WO2024040687A1 - 一种光伏用单组份透明硅酮结构密封胶及其制备方法 - Google Patents

一种光伏用单组份透明硅酮结构密封胶及其制备方法 Download PDF

Info

Publication number
WO2024040687A1
WO2024040687A1 PCT/CN2022/123003 CN2022123003W WO2024040687A1 WO 2024040687 A1 WO2024040687 A1 WO 2024040687A1 CN 2022123003 W CN2022123003 W CN 2022123003W WO 2024040687 A1 WO2024040687 A1 WO 2024040687A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone structural
structural sealant
photovoltaics
parts
transparent silicone
Prior art date
Application number
PCT/CN2022/123003
Other languages
English (en)
French (fr)
Inventor
揭志强
朱凯
Original Assignee
江西天永诚高分子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西天永诚高分子材料有限公司 filed Critical 江西天永诚高分子材料有限公司
Publication of WO2024040687A1 publication Critical patent/WO2024040687A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/02Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
    • C08G79/025Polyphosphazenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of silicone structural sealants, and in particular to a single-component transparent silicone structural sealant for photovoltaics and a preparation method thereof.
  • Photovoltaic building application technology is the combination or integration of solar power generation (photovoltaic) products into buildings.
  • Photovoltaic components have become an integral part of the building, which not only can develop and apply new energy, but can also be integrated with decoration and beautification to achieve energy saving and environmental protection effects.
  • the main application forms include photovoltaic curtain walls, photovoltaic roofs, photovoltaic guardrails, etc.
  • Photovoltaic building components are larger in size. They are usually composed of several smaller photovoltaic components, sandwiched on both sides by two larger pieces of curtain wall glass, and sealed around with special silicone structural sealants for photovoltaic buildings, thus forming a large photovoltaic Building components, which places higher requirements on silicone structural sealants for photovoltaic buildings than ordinary structural adhesives.
  • one-component silicone sealant is generally used as a sealant for solar photovoltaic modules. It is mainly used for sealing between the battery panel, the reverse backplane and the aluminum frame, and for bonding the power conversion box shell and the backplane. , such as CN102936483A, CN10165460 and CN101792653A.
  • the performance and safety of the sealants designed by these technologies are far from meeting the current photovoltaic building application technology. Especially in terms of adhesion, compatibility and anti-aging performance, they still need to be greatly improved to adapt to more stringent requirements. usage environment.
  • the present invention is to overcome the inability of the performance of the single-component transparent silicone structural sealant in the prior art to adapt to more severe use environments, and provides a single-component transparent silicone structural sealant for photovoltaics and a preparation method thereof. to overcome the above shortcomings.
  • the present invention first provides a one-component transparent silicone structural sealant for photovoltaics,
  • ⁇ , ⁇ -dihydroxypolydimethylsiloxane fumed silica, reinforcing resin, silane coupling agent, cross-linking agent and catalyst; among which:
  • the reinforcing resin contains a linear polyphosphazene backbone
  • the linear polyphosphazene main chain is grafted with a side chain containing an alkoxysilyl group.
  • single-component transparent silicone structural sealants for photovoltaics often use acidic catalysts or alkaline catalysts in the raw material production process, such as ⁇ , ⁇ -dihydroxypolydimethylsiloxane in the production process. Ring-opening polymerization with an acid catalyst is required. Although the acid catalyst will be removed by water washing and other steps after the preparation, a certain amount of hydrogen ions will still remain in ⁇ , ⁇ -dihydroxypolydimethylsiloxane; and In order to improve the compatibility between inorganic fillers and other components, silazane treatment is usually required, but after treatment, a certain amount of ammonia gas will remain in the inorganic fillers.
  • the stability of the silicone structural sealant decreases. After long-term use, the silicone structural sealant will slowly decompose, ultimately affecting the transparency, adhesion and mechanical properties of the silicone structural sealant. There have been varying degrees of decline. At the same time, since photovoltaic modules need to be exposed to the sun for a long time during daily use, the ultraviolet rays in the sun will further promote the decomposition of the silicone structural sealant, accelerating the decline of various properties.
  • silicone resin such as MQ resin
  • silicone resin still cannot solve the above problems. problems, so its performance will degrade over time.
  • the main chain structure of the reinforcing resin used in the present invention is polyphosphazene, and the polyphosphazene main chain is connected with side chains containing alkoxysilyl groups. These alkoxysilyl groups can interact with silicone The ⁇ , ⁇ -dihydroxy polydimethylsiloxane in the sealant undergoes a dealcoholization reaction, causing cross-linking between the polyphosphazene segment and the silicone segment, thereby introducing the polyphosphazene segment into the silicone in structural sealants.
  • polyphosphazene is often added to polymers as a flame retardant, so more attention is focused on how to improve the flame retardant properties of polymers through the addition of polyphosphazene.
  • the purpose of introducing polyphosphazene into the silicone sealant in the present invention is not to improve the flame retardancy of the silicone sealant, but rather to improve its mechanical properties, bonding properties and optical properties.
  • the way to add polyphosphazene in the prior art is usually to mix the polymer and the polyphosphazene through physical blending.
  • the polyphosphazene and the silicone structural sealant are integrated through chemical bonding. Formula structure, when combined with ⁇ , ⁇ -dihydroxypolydimethylsiloxane, can effectively improve the overall performance of silicone structural sealant.
  • the polarity of the silicone sealant can be enhanced, so that the bonding strength between the silicone sealant and the matrix is greatly improved.
