WO2024045512A1 - 一种烘干模组及洗烘一体机 - Google Patents

一种烘干模组及洗烘一体机 Download PDF

Info

Publication number
WO2024045512A1
WO2024045512A1 PCT/CN2023/077475 CN2023077475W WO2024045512A1 WO 2024045512 A1 WO2024045512 A1 WO 2024045512A1 CN 2023077475 W CN2023077475 W CN 2023077475W WO 2024045512 A1 WO2024045512 A1 WO 2024045512A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
regeneration
drying
dehumidification
air
Prior art date
Application number
PCT/CN2023/077475
Other languages
English (en)
French (fr)
Inventor
黄積佰
段传林
李行
杨志敏
王哲
刘通
齐杭
梁竣钦
许明
全刚
Original Assignee
深圳洛克创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222318002.8U external-priority patent/CN218596725U/zh
Priority claimed from CN202222320975.5U external-priority patent/CN218711570U/zh
Priority claimed from CN202222328046.9U external-priority patent/CN218596709U/zh
Application filed by 深圳洛克创新科技有限公司 filed Critical 深圳洛克创新科技有限公司
Publication of WO2024045512A1 publication Critical patent/WO2024045512A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers

Definitions

  • the present invention relates to the field of laundry equipment, and in particular, to a drying module and an integrated washing and drying machine.
  • the all-in-one washer and dryer was born and is deeply loved by consumers.
  • the all-in-one washer and dryer is especially suitable for people during the rainy season.
  • the drying system of some existing washing and drying machines uses an evaporator to heat and absorb moisture from the moist air in the inner cylinder of the washing and drying machine. After obtaining high-temperature air, it re-enters the inner cylinder of the washing and drying machine, thereby evaporating the moisture in the clothes. .
  • the overall temperature of the evaporator is consistent.
  • the evaporator's ability to absorb moisture from the humid air decreases, resulting in low moisture absorption efficiency, long drying time, and high power consumption.
  • condensed water spray or condenser to directly dehumidify the wet air flow.
  • the air flow treated by this method still carries a high proportion of moisture, and recycling also requires the air flow to be heated-cooled and dehumidified-reheated to improve the dehumidification efficiency. Lower, power consumption is larger.
  • the purpose of the present invention is to provide a drying module and an integrated washing and drying machine, in order to solve the problem in the prior art that the dehumidified airflow still carries a high proportion of moisture, and recycling also requires the airflow to be heated-cooled and dehumidified- If the temperature is raised again, the dehumidification efficiency will be lower and the power consumption will be larger.
  • the present invention provides a drying module, including include:
  • the circulation module is connected to the drum, and the circulation module outputs the wet circulating air flow from the drum to the dehumidification module for dehumidification;
  • the dehumidification module is connected to the circulation module and the drum.
  • the dehumidification module is used to absorb moisture from the wet circulating air flow from the drum and output the dry circulating air flow to the drum;
  • the regeneration module is installed on the shell of the dehumidification module.
  • the regeneration module is in airflow communication with the part of the dehumidification module located in the regeneration airflow channel, so that the dry regeneration airflow is output to this part of the dehumidification module to convert the dehumidification module At least a portion of the desorbed moisture;
  • the condensation module is connected to the regeneration air outlet of the regeneration module and is used to condense the regeneration air flow output by the regeneration module to form a low-temperature dry air flow;
  • the dehumidification module is connected and fixed with the circulation module and the condensation module respectively to form an integrated module.
  • the overlapping portion is provided around the integrated module for fixedly connecting the integrated module to the frame.
  • the dehumidification module has a dehumidification module upper shell and a dehumidification module lower shell
  • the regeneration module has a regeneration module upper shell and a regeneration module lower shell
  • the circulation module has a circulation module upper shell and a regeneration module lower shell.
  • the condensation module has a condensation module upper shell and a condensation module lower shell
  • the lower shell of the dehumidification module, the lower shell of the regeneration module, the lower shell of the circulation module and the lower shell of the condensation module are integrated into the lower shell of the drying module;
  • the overlapping part is arranged on the lower shell of the drying module.
  • one end of the circulating air outlet channel is connected to the dehumidification module, and the other end is connected to the drum through the first corrugated hose.
  • a circulating air inlet channel is installed on the drum, with one end connected to the drum and the other end Connected to loop module.
  • a filter assembly is provided in the circulating air inlet channel for filtering impurities in the circulating air flow.
  • dehumidification module, regeneration module, circulation module and condensation module are separate and formed into an integrated module through fixed connection.
  • the upper housing of the regeneration module has a heating module accommodation cavity
  • the heating module is installed in the heating module accommodation cavity; the heating module is arranged adjacent to the turntable in the dehumidification module, and the heating module accommodation cavity is connected to the dehumidification module; the heating module is used to desorb moisture from at least part of the turntable in a heating manner.
  • the heating module includes:
  • the heater is installed in the first space
  • the thermal conductive member is used to receive the heat conducted from the first space
  • a temperature detection module which is used to detect the temperature of the first space;
  • the temperature detection module is installed in the third space, the third space is a space covered by a thermal conductive member, and the third space and the first space are separated by a thermal conductive member;
  • the air equalizer is located adjacent to or at a distance from the turntable in the dehumidification module; the regeneration airflow enters the heating module accommodation cavity and passes through the air equalizer/heater, heater/air equalizer and turntable in sequence.
  • the thermal conductive member is installed in the second space connected with the first space, and the second space and the third space are separated by the thermal conductive member.
  • an upper shell of the regeneration module which includes a base, a top wall and a side wall protruding from the top wall.
  • the top wall and the side wall surround the first space, the base is arranged along the periphery of the side wall, and the base faces away from the third space.
  • the bottom surface of the base is provided with grooves, and the grooves form a second space.
  • the upper housing of the regeneration module has a fan-shaped structure
  • a heater air inlet is provided on the outer arc side of the upper shell of the regeneration module, and a heater air outlet is provided on the side opposite to the top wall; wherein, the heater air inlet, the first space and the heater air outlet are connected in sequence;
  • the base at least includes a first side extending along the radial direction of the sector, and the groove is located on the first side.
  • the base is connected and installed to the heating module accommodation cavity through a thermal buffer.
  • the thermal buffer includes a heat insulator; the heat insulator is arranged on the peripheral side of the base to prevent the high temperature of the heating element from being directly transmitted to the housing.
  • the thermal buffer component also includes a sealing gasket; the sealing gasket is wrapped outside the thermal insulation component.
  • the preset gap is 0.2-5mm.
  • the heating module has a mounting seat, the mounting seat is connected and fixed with the first side, and the mounting seat is located on the other side of the first side away from the groove;
  • the mounting base is provided with a through mounting hole, forming a roughly hexahedral shape with one side open.
  • the temperature detection module is arranged inside the mounting hole, and the space formed by the thermal conductive member covering the opening surface of the mounting base is the third space;
  • the mounting holes are adapted to the temperature detection module.
  • thermal conductive member is in contact with the contact point of the temperature detection module.
  • the surface of the thermal conductive member has a heat-resistant anti-corrosion coating.
  • the air equalizing component includes an air equalizing plate and side plates protruding around the air equalizing plate.
  • the air equalizing plate and the side plates enclose a heater accommodation area, and the heater is located in the heater accommodation area;
  • the air equalizing plate is fan-shaped, and the air equalizing plate is provided with air holes distributed at intervals.
  • the heater includes a plurality of heating tubes connected end to end, and the heating tubes are spaced apart along the radial direction of the fan;
  • the length of the heating pipe is arranged parallel to the side wall opposite to the heater air inlet.
  • air holes are arranged in rows, and the position of each row of air holes corresponds to the position of the heating pipe;
  • the diameter of the air hole shows a decreasing trend from the outer arc to the center of the circle along the radius direction of the sector.
  • the heating pipe is located below the air hole
  • the axis of the heating tube is offset from the center line of each corresponding row of air holes, and the center line of each row of air holes is closer to the heater air inlet than the axis of the heating tube.
  • the direction in which the regeneration airflow enters the heating module accommodation cavity is opposite to or in the same direction as the rotation direction of the turntable.
  • Another aspect of the present invention provides an integrated washing and drying machine, which has a drum and a frame, and includes the drying module in any of the above technical solutions.
  • Figure 1 is a perspective view of a drying module in one embodiment of the present invention.
  • Figure 2 is a top view of a drying module in one embodiment of the present invention.
  • Figure 3 is a schematic three-dimensional view of a heating module provided by an embodiment of the present invention.
  • Figure 4 is another three-dimensional schematic view of a heating module provided by an embodiment of the present invention.
  • Figure 5 is a schematic three-dimensional view of a heating module provided by an embodiment of the present invention.
  • FIG. 6 is a bottom view of FIG. 5 .
  • Figure 7 is a schematic assembly diagram of the heating module and the dehumidification module in one embodiment of the present invention.
  • Figure 8 is a schematic diagram of the air equalizing component in one embodiment of the present invention.
  • Figure 9 is an exploded view of a drying module in one embodiment of the present invention.
  • Figure 10 is a schematic assembly diagram of the turntable and the regeneration module in the dehumidification module in one embodiment of the present invention.
  • Figure 11 is an exploded schematic diagram of the heating module and the regeneration fan in the regeneration module in one embodiment of the present invention.
  • Figure 12 is a schematic diagram of the condensation module in the drying module in one embodiment of the present invention.
  • the dehumidified airflow in the existing technology still carries a high proportion of moisture, and recycling also requires the airflow to be heated, cooled, dehumidified, and then heated again, resulting in low dehumidification efficiency and high power consumption.
  • one embodiment of the present invention provides a drying module, which includes: it is connected with the drum of the washing and drying machine, and the circulation module 3 transports the wet circulating air flow from the drum. It goes out to the dehumidification module 1 for dehumidification; the dehumidification module 1 is connected to the circulation module 3 and the drum respectively.
  • the dehumidification module 1 is used to absorb moisture from the wet circulating air flow from the drum so that the dry circulating air flow is output to the drum.
  • Regeneration module 2 which is installed on the shell of the dehumidification module 1.
  • the regeneration module 2 is connected to the dehumidification module 1, so that the dry regeneration air flow is output to the dehumidification module 1 to remove at least part of the dehumidification module 1. Desorb moisture to restore its ability to absorb moisture; the condensation module 4 is connected to the regeneration air outlet of the regeneration module 2, and is used to condense the regeneration air flow output by the regeneration module 2 to form a low-temperature dry regeneration air flow; where , the dehumidification module 1 is connected and fixed with the circulation module 3 and the condensation module 4 respectively to form an integrated module.
  • the drying module is used to dry the wet air flow, which we define as regeneration air flow; among them, the circulation module 3 is used as the power for the air flow to circulate between the drum and the dehumidification module 1.
  • the circulation module 3. Transport the wet circulating airflow from the drum to the dehumidification module 1 for moisture absorption treatment.
  • the dehumidification module 1 absorbs moisture from the wet circulating airflow from the drum, so that the dry circulating airflow is output to the drum.
  • the regeneration module 2 is connected to a part of the dehumidification module 1, so that the dry regeneration airflow is output to this part of the dehumidification module 1, so as to desorb moisture from at least part of the dehumidification module 1 and restore its ability to absorb moisture;
  • the condensation module Group 4 is connected to the regeneration air outlet of the regeneration module 2 and is used to condense the regeneration air flow output by the regeneration module 2 to form a low-temperature dry regeneration air flow; the condensed water formed during the condensation process is discharged.
  • Dehumidification module 1, circulation module 3 and condensation module 4 are independent modules.
  • the dehumidification module is connected and fixed with circulation module 3 and condensation module 4 respectively to form an integrated module, which is easy to disassemble and install in the machine. On the rack, it can also be used as a separate device for air drying.
  • the drying module includes: the overlapping portion 50 is provided around the integrated module for fixedly connecting the integrated module to the frame. superior. Specifically, at least one rack is provided on each of the dehumidification module 1, circulation module 3 and condensation module 4. The connecting portion 50 is used to ensure that the force of the integrated module is uniform.
  • the dehumidification module 1 has a dehumidification module upper shell and a dehumidification module lower shell;
  • the regeneration module 2 has a regeneration module upper shell and a regeneration module lower shell;
  • the circulation module 3 has a circulation module upper shell and a regeneration module lower shell.
  • the condensation module 4 has an upper shell of the condensation module and a lower shell of the condensation module; a lower shell of the dehumidification module, a lower shell of the regeneration module, a lower shell of the circulation module and a condensation module
  • the lower shell is integrally formed into the lower shell of the drying module;
  • the overlapping portion 50 is at least provided on the lower shell of the drying module.
  • the integrated lower shell of the drying module has good sealing properties and can provide a certain amount of support for the drying module. Therefore, it only needs to be installed around the edges of the lower shell of the drying module.
  • the overlapping portion 50 can overlap the entire drying module on the frame.
  • the dehumidification module 1, the regeneration module 2, the circulation module 3, the condensation module 4 and the rack are fixedly connected. Therefore, the air inlets/outlets on the shells of the above four modules can be fixedly connected. A soft connection is required between the circulation module 3 and the drum to avoid damage due to different amplitudes and frequencies of vibrations between the drum and the frame.
  • the dehumidification module 1 has an air outlet channel with one end connected to the dehumidification module 1 and the other end connected to the drum through the first corrugated hose.
  • the dehumidification module 1 and the inside of the drum are connected through the first corrugated hose to prevent the circulating air outlet channel and the dehumidification module 1 from being damaged due to the rotation of the drum.
