WO2024037494A1 - 一种介孔二氧化硅材料的电化学制备方法 - Google Patents

一种介孔二氧化硅材料的电化学制备方法 Download PDF

Info

Publication number
WO2024037494A1
WO2024037494A1 PCT/CN2023/112885 CN2023112885W WO2024037494A1 WO 2024037494 A1 WO2024037494 A1 WO 2024037494A1 CN 2023112885 W CN2023112885 W CN 2023112885W WO 2024037494 A1 WO2024037494 A1 WO 2024037494A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesoporous silica
silica material
mixed solution
electrochemical preparation
template agent
Prior art date
Application number
PCT/CN2023/112885
Other languages
English (en)
French (fr)
Inventor
顾栋
吴勇
解明月
梁剑
张元腾
Original Assignee
武汉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉大学 filed Critical 武汉大学
Publication of WO2024037494A1 publication Critical patent/WO2024037494A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/08Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced
    • C01B39/087Ferrosilicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present application relates to the technical field of mesoporous materials, and in particular to an electrochemical preparation method of mesoporous silica materials.
  • Mesoporous materials are a type of porous materials with pore diameters between 2-50nm. They have high specific surface area and continuously adjustable unique pore structure. Therefore, they are widely used in the fields of industrial catalysis, bioreactors, dielectrics, sensors, microelectrophoresis and thermal insulation materials. Has huge application potential.
  • Traditional methods use hydrothermal methods to synthesize mesoporous silica materials.
  • more strategies have been applied to the synthesis of mesoporous silica materials. For example: solvent evaporation-induced self-assembly, microwave-assisted, UV irradiation, spray and electrochemical synthesis.
  • Silica materials such as SBA-15, MCF and hollow silica spheres have good physical and chemical properties and have always been a hot research topic.
  • SBA-15 and MCF need to be synthesized under strong acid conditions, and the preparation of MCF often requires the assistance of organic additives; in most cases, obtaining single-layer/multi-layer hollow spheres requires additional hard templates or soft templates, usually also Requires the assistance of strong acid or alkali.
  • the embodiments of the present application provide an electrochemical preparation method of mesoporous silica material to Solve the problems of complex synthesis process and harsh synthesis conditions of mesoporous silica materials existing in related technologies.
  • This application provides an electrochemical preparation method for mesoporous silica materials, which includes the following steps:
  • Step S101 mix the template agent and water in a reactor according to a certain ratio, stir and dissolve at 0-50°C for 1-24 hours, so that the template agent can be completely dissolved in the water to form a uniform and transparent template agent solution;
  • Step S102 Add a certain amount of electrolyte to the template solution, stir and dissolve at 0-50°C for 1 hour, so that the electrolyte can be completely dissolved in water to form a uniform and transparent first mixed solution;
  • Step S103 add the silicon precursor to the first mixed solution, stir and dissolve at 0-50°C for 10 minutes, and obtain a second mixed solution;
  • Step S104 Insert the cathode and anode of the electrode into the second mixed solution respectively, pass a certain current, and react at 0-50°C for 0.5-72 hours. When the reaction is completed, stop powering and filter to obtain a solid product;
  • Step S105 remove the template agent in the solid product to obtain mesoporous silica material.
  • the template agent is an amphiphilic triblock polymer, and polyethylene oxide-polystyrene polymer (PEO-b-PS), polyethylene oxide poly(PEO-b-PS), etc.
  • PEO-b-PS polyethylene oxide-polystyrene polymer
  • PEO-b-PS polyethylene oxide poly(PEO-b-PS)
  • PEO-PPO-PEO polyethylene oxide-polyisoprene polymer
  • PEO-b-PMMA polyethylene oxide-polymethylmethacrylate polymer
  • the template agent is one of alkyl quaternary ammonium salt cetyltrimethylammonium bromide, dodecylbenzene sulfonic acid, or a mixture of both.
  • step S104 after stopping the power supply, the solution is added to a hydrothermal kettle and reacted at 70-140°C for 1-72 hours, and then filtered after cooling to obtain a solid product.
  • the current density ranges from 0.1mA/cm 2 to 500mA/cm 2 . In some preferred embodiments, the current density ranges from 1 mA/cm 2 to 100 mA/cm 2 .
  • the mass ratio of template agent and water is 1:20-1:200.
  • the electrolyte is Mg, Al, Pb, In, Sn, Sb, Zr, Nb, La, Ce, Ta, Mo, W, Re, Ti, V, Cr, Mn, Fe, Co, Ni , Cu, Zn, Ag, Pt, Pd, Ir, Ru, Rh nitrates, sulfates, halide salts, perchlorates, or sodium tetrafluoroborate, tetrabutyl ammonium tetrafluoroborate, tetrabutyl hexafluoroborate Ammonium fluoborate, sodium fluoride, sodium chloride, potassium chloride, ammonium chloride, sodium sulfate, potassium sulfate, ammonium sulfate, sodium perchlorate, potassium perchlorate, ammonium perchlorate, sodium nitrate, potassium nitrate, ammonium nitrate one or a mixture of more.
  • the mass ratio of electrolyte and water is 1:1000-1:10.
  • the silicon precursor is one or a mixture of more of tetramethoxy silicon, tetraethoxy silicon, tetra-n-butoxy silicon, and sodium silicate.
  • the mass ratio of silicon precursor to water is 1:4-1:50.