  • due to the poly Phosphazene has excellent heat resistance, allowing the silicone structural sealant containing polyphosphazene segments to still have good bonding properties under high temperature conditions.
  • the light transmittance has an important impact on the photovoltaic modules.
  • the applicant of the present invention introduced polyphosphazene segments into the silicone structural sealant, he unexpectedly found that silicone The light transmittance of the structural sealant also has a certain improvement, making the final photovoltaic module more efficient.
  • parts by weight it is composed of the following raw materials in parts by weight: :
  • Silane coupling agent 1 to 4 parts Silane coupling agent 1 to 4 parts ;
  • described reinforcing resin preparation method is as follows:
  • the preparation process of the reinforcing resin in the present invention is relatively simple. It only needs to react with P-Cl in the polydichlorophosphazene between sodium alkoxide and polydichlorophosphazene to graft-modify the polydichlorophosphazene. After the side chain graft of dichlorophosphazene contains unsaturated groups, the unsaturated groups can play a bridging role and react with silanes containing silicon hydrogen and alkoxy groups through hydrogen silicon addition reaction, thereby converting alkoxysilane into Introduced into the polyphosphazene segment.
  • the unsaturated group-containing sodium alkoxide can be prepared by reacting an unsaturated group-containing alcohol with metallic sodium, wherein the unsaturated group-containing alcohol includes hydroxyethyl acrylate, hydroxypropyl acrylate One or more combinations of esters, hydroxybutyl acrylate, etc.
  • the linear polyphosphazene main chain of the reinforcing resin also contains aromatic groups.
  • the aromatic group can be introduced by adding a certain amount of sodium phenolate or sodium naphtate during the reaction with polydichlorophosphazene.
  • the molar amount of aromatic groups added is less than 20% of the total side chains of the linear polyphosphazene.
  • the silane containing silicon hydrogen and alkoxy groups includes one or more combinations of trimethoxysilane, triethoxysilane, methyldimethoxysilane, and methyldiethoxysilane. .
  • the viscosity of the ⁇ , ⁇ -dihydroxypolydimethylsiloxane is between 5 and 100 Pa.S.
  • the inorganic filler includes at least one or a mixture of two or more fillers selected from the group consisting of fumed silica, calcium carbonate, and silica powder.
  • the inorganic filler is treated with hexamethyldisilazane.
  • the silane coupling agent is ⁇ -[2,3-glycidoxy]propyltrimethoxysilane, vinyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, ⁇ -amine Propyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane amino oligomer One or several combinations of things.
  • the cross-linking agent is one or a combination of methyl tributyl ketone oxime silane, vinyl tributyl ketone oxime silane, and tetrabutyl ketone oxime silane.
  • the catalyst is any one or a combination of dibutyltin diacetate, dibutyltin dilaurate, and chelated tin.
  • the present invention also provides a method for preparing the one-component transparent silicone structural sealant for photovoltaics,
  • the present invention has the following beneficial effects:
  • the preparation method of polydichlorophosphazene used in the present invention is as follows:
  • the preparation method of hydroxyethyl acrylate sodium salt used in the present invention is as follows:
  • the preparation method of hydroxybutyl acrylate sodium salt used in the present invention is as follows:
  • the preparation method of reinforcing resin A4 is similar to that of reinforcing resin A3. The difference is that in step (1), the added amount of hydroxybutyl acrylate sodium salt is 48 mmol and the added amount of sodium naphthol is 12 mmol.
  • the preparation method of reinforcing resin A5 is similar to that of reinforcing resin A3. The difference is that in step (1), the added amount of hydroxybutyl acrylate sodium salt is 42 mmol, and the added amount of sodium naphthol is 18 mmol.
  • gas phase silica with a specific surface area of 200 m 2 /g after treatment with hexamethyldisilazane, 4 parts of methyltributylketoneoximesilane, and ⁇ -[2,3-epoxypropoxy ⁇ 1 part of propyltrimethoxysilane, 0.2 part of dibutyltin dilaurate, 2 parts of polydimethylsiloxane with a viscosity of 0.1Pa.S at 25°C, add to a power vacuum planetary mixer equipped with the above base material Within, the vacuum degree is -0.095Mpa, the rotation speed is 800rpm, and the mixture is stirred for 120 minutes to prepare a one-component silicone structural sealant for solar photovoltaic modules.
  • Elongation at break according to ISO 37 method.
  • Light transmittance test Measured in accordance with GB/T2410-2008, use a UV-visible spectrophotometer to measure the light transmittance of the cured silicone structural sealant at 400 ⁇ 700nm.
  • Yellowing test Take the cured silicone structural sealant, put it into a UV aging test chamber, and take samples after UV irradiation of 120kWh/m. Before and after the experiment, the yellow index of the sample was tested according to ASTM E313-2010. Each sample was measured at no less than 3 points, and the average value was taken. The difference in yellow index before and after the UV accelerated aging test was used as the yellowing index ⁇ YI.
  • Bonding strength tested in accordance with GB1677 and GB13477.
  • the light transmittance of the silicone structural sealant can be improved to a certain extent.
  • Comparing Example 1, Example 5, Comparative Example 2 and Comparative Example 3 it can be seen that the amount of reinforcing resin added in the present invention also has a certain impact on the performance of the silicone structural sealant.
  • the amount of reinforcing resin is When the added amount is small (Comparative Example 2), the performance improvement of the silicone structural sealant is relatively small.
  • the reinforcing resin is added too much, due to its hard structure, although its mechanical strength is high, it is also More brittle, specifically characterized by lower elongation at break.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及硅酮结构密封胶领域,尤其涉及一种光伏用单组份透明硅酮结构密封胶及其制备方法,所述光伏用单组份透明硅酮结构密封胶,其是由包括以下组分的原料构成:α,ω- 二羟基聚二甲基硅氧烷、气相白炭黑、补强树脂、硅烷偶联剂、交联剂以及催化剂;其中:所述补强树脂包含有线性聚磷腈主链;所述线性聚磷腈主链上接枝有包含有烷氧基硅基的侧链。本发明在硅酮结构密封胶中引入了聚磷腈之后,其能够有效提升硅酮结构密封胶的耐老化以及耐酸碱杂质的能力,同时还提升了耐热性能以及粘结性能,能够满足光伏产品的使用需求。

