
KR102358922B1 (ko) * 2017-06-22 2022-02-07 주식회사 경동나비엔 건조장치 및 건조방법
CN107663761B (zh) * 2017-08-29 2019-12-10 珠海格力电器股份有限公司 衣物烘干判断方法和装置
CN207159639U (zh) * 2017-09-13 2018-03-30 赵正华 采用热泵加热和冷凝集水功能的干衣机
KR20190128469A (ko) * 2018-05-08 2019-11-18 엘지전자 주식회사 의류 처리 장치
CN109629206B (zh) * 2019-02-18 2023-11-28 珠海格力电器股份有限公司 烘干设备及该烘干设备的运行方法
CN212199700U (zh) * 2020-05-20 2020-12-22 山东大成洗涤机械有限公司 一种洗烘一体机
CN111926524B (zh) * 2020-08-24 2024-08-27 长虹美菱股份有限公司 一种洗干一体机
CN213896424U (zh) * 2020-09-22 2021-08-06 云米互联科技(广东)有限公司 水气分离的换热组件及衣物烘干装置
CN114606745A (zh) * 2022-03-09 2022-06-10 创维电器股份有限公司 一种干衣机的判干方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403180A (zh) * 2007-10-02 2009-04-08 日立空调·家用电器株式会社 干燥机及洗涤干燥机
US20120102781A1 (en) * 2010-10-29 2012-05-03 David Beers Apparatus and method for using a hybrid dryer tub for airflow improvement
CN102206916A (zh) * 2011-06-23 2011-10-05 海尔集团公司 一种用于滚筒干衣的热泵烘干系统及控制方法
US20130019495A1 (en) * 2011-07-21 2013-01-24 Whirlpool Corporation Method for controlling a clothes dryer and clothes dryer using such method
CN105324528A (zh) * 2013-07-19 2016-02-10 Lg电子株式会社 烘干机
CN106917221A (zh) * 2015-10-26 2017-07-04 东芝生活电器株式会社 衣物烘干机
CN113584800A (zh) * 2021-08-02 2021-11-02 珠海格力电器股份有限公司 一种内衣烘干方法及洗烘一体设备
CN113981647A (zh) * 2021-09-01 2022-01-28 北京石头世纪科技股份有限公司 一种洗烘一体机
CN114318814A (zh) * 2021-12-07 2022-04-12 珠海格力电器股份有限公司 烘干风道、洗干一体机及烘干风道的控制方法

Also Published As

Publication number Publication date
TW202421877A (zh) 2024-06-01
AU2022339127A1 (en) 2024-04-11
WO2023031837A1 (en) 2023-03-09
CN117999387A (zh) 2024-05-07
CN218521473U (zh) 2023-02-24
TW202421874A (zh) 2024-06-01
CN220486085U (zh) 2024-02-13
CN220486100U (zh) 2024-02-13
WO2023030375A1 (zh) 2023-03-09
TW202311594A (zh) 2023-03-16
EP4396403A1 (en) 2024-07-10
WO2023030394A1 (zh) 2023-03-09
JP2024532526A (ja) 2024-09-05
CN117626611A (zh) 2024-03-01
CN220827603U (zh) 2024-04-23
EP4386130A1 (en) 2024-06-19
JP2024532523A (ja) 2024-09-05
CN117646320A (zh) 2024-03-05
CA3230580A1 (en) 2023-03-09
TW202413768A (zh) 2024-04-01
TWI844459B (zh) 2024-06-01
CN117940629A (zh) 2024-04-26
CN220183633U (zh) 2023-12-15
JP2024532524A (ja) 2024-09-05
WO2023030421A1 (zh) 2023-03-09
KR20240035642A (ko) 2024-03-15
TW202421884A (zh) 2024-06-01
CN115726133A (zh) 2023-03-03
TW202421882A (zh) 2024-06-01
KR20240048569A (ko) 2024-04-15
TW202421878A (zh) 2024-06-01
KR20240038113A (ko) 2024-03-22
EP4394120A1 (en) 2024-07-03
EP4397804A1 (en) 2024-07-10
AU2022336912A1 (en) 2024-04-18
TW202421885A (zh) 2024-06-01
CN220486084U (zh) 2024-02-13
CN117881840A (zh) 2024-04-12
CA3230573A1 (en) 2023-03-09
CN220846753U (zh) 2024-04-26
CN220827602U (zh) 2024-04-23
AU2022338834A1 (en) 2024-04-18
CN118019887A (zh) 2024-05-10
AU2022340524A1 (en) 2024-04-11
TW202421881A (zh) 2024-06-01
JP2024530799A (ja) 2024-08-23
CN218812690U (zh) 2023-04-07
CA3230592A1 (en) 2023-03-09
WO2024045478A1 (zh) 2024-03-07
KR20240046831A (ko) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2024045479A1 (zh) 衣物处理设备
WO2024045477A1 (zh) 一种衣物处理装置
WO2024045481A1 (zh) 衣物处理设备
TW202413764A (zh) 衣物處理裝置
WO2024169189A1 (zh) 衣物处理设备
WO2023098763A1 (zh) 一种衣物处理设备
TWI854293B (zh) 衣物處理設備
WO2024045512A1 (zh) 一种烘干模组及洗烘一体机
CN118360779A (zh) 一种衣物处理设备及其控制方法
WO2024146215A1 (zh) 加热装置、烘干模组和衣物处理设备
CN219385718U (zh) 一种洗护设备
TWI852750B (zh) 再生模組、烘乾模組和衣物處理裝置
EP4435171A1 (en) Garment processing device control method
TW202421883A (zh) 衣物處理設備及其控制方法
CN118360780A (zh) 一种衣物处理设备及其控制方法
TWM659083U (zh) 衣物處理設備
AU2022398833A1 (en) Garment processing device control method
CN117146337A (zh) 一种离心式转轮除湿机
CN118581708A (zh) 一种洗护设备
TWM658061U (zh) 加熱裝置、烘乾模組和衣物處理設備
CN117144651A (zh) 一种干衣设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858522

Country of ref document: EP

Kind code of ref document: A1