  • the circulating air outlet channel is used as a channel for dry airflow to enter the drum after absorbing moisture through the runner module.
  • a filter assembly is provided in the drum air outlet channel for filtering the airflow entering from the drum to the dehumidification module.
  • the dehumidification module 1 also includes: an air inlet channel, which can be installed on the drum, with one end connected to the drum and the other end connected to the circulation module 3 . Further, the dehumidification module also includes: a filter assembly located in the circulating air inlet channel for filtering impurities in the circulating air flow.
  • a filter component (which can be a filter) is provided in the circulating air inlet channel to remove impurities in the circulating air flow, to prevent lint and dust impurities from entering the circulation module 3 and the dehumidification module 1, thereby preventing the above modules from being blocked or impurities burning. occurrence of such phenomena. Lint and dust impurities come from the drum. Therefore, installing the circulating air inlet channel on the drum facilitates direct filtering of the circulating air flow and avoids clogging of the circulating air inlet channel and the circulation module 3.
  • the regeneration module 2 includes: a regeneration module upper housing 210, the regeneration module upper housing 210 has a heating module 21 accommodation cavity;
  • the heating module 21 is installed in the heating module accommodation cavity.
  • the heating module 21 is arranged adjacent to the turntable 100 in the dehumidification module, and the heating module 21 accommodation cavity is connected to the dehumidification module 1; the heating module 21 is used to heat the turntable.
  • the regeneration fan 22 is installed on the installation part of the regeneration fan 22 and communicates with the condensation module, and is used to transport the low-temperature dry regeneration airflow formed by condensation of the condensation module 4 to the heating module 21; the heating module 21 heats a part of the dehumidification module 1 to evaporate the moisture adsorbed on it, and the regeneration fan 22 delivers the wind to the heating module 21 to form a high-temperature regeneration airflow to accelerate the recovery of the moisture adsorption capacity of the dehumidification module 1.
  • the heating module 21 includes: a heater installed in the first space; a thermal conductor 250 used to receive heat transferred from the first space; and a temperature detection module used to detect the third The temperature of a space; the temperature detection module is installed in the third space.
  • the third space is the space covered by the heat conduction member 250.
  • the third space and the first space are separated by the heat conduction member 250; the air equalization member is relative to the dehumidification module.
  • the turntables in the group are arranged adjacent to each other or at intervals; the regeneration airflow enters the heating module accommodation cavity and passes through the air equalizer/heater, heater/air equalizer and turntable 100 in sequence.
  • the heat conductive member 250 can completely isolate the first space and the third space, and no gas exchange will occur between them; or an opening can be provided on the heat conductive member 250, so that the first space and the third space can communicate with each other. Partial gas exchange is performed, and the temperature detection module determines the temperature of the first space by detecting the temperature of the heat conductive member 250 .
  • the temperature detection module is used to detect the temperature of the heating area, including the required temperature when clothes or intermediate media are heated and dehumidified.
  • the heating module 21 includes a heater, and a power source is set to make the air flow in the first space heated by the heater. Circulation to remove moisture from the intermediate medium to be dehydrated.
  • the intermediate medium here can be, for example, the turntable 100.
  • the turntable 100 can be made of materials with good hygroscopic properties, such as zeolite, lithium chloride, silica gel, modified silica gel or 13X (sodium X type) molecular sieve, etc., so the turntable 100 absorbs The moisture can be dehydrated and dried by heated air flow.
  • At least one part of the turntable 100 continuously absorbs moisture, and at least another part continuously undergoes dehydration and drying, so that the turntable 100 is desorbed immediately after absorbing moisture.
  • Such a cycle can be reused, and the first embodiment of the present invention can be used.
  • the air flow within the space can be defined as regeneration air flow.
  • the heating module 21 includes a heater and a temperature detection module.
  • the heater is arranged in the first space, and the temperature detection module is used to detect the temperature of the first space.
  • the temperature detection module is installed in the third space.
  • the thermal conductive member 250 covers the temperature detection module.
  • the thermal conductive member 250 transfers the heat received in the first space to the temperature detection module in the third space, thereby measuring the temperature in the first space.
  • the thermal conductor 250 can be made of a metal material that is easy to conduct heat, such as copper or aluminum.
  • the thermal conductor 250 is in the second space, receives the heat of the high-temperature regeneration airflow and conducts it to the temperature detection module in the third space, so that it can be evenly distributed.
  • the conduction of heat stabilizes the temperature detected by the temperature detection module, thereby improving the accuracy of the detection results; this prevents the temperature detection module from directly detecting the regeneration airflow in the first space, and the regeneration airflow in the first space may There is turbulence or/turbulence, causing the test results to jump frequently.
  • the thermal conductive member 250 is installed in the second space connected to the first space, and the second space communicates with the third space. Separated by thermal conductive member 250.
  • the regeneration airflow is heated by the heater in the first space and becomes a high-temperature regeneration airflow. Since the second space is connected to the first space, the high-temperature regeneration airflow spreads to the second space. Therefore, the temperature in the first space can be known by detecting the temperature of the second space. .
  • the regeneration module upper housing 210 includes a base 214, a top wall 212 and a side wall 213 protruding from the top wall 212.
  • the top wall 212 and the side wall 213 surround Assuming that a first space is formed, the base 214 is arranged around the side wall 213 and extends to the outside away from the first space; at least part of the bottom surface of the base 214 is provided with a groove, and the groove forms a second space.
  • the heating module 21 can be used to heat the regeneration air flow, and use the high-temperature regeneration air flow to remove moisture adsorbed on the turntable 100 .
  • the top wall 212 and the side wall 213 of the upper housing 210 of the regeneration module form a first space, and the heater is installed in the first space; the bottom surface of the base 214 is provided with a groove, and the heat conductive member 250 is installed in the groove, and Covered temperature detection module.
  • the upper housing 210 of the regeneration module has a fan-shaped structure; a heater air inlet 211 is provided on the outer arc side of the upper housing 210 of the regeneration module, opposite to the top wall 212.
  • a heater air outlet is provided on one side; the heater air inlet 211, the first space and the heater air outlet are connected in sequence; the base 214 includes a first side, the first side extends along the radial direction of the fan, and the groove is located on the first side.
  • the same groove can be provided on the second side opposite to the first side, and the temperature detection module can be arranged therein.
  • the regeneration airflow enters from the heater air inlet 211, is then heated by the heater in the first space, and finally flows out from the heater air outlet.
  • the groove is located on the first side, and the groove is connected to the first space.
  • the heated high-temperature regeneration airflow diffuses into the groove, and the heat conductive member 250 is heated and conducted to the temperature detection module to prevent the temperature detection module from being affected by the heat flowing in the first space.
  • the regeneration airflow blows directly to reduce the jitter in the test results caused by turbulence/turbulence.
  • the heating module 21 further includes a mounting base 218, which is connected and fixed to the first side, and the mounting base 218 is located on the other side of the first side away from the groove; on the mounting base 218 A through-mounting hole is provided to form a roughly hexahedral shape with one side open.
  • the temperature detection module is arranged inside the mounting hole.
  • the space formed by the thermal conductive member 250 covering the opening surface of the mounting base 218 is the third space; the mounting hole and temperature detection Module adaptation.
  • the temperature detection module is installed in the installation hole and covered by the heat conductive member 250 to isolate the temperature detection module from the second space to avoid leakage of the regeneration air flow.
  • the mounting base 218 can be provided with a fixing piece, and the fixing piece can be used to fix the cable connected to the temperature detection module.
  • the thermal conductive member 250 is in contact with the contact point of the temperature detection module.
  • the regeneration airflow circulating in the first space may be turbulent/turbulent, and the temperature of the regeneration airflow is unstable in a local range.
  • a ridge structure is provided on the side of the heat conductive member 250 facing the second space, which increases the risk of high temperatures.
  • the regeneration airflow contact area and extended conduction path make the temperature transmitted to the temperature detection module tend to a stable average value.
  • the heat-conducting member 250 can be a heat-conducting sheet, which is easy to shape, so as to cover the temperature detection module.
  • a protruding portion can be provided on one side of the heat conductive member 250 facing the second space, and a recessed portion can be provided on the corresponding other side.
  • the temperature detection module can be embedded in the recessed portion, and the contacts of the temperature detection module contact the recessed portion. In this way, the protruding portion increases The contact area between the heat conductive member 250 and the regeneration airflow is increased.
  • the base 214 is connected and mounted to the mounting portion through a thermal buffer 270 .
  • a thermal buffer 270 is provided between the heating module 21 and the upper shell of the dehumidification module, so that the heat generated by the heating module 21 is buffered and the high temperature is prevented from being directly transmitted to the upper shell of the dehumidification module. will cause it to be damaged. It delays the aging of the upper shell of the dehumidification module and increases the service life of the drying module.
  • the upper shell of the dehumidification module that accommodates the turntable 100 is an integrated upper shell of the dehumidification module.
  • the upper shell of the dehumidification module is provided with a moisture absorption area and a dehumidification area.
  • the moisture absorption area and The dehumidification area divides the upper housing of the dehumidification module housing the turntable 100 into at least two functional areas through at least two radial ribs.
  • An installation portion of the heating module 21 is provided in the dehumidification area of the upper housing of the dehumidification module to facilitate the modular assembly of the heating module 21 .
  • the shape of the heating module 21 is adapted to the shape of the dehumidification area.
  • the heating module 21 is a fan-shaped structure, including upper and lower walls and along the radial direction.
  • a space formed by two side walls is provided with a base and a heating element located under the base.
  • a thermostat installation portion extends outward from one side wall of the lower wall.
  • the heating element is close to the base so as not to cause great resistance to the wind passing through the air hole; the heating element is located directly below the air hole and is slightly offset in the radius direction, because when the wind blows inward along the radius and passes through the When opening the air hole, there will be a velocity in the radius direction pointed by the arrow, so setting a little offset can allow the wind energy passing through the air hole to face the heating element.
  • thermal buffer 270 includes: thermal insulation 271;
  • the heat insulator 271 is provided on the peripheral side of the base to prevent the high temperature of the heating element from being directly transmitted to the upper shell of the dehumidification module.
  • the heat insulation member 271 is disposed around the base, that is, between the heating module 21 and the upper shell of the dehumidification module.
  • the heat insulator 271 can block the heat generated by the heating module 21, prevent the high temperature generated by the heating module 21 from being directly transmitted to the upper shell of the dehumidification module, and prevent the high temperature from being directly transmitted to the upper shell of the dehumidification module and causing damage. It delays the aging of the upper shell of the dehumidification module and increases the service life of the drying module.
  • the material of the heat insulation member 271 is a heat insulation material or a metal material.
  • the thermal insulation material is a general term for thermal insulation and cold insulation materials. Its properties can include: small thermal conductivity; stable material performance with a clear thermal conductivity equation and a large temperature range; low density; ability to withstand certain vibrations , has certain mechanical strength; good chemical stability, non-corrosive effect; good waterproof performance and low hygroscopicity. It has few flammable components and should have the characteristics of self-extinguishing and non-flammability. In order to reduce costs, metal materials can also be used, such as hardware. Hardware not only has a certain thermal insulation effect, but also has a long service life and good thermoplasticity.
  • thermal buffer 270 also includes: sealing gasket 272;
  • the sealing gasket 272 is wrapped outside the heat insulation member 271; or the sealing gaskets 272 are respectively provided on both sides of the heat insulation member 271, that is, the heating module 21, the sealing gasket 272, the heat insulation member 271, the sealing gasket 272, and the upper shell of the dehumidification module.
  • the bodies are arranged in sequence; or the sealing gasket 272 is only arranged between the heat insulation member 271 and the upper shell of the dehumidification module.
  • the sealing gasket 272 can be arranged along the heat insulator 271. In order to further prevent heat from escaping, the heat can be transferred according to a predetermined path, which ensures efficient use of heat and prevents heat from damaging the dehumidification module. Upper housing and other modules.
  • the material of the sealing gasket 272 is foam material, silicone material or soft rubber material.
  • the material of the sealing gasket 272 is selected from relatively soft and elastic materials, which can be changed as the structure of the heat insulating member 271 changes, and can further increase the airtightness of the dehumidification zone.
  • a preset gap is left between the location of the sealing gasket 272 and the bottom of the mounting portion.
  • a certain preset gap is left to reduce the resistance between the drying module and other modules.
  • a runner can be provided under the drying module. If the sealing gasket 272 is completely connected to the runner, Contact will cause the rotation resistance of the runner to increase, which will not only affect the rotation of the runner, but also reduce the service life of the runner.
  • the preset gap is 0.2-5mm.
  • a preferable preset gap range is given. Within this range, the sealing gasket 272 will not contact adjacent devices or modules, and will also have a certain sealing effect and prevent heat from escaping. scattered. After repeated research and experiments, the preset gap was controlled at 0.6-0.8mm, which achieved better results.