  • the electrode is graphite plate, graphite paper, porous carbon foam, graphite felt, carbon cloth, platinum, copper, stainless steel, palladium, gold, nickel, magnesium, aluminum, zinc, lead dioxide, Pt/Ti , RuO 2 /Ti, IrO 2 /Ti, PbO 2 /Ti, MnO 2 /Ti, TiOx/Ti, or one or more mixed electrode pairs.
  • the template is removed by calcination at 350-1000°C. In some preferred embodiments, the template agent is removed by calcination at 350-600°C.
  • the template is removed by extraction or oxidation.
  • the specific extraction process is: using ethanol, methanol, acetone, etc. as solvents, extracting at 25°C-80°C for 0.5h-24h, and then filtering through suction filtration.
  • the solvent containing the template agent is separated and collected, which realizes the removal and recovery of the template agent;
  • the specific process of oxidation is: adding a certain amount of hydrogen peroxide and nitric acid solution as oxidant to the solid product, and oxidizing it under the conditions of 50°C-100°C From 0.5h to 24h, stop heating, suction filtration, and washing to obtain the mesoporous silica material with the template agent removed.
  • This application uses template agents, silica precursors and electrolytes to form a neutral solution at a certain temperature. Afterwards, the electrode material is inserted into the neutral solution and energized, reacts under electrochemical conditions for a period of time, and is directly filtered to obtain mesoporous materials or The reaction solution is hydroheated at a certain temperature and then filtered. The filtered mesoporous material is calcined at a certain temperature, or extracted and oxidized to remove the template agent, and finally the corresponding mesoporous silica material is obtained.
  • the method provided in this application uses electrochemical synthesis, a green and convenient material synthesis technology, to achieve green and efficient synthesis of mesoporous silica materials.
  • This application uses simple synthesis conditions to obtain mesoporous materials that traditional synthesis methods require multiple steps and complex conditions, and the properties of the obtained materials are superior to those synthesized by traditional methods.
  • the method provided by this application can synthesize multi-morphology and multi-structure mesoporous silica materials under neutral conditions. By adjusting the template agent, current intensity, electrolyte, silicon precursor, and reaction temperature, it can be easily obtained.
  • Mesoporous silicon materials with high monodispersity and uniform and controllable pore size such as SBA-15, MCF, single/multi-layer hollow sphere silica mesoporous materials, KIT-6, FDU-12 and FDU-18 .
  • This application uses electricity as a green and efficient catalyst, which is simple, easy to operate, and easy to produce automatically. It avoids the corrosion of instruments and equipment by traditional strong acid and alkali methods. It is easy to be applied in industrial production, has a wide range of applications, and a simple synthesis method. It has the advantages of high efficiency, less pollution and low cost, and has broad application prospects;
  • mesoporous silica materials are synthesized by traditional strong acids and strong alkali, the strong acid and alkali conditions are not conducive to the entry of metal ions into the silica framework structure. Therefore, direct loading of higher content metal catalysts cannot be achieved; while the method provided by this application The method is synthesized under neutral conditions and can effectively achieve high loading of metal catalysts in the framework structure of mesoporous silica materials, thereby obtaining efficient and high-loading mesoporous silica catalysts. Tests have shown that using this application The method can obtain FeO x with a maximum load of 24%.
  • Figure 1 is the process flow of the electrochemical preparation method of mesoporous silica materials provided by this application. Schematic diagram.
  • Figure 2 is a transmission electron microscope picture of the mesoporous hollow spheres prepared in Example 1 of the present application.
  • Figure 3 is a transmission electron microscope picture of the mesoporous SBA-15 prepared in Example 2 of the present application.
  • Figure 4 is a transmission electron microscope picture of the mesoporous MCF prepared in Example 3 of the present application.
  • Figure 5 is a transmission electron microscope picture of the double-layer hollow sphere prepared in Example 4 of the present application.
  • Figure 6 is a transmission electron microscope picture of Fe-SBA-15 prepared in Example 5 of the present application.
  • the embodiments of the present application provide an electrochemical preparation method of mesoporous silica materials, which can solve the problems of complex synthesis processes and harsh synthesis conditions of mesoporous silica materials existing in related technologies.
  • the embodiment of the present application provides an electrochemical preparation method of mesoporous silica material, including the following steps:
  • Step S101 mix the template agent and water in the reactor according to the mass ratio of 1:20-1:200, stir and dissolve at 0-50°C for 1-24 hours, so that the template agent can be completely dissolved in the water to form a uniform and transparent Template solution;
  • the template agent is an amphiphilic triblock polymer, including polyethylene oxide-polystyrene polymer (PEO-b-PS), polyethylene oxide polypropylene oxide polymer (PEO -PPO-PEO), polyethylene oxide-polyisoprene polymer (PEO-b-PI) or polyethylene oxide-polymethylmethacrylate polymer (PEO-b-PMMA) Any one or a mixture of more; or the template agent is one or a mixture of the alkyl quaternary ammonium salt cetyltrimethylammonium bromide and dodecylbenzene sulfonic acid;
  • Step S102 Add a certain amount of electrolyte to the template solution, and heat it at 0-50°C. Stir and dissolve for 1 hour, so that the electrolyte can be completely dissolved in the water to form a uniform and transparent first mixed solution;
  • the electrolyte is Mg, Al, Pb, In, Sn, Sb, Zr, Nb, La, Ce, Ta, Mo, W , Re, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, Pt, Pd, Ir, Ru, Rh nitrate, sulfate, halogenated salt, perchlorate, or four Sodium fluoroborate, tetrabutyl ammonium tetrafluoroborate, tetrabutyl ammonium hexafluoroborate, sodium fluoride, sodium chloride, potassium chloride, ammonium chloride, sodium sulfate, potassium sulfate, ammonium sulfate, sodium perchlorate
  • Step S103 add the silicon precursor to the first mixed solution, stir and dissolve at 0-50°C for 10 minutes, and obtain the second mixed solution;
  • the silicon precursor is tetramethoxy silicon, tetraethoxy silicon, and tetra-n-butyl.
