WO2024032097A1 - 一种铋/钛酸铋异质结中空纳米球及其制备方法与应用 - Google Patents

一种铋/钛酸铋异质结中空纳米球及其制备方法与应用 Download PDF

Info

Publication number
WO2024032097A1
WO2024032097A1 PCT/CN2023/096633 CN2023096633W WO2024032097A1 WO 2024032097 A1 WO2024032097 A1 WO 2024032097A1 CN 2023096633 W CN2023096633 W CN 2023096633W WO 2024032097 A1 WO2024032097 A1 WO 2024032097A1
Authority
WO
WIPO (PCT)
Prior art keywords
bismuth
heterojunction
titanate
hollow nanospheres
tetracycline hydrochloride
Prior art date
Application number
PCT/CN2023/096633
Other languages
English (en)
French (fr)
Inventor
周卫
王学朋
李贞子
郭莉萍
王世杰
廖礼俊
王波
褚宏旗
梁嫜倩
Original Assignee
齐鲁工业大学(山东省科学院)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学(山东省科学院) filed Critical 齐鲁工业大学(山东省科学院)
Publication of WO2024032097A1 publication Critical patent/WO2024032097A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the technical field of new materials and relates to a bismuth/bismuth titanate heterojunction hollow nanosphere and its preparation method and application.
  • the present invention intends to use bismuth titanate hollow spheres to improve the photocatalytic activity of bismuth titanate through the internal and external double-layer interface.
  • the hydrothermal method can prepare bismuth titanate hollow spheres, but it has strict requirements on the amount of mineralizer added. Excessive or small amounts cannot produce bismuth titanate hollow spheres.
  • the present invention provides bismuth titanate hollow spheres prepared by solvothermal method.
  • the research of the present invention shows that the bismuth titanate hollow spheres prepared by solvothermal method not only cannot improve the activity of photocatalytic degradation of tetracycline hydrochloride, but also reduce the activity of photocatalytic degradation of tetracycline hydrochloride. Reduce to inactivity.
  • the purpose of the present invention is to provide a bismuth/bismuth titanate heterojunction hollow nanosphere and its preparation method and application.
  • /Bismuth titanate heterojunction hollow nanospheres not only have significant photocatalytic activity in degrading tetracycline hydrochloride, but also enable the metal to be more closely combined with the photocatalytic material and have superior structural stability.
  • a method for preparing bismuth/bismuth titanate heterojunction hollow nanospheres adding bismuth salt and tetrabutyl titanate into an organic solvent and mixing evenly, then adding an inorganic alkali solution to produce precipitation, and then adding organic amines in sequence and organic acid, perform solvothermal treatment to obtain bismuth titanate hollow nanospheres, and use borohydride to thermally reduce the bismuth titanate hollow nanospheres under an inert atmosphere.
  • the present invention can avoid the problem of strict requirements on the amount of inorganic alkali added.
  • the present invention reduces the bismuth in the bismuth titanate through heat treatment, allowing the metal bismuth to grow in situ on the bismuth titanate, achieving a closer combination of bismuth and bismuth titanate, thereby having more excellent stability.
  • the bismuth/bismuth titanate heterojunction hollow nanospheres provided by the present invention not only have excellent photocatalytic degradation performance of tetracycline hydrochloride, but also have the performance of catalyzing the degradation of tetracycline hydrochloride under dark conditions. This is due to the fact that in the system of bismuth/bismuth titanate heterojunction hollow nanospheres, reduction can Metal bismuth grows in situ on bismuth titanate, generating more oxygen vacancies. The oxygen vacancies attract electrons, thus gathering electrons, so that the hollow nanospheres in the bismuth/bismuth titanate heterojunction can also catalyze the degradation of tetracycline hydrochloride under dark conditions. performance, and at the same time synergizes with the photocatalytic activity, further improving its photocatalytic degradation performance of tetracycline hydrochloride.
  • bismuth salt is dispersed in an organic solvent, tetrabutyl titanate is added, and then an inorganic alkali solution, an organic amine and an organic acid are added in sequence to prepare bismuth/bismuth titanate heterojunction hollow nanospheres through a solvothermal reaction.
