CN110127722B - 一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法 - Google Patents

一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法 Download PDF

Info

Publication number
CN110127722B
CN110127722B CN201910499398.0A CN201910499398A CN110127722B CN 110127722 B CN110127722 B CN 110127722B CN 201910499398 A CN201910499398 A CN 201910499398A CN 110127722 B CN110127722 B CN 110127722B
Authority
CN
China
Prior art keywords
tio
catalyst
sample
visible light
nitrogen fixation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910499398.0A
Other languages
English (en)
Other versions
CN110127722A (zh
Inventor
赵钊
关壬铨
王丹丹
张俊凯
李佳昕
翟宏菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Normal University
Original Assignee
Jilin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Normal University filed Critical Jilin Normal University
Priority to CN201910499398.0A priority Critical patent/CN110127722B/zh
Publication of CN110127722A publication Critical patent/CN110127722A/zh
Application granted granted Critical
Publication of CN110127722B publication Critical patent/CN110127722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/026Preparation of ammonia from inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法,该方法是将宽禁带半导体TiO2人为引入表面缺陷活性位作为氮气催化转化为氨气的催化剂,同时将TiO2的光谱响应范围扩展到了可见光,通过对引入缺陷含量的控制,使催化剂发挥最高的催化效率,对催化剂表面进行氟化处理,使其具有疏水化的特性,进一步增强活性位点与氮气的结合能力,以提高催化剂的催化效率。采用紫外可见光谱仪的氨氮—纳氏试剂光度法对催化性能进行检测,并可确定催化剂在反应结束后是否失活以及催化剂循环使用情况。本发明方法简单、环保、低成本;催化效果明显,反应迅速,具有可重复性高等优点;此催化剂对可见光催化氮气转化为氨气具有潜在应用价值。