  • the surface of the thermal conductive member 250 has a heat-resistant and anti-corrosion coating to extend the service life of the thermal conductive member 250 and prevent the thermal conductive member 250 from rusting in a high-temperature and humid environment.
  • the heating module 21 is installed in the accommodation cavity of the heating module 21.
  • the heating module 21 is located above the turntable 100, and the accommodation cavity of the heating module 21 is connected with the turntable 100.
  • the heating module 21 is used to heat the regeneration air flow to adsorb the turntable 100.
  • the components of the turntable 100 may include the turntable 100 and a driving assembly.
  • the driving assembly may include a motor, and the motor may drive the turntable 100 to rotate.
  • the turntable 100 can be made of materials with good hygroscopic properties, such as zeolite, lithium chloride, silica gel, modified silica gel or 13X (sodium X type) molecular sieve.
  • the wet circulating airflow discharged from the drum enters the bottom of the housing cavity of the turntable 100.
  • the wet circulating airflow in the dehumidification area passes through the turntable 100 from bottom to top.
  • the turntable 100 absorbs the moisture in the wet circulating airflow, so that the wet circulating airflow can become a dry circulating airflow.
  • the drying circulating airflow enters the drum through the air inlet of the drum and fully contacts the clothes, improving drying efficiency and reducing energy consumption;
  • the regeneration component may include a heater for heating the regeneration airflow, and the heated regeneration air flows through the heating module 21 contains the cavity and passes through the turntable 100 from top to bottom to dehydrate and dry the part of the turntable 100 in the regeneration zone.
  • the turntable 100 During the rotation of the turntable 100, it circulates through the dehumidification zone and the regeneration zone, continuously adsorbing moisture and The process of desorbing moisture; in this way, the dry circulating air flow can be continuously obtained. into the drum and fully contact with the clothes to improve drying efficiency and reduce energy consumption.
  • the regeneration module upper housing 210 may include: a first top wall and a first side wall protruding around the first top wall to form the heating module 21 accommodation cavity, and a base protruding outward along the first side wall. 214.
  • the base 214 can be provided with a mounting hole through which it can be connected and fixed with the upper housing 110 of the turntable 100.
  • the heating module 21 includes a stacked air equalizer and The heater is located between the air equalizer and the turntable 100; the regeneration airflow enters the accommodation cavity of the heating module 21 and passes through the air equalizer, heater and turntable 100 in sequence.
  • the air equalizer can be arranged upstream or downstream of the heater. Of course, the upstream is the better choice.
  • the air equalizer guides the airflow flowing into the heater accommodation space so that the regeneration airflow can fully transfer the heat of the heater to the turntable 100.
  • the heater is closer to the turntable 100, and the air equalizing parts are arranged at intervals relative to the turntable 100; the air equalizing parts can also be provided downstream of the heater.
  • the advantage in this case is that the regeneration airflow fully contacts the heater first, so that the regeneration airflow heats up evenly. Then, the hot air flow is directed to the turntable 100 through the guidance of the air equalizer.
  • the air equalizer is arranged adjacent to the turntable 100, and the heater is spaced apart from the turntable 100.
  • the air equalizer In addition to uniform air flow and guidance, the air equalizer , and can also protect the heating tube of the heater to a certain extent; the air equalizer can also be omitted, and the regeneration airflow flows directly to the turntable 100 after passing through the heater, which can save costs and reduce the complexity of the mechanism.
  • the upper housing 210 of the regeneration module has a fan-shaped structure; a heater air inlet 211 is provided on the outer arc side of the upper housing 210 of the regeneration module.
  • the preferred solution is that the upper housing 210 of the regeneration module has a fan-shaped structure; the upper housing 210 of the regeneration module can also have an irregular structure, and there are no excessive limitations here; Housing 210, which cooperates with the upper housing 110 of the turntable 100 The connection separates the dehumidification area and the regeneration area, that is, the wet circulating air flow in the dehumidification area and the regeneration air flow in the regeneration area can be kept largely isolated.
  • the regeneration airflow enters the third airflow channel through the heater air inlet 211.
  • the air equalizer can make the regeneration airflow contact the heater more evenly.
  • the evenly heated regeneration airflow desorbs moisture on the turntable 100 in the regeneration area.
  • the air equalizing component includes an air equalizing plate 230 and side plates protruding around the air equalizing plate 230.
  • the air equalizing plate 230 and the side plates enclose a heater accommodation area, and the heater is located in the heater accommodation area;
  • the air plate 230 is fan-shaped, and the air equalizing plate 230 is provided with air holes 231 distributed at intervals. The arrangement of the air holes allows the regeneration airflow to enter the heater below more evenly.
  • the heater includes a plurality of heating tubes 240 connected end to end.
  • the heating tubes 240 are spaced apart along the radial direction of the fan shape; the length of the heating tubes 240 is approximately perpendicular to the radial direction of the fan shape.
  • the heating tubes 240 are distributed in an S-shape, which allows the heating tubes 240 to be distributed longer in the heater accommodation area to increase the contact area with the regeneration air flow, thereby increasing the efficiency of heat exchange with the regeneration air flow.
  • the air holes are arranged in rows, and the position of each row of air holes roughly corresponds to the position of the heating pipe 240; the diameter of the air holes tends to decrease along the radial direction of the sector from the outer arc to the center of the circle.
  • the heater air inlet 211 is located on the outer arc side of the upper housing 210 of the regeneration module. The diameter of the air holes close to the heater air inlet 211 is relatively large, and the diameter of the air holes far away from the heater air inlet 211 is relatively small. some.
  • the heating tube 240 is located below the air hole; and the axis of the heating tube 240 is aligned with The center line corresponding to each row of air holes is set to be offset, and the center line of each row of air holes is closer to the heater air inlet 211 than the axis of the heating tube 240 .
  • the heating tube 240 is located below the air hole.
  • the heating tube 240 is adjacent to the air equalizing plate 230, or is close to the air equalizing plate 230, so as not to cause greater resistance to the regeneration airflow passing through the air hole; the heating tube 240 can be fixed with a pipe clamp.
  • a certain gap may be provided between the heating pipe 240 and the air equalizing plate 230 to allow the regeneration airflow to pass through.
  • the regeneration airflow blows in from the heater air inlet 211 and blows inward along the radius direction of the fan, there will be a speed along the flow direction of the regeneration airflow. Therefore, setting a slight offset to the center line of each row of air holes can make The regeneration air flow passing through the air holes can directly face the heating pipe 240 to achieve higher heat exchange efficiency between the regeneration air flow and the heating pipe 240 .
  • the upper housing 210 of the regeneration module has a fan-shaped structure; the side wall of the upper housing 210 of the regeneration module is provided with a heater air inlet 211, and the side walls are arranged along the radial direction of the fan; wherein, the regeneration airflow enters
  • the direction of the accommodation cavity of the heating module 21 is opposite to the rotation direction of the turntable 100 . That is, the regeneration airflow is blown into the heater accommodating space from the direction substantially perpendicular to the radius of the sector regeneration module along or against the rotation direction of the turntable 100, so that the airflow can be heated by the heater more uniformly.
  • the heater includes a plurality of heating tubes 240 connected end to end, and the heating tubes 240 are distributed along a fan-shaped radial interval; the length of the heating tubes 240 is arranged parallel to the side wall opposite to the heater air inlet 211 .
  • the heating tube 240 can also be arranged roughly along the radial direction of the heating module. In this case, the air inlet direction is perpendicular to the radial direction, in order to achieve better uniform air flow and heating effects.
  • the regeneration module provided by the embodiment of the present invention will be described in detail below in conjunction with the flow direction of the regeneration air flow.
  • the heater air inlet 211 is located on the outer arc side of the regeneration module upper housing 210.
  • the regeneration module upper housing 210 has a fan-shaped structure.
  • the regeneration airflow enters the third airflow channel radially from the heater air inlet 211. It enters the heater accommodating area through the air holes on the air distribution plate 230 and performs heat exchange with the heating pipe 240.
  • the heated high-temperature regeneration airflow passes through the turntable 100 to dehydrate and dry the part of the turntable 100 in the regeneration area.
  • the diameter of the air holes tends to decrease from the outer arc to the center of the circle along the radial direction of the fan.
  • the heating tubes 240 are distributed in an S shape.
  • the heating tubes 240 are spaced apart along the radial direction of the fan and the length of the heating tubes 240 is perpendicular to the radial direction of the fan. Since the air holes on the air equalizing plate 230 are arranged corresponding to the heating pipe 240, the diameter of the air holes is relatively larger near the heater air inlet 211, and the diameter of the air holes far away from the heater air inlet 211 is larger. Relatively small, that is, the heated high-temperature regeneration airflow flow rate received by the turntable 100 in the regeneration zone decreases uniformly or unevenly along the radius direction of the fan from the outer arc to the center of the circle, so that the turntable 100 can be heated and dried more uniformly. Dry.
  • Embodiment 2 The similarities between Embodiment 2 and Embodiment 1 will not be described again.
  • Embodiment 2 and Embodiment 1 The differences between Embodiment 2 and Embodiment 1 are:
  • the heater air inlet 211 is located on the side wall of the upper housing 210 of the regeneration module.
  • the side wall is arranged in a fan-shaped radial direction.
  • the flow direction of the regeneration air flow is opposite or arranged in the same direction as the rotation direction of the turntable 100; the regeneration air flow is provided by the heater.
  • the air inlet 211 enters the third airflow channel, enters the heater accommodation area through the air holes on the air distribution plate 230, and conducts heat exchange with the heating pipe 240.
  • the heated high-temperature regeneration airflow passes through the turntable 100 from top to bottom, and affects the regeneration area.
  • the inner turntable 100 is dehydrated and dried.
  • the heating tubes 240 are distributed in an S-shape.
  • the length of the heating tubes 240 is arranged parallel to the side wall opposite to the heater air inlet 211.
  • the heating tubes 240 are distributed along fan-shaped radial intervals. Since the air holes on the air equalizing plate 230 and the heating The tubes 240 are arranged correspondingly, so the air holes on the air equalizing plate 230 are arranged relatively densely on the side away from the heater air inlet 211 and the diameter of the air holes is also larger.
  • the high temperature regeneration after heating is controlled by the arrangement of the air holes.
  • the flow rate of airflow When the turntable 100 absorbs moisture from the wet circulating airflow through the dehumidification zone, it rotates to the regeneration zone.
  • the turntable 100 When rotating, the turntable 100 is first dehydrated and dried with a large flow rate of high-temperature regeneration airflow, and then the flow rate of the high-temperature regeneration airflow is gradually reduced as it rotates through the regeneration zone, so that the turntable 100 can be heated and dried more evenly.
  • the condensation module 4 can also specifically include a condensation module upper shell 401 and a condensation module lower shell 402.
  • the condensation module upper shell 401 and the condensation module lower shell 402 can be cooperatively connected to form a Condenser accommodating cavity, the condenser 43 is installed in the condenser accommodating cavity.
  • the arrow shown in Figure 9 is the flow direction of the regeneration air flow.
  • the regeneration air flow passes through the turntable 100 from top to bottom to the fourth air flow channel. It turns into a moist and hot regeneration air flow and then flows into the lower shell 402 of the condensation module and enters the condenser 43 for processing. Heat exchange and cooling.
  • the drying module also includes a first connecting piece 3013, the two ends of which are connected to the condenser and the regeneration fan 22 respectively, so that the regeneration airflow enters the regeneration fan 22 through the condenser 43; a second connecting piece 3014 , its two ends are respectively connected with the regeneration fan 22 and the heater air inlet, so that the regeneration air flow enters the third air flow channel through the regeneration fan 22 .
  • a hard pipe joint as shown in Figure 11 can be used, which not only supports the regeneration fan 22, but also makes the overall structure of the drying module compact and occupies less space. The space is small; of course, the first connecting piece 3013 can also be a flexible piece, which can be easily connected to the two hard structures of the condenser and the air inlet of the regeneration fan 22.
  • the first connection member 3013 includes a first air inlet and a first air outlet.
  • the first air inlet is adapted to and communicates with the condenser air outlet.
  • the first air outlet is connected to the regeneration fan 22 .
  • the air inlets are adapted and connected; the first air inlet is a generally rectangular opening, the first air outlet is a generally circular opening, and the plane where the first air inlet is located is approximately perpendicular to the plane where the first air outlet is located. settings to adjust the flow direction of the regeneration airflow.
  • the first air inlet end face of the first connecting member 3013 is provided with a rectangular connecting flange or a flexible boundary so that it is deformed and inserted into the condenser air outlet to connect with the condensation
  • the module upper shell 401 and the condensation module lower shell 402 are connected and fixed.
  • the shell structure of the first connector 3013 is special-shaped.
  • the air duct in the first connector 3013 has a rectangular cross-section at the first air inlet.
  • the cross section of the first air outlet is gradually transitioning into a circle, ensuring that the first connecting member 3013 can guide air smoothly.
  • the second connection member 3014 includes a second air inlet and a second air outlet.
  • the second air inlet is adapted to and connected with the air outlet of the regeneration fan 22 .
  • the second air outlet is connected to the heating unit.
  • the air inlet of the device is adapted and connected; the second air inlet is a substantially rectangular opening, the second air outlet is an arc-shaped opening, and the plane where the second air inlet is located is generally parallel to the plane where the second air outlet is located. , and the area of the second air outlet is larger than the second air inlet.
  • the air channel in the second connector 3014 gradually expands from the second air inlet to the second air outlet, thereby further converting the dynamic pressure energy of the air flow into static pressure energy, improving the conversion ability of the dynamic pressure energy, and improving the efficiency of the fan. To improve the working performance, avoid the formation of turbulence as much as possible.
  • the present invention proposes an integrated washing and drying machine, which has a drum and a frame, and includes the drying module in any of the above technical solutions. Therefore, it has all the advantages and beneficial effects of the drying module in any of the above technical solutions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Drying Of Gases (AREA)