  • an organic solvent tetrabutyl titanate
  • an organic amine and an organic acid are added in sequence to prepare bismuth/bismuth titanate heterojunction hollow nanospheres through a solvothermal reaction.
  • the present invention causes the metal bismuth to grow in situ on the bismuth titanate through the reduction of bismuth in the bismuth titanate, achieving a closer combination of bismuth and bismuth titanate, thereby having more excellent stability, and thereby making the obtained bismuth/ Bismuth titanate heterojunction hollow nanospheres can be reused.
  • the present invention forms an overall technical solution through the synergistic cooperation of bismuth salt with appropriate titanium sources, solvents and reaction processes, and finally prepares bismuth/bismuth titanate heterojunction hollow nanospheres with in-situ growth of metal bismuth.
  • bismuth/bismuth titanate heterojunction hollow nanospheres have excellent photocatalytic degradation of tetracycline hydrochloride.
  • Figure 1 is the XRD pattern of the final product BBTO obtained during the preparation process of Example 1 of the present invention
  • Figure 2 is the photoluminescence test of BBTO and BTO prepared in Example 1 of the present invention
  • Figure 3 is the UV-Vis test of BBTO and BTO prepared in Example 1 of the present invention.
  • Figure 4 is a scanning electron microscope image of BBTO prepared in Example 1 of the present invention.
  • Figure 5 is a transmission electron microscope image of BBTO prepared in Example 1 of the present invention.
  • Figure 6 is a comparison chart of the degradation effects of BBTO and BTO prepared in Example 1 of the present invention on tetracycline hydrochloride;
  • Figure 7 is a comparative chart of the degradation effects of BBTO prepared in Example 1 of the present invention on tetracycline hydrochloride under different conditions.
  • the present invention proposes a bismuth/bismuth titanate heterojunction hollow nanosphere and its preparation method and application.
  • a typical embodiment of the present invention provides a method for preparing bismuth/bismuth titanate heterojunction hollow nanospheres.
  • Bismuth salt and tetrabutyl titanate are added to an organic solvent and mixed evenly, and then an inorganic alkali solution is added. Precipitation occurs, and then organic amines and organic acids are added in sequence, and solvothermal treatment is performed to obtain bismuth titanate hollow nanospheres.
  • the bismuth titanate hollow nanospheres are thermally reduced using borohydride. That’s it.
  • the bismuth salt of the present invention is a cationic bismuth ion compound.
  • the bismuth salt is bismuth nitrate. Research shows that the performance of bismuth/bismuth titanate heterojunction hollow nanospheres prepared from bismuth nitrate is better.
  • the organic solvent is one or more mixed solutions of propanol, glycerin, isopropyl alcohol, ethylene glycol, and ethylene glycol methyl ether.
  • isopropyl alcohol, propanol, and glycerol can be used to prepare bismuth/bismuth titanate heterojunction hollow nanospheres, compared with using ethylene glycol methyl ether and ethylene glycol as solvents, the same amount of nitric acid
  • bismuth and tetrabutyl titanate are used as the bismuth source or titanium source, the amount of metal bismuth grown in situ is small, and the preferred solvent is ethylene glycol methyl ether or ethylene glycol.
  • the solvent used in the preparation method of the present invention has a great influence on the purity of the bismuth titanate hollow structure in the system and whether bismuth can be formed.
  • the molar ratio of tetrabutyl titanate and bismuth salt is 1:1-2, preferably 1:1.1-1.4.
  • the solvothermal temperature ranges from 100°C to 300°C. In order to ensure sufficient thermal driving force for the assembly of bismuth titanate into a hollow structure, the solvothermal temperature is set to 160°C to 200°C for better results.
  • the time of solvothermal treatment is 12 to 48 hours, preferably 20 to 36 hours.
  • the organic acid described in the present invention is an organic compound having at least one unsaturated bond (such as a carbon-carbon double bond) and at least one carboxyl group.
  • the organic acid is oleic acid, oleic acid d-17 or castoric acid. Hemp oil.
  • the organic amine is one or more of n-butylamine, isopropylamine, and tert-butylamine. Preference is given to n-butylamine or tert-butylamine.
  • the heat treatment reduction temperature is 200-600°C, preferably 300°C-500°C, and the time is 10min-100min, preferably 20min-80min.