  • a mixture of one or more of oxysilicon and sodium silicate, the mass ratio of silicon precursor and water is 1:4-1:50;
  • Step S104 Insert the cathode and anode of the electrode into the second mixed solution respectively, pass a certain current, and react at 0-50°C for 0.5-72 hours. When the reaction is completed, stop powering and filter to obtain a solid product; electrode For graphite plate, graphite paper, porous carbon foam, graphite felt, carbon cloth, platinum, copper, stainless steel, palladium, gold, nickel, magnesium, aluminum, zinc, lead dioxide, Pt/Ti, RuO 2 /Ti, IrO 2 /Ti, PbO 2 /Ti, MnO 2 /Ti, TiOx/Ti or one or more mixed electrode pairs;
  • Step S105 remove the template agent in the solid product to obtain mesoporous silica material.
  • Example 1 Electrochemical synthesis of mesoporous hollow spheres
  • Synthetic raw materials triblock polymer F127 (molecular weight 12800), tetraethoxy silicon (TEOS), sodium tetrafluoroborate, carbon electrode.
  • Example 1 The preparation of mesoporous hollow spheres provided in Example 1 includes the following steps:
  • the transmission electron microscope results of the mesoporous hollow sphere sample prepared in Example 1 are shown in Figure 2.
  • the pore diameter of the hollow sphere is about 6 nm.
  • Synthetic raw materials triblock polymer P123 (molecular weight 5800), tetraethoxy silicon, sodium tetrafluoroborate, carbon electrode.
  • the preparation method of SBA-15 provided in Example 2 includes the following steps:
  • the specific surface area of the obtained SBA-15 sample was 910m 2 /g, the pore volume was 1.09mL/g, and the average pore diameter was 8.1nm.
  • the TEM photo is shown in Figure 3.
  • Synthetic raw materials triblock polymer P123 (molecular weight 5800), tetraethoxy silicon, sodium tetrafluoroborate, carbon electrode, platinum electrode.
  • the preparation method of MCF provided in Example 3 includes the following steps:
  • Synthetic raw materials triblock polymer P123 (molecular weight 5800), tetraethoxy silicon, sodium tetrafluoroborate, carbon electrode, platinum electrode.
  • the preparation method of double-layer hollow spheres provided in Example 4 includes the following steps:
  • Synthetic raw materials triblock polymer P123 (molecular weight 5800), tetraethoxy silicon, sodium tetrafluoroborate, carbon electrode, platinum electrode.
  • the preparation method of Fe-SBA-15 provided in Example 5 includes the following steps:
  • the specific surface area of the obtained Fe-SBA-15 sample was 810m 2 /g, and the pore volume was 1.04mL/g.
  • the TEM photo is shown in Figure 6.
  • Synthetic raw materials triblock polymer P123 (molecular weight 5800), tetraethoxy silicon, sodium tetrafluoroborate, titanium anode, foam nickel cathode.
  • the preparation method of KIT-6 provided in Example 6 includes the following steps:
  • Synthetic raw materials triblock polymer F127 (molecular weight 12800), tetraethoxysilane, potassium chloride, titanium anode, foam nickel cathode.