Abstract

一种烘干模组及洗烘一体机,通过循环模组(3)将来自于滚筒内湿循环气流输送至除湿模组(1)进行烘干,除湿模组(1)对来自滚筒的湿循环气流吸附水分,以使干燥的循环气流输出到滚筒中。再生模组(2)连使干燥的再生气流输出到除湿模组(1),以将除湿模组(1)的至少一部分脱附水分,使其恢复吸附水分能力;冷凝模组(4)用于对再生模组(2)输出的再生气流进行冷凝以形成为低温干燥的再生气流;在冷凝过程中形成的冷凝水排出。除湿模组(1)、循环模组(3)及冷凝模组(4)为各自独立的模组,除湿模块(1)分别与循环模组(3)、冷凝模组(4)连接固定,以形成整体化模组,方便拆装于机架上,也可以作为单独的设备对空气进行烘干。

Description

一种烘干模组及洗烘一体机 技术领域
本发明涉及洗衣设备领域,尤其涉及一种烘干模组及洗烘一体机。
背景技术
在人们对健康品质生活的追求愈加高涨、城市居民生活节奏不断加快等因素的助推下,洗烘一体机横空出世并深受广大消费者的喜爱,洗烘一体机尤其适合梅雨季节时期的南方家庭、空气质量差不适合户外晒衣的北方家庭,以及想要衣物即洗即穿或追求衣物更加蓬松舒适的使用人群。
现有一部分的洗烘一体机的烘干系统利用蒸发器对洗烘机内筒的潮湿空气进行加热吸湿,得到高温空气之后,再重新进入洗烘机内筒,从而使衣物中的水分得以蒸发。但是,蒸发器的整体温度一致,在潮湿空气蒸发的过程中,蒸发器对潮湿空气的吸湿能力下降,导致吸湿效率低、烘干时间长,功耗高。还有一部分采用冷凝水喷淋或冷凝器直接对湿气流除湿的方式,该方式处理过的气流仍然夹带很高比例的水分,且循环利用还需要对气流升温-降温除湿-再升温,除湿效率较低,功耗较大。
发明内容
本发明的目的是提供了一种烘干模组及洗烘一体机,为解决现有技术中除湿处理过的气流仍然夹带很高比例的水分,且循环利用还需要对气流升温-降温除湿-再升温,除湿效率较低,功耗较大的问题。
为解决上述技术问题,根据一些实施例,本发明提供一种烘干模组,包 括:
循环模组,其与滚筒连通,循环模组将来自滚筒的湿循环气流输出到除湿模组进行除湿;
除湿模组,其连通循环模组和滚筒,除湿模组用于吸附来自滚筒的湿循环气流的水分,并使干燥的循环气流输出到滚筒中;
再生模组,其安装于除湿模组的壳体上,再生模组与除湿模组位于再生气流通道的部分气流连通,以使干燥的再生气流输出到该部分除湿模组,以将除湿模组的至少一部分脱附水分;
冷凝模组,连通到再生模组的再生气流出口,用于对再生模组输出的再生气流进行冷凝以形成为低温干燥的气流;其中,
除湿模组分别与循环模组、冷凝模组连接固定,以形成整体化模组。
进一步地,搭接部,设置在整体化模组的四周,用于将整体化模组固定连接至机架上。
进一步地,除湿模组具有除湿模组上壳体和除湿模组下壳体;再生模组具有再生模组上壳体和再生模组下壳体;循环模组具有循环模组上壳体和循环模组下壳体;冷凝模组具有冷凝模组上壳体和冷凝模组下壳体;
除湿模组下壳体、再生模组下壳体、循环模组下壳体及冷凝模组下壳体一体成型为烘干模组下壳体;
搭接部设置在烘干模组下壳体上。
进一步地,循环出风通道,一端与除湿模组连通,另一端通过第一波纹软管与滚筒连接。
进一步地,循环进风通道,其安装在滚筒上,一端与滚筒连通,另一端 与循环模组连通。
进一步地,循环进风通道内设有过滤组件,用于过滤循环气流中的杂质。
进一步地,除湿模组、再生模组、循环模组、冷凝模组是分立的,并通过固定连接的方式形成为整体化模组。
进一步地,再生模组上壳体具有加热模块容纳腔;
加热模块,安装于加热模块容纳腔内;加热模块临近除湿模组中的转盘设置,且加热模块容纳腔与除湿模组连通;加热模块用于以加热的方式将转盘的至少一部分脱附水分。
进一步地,加热模块包括:
加热器,其安装于第一空间内;
导热件,用于接受从第一空间传导的热量;
温度检测模块,其用于检测第一空间的温度;温度检测模块安装于第三空间内,第三空间为导热件所包覆形成的空间,第三空间与第一空间通过导热件进行分隔;
均风件,相对除湿模组中的转盘临近或间隔设置;再生气流进入加热模块容纳腔内,依次经由均风件/加热器、加热器/均风件和转盘。
进一步地,导热件安装于与第一空间连通的第二空间,第二空间与第三空间通过导热件进行分隔。
进一步地:再生模组上壳体,其包括底座、顶壁和突出于顶壁的侧壁,顶壁和侧壁围设形成第一空间,底座沿侧壁的四周设置,且底座向背离第一空间的外侧延伸;
底座的底面设有凹槽,凹槽形成第二空间。
进一步地,再生模组上壳体呈扇形结构;
再生模组上壳体的外弧侧面设有加热器进风口,与顶壁相对一侧设有加热器出风口;其中,加热器进风口、第一空间和加热器出风口依次连通;
底座至少包括第一侧边,第一侧边沿扇形的径向延伸,凹槽位于第一侧边。
进一步地,底座通过热缓冲件连接安装至加热模块容纳腔。
进一步地,热缓冲件包括隔热件;隔热件设置在底座周侧,用于防止加热件的高温直接传递到壳体。
进一步地,热缓冲件还包括密封垫;密封垫包覆在隔热件外部。
进一步地,密封垫的设置位置与安装部的底部之间留有预设间隙。
进一步地,预设间隙为0.2-5mm。
进一步地,加热模块具有安装座,安装座与第一侧边连接固定,且安装座位于第一侧边背离凹槽的另一侧面;
安装座上设有贯穿的安装孔、形成具有一面开口的大致六面体形状,温度检测模块设置于安装孔内部,导热件包覆安装座的开口面所形成的空间为第三空间;
安装孔与温度检测模块适配。
进一步地,导热件与温度检测模块的触点接触。
进一步地,导热件的表面具有耐热防腐镀层。
进一步地,均风件包括均风板和突出于均风板四周的侧板,均风板和侧板围合成加热器容纳区,加热器设于加热器容纳区内;
均风板呈扇形,均风板上设有间隔分布的风孔。
进一步地,加热器包括多根首尾连接的加热管,加热管沿扇形的半径方向间隔分布;
加热管的长度平行于与加热器进风口相对的侧壁设置。
进一步地,风孔成排设置,每排风孔的设置位置与加热管的位置相对应;
风孔的直径沿扇形的半径方向从外弧向圆心呈减小趋势。
进一步地,加热管位于风孔的下方;
且加热管的轴线与相对应每排风孔的中心线设置为偏移,每排风孔的中心线比加热管的轴线更靠近于加热器进风口。
进一步地,再生气流进入加热模块容纳腔的方向与转盘的旋转方向相对或同向设置。
本发明的另一方面提出一种洗烘一体机,其中,具有滚筒和机架,包括上述任一技术方案中烘干模组。
附图说明
为了更清楚地说明本发明实施例或传统技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例中一种烘干模组立体图。
图2是本发明一个实施例中一种烘干模组俯视图。
图3是本发明一实施例提供的一种加热模块的立体示意图。
图4是本发明一实施例提供的一种加热模块的又一立体示意图。
图5是本发明实施例提供的一种加热模块的立体示意图。
图6是图5的仰视图。
图7是本发明一个实施例中加热模块与除湿模组的装配示意图。
图8是本发明一个实施例中均风件示意图。
图9是本发明一个实施例中一种烘干模组的爆炸图。
图10是本发明一个实施例中除湿模组中的转盘与再生模组装配示意图。
图11是本发明一个实施例中再生模组中的加热模块与再生风机的拆分示意图。
图12是本发明一个实施例中烘干模组中冷凝模组示意图。
附图标记:
1、除湿模组;2、再生模组;21、加热模块;22、再生风机;3、循环模组;4、冷凝模组;50、搭接部;21、加热模块;210、再生模组上壳体;211、加热器进风口;212、顶壁;213、侧壁;214、底座;240、加热管;218、安装座;250、导热件;100、转盘;110转盘上壳体;120、转盘下壳体;210、再生模组上壳体;230、均风板;231、风孔;270、热缓冲件;271、隔热件;272、密封垫;401、冷凝模组上壳体;402、冷凝模组下壳体;43、冷凝器;3013、第一连接件;3014、第二连接件。
具体实施方式
目前,现有技术中除湿处理过的气流仍然夹带很高比例的水分,且循环利用还需要对气流升温-降温除湿-再升温,除湿效率较低,功耗较大的问题。
为解决上述问题,如图1所示,本发明一实施例提供了一种烘干模组,包括:其与洗烘一体机的滚筒连通,循环模组3将来自滚筒的湿循环气流输 出到除湿模组1进行除湿;除湿模组1,其分别连通循环模组3和滚筒,除湿模组1用于对来自滚筒的湿循环气流吸附水分,以使干燥的循环气流输出到滚筒中;再生模组2,其安装于除湿模组1的壳体上,再生模组2连通除湿模组1,以使干燥的再生气流输出到除湿模组1,以将除湿模组1的至少一部分脱附水分,使其恢复吸附水分能力;冷凝模组4,连通到再生模组2的再生风出口,用于对再生模组2输出的再生气流进行冷凝以形成为低温干燥的再生气流;其中,除湿模组1分别与循环模组3、冷凝模组4连接固定,以形成整体化模组。
在该实施例中,烘干模组用于将湿气流烘干,该气流我们定义为再生气流;其中,循环模组3做气流在滚筒和除湿模组1之间循环的动力,循环模组3将来自于滚筒内湿循环气流输送至除湿模组1进行吸湿处理,除湿模组1对来自滚筒的湿循环气流吸附水分,以使干燥的循环气流输出到滚筒中。再生模组2连通除湿模组1的一部分,以使干燥的再生气流输出到除湿模组1的这部分,以将除湿模组1的至少一部分脱附水分,使其恢复吸附水分能力;冷凝模组4连通到再生模组2的再生风出口,用于对再生模组2输出的再生气流进行冷凝以形成为低温干燥的再生气流;在冷凝过程中形成的冷凝水排出。除湿模组1、循环模组3及冷凝模组4为各自独立的模组,除湿模组分别与循环模组3、冷凝模组4连接固定,以形成整体化模组,方便拆装于机架上,也可以作为单独的设备对空气进行烘干。
在本发明的一个实施例中,如图2和图10所示,烘干模组其中:搭接部50,设置在整体化模组的四周,用于将整体化模组固定连接至机架上。具体地,在除湿模组1、循环模组3和冷凝模组4中每个模组上设置至少一个搭 接部50,以保证整体化模组受力匀化。
除湿模组1具有除湿模组上壳体和除湿模组下壳体;再生模组2具有再生模组上壳体和再生模组下壳体;循环模组3具有循环模组上壳体和循环模组下壳体;冷凝模组4具有冷凝模组上壳体和冷凝模组下壳体;除湿模组下壳体、再生模组下壳体、循环模组下壳体及冷凝模组下壳体一体成型为烘干模组下壳体;搭接部50至少设置在烘干模组下壳体上。在该技术方案中,一体成型的烘干模组下壳体具有良好的封闭性;并且能够为烘干模组提供一定支撑力,因此,只需要在烘干模组下壳体的四周边缘设置搭接部50就能够将整个烘干模组搭接在机架上。
除湿模组1、再生模组2、循环模组3冷凝模组4与机架之间是固定连接关系,因此,上述四个模组的壳体上的进/出风口可以是固定连接。循环模组3与滚筒之间需要软连接,以避免因滚筒和机架的震动的振幅和频率不同而受到破坏。