  • Another embodiment of the present invention provides a bismuth/bismuth titanate heterojunction hollow nanosphere, which is obtained by the above preparation method.
  • the third embodiment of the present invention provides an application of the above-mentioned bismuth/bismuth titanate heterojunction hollow nanosphere in catalytic degradation of tetracycline hydrochloride.
  • bismuth/bismuth titanate heterojunction hollow nanospheres are added to an aqueous solution containing tetracycline hydrochloride, and processed under dark conditions and/or light conditions.
  • the collected powder was reduced by sodium at 300°C for 60 minutes in a nitrogen atmosphere, and then washed and centrifuged multiple times with absolute ethanol and deionized water to obtain bismuth/bismuth titanate (Bi/Bi 4 Ti 3 O 12 ) heterojunction hollow Nanosphere material, recorded as BBTO.
  • the bismuth/bismuth titanate heterojunction hollow nanosphere system has a lower photoluminescence signal, indicating that its electron-hole recombination rate is low.
  • the bismuth/bismuth titanate heterojunction system has a lower photoluminescence signal.
  • junction hollow nanospheres Compared with pure phase bismuth titanate, junction hollow nanospheres have a wider response range to light and have good absorption capabilities for visible light. It can be seen in Figures 4 and 5 that the prepared materials have a hollow structure.
  • the bismuth/bismuth titanate heterojunction hollow nanospheres prepared in Example 1 were used to photodegrade tetracycline hydrochloride.
  • the experimental process was as follows: simultaneously weigh 10 mg of tetracycline hydrochloride and dissolve it in 1 L of water, and add 0.05g of bismuth/bismuth titanate heterojunction hollow nanospheres.
  • the nanospheres were added to 100 mL of the degradation target tetracycline hydrochloride solution and stirred in the dark for 20 minutes in a dark box. Then, the light source was turned on for 20 minutes and a liquid sample was taken for filtration using a 0.22 ⁇ m filter. A total of 5 samples were taken for UV absorption testing.
  • bismuth/bismuth titanate heterojunction hollow nanospheres This is due to the presence of bismuth/bismuth titanate heterojunction hollow nanospheres.
  • metal bismuth grows in situ on bismuth titanate through reduction, generating more oxygen vacancies.
  • the oxygen vacancies attract electrons and separate charges under polarization, making bismuth /Bismuth titanate heterojunction hollow nanospheres also have the ability to catalyze the degradation of tetracycline hydrochloride under dark conditions.
  • the concentration of tetracycline hydrochloride decreases faster, which shows that under light conditions, the bismuth/bismuth titanate heterojunction hollow nanospheres prepared in this example have better photocatalytic activity in degrading tetracycline hydrochloride. .
  • the bismuth/bismuth titanate heterojunction hollow nanospheres prepared in Example 1 were used to photodegrade tetracycline hydrochloride.
  • the experimental process was as follows: simultaneously weigh 5 mg of tetracycline hydrochloride and dissolve it in 1 L of water, and add 0.05 g of bismuth/bismuth titanate heterojunction hollow nanospheres.
  • the nanospheres were added to 100 mL of the degradation target tetracycline hydrochloride solution, and then the liquid phase sample was taken once every 2 minutes while turning on the light source, stirring, and simultaneously turning on the light source and stirring, and filtered with a 0.22 ⁇ m filter. A total of 5 samples were taken for UV light absorption testing. .