Description

一种光伏用单组份透明硅酮结构密封胶及其制备方法 技术领域
本发明涉及硅酮结构密封胶领域,尤其涉及一种光伏用单组份透明硅酮结构密封胶及其制备方法。
背景技术
光伏建筑应用技术是将太阳能发电(光伏)产品结合或集成到建筑上。光伏组件成为建筑不可分割的一部分,这样不仅可开发和应用新能源,还可与装饰美化合为一体,达到节能环保效果,主要应用形式如光电幕墙、光电屋顶、光电护栏等等。
光伏建筑组件尺寸较大, 通常是由几块尺寸较小的光伏组件,两面用两片尺寸较大的幕墙玻璃夹住,四周用光伏建筑专用硅酮结构密封胶密封,从而组成一个大的光伏建筑组件, 这就对光伏建筑用硅酮结构密封胶提出了比普通结构胶更高的要求。
技术问题
已有技术中普遍是将单组份硅酮密封胶应用于太阳能光伏组件的密封胶,主要用于电池板、反面背板与铝框间的密封及电源转换盒壳体与背板的粘接,如CN102936483A, CN10165460及 CN101792653A。但这些技术所设计的密封胶在性能及安全性方面远不能满足目前的光伏建筑应用技术,尤其在黏结性、相容性以及抗老化性能方面仍需要较大的提升,以适应更为严苛的使用环境。
技术解决方案
本发明是为了克服现有技术中的单组份透明硅酮结构密封胶其性能无法适应更为严苛的使用环境,提供了一种光伏用单组份透明硅酮结构密封胶及其制备方法以克服上述缺陷。
为实现上述发明目的,本发明通过以下技术方案实现:
第一方面,本发明首先提供了一种光伏用单组份透明硅酮结构密封胶,
其是由包括以下组分的原料构成:α,ω- 二羟基聚二甲基硅氧烷、气相白炭黑、补强树脂、硅烷偶联剂、交联剂以及催化剂;其中:
所述补强树脂包含有线性聚磷腈主链;
所述线性聚磷腈主链上接枝有包含有烷氧基硅基的侧链。
现有技术中的光伏用单组份透明硅酮结构密封胶其在原料生产过程中往往会用到酸性催化剂或者碱性催化剂,例如α,ω- 二羟基聚二甲基硅氧烷在生产过程中需要通过酸催化剂开环聚合,虽然在制备结束后会经过水洗等步骤以除去酸催化剂,但是仍会有一定量的氢离子残留在α,ω- 二羟基聚二甲基硅氧烷中;而为了提高无机填料与其他组分之间的相容性通常需要通过硅氮烷处理,但是在处理之后也会导致无机填料中残留有一定量的氨气。由于这些酸碱杂质的存在,使得硅酮结构密封胶的稳定性下降,在长期使用后硅酮结构密封胶会出现缓慢分解,最终导致硅酮结构密封胶的透明性、粘结性以及力学性能出现不同程度的下降。同时,由于光伏组件在日常使用过程中需要长期暴露在日晒环境下,因此阳光中的紫外线会进一步促使硅酮结构密封胶的分解,加快了各项性能的下降。
现有技术中为了提升硅酮密封胶的力学性能,通常会在组分中加入一定量的有机硅树脂(例如MQ树脂)作为补强树脂,但是有机硅树脂仍然无法解决上述问题存在如上所述的一些问题,因此其性能会随着时间的延续而发生下降。
因此,针对现有技术中的补强树脂所存在的缺陷,提供了一种新的解决思路。
本发明中所使用的补强树脂中其主链结构为聚磷腈,并且在聚磷腈主链上连接有包含有烷氧基硅基的侧链,这些烷氧基硅基能够与硅酮密封胶中的α,ω- 二羟基聚二甲基硅氧烷发生脱醇反应,使得聚磷腈链段与有机硅链段之间发生交联,从而将聚磷腈链段引入到硅酮结构密封胶中。
现有技术中聚磷腈常常作为阻燃剂添加到聚合物中,因此更多的关注重点在于如何通过聚磷腈的添加以提升聚合物的阻燃性能。但是,本发明中在硅酮密封胶中引入聚磷腈其目的并不在于提升硅酮密封胶的阻燃性,反而更多的在于提升其力学性能、粘结性能以及光学性能。同时,现有技术中聚磷腈的添加方式通常是在于物理共混的方式将聚合物与聚磷腈混合,而本发明通过将聚磷腈与硅酮结构密封胶以化学键合的方式形成一体式的结构,其与α,ω- 二羟基聚二甲基硅氧烷相互结合后,能够有效提升硅酮结构密封胶的综合性能。
本发明在加入聚磷腈之后可带来以下有益效果:
(1)聚磷腈链段的稳定性以及耐酸碱性能相较于聚硅氧烷链段而言,其表现更为优异,因此将聚磷腈链段引入到硅酮密封胶之后,会使得硅酮密封胶的性能更加稳定,使得硅酮密封胶耐酸碱杂质的能力大幅提升,保证其各项性能不会随着使用时间的延续而下降。
(2)将聚磷腈链段引入到硅酮密封胶之后,能够使得硅酮密封胶的极性能够有所增强,使得硅酮密封胶与基体之间的粘结强度大幅提升,同时由于聚磷腈具有优异的耐热性能,使得在含有聚磷腈链段的硅酮结构密封胶在高温条件下仍然具有良好的粘结性能。
(3)由于聚磷腈链段具有极高的光学稳定性,并且与紫外光照射所引发的自由基不会反应,从而将其与聚硅氧烷结合后,能够有效提升硅酮结构密封胶在长时间紫外照射下的性能表现。
(4)作为光伏组件用的硅酮结构密封胶,透光性对于光伏组件有着重要的影响,本发明申请人硅酮结构密封胶中引入聚磷腈链段后,还出人意料地发现,硅酮结构密封胶的透光率也具有一定的提升,使得最终得到的光伏组件的效率更高。
作为优选,按照重量份数计,其是由包括以下按重量份数配比的原料构成 :
α,ω- 二羟基聚二甲基硅氧烷           100 份 ;
补强树脂                               30~80份 ;
无机填料                               5~30 份 ;
交联剂                                 4~20份 ;
硅烷偶联剂                             1~4 份 ;
催化剂                                 0.2~6 份。
[0017] 作为优选,所述补强树脂制备方法如下:
(1)将聚二氯磷腈与含有不饱和基团的醇钠反应,得到接枝有不饱和基团的聚磷腈;
(2)将接枝有不饱和基团的聚磷腈与含有硅氢以及烷氧基的硅烷发生硅氢加成反应,得到所述补强树脂。
本发明中的补强树脂,其制备过程较为简单,只需通过醇钠与聚二氯磷腈中的P-Cl反应即可对聚二氯磷腈起到接枝改性作用,通过在聚二氯磷腈的侧链接枝含有不饱和基团后,不饱和基团即可起到桥连作用,与有硅氢以及烷氧基的硅烷通过硅氢加成反应,从而将烷氧基硅烷引入到聚磷腈链段之中。
作为优选,所述含有不饱和基团的醇钠,其可由含有不饱和基团的醇与金属钠反应制得,其中所述的含有不饱和基团的醇包括丙烯酸羟乙酯、丙烯酸羟丙酯、丙烯酸羟丁酯等中的一种或多种的组合。
作为优选,所述补强树脂的线性聚磷腈主链中还包含有芳香基。
芳香基的引入可以通过在与聚二氯磷腈反应过程中额外加入一定量的酚钠或者萘酚钠。
申请人发现,在补强树脂中引入一定量的芳香基能够有效提升硅酮结构密封胶的透明性。
作为优选,芳香基的摩尔添加量小于线性聚磷腈总侧链20%。
经过申请人实际测试发现,当芳香基添加量占比过高时,会导致其与硅酮结构密封胶的其余组分之间的相容性下降,同时还会使得补强树脂的玻璃化温度升高,不利于硅酮结构密封胶在低温环境下的表现。
作为优选,所述含有硅氢以及烷氧基的硅烷包括三甲氧基硅烷、三乙氧基硅烷、甲基二甲氧基硅烷、甲基二乙氧基硅烷中的一种或多种的组合。
作为优选,所述α,ω-二羟基聚二甲基硅氧烷的粘度在5~100Pa.S。
作为优选,所述无机填料包括气相白炭黑、碳酸钙、硅微粉中至少一种或两种以上填料的混合。
作为优选,所述无机填料经过六甲基二硅氮烷处理。
作为优选,所述硅烷偶联剂为 γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、N-(2-氨乙基)-3-氨丙基三甲氧基硅烷、γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、3-巯丙基三甲氧基硅烷、N-(2-氨乙基)-3-氨丙基三甲氧基硅烷氨基低聚物中的一种或几种组合。
作为优选,所述交联剂为甲基三丁酮肟基硅烷、乙烯基三丁酮肟基硅烷、四丁酮肟基硅烷中的一种或几种组合。
作为优选,所述催化剂为二丁基二醋酸锡、二丁基二月桂酸锡、螯合锡中的任意一种或多种的组合。
第二方面,本发明还提供了一种用于制备所述光伏用单组份透明硅酮结构密封胶的方法,
包括以下步骤,
(1) 将α,ω- 二羟基聚二甲基硅氧烷、补强树脂混合搅拌并脱水,冷却得基料 ;