在本发明的一个实施例中,除湿模组1其中:出风通道,一端与除湿模组1连通,另一端通过第一波纹软管与滚筒连接。
在该实施例中,通过第一波纹软管连通除湿模组1和滚筒内部,避免循环出风通道和除湿模组1因滚筒转动受到破坏。循环出风通道作为经过转轮模块吸湿得到干燥气流进入滚筒的通道。可选地,在滚筒出风通道设置过滤组件,用于对从滚筒进入到除湿模组的气流进行过滤。
在本发明的一个实施例中,除湿模组1还包括:进风通道,其可以安装在滚筒上,一端与滚筒连通,另一端与循环模组3连通。进一步地,除湿模组还包括:设于循环进风通道内的过滤组件,用于过滤循环气流中的杂质。 在循环进风通道内设置过滤组件(可以是滤网)以去除循环气流中的杂质,避免毛絮和灰尘杂质进入到循环模组3以及除湿模组1,进而避免上述模组阻塞或杂质燃烧等现象的产生。毛絮和灰尘杂质来自于滚筒,因此,将循环进风通道安装在滚筒上,利于直接过滤循环气流,避免循环进风通道和及循环模组3堵塞。
在本发明的一个实施例中,再生模组2包括:再生模组上壳体210,再生模组上壳体210具有加热模块21容纳腔;
加热模块21,其安装于加热模块容纳腔内,加热模块21临近除湿模组中的转盘100设置,且加热模块21容纳腔与除湿模组1连通;加热模块21用于以加热的方式将转盘100的至少一部分脱附水分;再生风机22,安装在再生风机22安装部上且与冷凝模组连通,用于将冷凝模组4冷凝形成的低温干燥的再生气流输送至加热模块21;加热模块21加热除湿模组1的一部分,使其上吸附的水分蒸发,再生风机22将风输送至加热模块21形成高温的再生气流,加快恢复除湿模组1的水分吸附能力。
在本发明的一个实施例中,加热模块21包括:加热器,其安装于第一空间内;导热件250,用于接受从第一空间传到的热量;温度检测模块,其用于检测第一空间的温度;温度检测模块安装于第三空间内,第三空间为导热件250所包覆形成的空间,第三空间与第一空间通过导热件250进行分隔;均风件,相对除湿模组中的转盘临近或间隔设置;再生气流进入加热模块容纳腔内,依次经由均风件/加热器、加热器/均风件和转盘100。可以理解的是,导热件250可以是将第一空间与第三空间完全隔离开,它们之间不会产生气体交换;也可以在导热件250上设置开口,第一空间和第三空间可以进 行部分气体交换,温度检测模块通过检测导热件250的温度来确定第一空间的温度。
温度检测模块用于检测加热区域的温度,其中包括衣物或中间介质被加热除湿时的所需的温度,加热模块21包括加热器,并且设置动力源使第一空间内的气流经加热器加热后流通,以除去待脱水中间介质的水分。此处的中间介质例如可以是转盘100,转盘100可选用吸湿性能好的材料制作,例如可以是沸石、氯化锂、硅胶、改性硅胶或13X(钠X型)分子筛等,因此转盘100吸附的水分可通过加热后的气流进行脱水烘干。转盘100在旋转的过程中至少一部分不断进行吸湿、至少另一部分不断地进行脱水烘干,使转盘100在吸湿后随即被脱附,如此循环,可再生使用,可将本发明实施例中第一空间内的气流可定义为再生气流。
在该实施例中,如图3和图4所示,加热模块21包括加热器和温度检测模块,加热器设置在第一空间内,温度检测模块用于检测第一空间的温度。温度检测模块安装于第三空间内,导热件250包覆温度检测模块,导热件250将接受到的第一空间的热量传递给第三空间内的温度检测模块,进而测得第一空间内的再生气流的温度。导热件250可选用易传导热的金属材料制作,例如可以是铜或铝等;导热件250在第二空间内,接收高温再生气流的热量并传导至第三空间内的温度检测模块,能够匀化热量的传导,使温度检测模块检测到的温度趋于稳定,从而可提高检测结果的准确性;这样可避免温度检测模块直接检测第一空间内的再生气流,第一空间内的再生气流可能存在紊流或/乱流情况,致使检测结果频繁跳动。
导热件250安装于与第一空间连通的第二空间,第二空间与第三空间通 过导热件250进行分隔。再生气流在第一空间内经加热器加热变成高温再生气流,由于第二空间与第一空间连通,高温再生气流扩散到第二空间,因此检测第二空间的温度即可以知晓第一空间内温度。
在本发明的一个实施例中,如图5所示,再生模组上壳体210,其包括底座214、顶壁212和突出于顶壁212的侧壁213,顶壁212和侧壁213围设形成第一空间,底座214沿侧壁213的四周设置,底座214向背离第一空间的外侧延伸;底座214的至少一部分的底面设有凹槽,凹槽形成第二空间。
具体地,加热模块21可用于将再生气流加热,并利用高温的再生气流去除转盘100上吸附的水分。再生模组上壳体210的顶壁212和侧壁213围设形成第一空间,加热器安装于第一空间内;底座214的底面设有凹槽,导热件250安装于凹槽内,并包覆温度检测模块。
在本发明的一个实施例中,如图6所示,再生模组上壳体210呈扇形结构;再生模组上壳体210的外弧侧面设有加热器进风口211,与顶壁212相对一侧设有加热器出风口;其中,加热器进风口211、第一空间和加热器出风口依次连通;底座214包括第一侧边,第一侧边沿扇形的径向延伸,凹槽位于第一侧边。当然为了检测更准确,可以在于第一侧边相对的第二侧边设置同样的凹槽,并在其中布置温度检测模块。
具体地,再生气流从加热器进风口211进入,然后在第一空间内被加热器加热,最后从加热器出风口流出。凹槽位于第一侧边,凹槽与第一空间连通,加热后的高温再生气流扩散到凹槽,导热件250受热,传导给温度检测模块,以避免温度检测模块受到第一空间内流通的再生气流直吹,减小紊流/乱流引起检测结果的跳动。
在本发明的一个实施例中,加热模块21还包括安装座218,安装座218与第一侧边连接固定,且安装座218位于第一侧边背离凹槽的另一侧面;安装座218上设有贯穿的安装孔、形成具有一面开口的大致六面体形状,温度检测模块设置于安装孔内部,导热件250包覆安装座218的开口面所形成的空间为第三空间;安装孔与温度检测模块适配。具体地,温度检测模块安装于安装孔内,并由导热件250包覆,使温度检测模块与第二空间隔绝,以避免再生气流的泄漏。安装座218上可设置固定件,固定件可用于固定与温度检测模块连接的电缆。
进一步地,导热件250与温度检测模块的触点接触。第一空间内流通的再生气流可能存在紊流/乱流的情况,局部范围内再生气流温度不稳定,可选地,在导热件250朝向第二空间的一面设置突棱结构,增大与高温再生气流接触面积和延长传导路径,使传导至温度检测模块的温度趋于稳定的均值。导热件250可设为导热片,易于成型,以包覆使温度检测模块。例如可以在导热件250朝向第二空间的一面设有突出部,相对应的另一面则具有凹陷部,温度检测模块可嵌入凹陷部,温度检测模块的触点接触凹陷部,这样通过突出部增大了导热件250与再生气流的接触面积。
在本申请的一个实施例中,如图7所示,底座214通过热缓冲件270连接安装至安装部。
上述实施例烘干模组通过在加热模块21与除湿模组上壳体之间设置热缓冲件270,使得加热模块21产生的热量得到缓冲,避免了高温直接传递到除湿模组上壳体上会使其损坏。延缓了除湿模组上壳体的老化,提高了烘干模组的使用寿命。
在本实施例中,容纳转盘100的除湿模组上壳体是一个整体化分型的除湿模组上壳体,该除湿模组上壳体上设置有吸湿区和脱湿区,吸湿区与脱湿区通过至少两根径向的筋条将容纳转盘100的除湿模组上壳体分成至少两个功能区。在除湿模组上壳体的脱湿区设置有加热模块21的安装部,便于加热模块21模块化装配。加热模块21的形状与脱湿区形状相适配,如果除湿模组上壳体是圆形结构,脱湿区是一个扇形区域;那么加热模块21是扇形结构,包括上下壁和沿半径方向的两块侧壁形成的空间,在该空间内设置有底座和位于底座之下的加热件,在下壁的一个侧壁往外延伸有温控器安装部。底座上设置有风孔,风通过加热模块21的入风口径向吹过底座,并从风孔向下吹过加热件后流向吸湿区的转轮部分,这样就形成了对吸湿区的转轮部分进行加热脱附水分的效果。加热件紧邻底座,以不会对风穿过风孔形成较大的阻力;加热件位于风孔正下方且往半径方向有一点点偏移,因为当风沿着半径往里吹且穿过风孔时,会有向箭头所指的半径方向的速度,因此设置一点点的偏移量,可以让穿过风孔的风能正对着加热件。
在一些实施例中,热缓冲件270包括:隔热件271;
隔热件271设置在底座周侧,用于防止加热件的高温直接传递到除湿模组上壳体。
在本实施例中,隔热件271是设置在底座周侧也就是在加热模块21与除湿模组上壳体之间。这样隔热件271就能阻隔加热模块21产生热量,防止加热模块21产生的高温直接传递到除湿模组上壳体上,避免了高温直接传递到除湿模组上壳体上使其损坏。延缓了除湿模组上壳体的老化,提高了烘干模组的使用寿命。
在一些实施例中,隔热件271的材料为绝热材料或金属材料。
在本实施例中,绝热材料是保温、保冷材料的统称,其性能可以包括:导热系数小;材料性能稳定具有明确的导热系数方程式,有较大的温度适用范围;密度小;能耐一定的振动,具有一定的机械强度;化学稳定性好,无腐蚀作用;防水性能好,吸湿性小。可燃成分少,应具有自熄性和不燃性等特点。为了减低成本也可以使用金属材料,例如使用五金件,五金件不仅有一定的隔热作用,并且使用寿命长且热塑性好。
在一些实施例中,热缓冲件270还包括:密封垫272;
密封垫272包覆在隔热件271外部;或密封垫272分别设置在隔热件271的两侧,即加热模块21、密封垫272、隔热件271、密封垫272、除湿模组上壳体依次设置;或密封垫272仅设置在隔热件271与除湿模组上壳体之间。
在本实施例中,密封垫272可以沿隔热件271进行布置,为了进一步防止热量逸散,可以使热量按照预定通路进行传递,在保证热量高效利用的同时,并且可以防止热量损毁除湿模组上壳体和其他模块。
在一些实施例中,密封垫272的材料为泡棉材料、硅胶材料或软胶材料。
在本实施例中,密封垫272的材料都是选用一些较为柔软有弹性的材料,可以随着隔热件271的结构变化进行改变,并且可以进一步增加脱湿区的密闭性。
在一些实施例中,密封垫272的设置位置与安装部的底部之间留有预设间隙。
在本实施例中,留有一定的预设间隙是为了减少烘干模组与其他模块之间的阻力,例如在烘干模组之下可以设置转轮,如果密封垫272与转轮完全 接触,会造成转轮旋转阻力的增加,不仅影响转轮的转动,还会减少转轮的使用寿命。
在一些实施例中,预设间隙为0.2-5mm。
在本实施例中,给出了一个较为优选的预设间隙范围,在该范围内密封垫272不会与相邻器件或模组接触,也会起到一定的密封效果,防止了热量的逸散。经过反复研究及实验,将预设间隙控制在0.6-0.8mm,效果较好。