  • the bismuth/bismuth titanate heterojunction hollow nanospheres prepared in this example showed more excellent degradation performance, and could be quickly degraded under both illumination and stirring. Rapidly degrading tetracycline hydrochloride has degradation properties under the condition of only stirring without adding light, indicating that the bismuth/bismuth titanate heterojunction hollow nanospheres have self-polarization and can achieve charge separation, thus showing degradation properties; while caring for and The degradation performance is further improved under stirring, indicating that light and stirring have a synergistic effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于新材料技术领域,涉及一种铋/钛酸铋异质结中空纳米球及其制备方法与应用。将铋盐、钛酸四丁酯加入至有机溶剂中混合均匀,再加入无机碱溶液产生沉淀,然后依次添加有机胺和有机酸,进行溶剂热处理获得钛酸铋中空纳米球,在惰性气氛下,采用硼氢化物将钛酸铋中空纳米球进行热处理还原,即得。本发明制备的铋/钛酸铋异质结中空纳米球不仅具有显著的光催化降解盐酸四环素的活性,而且能够使金属与光催化材料结合的更为紧密具有更加优越的结构稳定性。

Description

一种铋/钛酸铋异质结中空纳米球及其制备方法与应用
本发明要求于2022年8月10日提交中国专利局、申请号为202210955940.0、发明名称为“一种铋/钛酸铋异质结中空纳米球及其制备方法与应用”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明属于新材料技术领域,涉及一种铋/钛酸铋异质结中空纳米球及其制备方法与应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
据发明人研究了解,为了解决钛酸铋(Bi4Ti3O12)光催化活性,其改性方法包括元素掺杂、贵金属负载与其他半导体复合等。然而,这些改性方法存在过程复杂、成本较高、结合稳定性较差等问题。
发明内容
由于催化剂的微观形貌对其催化活性有较高的影响,因而本发明拟采用钛酸铋中空球,通过内外双层界面提高钛酸铋的光催化活性。前期研究表明,水热法可以制备出钛酸铋中空球,但是其对于矿化剂的添加量有严格的要求,过量或少量,均无法制成钛酸铋中空球。
为了解决目前的水热法制备钛酸铋中空球对物料添加量要求严苛的问题, 本发明提供了溶剂热法制备钛酸铋中空球,然而本发明研究表明采用溶剂热法制备的钛酸铋中空球不仅无法提高光催化降解盐酸四环素的活性,反而使光催化降解盐酸四环素的活性降低至没有活性。
为了解决溶剂热法制备的钛酸铋中空球没有光催化降解盐酸四环素的活性的问题,本发明的目的是提供一种铋/钛酸铋异质结中空纳米球及其制备方法与应用,铋/钛酸铋异质结中空纳米球不仅具有显著的光催化降解盐酸四环素的活性,而且能够使金属与光催化材料结合的更为紧密具有更加优越的结构稳定性。
为了实现上述目的,本发明的技术方案为:
一方面,一种铋/钛酸铋异质结中空纳米球的制备方法,将铋盐、钛酸四丁酯加入至有机溶剂中混合均匀,再加入无机碱溶液产生沉淀,然后依次添加有机胺和有机酸,进行溶剂热处理获得钛酸铋中空纳米球,在惰性气氛下,采用硼氢化物将钛酸铋中空纳米球进行热处理还原,即得。
本发明通过选择有机溶剂,以及无机碱溶液、有机胺和有机酸的添加,能够避免无机碱添加量要求严苛的问题。
同时,本发明通过热处理还原,钛酸铋中的铋还原,使得金属铋在钛酸铋上原位生长,实现铋与钛酸铋的结合更紧密,从而具有更加优异的稳定性。
经过实验表明,本发明制备的铋/钛酸铋异质结中空纳米球具有优异的光催化降解盐酸四环素的性能。
另一方面,一种铋/钛酸铋异质结中空纳米球,由上述制备方法获得。
经过研究表明,本发明提供的铋/钛酸铋异质结中空纳米球不仅具有优异的光催化降解盐酸四环素的性能,而且在黑暗条件下也具有催化盐酸四环素降解的性能。这是由于在铋/钛酸铋异质结中空纳米球的体系中,通过还原使得 金属铋在钛酸铋上原位生长,产生更多的氧空位,氧空位吸引电子,从而聚集电子,使得在铋/钛酸铋异质结中空纳米球在黑暗条件下也具有催化盐酸四环素降解的性能,同时协同光催化活性,进一步提高了其光催化降解盐酸四环素的性能。