(2) 将无机填料、交联剂、硅烷偶联剂以及催化剂分别加入到上述基料中,搅拌均匀后得到光伏用单组份透明硅酮结构密封胶。
有益效果
因此,本发明具有以下有益效果:
(1)本发明在硅酮结构密封胶中引入了聚磷腈之后,其能够有效提升硅酮结构密封胶的耐老化以及耐酸碱杂质的能力;
(2)同时还提升了耐热性能以及粘结性能;
(3)高透明度,能够满足光伏产品的使用需求。
本发明的实施方式
下面结合具体实施例对本发明做进一步描述。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
【补强树脂的制备】
本发明中所使用的聚二氯磷腈的制备方法如下:
氮气保护下,取10g六氯环三磷腈置于反应釜中,加热反应釜至250℃,保持40h,得到聚二氯磷腈粗品,将聚二氯磷腈粗品溶于200ml四氢呋喃后,过滤除去交联产物,蒸除滤液中的四氢呋喃后得到聚二氯磷腈(产量6.82g,产率68.2%),其制备示意式如下式(一)所示:
式(一)
本发明中所使用的丙烯酸羟乙酯钠盐的制备方法如下:
氮气保护下,向带有回流冷凝装置的反应器中加入11.6g(0.1mol)丙烯酸羟乙酯以及250ml四氢呋喃,同时在搅拌条件下加入2.3g(0.1mol)金属钠,60℃搅拌回流至金属钠完全反应,待反应完全后,加入10ml异丙醇,继续搅拌30min以保证溶液中没有残留的金属钠,过滤后减压蒸出滤液,得到丙烯酸羟乙酯钠盐,其制备示意式如下式(二)所示:
式(二)
本发明中所使用的丙烯酸羟丁酯钠盐的制备方法如下:
氮气保护下,向带有回流冷凝装置的反应器中加入14.4g(0.1mol)丙烯酸羟丁酯以及250ml四氢呋喃,同时在搅拌条件下加入2.3g(0.1mol)金属钠,60℃搅拌回流至金属钠完全反应,待反应完全后,加入10ml异丙醇,继续搅拌30min以保证溶液中没有残留的金属钠,过滤后减压蒸出滤液,得到丙烯酸羟丁酯钠盐,其制备示意式如下式(三)所示:
式(三)
补强树脂A1:
(1)氮气保护下,取3.46g聚二氯磷腈溶于100ml四氢呋喃中,然后向其中加入8.28g(0.06mol)丙烯酸羟乙酯钠盐,65℃条件下回流反应48h,反应结束后旋蒸除去四氢呋喃,然后将产物倒入100ml石油醚中沉淀洗涤,洗涤后真空干燥得到,中间产物(a1),其制备示意式如下式(四)所示:
式(四)
(2)氮气保护下,取5.5g中间产物(a1)将其溶于100ml甲苯中,然后加入0.1g卡斯特催化剂以及5.44g甲基三甲氧基硅烷,回流反应5h后,停止反应,向反应体系中加入活性炭1g,继续搅拌吸附30min后过滤,将滤液中的减压蒸出滤液中的甲苯,得到补强树脂A1,其制备示意式如下式(五)所示:
式(五)
补强树脂A2:
(1)氮气保护下,取3.46g聚二氯磷腈溶于100ml四氢呋喃中,然后向其中加入9.96g(0.06mol)丙烯酸羟丁酯钠盐,65℃条件下回流反应48h,反应结束后旋蒸除去四氢呋喃,然后将产物倒入100ml石油醚中沉淀洗涤,洗涤后真空干燥得到,中间产物(a2),其制备示意式如下式(六)所示:
式(六)
(2)氮气保护下,取5.5g中间产物(a2)将其溶于100ml甲苯中,然后加入0.1g卡斯特催化剂以及6.62g(0.04mol)甲基三甲氧基硅烷,回流反应5h后,停止反应,向反应体系中加入活性炭1g,继续搅拌吸附30min后过滤,将滤液中的减压蒸出滤液中的甲苯,得到补强树脂A2,其制备示意式如下式(七)所示:
式(七)
补强树脂A3:
(1)氮气保护下,取3.46g聚二氯磷腈溶于100ml四氢呋喃中,然后向其中加入8.96g(54mmol)丙烯酸羟丁酯钠盐以及0.996g(6mmol)萘酚钠,65℃条件下回流反应48h,反应结束后旋蒸除去四氢呋喃,然后将产物倒入100ml石油醚中沉淀洗涤,洗涤后真空干燥得到,中间产物(a3),其制备示意式如下式(八)所示:
式(八)
(2)氮气保护下,取5.5g中间产物(a2)将其溶于100ml甲苯中,然后加入0.1g卡斯特催化剂以及6.62g(0.04mol)甲基三甲氧基硅烷,回流反应5h后,停止反应,向反应体系中加入活性炭1g,继续搅拌吸附30min后过滤,将滤液中的减压蒸出滤液中的甲苯以及未反应完的甲基三甲氧基硅烷,得到补强树脂A3,其制备示意式如下式(九)所示:
式(九)
补强树脂A4:
补强树脂A4的制备方法与补强树脂A3相近,其区别在于,步骤(1)中丙烯酸羟丁酯钠盐的添加量为48mmol,萘酚钠的添加量为12mmol。
补强树脂A5
补强树脂A5的制备方法与补强树脂A3相近,其区别在于,步骤(1)中丙烯酸羟丁酯钠盐的添加量为42mmol,萘酚钠的添加量为18mmol。
实施例1
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷90份,粘度为50Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A1 50份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理后的比表面积为200m 2/g的气相白炭黑15份,甲基三丁酮肟基硅烷8份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 3份, 二丁基二月桂酸锡0.5份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
实施例2
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷90份,粘度为50Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A2 50份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理后的比表面积为200m 2/g的气相白炭黑15份,甲基三丁酮肟基硅烷8份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 3份, 二丁基二月桂酸锡0.5份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
实施例3
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷90份,粘度为50Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A3 50份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理后的比表面积为200m 2/g的气相白炭黑15份,甲基三丁酮肟基硅烷8份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 3份, 二丁基二月桂酸锡0.5份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
实施例4
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷90份,粘度为50Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A4 50份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理后的比表面积为200m 2/g的气相白炭黑15份,甲基三丁酮肟基硅烷8份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 3份, 二丁基二月桂酸锡0.5份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
实施例5