  • the preparation method of FDU-12 provided in Example 7 includes the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本申请涉及介孔材料技术领域,特别涉及一种介孔二氧化硅材料的电化学制备方法。本申请提供的介孔二氧化硅材料的电化学制备方法包括以下步骤:将模板剂和水混合溶解,形成均匀、透明的模板剂溶液;将电解质加入到模板剂溶液中,搅拌溶解,形成均匀、透明的第一混合溶液;将硅前驱体加入到第一混合溶液中,搅拌溶解,得到第二混合溶液;将电极的阴极和阳极分别插入到第二混合溶液中,通入电流进行反应,反应完成后停止通电,过滤,得到固体产物;去除固体产物中的模板剂,即得到介孔二氧化硅材料。本申请利用电作为绿色、高效的催化剂,简单、易操作,易于自动化生产,避免了传统强酸强碱方法对仪器设备的腐蚀。

Description

一种介孔二氧化硅材料的电化学制备方法 技术领域
本申请涉及介孔材料技术领域,特别涉及一种介孔二氧化硅材料的电化学制备方法。
背景技术
介孔材料是一类孔径介于2-50nm的多孔材料,具有高比表面积、连续可调的独特孔结构,因此在工业催化、生物反应器、电介质、传感器、微电泳和隔热材料等领域具有巨大的应用潜力。传统方法采用水热法合成介孔二氧化硅材料,近些年来,随着对介孔二氧化硅材料结构、形貌的更多要求,更多策略应用到合成介孔二氧化硅材料中,例如:溶剂挥发诱导自组装、微波辅助、紫外照射、喷雾以及电化学合成。其中电化学合成目前仅用来在基底表面镀上一层硅膜,还没有大量合成介孔二氧化硅材料的先例。此外,大多数合成介孔二氧化硅材料都在强酸或强碱条件下制备,容易腐蚀生产设备,且不易将金属离子加入到二氧化硅材料中。虽然有一些合成策略是在中性条件下进行的,但合成步骤复杂,难以进行大规模生产。
SBA-15、MCF和空心二氧化硅球等二氧化硅材料具有良好的物理化学性能,一直是研究的热点。通常SBA-15和MCF需要在强酸条件下合成,MCF的制备中还经常需要有机添加剂的辅助;在大多数情况下,获得单层/多层空心球需要额外的硬模板或软模板,通常还需要强酸或者强碱的辅助。在中性条件下合成上述三种形貌的介孔材料,且满足过程简便,存在一定的难度。
基于以上分析,提供一种过程简单的合成介孔二氧化硅材料的方法十分必要。
发明内容
本申请实施例提供一种介孔二氧化硅材料的电化学制备方法,以 解决相关技术中存在的介孔二氧化硅材料合成过程复杂、合成条件苛刻的问题。
本申请提供一种介孔二氧化硅材料的电化学制备方法,包括以下步骤:
步骤S101,将模板剂和水按照一定比例混合于反应器中,在0-50℃下搅拌溶解1-24h,使模板剂能完全溶解于水中,形成均匀、透明的模板剂溶液;
步骤S102,将电解质按照一定的量加入到模板剂溶液中,在0-50℃下搅拌溶解1h,使得电解质能完全溶解于水中,形成均匀、透明的第一混合溶液;
步骤S103,将硅前驱体加入到第一混合溶液中,在0-50℃下搅拌溶解10min,得到第二混合溶液;
步骤S104,将电极的阴极和阳极分别插入到第二混合溶液中,通入一定的电流,在0-50℃下反应0.5-72小时,待反应完成,停止通电,过滤,得到固体产物;
步骤S105,去除固体产物中的模板剂,即得到介孔二氧化硅材料。
一些实施例中,步骤S101中,所述模板剂为两亲性的三嵌段聚合物,选用聚环氧乙烷-聚苯乙烯聚合物(PEO-b-PS)、聚环氧乙烷聚环氧丙烷聚合物(PEO-PPO-PEO)、聚环氧乙烷-聚异戊二烯聚合物(PEO-b-PI)或聚环氧乙烷-聚甲基丙烯酸甲酯聚合物(PEO-b-PMMA)中的任一种或多种的混合。
一些实施例中,步骤S101中,所述模板剂为烷基季铵盐十六烷基三甲基溴化铵、十二烷基苯磺酸中的一种或者两者的混合。
一些实施例中,步骤S104中,停止通电后,将溶液加入水热釜中在70-140℃反应1-72小时,冷却后过滤,得到固体产物。
一些实施例中,步骤S104中,电流的密度范围为0.1mA/cm2-500mA/cm2。一些优选实施例中,电流的密度范围为1mA/cm2-100mA/cm2
一些实施例中,模板剂和水的质量比为1:20-1:200。
一些实施例中,所述电解质为Mg、Al、Pb、In、Sn、Sb、Zr、Nb、La、Ce、Ta、Mo、W、Re、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Pt、Pd、Ir、Ru、Rh的硝酸盐、硫酸盐、卤代盐、高氯酸盐,或者四氟硼酸钠、四丁基四氟硼酸铵、四丁基六氟硼酸铵、氟化钠、氯化钠、氯化钾、氯化铵、硫酸钠、硫酸钾、硫酸铵、高氯酸钠、高氯酸钾、高氯酸铵、硝酸钠、硝酸钾、硝酸铵中的一种或者多种的混合。
一些实施例中,电解质和水的质量比为1:1000-1:10。
一些实施例中,所述硅前体为四甲氧基硅、四乙氧基硅、四正丁氧基硅、硅酸钠中的一种或者多种的混合。
一些实施例中,硅前体和水的质量比为1:4-1:50。
一些实施例中,所述电极为石墨板、石墨纸、多孔泡沫碳、石墨毡、碳布、铂、铜、不锈钢、钯、金、镍、镁、铝、锌、二氧化铅、Pt/Ti、RuO2/Ti、IrO2/Ti、PbO2/Ti、MnO2/Ti、TiOx/Ti中的一种或者一种以上的混合电极对。
一些实施例中,去除模板剂的方式为在350-1000℃的条件下煅烧。一些优选实施例中,去除模板剂的方式为在350-600℃的条件下煅烧。
一些实施例中,去除模板剂的方式为萃取或氧化,萃取的具体过程为:以乙醇、甲醇、丙酮等作为溶剂,在25℃-80℃的条件下萃取0.5h-24h,然后通过抽滤将含模板剂的溶剂分离收集,即实现了模板剂的去除和回收;氧化的具体过程为:向固体产物中加入一定量的双氧水和硝酸溶液作为氧化剂,在50℃-100℃的条件下氧化0.5h-24h,停止加热、抽滤、洗涤,即得到去除模板剂的介孔二氧化硅材料。