第三方面,一种上述铋/钛酸铋异质结中空纳米球在催化降解盐酸四环素中的应用。
通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明将铋盐分散于有机溶剂后加入钛酸四丁酯,然后依次添加无机碱溶液和有机胺与有机酸,通过溶剂热反应制备铋/钛酸铋异质结中空纳米球,不仅所使用原料价格低廉,而且能够避免原料添加量要求苛刻的问题,适用于大规模生产。
(2)本发明通过钛酸铋中的铋还原使得金属铋在钛酸铋上原位生长,实现铋与钛酸铋的结合更紧密,从而具有更加优异的稳定性,进而使获得的铋/钛酸铋异质结中空纳米球能够得到重复利用。
(3)本发明通过铋盐与合适的、钛源、溶剂及反应过程的协同配合,构成整体的技术方案,最终制备得到了原位生长金属铋的铋/钛酸铋异质结中空纳米球,经过实验表明,该铋/钛酸铋异质结中空纳米球具有优异的光催化降解盐酸四环素的性能。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1制备过程得到的最终产物BBTO的XRD图谱;
图2为本发明实施例1制备得到的BBTO与BTO的光致发光测试;
图3为本发明实施例1制备得到的BBTO与BTO的UV-Vis测试;
图4为本发明实施例1制备得到的BBTO的扫描电镜图;
图5为本发明实施例1制备得到的BBTO的透射电镜图;
图6为本发明实施例1制备得到的BBTO与BTO对盐酸四环素的降解效果对比图;
图7为本发明实施例1制备得到的BBTO在不同条件下对盐酸四环素的降解效果对比图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
鉴于溶剂热法制备的钛酸铋中空球没有光催化降解盐酸四环素的活性,本发明提出了一种铋/钛酸铋异质结中空纳米球及其制备方法与应用。
本发明的一种典型实施方式,提供了一种铋/钛酸铋异质结中空纳米球的制备方法,将铋盐、钛酸四丁酯加入至有机溶剂中混合均匀,再加入无机碱溶液产生沉淀,然后依次添加有机胺和有机酸,进行溶剂热处理获得钛酸铋中空纳米球,在惰性气氛下,采用硼氢化物将钛酸铋中空纳米球进行热处理还原, 即得。
经过实验表明,本发明制备的铋/钛酸铋异质结中空纳米球具有优异的光催化降解盐酸四环素的性能。
本发明所述铋盐为阳离子为铋离子化合物,在一些实施例中,所述铋盐为硝酸铋。研究表明硝酸铋制备的铋/钛酸铋异质结中空纳米球的性能更好。
在一种或多种实施例中,所述有机溶剂为丙醇、丙三醇、异丙醇、乙二醇、乙二醇甲醚中的一种或几种混合溶液。通过实验验证虽然使用异丙醇、丙醇、丙三醇能够制备铋/钛酸铋异质结中空纳米球,但与使用乙二醇甲醚以及乙二醇作为溶剂相比,同量的硝酸铋以及钛酸四丁酯作为铋源、钛源的情况下原位生长的金属铋的量较少,优选溶剂为乙二醇甲醚或乙二醇。本发明的制备方法中采用的溶剂对体系中钛酸铋中空结构的纯度以及是否能够形成铋具有很大的影响。
在一些实施例中,钛酸四丁酯与铋盐的摩尔比为1:1~2,优选为1:1.1~1.4。
在一些实施例中,溶剂热的温度为100℃~300℃。为确保为钛酸铋组装成中空结构提供足够的热驱动力,因而将溶剂热温度设置为160℃~200℃,效果更好。溶剂热处理的时间为12~48h,优选为20~36h。
本发明所述的有机酸至少有一个不饱和键(例如碳碳双键)且至少有一个羧基的有机化合物,在一些实施例中,所述有机酸为油酸、油酸d-17或蓖麻油酸。
在一些实施例中,所述有机胺为正丁胺、异丙胺、叔丁胺中一种或几种。优选为正丁胺或叔丁胺。
在一些实施例中,热处理还原的温度为200~600℃,优选为300℃~500℃,时间为10min~100min,优选为20min~80min。
本发明的另一种实施方式,提供了一种铋/钛酸铋异质结中空纳米球,由上述制备方法获得。
本发明的第三种实施方式,提供了一种上述铋/钛酸铋异质结中空纳米球在催化降解盐酸四环素中的应用。
在一些实施例中,在光催化降解盐酸四环素中的应用。
较为具体地,将铋/钛酸铋异质结中空纳米球加入至含有盐酸四环素的水溶液中,在黑暗条件和/或光照条件下,进行处理。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例1
将0.004mol五水合硝酸铋溶解于20mL乙二醇甲醚中后加入0.004mol钛酸四丁酯至混合均匀,注入30ml的氢氧化钠溶液浓度为3mol/L生成白色絮状沉淀,使用移液枪移取0.02mol叔丁胺和0.003mol油酸转入水热釜中160℃溶剂热处理24h,洗涤、烘干收集粉体,即为钛酸铋中空纳米球(记为BTO),使用0.05mol硼氢化钠在氮气气氛下300℃对收集的粉体还原60min,然后使用无水乙醇和去离子水多次进行洗涤离心后得到铋/钛酸铋(Bi/Bi4Ti3O12)异质结中空纳米球材料,记为BBTO。
本实施例制备的铋/钛酸铋异质结中空纳米球的XRD谱图如图1所示,表明还原钛酸铋过程中原位生长金属铋。