在本发明的一个实施例中,导热件250的表面具有耐热防腐镀层,以提高导热件250的使用寿命,可避免导热件250在高温潮湿的环境中生锈。
加热模块21,其安装于加热模块21容纳腔内,加热模块21位于转盘100的上方,且加热模块21容纳腔与转盘100连通;加热模块21用于对再生气流进行加热,以对转盘100吸附的水分进行脱附一些实施例中,转盘100构件可包括转盘100和驱动组件,驱动组件可以包括电机,电机可驱动转盘100旋转。转盘100可选用吸湿性能好的材料制作,例如可以是沸石、氯化锂、硅胶、改性硅胶或13X(钠X型)分子筛等。滚筒内排出的湿循环气流进入转盘100容纳腔的底部,在除湿区的湿循环气流由下至上穿过转盘100,转盘100吸附湿循环气流中的水分,使湿循环气流可变为干燥循环气流,干燥循环气流通过滚筒进气口进入滚筒内,与衣物充分接触,提高烘干效率,降低能耗;再生构件可包括加热器,用于对再生气流进行加热,加热后的再生气流经加热模块21容纳腔并由上至下穿过转盘100,以对再生区内的转盘100部分进行脱水烘干,转盘100在旋转的过程中,循环经过除湿区和再生区,是不断地进行吸附水分和脱附水分的过程;这样可持续得到干燥循环气流进 入滚筒内,与衣物充分接触,提高烘干效率,降低能耗。
具体地,再生模组上壳体210可包括:第一顶壁和突出于第一顶壁四周的第一侧壁以形成加热模块21容纳腔,以及沿第一侧壁向外侧突出设置的底座214,底座214上可设有安装孔,通过安装孔可与转盘100上壳体110连接固定。
一些实施例中,如图8所示,为了使送入的再生气流更均匀地受热,并对转盘100进行更均匀地脱水烘干,优选的方案为加热模块21包括层叠设置的均风件和加热器,加热器位于均风件和转盘100之间;再生气流进入加热模块21容纳腔内,依次经由均风件、加热器和转盘100。均风件可以设置于加热器上游或下游,当然上游是较佳的选择,均风件将流入加热器容纳空间的气流进行导向以使再生气流能够充分地将加热器的热量传送至转盘100,此时加热器更靠近转盘100,而均风件相对转盘100间隔设置;也可以在加热器下游设置均风件,此时益处是再生气流首先充分与加热器接触,使再生气流均衡地升温,然后再通过均风件的导向使热气流流向转盘100,在这种情况下,均风件与转盘100相邻设置,而加热器与转盘100间隔设置,均风件除了均匀气流和导向之外,还能从某种程度上保护加热器的加热管;也可以略去均风件,再生气流流经加热器之后直接流向转盘100,此时可以节省成本,降低机构复杂性。
一些实施例中,再生模组上壳体210呈扇形体结构;再生模组上壳体210的外弧侧面设有加热器进风口211。本发明实施例中,优选的方案为再生模组上壳体210呈扇形体结构;再生模组上壳体210也可以为不规则的结构,在此处不做过多限定;再生模组上壳体210,其与转盘100上壳体110配合 连接,使得除湿区和再生区分隔开,即除湿区内的湿循环气流与再生区内的再生气流能保持很大程度上的隔离。
一些实施例中,均风件与再生模组上壳体210的顶壁具有间隙,以形成第三气流通道;第三气流通道与加热器进风口211连通。转盘100的底面与转盘100下壳体120的再生区内壁之间具有间隙,以形成第四气流通道。再生气流经由加热器进风口211进入第三气流通道,均风件可使再生气流更均匀地与加热器接触,受热均匀的再生气流对再生区内的转盘100部分上的水分进行脱附。
一些实施例中,均风件包括均风板230和突出于均风板230四周的侧板,均风板230和侧板围合成加热器容纳区,加热器设于加热器容纳区内;均风板230呈扇形,均风板230上设有间隔分布的风孔231。通过风孔的设置可使再生气流更均匀地进入到下方的加热器。
一些实施例中,加热器包括多根首尾连接的加热管240,加热管240沿扇形的半径方向间隔分布;加热管240的长度大致垂直于扇形的半径方向设置。加热管240呈S形分布,可使加热管240在加热器容纳区的长度分布更长,以增加与再生气流接触面积,从而与再生气流热交换的效率更高。
一些实施例中,风孔成排设置,每排风孔的设置位置与加热管240的位置大致相对应;风孔的直径沿扇形的半径方向从外弧向圆心有减小的趋势。加热器进风口211位于再生模组上壳体210的外弧侧面,风孔的直径设置在靠近加热器进风口211处相对大些,远离加热器进风口211处的风孔的直径要相对小些。
一些实施例中,加热管240位于风孔的下方;且加热管240的轴线与相 对应每排风孔的中心线设置为偏移,每排风孔的中心线比加热管240的轴线更靠近于加热器进风口211。加热管240位于风孔的下方,加热管240临近均风板230,或者说紧邻均风板230,以不会对再生气流穿过风孔形成较大的阻力;可用管夹将加热管240固定于均风板230上,加热管240与均风板230之间可设有一定的间隙,以使再生气流通过。当再生气流从加热器进风口211吹入,沿扇形的半径方向向里吹,会有沿再生气流流动方向的速度,因此将每排风孔的中心线设置一点点的偏移量,可以让穿过风孔的再生气流能正对着加热管240,以实现再生气流与加热管240的更高热交换效率。
一些实施例中,再生模组上壳体210呈扇形体结构;再生模组上壳体210侧壁设有加热器进风口211,侧壁设为沿扇形的径向布置;其中,再生气流进入加热模块21容纳腔的方向与转盘100的旋转方向相对设置。即再生气流沿着或逆着转盘100的旋转方向,从扇形体再生模组的大致垂直于半径的方向吹入到加热器容纳空间,能够使得气流能更均匀地被加热器升温。
一些实施例中,加热器包括多根首尾连接的加热管240,加热管240沿扇形的径向间隔分布;加热管240的长度平行于与加热器进风口211相对的侧壁设置。当然加热管240也可以布置为大致沿加热模组的径向方向,此时采用垂直于半径方向的进风风向,以期达到更好的均匀气流和加热的作用。
下面结合再生气流的流向对本发明实施例提供的再生模组进行详细的阐述。
实施例1
加热器进风口211位于再生模组上壳体210的外弧侧面,再生模组上壳体210呈扇形结构,再生气流由加热器进风口211沿径向进入第三气流通道, 经由均风板230上的风孔进入加热器容纳区,与加热管240进行热交换,受热后的高温再生气流穿过转盘100,对再生区内的转盘100部分进行脱水烘干。风孔的直径沿扇形的半径方向从外弧向圆心有减小的趋势,加热管240呈S形分布,加热管240沿扇形的半径方向间隔分布且加热管240的长度垂直于扇形的半径方向设置,由于均风板230上的风孔与加热管240相对应设置,因此风孔的直径设置在靠近加热器进风口211处相对大些,远离加热器进风口211处的风孔的直径要相对小些,即转盘100在再生区内接受到的受热后的高温再生气流流量沿扇形的半径方向从外弧向圆心均匀或不均匀地减小,从而可实现对转盘100更均匀地加热烘干。
实施例2
实施例2与实施例1的相同之处不再赘述,其与实施例1的不同之处在于:
加热器进风口211位于再生模组上壳体210的侧壁,侧壁设为沿扇形的径向布置,再生气流的流动方向与转盘100的旋转方向相对或同向设置;再生气流由加热器进风口211进入第三气流通道,经由均风板230上的风孔进入加热器容纳区,与加热管240进行热交换,受热后的高温再生气流由上至下穿过转盘100,对再生区内的转盘100部分进行脱水烘干。加热管240呈S形分布,加热管240的长度平行于与加热器进风口211相对的侧壁设置,且加热管240沿扇形的径向间隔分布,由于均风板230上的风孔与加热管240相对应设置,因此均风板230上的风孔远离加热器进风口211的一侧设置相对要密集且风孔的直径也要大些,通过风孔的设置来控制受热后的高温再生气流的流量。当转盘100经由除湿区吸附湿循环气流的水分,旋转至再生区 时,先以较大流量的高温再生气流对转盘100部分进行脱水烘干,然后在旋转经过再生区时,逐渐地减少高温再生气流的流量,从而可实现对转盘100更均匀地加热烘干。
如图12所示,冷凝模组4具体地还可包括冷凝模组上壳体401和冷凝模组下壳体402,冷凝模组上壳体401和冷凝模组下壳体402配合连接可形成冷凝器容纳腔,冷凝器43安装于冷凝器容纳腔内。图9中所示的箭头为再生气流的流向,再生气流由上至下穿过转盘100到达第四气流通道,变成湿热的再生气流后流入冷凝模组下壳体402,进入冷凝器43进行热交换并降温。
一些实施例中,烘干模组还包括第一连接件3013,其两端分别与冷凝器和再生风机22连通,以使再生气流经由冷凝器43进入所述再生风机22;第二连接件3014,其两端分别与所述再生风机22和加热器进风口连通,以使再生气流经由所述再生风机22进入第三气流通道。由于冷凝器43与再生风机22的距离很近,可以采用如图11所示的硬管接头,不仅可以对再生风机22起到支撑的作用,而且可以使得烘干模组的整体结构紧凑,占用空间小;当然,第一连接件3013也可以是柔性件,可以方便地对接至冷凝器和再生风机22进风口这两处硬质结构上。
一些实施例中,所述第一连接件3013包括第一进风口和第一出风口,所述第一进风口与冷凝器出风口适配且连通,所述第一出风口与再生风机22进风口适配且连通;所述第一进风口为大致矩形开口,所述第一出风口为大致圆形开口,所述第一进风口所在的平面与所述第一出风口所在的平面大致垂直设置,以调整再生气流的流动方向。第一连接件3013的第一进风口端面设有矩形的连接法兰或者为柔性边界以致其变形置入冷凝器出风口,与冷凝 模组上壳体401和冷凝模组下壳体402连接固定,第一连接件3013的壳体结构为异形,第一连接件3013内的风道由第一进风口处的横截面为矩形向第一出风口处的横截面为圆形逐渐过渡,保证了第一连接件3013可以导风通畅。
一些实施例中,所述第二连接件3014包括第二进风口和第二出风口,所述第二进风口与所述再生风机22出风口适配且连通,所述第二出风口与加热器进风口适配且连通;所述第二进风口为大致矩形开口,第二出风口为弧形开口,所述第二进风口所在的平面与所述第二出风口所在的平面大致平行设置,且第二出风口的面积大于所述第二进风口。第二连接件3014内的风道由第二进风口向第二出风口处逐渐扩张,从而进一步地将气流的动压能转化为静压能,提高了动压能的转化能力,提高了风机的工作性能,尽可能地避免形成紊流。
本发明的提出了一种洗烘一体机,具有滚筒和机架,包括上述任一技术方案中的烘干模组,因此具有上述任一技术方案中烘干模组的所有优点和有益效果。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (26)