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷100份,粘度为5Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A1 30份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理后的比表面积为200m 2/g的气相白炭黑15份,甲基三丁酮肟基硅烷8份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 3份, 二丁基二月桂酸锡0.5份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
实施例6
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷100份,粘度为5Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A1 80份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理后的比表面积为200m 2/g的气相白炭黑15份,甲基三丁酮肟基硅烷8份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 3份, 二丁基二月桂酸锡0.5份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
实施例7
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷100份,粘度为5Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A1 50份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理后的比表面积为200m 2/g的气相白炭黑5份,甲基三丁酮肟基硅烷4份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 1份, 二丁基二月桂酸锡0.2份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
实施例8
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷100份,粘度为5Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A1 50份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理后的比表面积为200m 2/g的气相白炭黑30份,甲基三丁酮肟基硅烷10份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷4份, 二丁基二月桂酸锡6份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
实施例1~8中的配方汇总如下表1所示:
表1
对比例1
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷90份,粘度为50Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, MQ树脂A1,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理果的比表面积为200m 2/g的气相白炭黑15份,甲基三丁酮肟基硅烷8份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 3份, 二丁基二月桂酸锡0.5份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
对比例2
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷90份,粘度为50Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A1 20份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理果的比表面积为200m 2/g的气相白炭黑15份,甲基三丁酮肟基硅烷8份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 3份, 二丁基二月桂酸锡0.5份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
对比例3
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷90份,粘度为50Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A1 100份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理果的比表面积为200m 2/g的气相白炭黑15份,甲基三丁酮肟基硅烷8份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 3份, 二丁基二月桂酸锡0.5份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
对比例4
25℃,将粘度为20Pa.S的α,ω-二羟基聚二甲基硅氧烷90份,粘度为50Pa.S的α,ω-二羟基聚二甲基硅氧烷10份, 补强树脂A5 50份,加入真空捏合机内,于温度 150℃、真空度为-0.095MPa,脱水共混捏合180分钟,冷却得基胶;
室温,将六甲基二硅氮烷处理果的比表面积为200m 2/g的气相白炭黑15份,甲基三丁酮肟基硅烷8份,γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷 3份, 二丁基二月桂酸锡0.5份,25℃时粘度为0.1Pa.S聚二甲基硅氧烷2份,加入装有上述基料的动力真空行星搅拌机内,真空度-0.095Mpa、转速800rpm 搅拌120分钟制得太阳能光伏组件用单组分硅酮结构密封胶。
对比例1~4中的配方汇总如下表2所示:
表2
【性能测试】。
拉伸强度:按照ISO 37方法进行。
断裂伸长率:按照ISO 37方法进行。
剪切强度:按照ASTMD 3164方法进行。
透光率测试:按照GB/T2410-2008进行测定,用紫外-可见分光光度计测定固化后硅酮结构密封胶400~700nm的透光率。
黄变测试 :取固化后硅酮结构密封胶,放入紫外老化试验箱中,紫外辐照120kWh/m后取样。实验前后,对试样按ASTME313-2010进行黄色指数测试,每块试样测不少于3个点,取平均值,以紫外加速老化试验前后黄色指数的差值作为黄变指数△YI。
粘结强度:按照GB1677以及GB13477测试。
测试结果如下表3所示
表3
【数据分析】
从上表数据中可知,通过将本发明中的实施例与对比例1相比较,本发明通过将传统的硅树脂替换成本发明中含有聚磷腈主链的补强树脂之后,其各项性能均有显著提升,表明含有磷元素以及氮元素的聚磷腈的引入不仅能够在力学性能上使得硅酮结构密封胶有效提升,还能够使得硅酮密封胶的透明性以及耐黄变性能大大提升,同时由于硅酮密封胶的极性相较于纯的有机硅而言有所增强,使得硅酮密封胶与基体之间的粘结强度大幅提升。
此外,从上述实施例中还可得知,在补强树脂中引入芳香基后,能够对于硅酮结构密封胶的透光率有一定的提升。
而将实施例1、实施例5、对比例2以及对比例3进行比较后可知,本发明中补强树脂的添加量对于硅酮结构密封胶的性能也存在一定的影响,当补强树脂的添加量较小时(对比例2)其对于硅酮结构密封胶的性能提升相对较小,而当补强树脂的添加量过多时,由于其结构偏硬,虽然其力学强度较高,但是其也更脆,具体表现为其断裂伸长率较低。