本申请利用模板剂、二氧化硅前驱体和电解质在一定温度下形成中性溶液,之后,向中性溶液中插入电极材料通电,在电化学条件下反应一段时间,直接过滤得到介孔材料或者反应液在一定温度下水热后过滤,对过滤得到的介孔材料通过一定温度下煅烧,或者萃取、氧化步骤,去除模板剂,最终得到相应的介孔二氧化硅材料。
本申请提供的方法利用电化学合成这一绿色、便利的材料合成技术来实现介孔二氧化硅材料的绿色、高效合成。本申请通过简单的合成条件,得到传统合成方法需要多步、复杂条件才能得到的介孔材料,且得到的材料性能比传统方法合成的材料的性能更优越。
本申请提供的方法能够在中性的条件下合成多形貌、多结构的介孔二氧化硅材料,通过对模板剂、电流强度、电解质、硅前体、反应温度的调节,可方便的得到单分散性较高、孔道大小均匀可控的介孔硅材料,如SBA-15、MCF、单层/多层空心球的二氧化硅介孔材料、KIT-6、FDU-12和FDU-18。
与现有技术相比,本申请具有以下有益效果:
1、本申请利用电作为绿色、高效的催化剂,简单、易操作,易于自动化生产,避免了传统强酸强碱方法对仪器设备的腐蚀,易于应用于工业化生产中,具有运用范围广、合成方法简单高效、污染少,成本低等优点,应用前景广阔;
2、传统强酸强碱合成介孔二氧化硅材料时,强酸碱条件不利于金属离子进入二氧化硅框架结构中,因而,无法实现较高含量的金属催化剂的直接负载;而本申请提供的方法在中性条件合成,可以有效的实现金属催化剂高负载量的负载于介孔二氧化硅材料的框架结构中,从而得到高效、高负载的介孔二氧化硅催化剂,试验表明,利用本申请的方法可以得到最高负载24%的FeOx
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的介孔二氧化硅材料的电化学制备方法的流程 示意图。
图2为本申请实施例1制备的介孔空心球的透射电镜图片。
图3为本申请实施例2制备的介孔SBA-15的透射电镜图片。
图4为本申请实施例3制备的介孔MCF的透射电镜图片。
图5为本申请实施例4制备的双层空心球的透射电镜图片。
图6为本申请实施例5制备的Fe-SBA-15的透射电镜图片。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种介孔二氧化硅材料的电化学制备方法,其能解决相关技术中存在的介孔二氧化硅材料合成过程复杂、合成条件苛刻的问题。
参考图1,本申请实施例提供了一种介孔二氧化硅材料的电化学制备方法,包括以下步骤:
步骤S101,将模板剂和水按照质量比1:20-1:200混合于反应器中,在0-50℃下搅拌溶解1-24h,使模板剂能完全溶解于水中,形成均匀、透明的模板剂溶液;模板剂为两亲性的三嵌段聚合物,选用聚环氧乙烷-聚苯乙烯聚合物(PEO-b-PS)、聚环氧乙烷聚环氧丙烷聚合物(PEO-PPO-PEO)、聚环氧乙烷-聚异戊二烯聚合物(PEO-b-PI)或聚环氧乙烷-聚甲基丙烯酸甲酯聚合物(PEO-b-PMMA)中的任一种或多种的混合;或者模板剂为烷基季铵盐十六烷基三甲基溴化铵、十二烷基苯磺酸中的一种或者两者的混合;
步骤S102,将电解质按照一定的量加入到模板剂溶液中,在0-50℃ 下搅拌溶解1h,使得电解质能完全溶解于水中,形成均匀、透明的第一混合溶液;电解质为Mg、Al、Pb、In、Sn、Sb、Zr、Nb、La、Ce、Ta、Mo、W、Re、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Pt、Pd、Ir、Ru、Rh的硝酸盐、硫酸盐、卤代盐、高氯酸盐,或者四氟硼酸钠、四丁基四氟硼酸铵、四丁基六氟硼酸铵、氟化钠、氯化钠、氯化钾、氯化铵、硫酸钠、硫酸钾、硫酸铵、高氯酸钠、高氯酸钾、高氯酸铵、硝酸钠、硝酸钾、硝酸铵中的一种或者多种的混合;电解质和水的质量比为1:1000-1:10;
步骤S103,将硅前驱体加入到第一混合溶液中,在0-50℃下搅拌溶解10min,得到第二混合溶液;硅前体为四甲氧基硅、四乙氧基硅、四正丁氧基硅、硅酸钠中的一种或者多种的混合,硅前体和水的质量比为1:4-1:50;
步骤S104,将电极的阴极和阳极分别插入到第二混合溶液中,通入一定的电流,在0-50℃下反应0.5-72小时,待反应完成,停止通电,过滤,得到固体产物;电极为石墨板、石墨纸、多孔泡沫碳、石墨毡、碳布、铂、铜、不锈钢、钯、金、镍、镁、铝、锌、二氧化铅、Pt/Ti、RuO2/Ti、IrO2/Ti、PbO2/Ti、MnO2/Ti、TiOx/Ti中的一种或者一种以上的混合电极对;
步骤S105,去除固体产物中的模板剂,即得到介孔二氧化硅材料。
下面结合实施例对本申请提供的介孔二氧化硅材料的电化学制备方法进行详细说明。
实施例1:电化学合成介孔空心球
合成原料:三嵌段聚合物F127(分子量12800),四乙氧基硅(TEOS),四氟硼酸钠,碳电极。
实施例1提供的介孔空心球的制备包括以下步骤:
(1)取1g F127溶解于60mL水中,加入100mL三口烧瓶中, 在38℃下搅拌12h,使聚合物F127均匀溶解于水中,得到F127溶液;
(2)向F127溶液中加入1g四氟硼酸钠,在38℃下搅拌2h,使电解质均匀溶解于水中,得到第一混合溶液;
(3)将4.16g TEOS加入到第一混合溶液中,搅拌溶解,得到第二混合溶液;
(4)将两个碳电极分别插入第二混合溶液中,调控电流强度为10mA,通电2h,后将电流关闭,并移除电极,将溶液转移到水热釜中,在100℃中保持24h;
(5)待水热釜冷却取出,过滤,将得到的白色固体粉末在550℃中煅烧6小时,即得到介孔空心球样品。
实施例1制得的介孔空心球样品的透射电镜结果如图2所示,空心球孔径在6nm左右。