  1. 一种烘干模组,包括:
    循环模组(3),其与滚筒连通,循环模组(3)将来自滚筒的湿循环气流输出到除湿模组(1)进行除湿;
    除湿模组(1),其连通所述循环模组(3)和滚筒,除湿模组(1)用于吸附来自滚筒的湿循环气流的水分,并使干燥的循环气流输出到滚筒中;
    再生模组(2),其安装于除湿模组(1)的壳体上,再生模组(2)与所述除湿模组(1)位于再生气流通道的部分气流连通,以使干燥的再生气流输出到该部分除湿模组(1),以将除湿模组(1)的至少一部分脱附水分;
    冷凝模组(4),连通到再生模组(2)的再生气流出口,用于对再生模组(2)输出的再生气流进行冷凝以形成为低温干燥的气流;其中,
    除湿模组(1)分别与循环模组(3)、冷凝模组(4)连接固定,以形成整体化模组。
  2. 根据权利要求1所述的烘干模组,其中,搭接部(50),设置在所述整体化模组的四周,用于将所述整体化模组固定连接至机架上。
  3. 根据权利要求1所述的烘干模组,其中,所述除湿模组(1)具有除湿模组上壳体和除湿模组下壳体;所述再生模组(2)具有再生模组上壳体(210)和再生模组下壳体;所述循环模组(3)具有循环模组上壳体和循环模组下壳体;所述冷凝模组具有冷凝模组上壳体和冷凝模组下壳体;
    所述除湿模组下壳体、再生模组下壳体、循环模组下壳体及冷凝模组下壳体一体成型为烘干模组下壳体;
    所述搭接部(50)设置在所述烘干模组下壳体上。
  4. 根据权利要求1所述的烘干模组,其中,循环出风通道,一端与所述除湿模组(1)连通,另一端通过第一波纹软管与滚筒连接。
  5. 根据权利要求1所述的烘干模组,其中,循环进风通道,其安装在滚筒上,一端与所述滚筒连通,另一端与循环模组(3)连通。
  6. 根据权利要求5所述的烘干模组,其中,所述循环进风通道内设有过滤组件,用于过滤循环气流中的杂质。
  7. 根据权利要求1所述的烘干模组,其中,所述除湿模组(1)、再生模组(2)、循环模组(3)、冷凝模组(4)是分立的,并通过固定连接的方式形成为整体化模组。
  8. 根据权利要求1所述的烘干模组,其中,再生模组上壳体(210)具有加热模块容纳腔;
    加热模块(21),安装于加热模块容纳腔内;加热模块(21)临近除湿模组中的转盘设置,且加热模块容纳腔与除湿模组(1)连通;加热模块(21)用于以加热的方式将转盘(100)的至少一部分脱附水分。
  9. 根据权利要求8所述的烘干模组,其中,所述加热模块包括:
    加热器,其安装于第一空间内;
    导热件(250),用于接受从第一空间传导的热量;
    温度检测模块,其用于检测所述第一空间的温度;所述温度检测模块安装于第三空间内,第三空间为导热件(250)所包覆形成的空间,第三 空间与第一空间通过导热件(250)进行分隔;
    均风件,相对除湿模组(1)中的转盘临近或间隔设置;再生气流进入加热模块容纳腔内,依次经由均风件/加热器、加热器/均风件和转盘。
  10. 根据权利要求9所述的烘干模组,其中,所述导热件(250)安装于与第一空间连通的第二空间,所述第二空间与所述第三空间通过所述导热件(250)进行分隔。
  11. 根据权利要求9所述的烘干模组,其中:
    再生模组上壳体(210),其包括底座(214)、顶壁(212)和突出于顶壁(212)的侧壁(213),顶壁(212)和侧壁(213)围设形成所述第一空间,底座(214)沿侧壁(213)的四周设置,且底座(214)向背离所述第一空间的外侧延伸;
    所述底座(214)的底面设有凹槽,凹槽形成所述第二空间。
  12. 根据权利要求11所述的烘干模组,其中,所述再生模组上壳体(210)呈扇形结构;
    所述再生模组上壳体(210)的外弧侧面设有加热器进风口(211),与所述顶壁(212)相对一侧设有加热器出风口;其中,加热器进风口(211)、第一空间和加热器出风口依次连通;
    所述底座(214)至少包括第一侧边,第一侧边沿扇形的径向延伸,所述凹槽位于第一侧边。
  13. 根据权利要求12所述的烘干模组,其中,所述底座(214)通过热缓冲件(270)连接安装至所述加热模块容纳腔。
  14. 根据权利要求12所述的烘干模组,其中,所述热缓冲件(270) 包括隔热件(271);所述隔热件(271)设置在所述底座周侧,用于防止所述加热件的高温直接传递到所述壳体。
  15. 根据权利要求12所述的烘干模组,其中,所述热缓冲件(270)还包括密封垫(272);所述密封垫(272)包覆在所述隔热件(271)外部。
  16. 根据权利要求15所述的烘干模组,其中,所述密封垫(272)的设置位置与所述安装部的底部之间留有预设间隙。
  17. 根据权利要求16所述的烘干模组,其中,所述预设间隙为0.2-5mm。
  18. 根据权利要求12所述的烘干模组,其中,所述加热模块具有安装座(218),所述安装座(218)与第一侧边连接固定,且所述安装座(218)位于第一侧边背离所述凹槽的另一侧面;
    所述安装座(218)上设有贯穿的安装孔、形成具有一面开口的大致六面体形状,温度检测模块设置于安装孔内部,导热件(250)包覆安装座(218)的开口面所形成的空间为第三空间;
    安装孔与所述温度检测模块适配。
  19. 根据权利要求9所述的烘干模组,其中,所述导热件(250)与所述温度检测模块的触点接触。
  20. 根据权利要求9所述的烘干模组,其中,所述导热件(250)的表面具有耐热防腐镀层。
  21. 根据权利要求9所述的烘干模组,其中,均风件包括均风板(230)和突出于均风板(230)四周的侧板,均风板(230)和侧板围合成加热器 容纳区,加热器设于加热器容纳区内;
    均风板(230)呈扇形,均风板(230)上设有间隔分布的风孔(231)。
  22. 根据权利要求9所述的烘干模组,其中,加热器包括多根首尾连接的加热管,加热管沿扇形的半径方向间隔分布;
    加热管的长度平行于与加热器进风口相对的侧壁设置。
  23. 根据权利要求22所述的再生模组,其中,风孔(231)成排设置,每排风孔(231)的设置位置与加热管的位置相对应;
    风孔(231)的直径沿扇形的半径方向从外弧向圆心呈减小趋势。
  24. 根据权利要求23所述的再生模组,其中,加热管位于风孔(231)的下方;
    且加热管的轴线与相对应每排风孔(231)的中心线设置为偏移,每排风孔(231)的中心线比加热管的轴线更靠近于加热器进风口。
  25. 根据权利要求20所述的再生模组,其中,再生气流进入加热模块容纳腔的方向与转盘的旋转方向相对或同向设置。
  26. 一种洗烘一体机,其中,具有滚筒和机架,包括如要求1-25中任一项所述的烘干模组。
PCT/CN2023/077475 2022-08-31 2023-02-21 一种烘干模组及洗烘一体机 WO2024045512A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202222320975.5 2022-08-31
CN202222318002.8U CN218596725U (zh) 2022-08-31 2022-08-31 加热模块及洗烘一体机
CN202222322145.6 2022-08-31
CN202222318002.8 2022-08-31
CN202222320975.5U CN218711570U (zh) 2021-09-01 2022-08-31 烘干模组及洗烘一体机
CN202222328046.9 2022-08-31
CN202222322145.6U CN218521470U (zh) 2021-09-01 2022-08-31 再生模组、烘干模组和洗烘一体机
CN202222328046.9U CN218596709U (zh) 2022-08-31 2022-08-31 一种烘干模组及洗烘一体机