Claims (10)

  1. 一种光伏用单组份透明硅酮结构密封胶,其特征在于,
    其是由包括以下组分的原料构成:α,ω- 二羟基聚二甲基硅氧烷、气相白炭黑、补强树脂、硅烷偶联剂、交联剂以及催化剂;其中:
    所述补强树脂包含有线性聚磷腈主链;
    所述线性聚磷腈主链上接枝有包含有烷氧基硅基的侧链。
  2. 根据权利要求1所述的一种光伏用单组份透明硅酮结构密封胶,其特征在于,
    按照重量份数计,其是由包括以下按重量份数配比的原料构成 :
    α,ω- 二羟基聚二甲基硅氧烷           100 份 ;
    补强树脂                               30~80份 ;
    无机填料                               5~30 份 ;
    交联剂                                 4~10份 ;
    硅烷偶联剂                             1~4 份 ;
    催化剂                                 0.2~6 份。
  3. 根据权利要求1或2所述的一种光伏用单组份透明硅酮结构密封胶,其特征在于,
    所述补强树脂制备方法如下:
    (1)将聚二氯磷腈与含有不饱和基团的醇钠反应,得到接枝有不饱和基团的聚磷腈;
    (2)将接枝有不饱和基团的聚磷腈与含有硅氢以及烷氧基的硅烷发生硅氢加成反应,得到所述补强树脂。
  4. 根据权利要求1或2所述的一种光伏用单组份透明硅酮结构密封胶,其特征在于,
    所述α,ω-二羟基聚二甲基硅氧烷的粘度在5~100Pa.S。
  5. 根据权利要求1或2所述的一种光伏用单组份透明硅酮结构密封胶,其特征在于,
    所述无机填料包括气相白炭黑、碳酸钙、硅微粉中至少一种或两种以上填料的混合。
  6. 根据权利要求5所述的一种光伏用单组份透明硅酮结构密封胶,其特征在于,
    所述无机填料经过六甲基二硅氮烷处理。
  7. 根据权利要求1或2所述的一种光伏用单组份透明硅酮结构密封胶,其特征在于,
    所述硅烷偶联剂为 γ-〔2,3- 环氧丙氧〕丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、N-(2-氨乙基)-3-氨丙基三甲氧基硅烷、γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、3-巯丙基三甲氧基硅烷、N-(2-氨乙基)-3-氨丙基三甲氧基硅烷氨基低聚物中的一种或几种组合。
  8. 根据权利要求1或2所述的一种光伏用单组份透明硅酮结构密封胶,其特征在于,
    所述交联剂为甲基三丁酮肟基硅烷、乙烯基三丁酮肟基硅烷、四丁酮肟基硅烷中的一种或几种组合。
  9. 根据权利要求1或2所述的一种光伏用单组份透明硅酮结构密封胶,其特征在于,
    所述催化剂为二丁基二醋酸锡、二丁基二月桂酸锡、螯合锡中的任意一种或多种的组合。
  10. 一种用于制备如权利要求1~9中任意一项所述光伏用单组份透明硅酮结构密封胶的方法,其特征在于,
    包括以下步骤,
    (1) 将α,ω- 二羟基聚二甲基硅氧烷、补强树脂混合搅拌并脱水,冷却得基料 ;
    (2) 将无机填料、交联剂、硅烷偶联剂以及催化剂分别加入到上述基料中,搅拌均匀后得到光伏用单组份透明硅酮结构密封胶。
PCT/CN2022/123003 2022-08-25 2022-09-30 一种光伏用单组份透明硅酮结构密封胶及其制备方法 WO2024040687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211025326.0A CN115260981B (zh) 2022-08-25 2022-08-25 一种光伏用单组份透明硅酮结构密封胶及其制备方法
CN202211025326.0 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024040687A1 true WO2024040687A1 (zh) 2024-02-29