图2能够看出来铋/钛酸铋异质结中空纳米球体系具有更低的光致发光信号,说明其电子空穴的复合率较低,图3中能够看出来铋/钛酸铋异质结中空纳米球相较于纯相钛酸铋对光的响应范围更广对可见光也有很好的吸收能力,图4与图5中能够看出制备的材料为中空结构。
采用实施例1制备的铋/钛酸铋异质结中空纳米球进行光降解盐酸四环素,实验过程为:同时称取10mg盐酸四环素溶解于1L水中,将0.05g铋/钛酸铋异质结中空纳米球加入100mL降解目标盐酸四环素溶液中在黑暗条件下搅拌进行20min暗箱操作,后打开光源20min取一次液相样品使用0.22μm滤膜进行过滤,共计取样5次进行紫外光吸收测试。
结果如图6所示,首先,本实施例制备的纯相钛酸铋中空纳米球不具有催化降解盐酸四环素和光催化降解盐酸四环素的性能,而从图6中直观的看出铋/钛酸铋异质结中空纳米球相较于纯相的钛酸铋中空纳米球拥有更好的降解性能。其次,在黑暗条件下,盐酸四环素的浓度下降了接近25%,表明本实施例制备的铋/钛酸铋异质结中空纳米球本身具有一定催化降解盐酸四环素的性能,这是由于在铋/钛酸铋异质结中空纳米球的体系中,通过还原使得金属铋在钛酸铋上原位生长,产生更多的氧空位,氧空位吸引电子,在极化作用下使电荷分离,使得铋/钛酸铋异质结中空纳米球在黑暗条件下也具有催化盐酸四环素降解的性能。再次,当打开光源后,盐酸四环素的浓度下降更快,这表明在有光条件下,本实施例制备的铋/钛酸铋异质结中空纳米球具有更好的光催化降解盐酸四环素的活性。
采用实施例1制备的铋/钛酸铋异质结中空纳米球进行光降解盐酸四环素,实验过程为:同时称取5mg盐酸四环素溶解于1L水中,将0.05g铋/钛酸铋异质结中空纳米球加入100mL降解目标盐酸四环素溶液中,后分别在开光源、搅拌、同时开光源加搅拌情况下2min取一次液相样品,使用0.22μm滤膜进行过滤,共计取样5次进行紫外光吸收测试。
结果如图7所示,首先,在优化降解实验条件后,本实施例制备的铋/钛酸铋异质结中空纳米球表现出更加优异的降解性能,光照和搅拌情况下都能够快 速降解盐酸四环素,在只搅拌不加光照的情况下具有降解性能,说明铋/钛酸铋异质结中空纳米球具有自身极化左右,能够实现电荷分离,从而表现出降解性能;同时关照和搅拌的情况下降解性能进一步提高,说明光照和搅拌具有协同作用。
实施例2
将0.005mol五水合硝酸铋溶解于20mL乙二醇中加入0.004mol钛酸四丁酯至混合均匀,注入30ml的氢氧化钾溶液浓度为4mol/L生成白色絮状沉淀,使用移液枪移取0.02mol叔丁胺和0.003mol油酸d-17,转入水热釜中180℃溶剂热处理24h,洗涤、烘干收集粉体,使用0.05mol硼氢化钠在氮气气氛下400℃还原60min,然后使用无水乙醇和去离子水多次进行洗涤离心后得到铋/钛酸铋异质结中空纳米球材料。
实施例3
将0.006mol五水合硝酸铋溶解于20mL丙三醇中加入0.004mol钛酸四丁酯至混合均匀,注入30ml的无水碳酸钠溶液浓度为6mol/L生成白色絮状沉淀,使用移液枪移取0.02mol叔丁胺和0.003mol蓖麻油酸,转入水热釜中200℃溶剂热处理24h,洗涤、烘干收集粉体,使用0.05mol硼氢化钠在氮气气氛下500℃还原80min,然后使用无水乙醇和去离子水多次进行洗涤离心后得到铋/钛酸铋异质结中空纳米球材料。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,
    所述铋/钛酸铋异质结中空纳米球的制备方法为:将铋盐、钛酸四丁酯加入至有机溶剂中混合均匀,再加入无机碱溶液产生沉淀,然后依次添加有机胺和有机酸,进行溶剂热处理获得钛酸铋中空纳米球,在惰性气氛下,采用硼氢化物将钛酸铋中空纳米球进行热处理还原,即得;
    所述有机溶剂为乙二醇甲醚或乙二醇;
    热处理还原的温度为200-600℃,时间为10min-100min。
  2. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,所述铋盐为硝酸铋。
  3. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,钛酸四丁酯与铋盐的摩尔比为1:1-2。
  4. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,钛酸四丁酯与铋盐的摩尔比为1:1.1-1.4。
  5. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,溶剂热的温度为100℃-300℃。
  6. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,溶剂热的温度为160℃-200℃。
  7. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,溶剂热处理的时间为12-48h。
  8. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,溶剂热处理的时间为20-36h。