Publications (1)

Publication Number Publication Date
WO2024045512A1 true WO2024045512A1 (zh) 2024-03-07

Family

ID=90100255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077475 WO2024045512A1 (zh) 2022-08-31 2023-02-21 一种烘干模组及洗烘一体机

Country Status (1)

Country Link
WO (1) WO2024045512A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176696A (ja) * 1997-09-03 1999-03-23 Sharp Corp 衣類乾燥装置
JP2004144455A (ja) * 2002-10-28 2004-05-20 Max Co Ltd 収納室用乾燥装置
JP3856238B1 (ja) * 2006-01-16 2006-12-13 東陶機器株式会社 除湿機能付き浴室乾燥機
JP2007075241A (ja) * 2005-09-13 2007-03-29 Matsushita Electric Ind Co Ltd 洗濯乾燥機
CN105297372A (zh) * 2014-07-31 2016-02-03 青岛海尔洗衣机有限公司 一种衣物烘干系统及烘干方法、洗衣干衣一体机、干衣机
CN105324528A (zh) * 2013-07-19 2016-02-10 Lg电子株式会社 烘干机
CN113981647A (zh) * 2021-09-01 2022-01-28 北京石头世纪科技股份有限公司 一种洗烘一体机
CN216585700U (zh) * 2021-09-01 2022-05-24 北京石头世纪科技股份有限公司 一种洗烘一体机
CN114753130A (zh) * 2022-05-16 2022-07-15 珠海格力电器股份有限公司 烘干设备及其控制方法
CN218492016U (zh) * 2022-08-31 2023-02-17 深圳洛克创新科技有限公司 循环模组、烘干装置和洗烘一体机
CN218492018U (zh) * 2022-08-31 2023-02-17 深圳洛克创新科技有限公司 一种烘干模组及洗烘一体机

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176696A (ja) * 1997-09-03 1999-03-23 Sharp Corp 衣類乾燥装置
JP2004144455A (ja) * 2002-10-28 2004-05-20 Max Co Ltd 収納室用乾燥装置
JP2007075241A (ja) * 2005-09-13 2007-03-29 Matsushita Electric Ind Co Ltd 洗濯乾燥機
JP3856238B1 (ja) * 2006-01-16 2006-12-13 東陶機器株式会社 除湿機能付き浴室乾燥機
CN105324528A (zh) * 2013-07-19 2016-02-10 Lg电子株式会社 烘干机
CN105297372A (zh) * 2014-07-31 2016-02-03 青岛海尔洗衣机有限公司 一种衣物烘干系统及烘干方法、洗衣干衣一体机、干衣机
CN113981647A (zh) * 2021-09-01 2022-01-28 北京石头世纪科技股份有限公司 一种洗烘一体机
CN216585700U (zh) * 2021-09-01 2022-05-24 北京石头世纪科技股份有限公司 一种洗烘一体机
CN115198476A (zh) * 2021-09-01 2022-10-18 深圳洛克创新科技有限公司 一种洗烘一体机
CN218492015U (zh) * 2021-09-01 2023-02-17 深圳洛克创新科技有限公司 烘干模组和洗烘一体机
CN114753130A (zh) * 2022-05-16 2022-07-15 珠海格力电器股份有限公司 烘干设备及其控制方法
CN218492016U (zh) * 2022-08-31 2023-02-17 深圳洛克创新科技有限公司 循环模组、烘干装置和洗烘一体机
CN218492018U (zh) * 2022-08-31 2023-02-17 深圳洛克创新科技有限公司 一种烘干模组及洗烘一体机

Similar Documents

Publication Publication Date Title
CN218521470U (zh) 再生模组、烘干模组和洗烘一体机
WO2009031811A2 (en) Dehumidifying apparatus for dryer
WO2024045481A1 (zh) 衣物处理设备
CN218492018U (zh) 一种烘干模组及洗烘一体机
WO2024045479A1 (zh) 衣物处理设备
CN109107351B (zh) 转轮除湿装置及家用干燥储存设备
WO2024045512A1 (zh) 一种烘干模组及洗烘一体机
CN112076593A (zh) 一种智能电气设备除湿装置
WO2024046358A1 (zh) 一种烘干模组及洗烘一体机
CN213089977U (zh) 一种低温低湿单转轮除湿机
JP2000140561A (ja) 除湿機の再生空気加熱装置
JPH09108496A (ja) 除湿装置付き衣類乾燥機
CN206911084U (zh) 一种实验室用除湿器
JPS61212313A (ja) 除湿装置
CN220057405U (zh) 加热装置、烘干模组和衣物处理设备
CN217330028U (zh) 转轮除湿装置
CN219621459U (zh) 烘干装置和衣物处理设备
TWI844459B (zh) 烘乾模組和衣物處理裝置
TWI844461B (zh) 烘乾模組及衣物處理裝置
CN213119331U (zh) 一种节能型低露点转轮除湿机
CN219315306U (zh) 衣物处理设备
CN220724627U (zh) 加热模块、烘干模组与衣物处理设备
TWI844464B (zh) 烘乾模組和衣物處理裝置
CN219861989U (zh) 一种衣物处理设备
CN220224685U (zh) 一种具有环境调湿功能的洗护设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858555

Country of ref document: EP

Kind code of ref document: A1