Family

ID=83753429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123003 WO2024040687A1 (zh) 2022-08-25 2022-09-30 一种光伏用单组份透明硅酮结构密封胶及其制备方法

Country Status (2)

Country Link
CN (1) CN115260981B (zh)
WO (1) WO2024040687A1 (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0490731A1 (fr) * 1990-12-14 1992-06-17 Elf Atochem S.A. Compositions notamment pour revêtement de sol à base de polyphosphazène
US6392008B1 (en) * 1999-07-21 2002-05-21 The Penn State Research Foundation Polyphosphazene polymers
JP2004331787A (ja) * 2003-05-07 2004-11-25 Kyocera Chemical Corp 難燃性接着剤組成物、フレキシブル銅張積層板、カバーレイおよび接着フィルム
US20080095816A1 (en) * 2006-10-10 2008-04-24 Celonova Biosciences, Inc. Compositions and Devices Comprising Silicone and Specific Polyphosphazenes
CN102382615A (zh) * 2010-09-03 2012-03-21 广州市白云化工实业有限公司 一种太阳能光伏组件用有机硅密封胶及其制备方法
US20130099468A1 (en) * 2011-10-19 2013-04-25 Shin-Etsu Chemical Co., Ltd. Liquid silicone rubber coating composition, curtain airbag, and its production method
JP2013209517A (ja) * 2012-03-30 2013-10-10 Shin-Etsu Chemical Co Ltd カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物及びその製造方法
CN103571427A (zh) * 2012-08-07 2014-02-12 中化蓝天集团有限公司 一种用于太阳能电池组件密封的单组分脱肟型硅酮密封胶及其制备方法
WO2015158257A1 (zh) * 2014-04-18 2015-10-22 苏州天山新材料技术有限公司 高粘结性单组份脱肟型室温硫化硅橡胶密封剂及制备方法
CN106084236A (zh) * 2016-06-06 2016-11-09 武汉大学 一种新型室温硫化型硅橡胶及其交联剂
CN107267112A (zh) * 2017-05-19 2017-10-20 天永诚高分子材料(常州)有限公司 一种太阳能光伏用单组分硅酮结构密封胶及其制备方法
CN111193068A (zh) * 2020-02-16 2020-05-22 成都市水泷头化工科技有限公司 一种锂电池电解液用聚磷腈复合阻燃添加剂及制备方法
CN111320967A (zh) * 2020-03-23 2020-06-23 新纳奇材料科技江苏有限公司 一种具有多级结构填料改性的高导热硅酮密封胶及其制备方法
CN111892888A (zh) * 2020-07-06 2020-11-06 界首市春杰服饰有限公司 一种耐热阻燃静电植绒粘合剂的制备方法
CN112142985A (zh) * 2020-08-19 2020-12-29 四川中物材料股份有限公司 一种有机硅/苯氧基磷腈高分子共聚物及制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026839A (en) * 1976-08-30 1977-05-31 Armstrong Cork Company Polyphosphazene polymer/silicone rubber blends and foams therefrom
JP6156211B2 (ja) * 2014-03-13 2017-07-05 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び物品
WO2020131708A2 (en) * 2018-12-21 2020-06-25 Dow Silicones Corporation Silicone-organic copolymer, sealants comprising same, and related methods
CN114316897A (zh) * 2022-01-27 2022-04-12 广东高士高科实业有限公司 一种硅酮密封胶及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0490731A1 (fr) * 1990-12-14 1992-06-17 Elf Atochem S.A. Compositions notamment pour revêtement de sol à base de polyphosphazène
US6392008B1 (en) * 1999-07-21 2002-05-21 The Penn State Research Foundation Polyphosphazene polymers
JP2004331787A (ja) * 2003-05-07 2004-11-25 Kyocera Chemical Corp 難燃性接着剤組成物、フレキシブル銅張積層板、カバーレイおよび接着フィルム
US20080095816A1 (en) * 2006-10-10 2008-04-24 Celonova Biosciences, Inc. Compositions and Devices Comprising Silicone and Specific Polyphosphazenes
CN102382615A (zh) * 2010-09-03 2012-03-21 广州市白云化工实业有限公司 一种太阳能光伏组件用有机硅密封胶及其制备方法
US20130099468A1 (en) * 2011-10-19 2013-04-25 Shin-Etsu Chemical Co., Ltd. Liquid silicone rubber coating composition, curtain airbag, and its production method
JP2013209517A (ja) * 2012-03-30 2013-10-10 Shin-Etsu Chemical Co Ltd カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物及びその製造方法
CN103571427A (zh) * 2012-08-07 2014-02-12 中化蓝天集团有限公司 一种用于太阳能电池组件密封的单组分脱肟型硅酮密封胶及其制备方法
WO2015158257A1 (zh) * 2014-04-18 2015-10-22 苏州天山新材料技术有限公司 高粘结性单组份脱肟型室温硫化硅橡胶密封剂及制备方法
CN106084236A (zh) * 2016-06-06 2016-11-09 武汉大学 一种新型室温硫化型硅橡胶及其交联剂
CN107267112A (zh) * 2017-05-19 2017-10-20 天永诚高分子材料(常州)有限公司 一种太阳能光伏用单组分硅酮结构密封胶及其制备方法
CN111193068A (zh) * 2020-02-16 2020-05-22 成都市水泷头化工科技有限公司 一种锂电池电解液用聚磷腈复合阻燃添加剂及制备方法
CN111320967A (zh) * 2020-03-23 2020-06-23 新纳奇材料科技江苏有限公司 一种具有多级结构填料改性的高导热硅酮密封胶及其制备方法
CN111892888A (zh) * 2020-07-06 2020-11-06 界首市春杰服饰有限公司 一种耐热阻燃静电植绒粘合剂的制备方法
CN112142985A (zh) * 2020-08-19 2020-12-29 四川中物材料股份有限公司 一种有机硅/苯氧基磷腈高分子共聚物及制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FENG YUAN-BO, LIU QI, JI YI, YAN HONG-XIA: "Research progress of synthesis of polyphosphazenes and their applications in aviation", ADHESION., no. 7, 15 April 2016 (2016-04-15), pages 34 - 39, XP093142853, DOI: 1001-5922(2016)07-0034-06 *
GONG CHANGSHENG: "SYNTHETIC CHEMISTRY OF POLYPHOSPHAZENES", CHINA ELASTOMETRICS., no. 3, 20 September 1998 (1998-09-20), pages 57 - 63, XP093142859, DOI: 10.16665/j.cnki.issn1005-3174.1998.03.017 *
LEE L.-H.: "Adhesives and sealants for severe environments", INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, ELSEVIER, AMSTERDAM, NL, vol. 7, no. 2, 1 April 1987 (1987-04-01), AMSTERDAM, NL , pages 81 - 91, XP093142860, ISSN: 0143-7496, DOI: 10.1016/0143-7496(87)90093-5 *