  9. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四 环素中的应用,其特征是,所述有机酸为油酸、油酸d-17或蓖麻油酸。
  10. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,所述有机胺为正丁胺、异丙胺、叔丁胺中一种或几种。
  11. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,所述有机胺为正丁胺或叔丁胺。
  12. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,热处理还原的温度为300℃-500℃,时间为20min-80min。
  13. 如权利要求1所述的铋/钛酸铋异质结中空纳米球在光催化降解盐酸四环素中的应用,其特征是,将铋/钛酸铋异质结中空纳米球加入至含有盐酸四环素的水溶液中,在光照条件下,进行处理。
PCT/CN2023/096633 2022-08-10 2023-05-26 一种铋/钛酸铋异质结中空纳米球及其制备方法与应用 WO2024032097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210955940.0A CN115318274B (zh) 2022-08-10 2022-08-10 一种铋/钛酸铋异质结中空纳米球及其制备方法与应用
CN202210955940.0 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024032097A1 true WO2024032097A1 (zh) 2024-02-15

Family

ID=83921944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096633 WO2024032097A1 (zh) 2022-08-10 2023-05-26 一种铋/钛酸铋异质结中空纳米球及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN115318274B (zh)
WO (1) WO2024032097A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115318274B (zh) * 2022-08-10 2023-06-02 齐鲁工业大学 一种铋/钛酸铋异质结中空纳米球及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351242A (zh) * 2011-08-17 2012-02-15 南京师范大学 一种溶剂热法制备单相钛酸铋Bi2Ti2O7的方法
CN110368924A (zh) * 2019-07-22 2019-10-25 中山大学 一种钛酸铋/铋/钒酸铋复合物光催化剂及其在光热催化净化有机气体污染物中的应用
CN114392750A (zh) * 2022-02-17 2022-04-26 齐鲁工业大学 一种铋/铁酸铋可见光催化剂材料及其制备方法与应用
CN115318274A (zh) * 2022-08-10 2022-11-11 齐鲁工业大学 一种铋/钛酸铋异质结中空纳米球及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549216B (zh) * 2015-02-10 2017-06-16 合肥工业大学 一种具有微纳结构的Bi4Ti3O12光催化剂及其制备方法和用途
CN107626297B (zh) * 2017-09-29 2019-09-17 中南大学 一种空心微球状铋/钒酸铋复合光催化剂及其制备方法和应用
CN107739049A (zh) * 2017-10-27 2018-02-27 江苏大学 一种黑色Bi4Ti3O12材料的制备方法及其应用
CN110624531A (zh) * 2019-09-20 2019-12-31 太原理工大学 一种钛酸铋光催化剂的制备方法及其应用
CN112023912B (zh) * 2020-08-31 2023-06-13 陕西科技大学 一种负载单质铋的铋系光催化剂及其制备方法和应用
CN112138647B (zh) * 2020-10-20 2022-01-18 兰州理工大学 一种微米棒分级结构Bi4Ti3O12催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351242A (zh) * 2011-08-17 2012-02-15 南京师范大学 一种溶剂热法制备单相钛酸铋Bi2Ti2O7的方法
CN110368924A (zh) * 2019-07-22 2019-10-25 中山大学 一种钛酸铋/铋/钒酸铋复合物光催化剂及其在光热催化净化有机气体污染物中的应用