实施例2:电化学合成SBA-15
合成原料:三嵌段聚合物P123(分子量5800),四乙氧基硅,四氟硼酸钠,碳电极。
实施例2提供的SBA-15的制备方法包括以下步骤:
(1)取2g P123溶解于100mL水,加入250mL三口烧瓶中,在38℃下搅拌12h,使聚合物P123均匀的溶解于水中,得到P123溶液;
(2)向P123溶液中加入1g四氟硼酸钠,在38℃下搅拌2h,待电解质均匀溶解于水中,得到第一混合溶液;
(3)将4.16g TEOS加入到第一混合溶液中,搅拌溶解,得到第二混合溶液;
(4)将两个碳电极分别插入第二混合溶液中,调控电流强度为10mA,通电2h,后将电流关闭,并移除电极,将溶液转移到水热釜中,在100℃中保持24h;
(5)待水热釜冷却取出,过滤,将得到的白色固体粉末在550℃中煅烧6小时,即得到SBA-15样品。
经检测,所得到的SBA-15样品的比表面积为910m2/g,孔容为1.09mL/g,平均孔径为8.1nm。TEM照片如图3所示。
实施例3:电化学合成MCF
合成原料:三嵌段聚合物P123(分子量5800),四乙氧基硅,四氟硼酸钠,碳电极,铂电极。
实施例3提供的MCF的制备方法包括以下步骤:
(1)取2g P123溶解于100mL水,加入250mL三口烧瓶中,在38℃下搅拌12h,待聚合物P123均匀的溶解于水中,得到P123溶液;
(2)向P123溶液中加入1g四氟硼酸钠,在38℃下搅拌2h,待电解质均匀的溶解于水中,得到第一混合溶液;
(3)将4.16g TEOS加入到第一混合溶液中,搅拌溶解,得到第二混合溶液;
(4)将碳阳极和铂阴极分别插入第二混合溶液中,调控电流强度为10mA,通电2h,后将电流关闭,并移除电极,将溶液转移到水热釜中,在100℃中保持24h;
(5)待水热釜冷却取出,过滤,将得到的白色固体粉末在550℃中煅烧6小时,即得到MCF样品。
经检测,所得到的MCF样品的比表面积为510m2/g,孔容为3.10mL/g。TEM照片如图4所示。
实施例4:电化学合成双层空心球
合成原料:三嵌段聚合物P123(分子量5800),四乙氧基硅,四氟硼酸钠,碳电极,铂电极。
实施例4提供的双层空心球的制备方法包括以下步骤:
(1)取1.5g P123溶解于100mL水,加入250mL三口烧瓶中,在38℃下搅拌12h,待聚合物P123均匀的溶解于水中,得到P123溶液;
(2)向P123溶液中加入1g四氟硼酸钠,在38℃下搅拌2h,待电解质均匀的溶解于水中,得到第一混合溶液;
(3)将4.16g TEOS加入到第一混合溶液中,搅拌溶解,得到第二混合溶液;
(4)于第二混合溶液中插入碳阳极和铂阴极,调控电流强度为10mA,通电2h,后将电流关闭,并移除电极,将溶液转移于水热釜中,于100℃中保持24h;
(5)待水热釜冷却取出,过滤,将得到的白色固体粉末在550℃中煅烧6小时,即得到双层空心球样品。TEM照片如图5所示。
实施例5:电化学合成Fe-SBA-15
合成原料:三嵌段聚合物P123(分子量5800),四乙氧基硅,四氟硼酸钠,碳电极,铂电极。
实施例5提供的Fe-SBA-15的制备方法包括以下步骤:
(1)取2g P123溶解于100mL水,加入250mL三口烧瓶中,在38℃下搅拌12h,待聚合物P123均匀的溶解于水中,得到P123溶液;
(2)向P123溶液中加入1g硝酸铁,于38℃下搅拌2h,待电解质均匀的溶解于水中,得到第一混合溶液;
(3)将4.16g TEOS加入到第一混合溶液中,搅拌溶解,得到第二混合溶液;
(4)于第二混合溶液中插入碳电极,调控电流强度为10mA,通电2h,后将电流关闭,并移除电极,将溶液转移于水热釜中,于100℃中保持24h;
(5)待水热釜冷却取出,过滤,将得到的棕色固体粉末在550℃中煅烧6小时,即得到最终的Fe-SBA-15样品。
经检测,所得到的Fe-SBA-15样品的比表面积为810m2/g,孔容为1.04mL/g。TEM照片如图6所示。
实施例6:电化学合成KIT-6
合成原料:三嵌段聚合物P123(分子量5800),四乙氧基硅,四氟硼酸钠,钛阳极,泡沫镍阴极。
实施例6提供的KIT-6的制备方法包括以下步骤:
(1)取2g P123溶解于100mL水,加入250mL三口烧瓶中,在38℃下搅拌12h,待聚合物P123均匀的溶解于水中,得到P123溶液;
(2)向P123溶液中加入1g四氟硼酸钠,在38℃下搅拌2h,待电解质均匀的溶解于水中,得到第一混合溶液;
(3)将4.16g TEOS加入到第一混合溶液中,搅拌溶解,得到第 二混合溶液;
(4)将钛阳极和泡沫镍阴极分别插入第二混合溶液中,调控电流强度为2mA,通电10h,后将电流关闭,并移除电极,将溶液转移于水热釜中,在100℃中保持24h;
(5)待水热釜冷却取出,过滤,将得到的白色固体粉末在550℃中煅烧6小时,即得到最终的KIT-6样品。
实施例7:电化学合成FDU-12
合成原料:三嵌段聚合物F127(分子量12800),四乙氧基硅,氯化钾,钛阳极,泡沫镍阴极。
实施例7提供的FDU-12的制备方法包括以下步骤:
(1)取2g P123溶解于100mL水,加入250mL三口烧瓶中,在38℃下搅拌12h,待聚合物P123均匀的溶解于水中,得到P123溶液;
(2)向P123溶液中加入1g氯化钾,在38℃下搅拌2h,待电解质均匀的溶解于水中,得到第一混合溶液;
(3)将4.16g TEOS加入到第一混合溶液中,搅拌溶解,得到第二混合溶液;
(4)将钛阳极和铜阴极分别插入第二混合溶液中,调控电流强度为20mA,通电4h,后将电流关闭,并移除电极,将溶液转移于水热釜中,于100℃中保持24h;
(5)待水热釜冷却取出,过滤,将得到的白色固体粉末在550℃中煅烧6小时,即得到FDU-12样品。