Also Published As

Publication number Publication date
CN115260981A (zh) 2022-11-01
CN115260981B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CN101880396B (zh) 一种便于真空脱泡的led封装用有机硅橡胶的制备方法
JP5704168B2 (ja) 新規有機ケイ素化合物、該有機ケイ素化合物を含む熱硬化性樹脂組成物、硬化樹脂および光半導体用封止材料
CN109609083B (zh) 一种太阳能光热发电用双组分硅酮结构胶及其制备方法
CN112062964A (zh) 一种uv/湿气双固化丙烯酸酯聚硅氧烷及其制备方法和应用
WO2016082287A1 (zh) 一种mdq类型苯基乙烯基硅树脂及其制备方法
CN113337245A (zh) 一种脱醇型光伏组件密封胶及其制备方法
WO2024027006A1 (zh) 一种低毒单组份光伏边框硅酮密封胶及其制备方法
CN112175575A (zh) 一种工业用硅酮密封胶的制备方法
CN110484197A (zh) 一种室温固化耐高温有机硅胶粘剂的制备方法
CN108047968B (zh) 一种低模量高体积电阻率硅酮结构胶
WO2024040687A1 (zh) 一种光伏用单组份透明硅酮结构密封胶及其制备方法
CN109666448A (zh) 一种光伏组件用脱醇型密封胶及其制备方法
CN115772264B (zh) 具有自粘接特性的烷氧基封端聚硅氧烷及其制备方法和应用
CN103740322A (zh) 阻燃型太阳能光伏组件密封胶
CN111320967A (zh) 一种具有多级结构填料改性的高导热硅酮密封胶及其制备方法
CN113462350B (zh) 一种耐候胶
CN113583608A (zh) 一种防霉耐黄变硅烷改性透明胶及其制备方法
CN109456727B (zh) 一种绿色光固化stpu树脂及其制备方法和应用
CN112210068A (zh) 一种可湿气固化的改性聚硅氧烷及其制备方法和应用
CN106753204B (zh) 双组份硅酮结构密封胶及其制备方法
CN104629515A (zh) 一种光伏组件用原子灰的制备方法
CN117467401B (zh) 一种防老化硅酮密封胶及其制备方法
CN115044346B (zh) 密封材料及其制备方法、太阳能电池组件
CN115678489A (zh) 一种高透明电子用硅酮密封胶及其制备方法
CN115322736A (zh) 一种耐老化硅酮密封胶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956229

Country of ref document: EP

Kind code of ref document: A1