CN114392750A (zh) * 2022-02-17 2022-04-26 齐鲁工业大学 一种铋/铁酸铋可见光催化剂材料及其制备方法与应用
CN115318274A (zh) * 2022-08-10 2022-11-11 齐鲁工业大学 一种铋/钛酸铋异质结中空纳米球及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. WANG; J. B. WANG; X. L. ZHONG; B. LI; Y. ZHANG; C. J. LU; W. N. YE; Y. C. ZHOU: "Enhanced piezoelectric response in single-crystalline Bi4Ti3O12 nanoplates;Enhanced piezoelectric response in single-crystalline Bi4Ti3O12 nanoplates", EUROPHYSICS LETTERS: A LETTERS JOURNAL EXPLORING THE FRONTIERS OF PHYSICS, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, FR, vol. 103, no. 3, 27 August 2013 (2013-08-27), FR , pages 37002, XP020248214, ISSN: 0295-5075, DOI: 10.1209/0295-5075/103/37002 *

Also Published As

Publication number Publication date
CN115318274A (zh) 2022-11-11
CN115318274B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN110127722B (zh) 一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法
CN104190458B (zh) 一种双元素改性纳米二氧化钛溶胶的低温制备工艺
CN107626336B (zh) 一种碳点/类石墨相氮化碳复合光催化剂的制备方法及应用
WO2024032097A1 (zh) 一种铋/钛酸铋异质结中空纳米球及其制备方法与应用
CN105384193B (zh) 一种五氧化二铌海胆状纳米微球的制备方法及其作为光催化剂的应用
CN110180529B (zh) 一种mof作为前驱体合成光催化材料的制备方法
CN108404959B (zh) 一种棒状g-C3N4@SnIn4S8复合光催化剂及其制备方法
CN110227532B (zh) 一种溴化铅铯量子点/氮化碳纳米片光催化剂的制备方法
CN110479289B (zh) 一种具有光催化性能的复合型纳米氧化亚铜/氧化锌材料及其制备方法和应用
CN110841675A (zh) 一种原位合成BiOI复合催化剂的方法及产品
CN112007679B (zh) 一种Co/V双金属掺杂g-C3N4光催化剂及其制备方法和应用
CN112007662A (zh) 一种金属相二硫化钼/二氧化钛纳米管复合材料光催化剂的制备方法及应用
CN111939958B (zh) 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法
CN108212187B (zh) Fe掺杂Bi2O2CO3光催化剂的制备方法及Fe掺杂Bi2O2CO3光催化剂
CN109437292A (zh) 一种高效合成的超薄二维二氧化钛纳米片及制备方法
CN112456556A (zh) 一种制备氧化钽纳米球的方法
CN108554427B (zh) 一种In2O3/BiOI半导体复合光催化剂及其制备方法和用途
CN109550497B (zh) 一种金红石型二氧化钛-金属氧化物复合物及其制备方法和用途
CN115025788B (zh) 一种TiO2/CeO2/In2S3异质结构及其制备方法与应用
CN113578368B (zh) 一种g-C3N4/Ag3PO4/BiFeO3复合可见光催化剂制备方法及其应用
CN110280278B (zh) 一种碘空位BiO1.2I0.6/Bi2O3光催化复合材料及其制备方法
CN112058257B (zh) 稀土Tb掺杂钒酸铋的光催化剂及其制备方法
CN113797917A (zh) Bi/β-Bi2O3异质结材料、其合成方法及应用
CN109926080B (zh) 一种可见光响应产氢光催化剂GO/SiC/WO3的制备方法及应用
CN111905762A (zh) 一种Pt/Bi2WO6/CuS三元复合光催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851325

Country of ref document: EP

Kind code of ref document: A1