在本说明书的描述中,参考术语“一个实施例/方式”、“一些实 施例/方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例/方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例/方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例/方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例/方式或示例以及不同实施例/方式或示例的特征进行结合和组合。
需要说明的是,在本申请中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。在本申请中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的规定。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种介孔二氧化硅材料的电化学制备方法,其特征在于,包括以下步骤:
    将模板剂和水混合溶解,形成均匀、透明的模板剂溶液;
    将电解质加入到模板剂溶液中,搅拌溶解,形成均匀、透明的第一混合溶液;
    将硅前驱体加入到第一混合溶液中,搅拌溶解,得到第二混合溶液;
    将电极的阴极和阳极分别插入到第二混合溶液中,通入电流进行反应,反应完成后停止通电,过滤,得到固体产物;
    去除固体产物中的模板剂,即得到介孔二氧化硅材料。
  2. 根据权利要求1所述的介孔二氧化硅材料的电化学制备方法,其特征在于,所述模板剂为聚环氧乙烷-聚苯乙烯聚合物、聚环氧乙烷聚环氧丙烷聚合物、聚环氧乙烷-聚异戊二烯聚合物或聚环氧乙烷-聚甲基丙烯酸甲酯聚合物中的任一种或多种的混合。
  3. 根据权利要求1所述的介孔二氧化硅材料的电化学制备方法,其特征在于,所述模板剂为烷基季铵盐十六烷基三甲基溴化铵、十二烷基苯磺酸中的一种或者两者的混合。
  4. 根据权利要求1所述的介孔二氧化硅材料的电化学制备方法,其特征在于,电流的密度范围为0.1mA/cm2-500mA/cm2
  5. 根据权利要求1所述的介孔二氧化硅材料的电化学制备方法,其特征在于,模板剂和水的质量比为1:20-1:200。
  6. 根据权利要求1所述的介孔二氧化硅材料的电化学制备方法,其特征在于,所述硅前体为四甲氧基硅、四乙氧基硅、四正丁氧基硅、硅酸钠中的一种或者多种的混合。
  7. 根据权利要求1所述的介孔二氧化硅材料的电化学制备方法,其特征在于,所述电解质为Mg、Al、Pb、In、Sn、Sb、Zr、Nb、La、 Ce、Ta、Mo、W、Re、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Pt、Pd、Ir、Ru、Rh的硝酸盐、硫酸盐、卤代盐、高氯酸盐,或者四氟硼酸钠、四丁基四氟硼酸铵、四丁基六氟硼酸铵、氟化钠、氯化钠、氯化钾、氯化铵、硫酸钠、硫酸钾、硫酸铵、高氯酸钠、高氯酸钾、高氯酸铵、硝酸钠、硝酸钾、硝酸铵中的一种或者多种的混合。
  8. 根据权利要求1所述的介孔二氧化硅材料的电化学制备方法,其特征在于,所述电极为石墨板、石墨纸、多孔泡沫碳、石墨毡、碳布、铂、铜、不锈钢、钯、金、镍、镁、铝、锌、二氧化铅、Pt/Ti、RuO2/Ti、IrO2/Ti、PbO2/Ti、MnO2/Ti、TiOx/Ti中的一种或者一种以上的混合电极对。
  9. 根据权利要求1所述的介孔二氧化硅材料的电化学制备方法,其特征在于,电解质和水的质量比为1:1000-1:10。
  10. 根据权利要求1所述的介孔二氧化硅材料的电化学制备方法,其特征在于,硅前体和水的质量比为1:4-1:50。
PCT/CN2023/112885 2022-08-15 2023-08-14 一种介孔二氧化硅材料的电化学制备方法 WO2024037494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210976715.5A CN115286002B (zh) 2022-08-15 2022-08-15 一种介孔二氧化硅材料的电化学制备方法
CN202210976715.5 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024037494A1 true WO2024037494A1 (zh) 2024-02-22

Family

ID=83829993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112885 WO2024037494A1 (zh) 2022-08-15 2023-08-14 一种介孔二氧化硅材料的电化学制备方法

Country Status (2)

Country Link
CN (1) CN115286002B (zh)
WO (1) WO2024037494A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286002B (zh) * 2022-08-15 2023-09-29 武汉大学 一种介孔二氧化硅材料的电化学制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618735A (zh) * 2003-11-19 2005-05-25 中国科学院金属研究所 一种单分散纳米介孔二氧化硅材料的合成方法
EP1995214A2 (en) * 2007-05-23 2008-11-26 Sungkyunkwan University Foundation for Corporate Collaboration Multifunctional periodic mesoporous organosilica materials using block copolymer template and preparation method thereof
KR20090126218A (ko) * 2008-06-03 2009-12-08 한국외국어대학교 연구산학협력단 메조포러스 실리카 물질 및 그 제조방법
CN103738969A (zh) * 2013-12-25 2014-04-23 上海纳米技术及应用国家工程研究中心有限公司 介孔二氧化硅及其制备方法
CN108977824A (zh) * 2018-08-31 2018-12-11 上海应用技术大学 一种无定型二氧化硅的电化学制备方法
CN115286002A (zh) * 2022-08-15 2022-11-04 武汉大学 一种介孔二氧化硅材料的电化学制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618735A (zh) * 2003-11-19 2005-05-25 中国科学院金属研究所 一种单分散纳米介孔二氧化硅材料的合成方法
EP1995214A2 (en) * 2007-05-23 2008-11-26 Sungkyunkwan University Foundation for Corporate Collaboration Multifunctional periodic mesoporous organosilica materials using block copolymer template and preparation method thereof
KR20090126218A (ko) * 2008-06-03 2009-12-08 한국외국어대학교 연구산학협력단 메조포러스 실리카 물질 및 그 제조방법
CN103738969A (zh) * 2013-12-25 2014-04-23 上海纳米技术及应用国家工程研究中心有限公司 介孔二氧化硅及其制备方法
CN108977824A (zh) * 2018-08-31 2018-12-11 上海应用技术大学 一种无定型二氧化硅的电化学制备方法
CN115286002A (zh) * 2022-08-15 2022-11-04 武汉大学 一种介孔二氧化硅材料的电化学制备方法

Also Published As

Publication number Publication date
CN115286002A (zh) 2022-11-04
CN115286002B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
AU2011270733B2 (en) Spinel catalysts for water and hydrocarbon oxidation
WO2024037494A1 (zh) 一种介孔二氧化硅材料的电化学制备方法
CN111420658B (zh) 一种Ir/Ru合金氧析出催化剂及制备方法和应用
CN111883792B (zh) 一种过渡金属锰、氮掺杂炭氧还原电催化剂及其制备方法和应用
CN112038648A (zh) 一种中空结构过渡金属钴、氮共掺杂炭氧还原催化剂及其制备方法和应用
CN104241604A (zh) 一种核壳结构锂离子电池电极材料的制备方法
CN105304885B (zh) 一种铝二次电池钒氧化物正极材料及其制备方法
CN106591890A (zh) 一种基于低共熔熔剂原位沉积合金/去合金法制备微纳米多孔银的方法
CN105261784A (zh) 一种铝二次电池
CN111403696A (zh) 一种片状二氧化锰中空框架结构材料及其制备方法、应用
CN107658527A (zh) 一种高性能过渡金属氧化物空心球空气电极及其制备方法
CN109559902A (zh) 一种金属有机框架衍生钴镍硼硫化物材料及其制备方法与应用
CN114836779A (zh) 一种层状双氢氧化物/氮掺杂碳复合材料及其制备方法与应用
CN113337063A (zh) 一种有机-无机纳米复合粒子及制备方法和应用
CN105895894A (zh) 一种钒酸铜材料及其制备方法与电化学性能
CN106384832A (zh) 一种具备高效电催化氧还原性能的ZnO‑CuO/rGO复合材料
CN111822054A (zh) 一种纳米多孔材料阳极催化剂及其制备方法
CN113772644A (zh) 双金属磷化物及其制备方法和应用
CN112110497B (zh) 一种镧系金属掺杂钴酸镧型纳米管材料及其制备方法、以及电解水制氢的方法
CN115679352A (zh) 一种碳酸甲乙酯的合成方法
CN109659574A (zh) 复合正极材料及其制备方法、锂空气电池
CN111822024B (zh) 一种环境友好型的具有二维纳米墙阵列结构的铁含量可控的铜铁mof材料及其制备方法
CN111320759B (zh) 一种环境友好型的二维纳米墙mof材料及其制备方法
CN106981672B (zh) 一种燃料电池阳极催化材料及其制备方法和应用
CN105047881A (zh) 一种锗-碳氮纳米复合材料的制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854395

Country of ref document: EP

Kind code of ref document: A1