Description

一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备 方法
技术领域
本发明属于纳米材料的制备及应用领域,具体的说涉及一种疏水化的表面缺陷改性 TiO2可见光固氮催化剂的制备方法。
背景技术
氨作为一种重要的化工原料及非碳基能源载体,在工业和农业领域具有重要应用,更是社会发展和人口增长的关键需求。工业上采用的Haber合成氨法需要高温高压(150–350 atm、350-550℃)等严苛的设备条件,并伴随大量的能源消耗和温室气体排放,使得先进的温和条件下合成氨技术亟待开发。近年来,光催化固氮技术利用光能活化N2克服热力学反应障碍实现常温常压下将N2和H2O转化成氨,该过程反应温和且利用绿色可再生太阳能,因此被认为是解决当前固氮技术难题的有效途径。
1988年Bourgeoi发现将TiO2经过退火预处理的引入的表面缺陷态可促进光催化N2还原活性,其首次实践了光催化合成氨过程[1]。2017年Yasuhiro Shiraishi课题组报道了TiO2表面缺陷导致的Ti3+可作为N2光催化还原的活性中心的N2吸附活化过程,其光化学转化效率为0.02%[2]。因此,通过人为在半导体催化材料中注入缺陷(如氧空位Vo),可以拓展催化材料的光响应范围(从紫外光区拓展到可见光区),同时利用表面缺陷作为活性中心有效吸附活化N2。但是目前的缺陷合成线路中往往需要高温等苛刻的实验条件,这可能导致样品在处理过程中晶体结构的改变(即晶相转变或表面重构),导致材料活性和寿命的降低,同时高毒高危的化学试剂大量使用也不利于工业上大规模生产和实际应用。因此,寻求具有高量子效率和宽光谱响应的缺陷改性TiO2半导体催化材料的普适性合成方法是光催化合成氨高效催化剂设计的关键问题。
[1]Bourgeois S,Diakite D,Perdereau M.A study of TiO2powders as asupport for the photochemical synthesis of ammonia[J].Reactivity of solids,1988,6(1):95-104.
[2]Hirakawa H,Hashimoto M,Shiraishi Y,et al.Photocatalytic conversionof nitrogen to ammonia with water on surface oxygen vacancies of titaniumdioxide[J].Journal of the American Chemical Society,2017,139(31):10929-10936.
发明内容
本发明的目的是克服现有技术的不足,提供一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法,该方法简单易行,产率较高,所制备的具有缺陷的TiO2催化剂具有较好的可见光催化固氮作用。
本发明的目的是这样实现的:该催化剂的制备方法包括以下步骤:
(1)、高比表面积TiO2纳米结构的制备,向30mL乙醇溶剂中加入1.6g的F127(聚(乙二醇)-block-聚(丙二醇)-block-聚(乙二醇),分子量:13000),60℃下搅拌1 小时,转速为500rpm,使其充分溶解;再向溶液中加入2.3mL的醋酸(35%)和0.7mL的盐酸(36%)、3.5mL的TBT(钛酸四丁酯)继续搅拌30分钟,转速依然为500rpm;将混合溶液移入电热鼓风干燥箱中,60℃条件下,干燥处理24小时,得到TiO2溶胶凝胶;将得到的TiO2溶胶凝胶样品转入马弗炉进行高温煅烧处理,以5℃/min的速率升温至450℃并保温4小时,冷却得到高比表面积TiO2纳米结构样品;
(2)、具有缺陷的TiO2可见光固氮催化剂的制备,将步骤(1)制得的高比表面积TiO2纳米结构样品与300mg的硼氢化钠(分析纯)混合并均匀研磨1小时,得到混合样品;在氩气的保护下使用管式炉以10℃/min的速率升温至300℃将上述混合样品煅烧30分钟,得到的样品装入50mL离心管,加入20mL去离子水,放置36小时,使其充分反应;反应后对样品进行离心处理,其离心转速5000rpm、离心时间3min,弃上清液,沉淀物用去离子水清洗并超声处理3min,重复一次上述离心、去离子水清洗过程,再离心,自然条件下沥干即形成——具有表面缺陷改性TiO2样品。
(3)、疏水化的缺陷TiO2可见光固氮催化剂的制备,将50mg氟化铵(分析纯)固体溶解于30mL异丙醇(分析纯)中,混合搅拌30min,转速为600rpm,再将0.2g的步骤 (2)所得样品加入溶液中搅拌1小时,转速为600rpm,将上述搅拌后的溶液转移到100mL 反应釜中,在电热鼓风干燥箱中120℃下保温20小时,反应后将反应釜中的样品转移到离心试管中对样品进行离心处理,其离心转速5000rpm、离心时间3min,弃上清液,沉淀物用去离子水清洗并做超声处理3min,重复两次上述离心、去离子水清洗过程,所得到的产物放入真空干燥箱中,60℃下干燥3小时,得到最终产物——疏水化的缺陷TiO2可见光固氮催化剂。
1、上述步骤(1)、(2)、(3)中试剂用量不可按比例放大。
2、上述步骤(1)、(2)、(3)中试剂均为分析纯,未经过进一步处理。
本发明具有以下优点和积极效果:
1、本发明方法所合成的催化剂样品纯度高,合成工艺简单且先进,首次提出TiO2可控缺陷引入以实现光催化固氮。
2、本发明的方法简单、环保、低成本;检测迅速、可重复性高;对可见光条件下使氮气转化为氨气具有十分广阔的应用前景。
附图说明
图1是本发明缺陷TiO2光催化剂XRD图;
图2是本发明缺陷TiO2光催化剂固体紫外漫反射图;
图3是本发明缺陷TiO2光催化剂TEM图像和高分辨TEM图像;
图4是本发明缺陷TiO2光催化固氮性能示意图;
具体实施方式
下面结合附图详细说明本发明的具体实施例:
一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法:该制备方法包括以下步骤:
(1)、高比表面积TiO2纳米结构的制备,向30mL乙醇溶剂中加入1.6g的F127(聚(乙二醇)-block-聚(丙二醇)-block-聚(乙二醇),分子量:13000),60℃下搅拌1 小时,转速为500rpm,使其充分溶解;再向溶液中加入2.3mL的醋酸(35%)和0.7mL的盐酸(36%)、3.5mL的TBT(钛酸四丁酯)继续搅拌30分钟,转速依然为500rpm;将混合溶液移入电热鼓风干燥箱中,60℃条件下,干燥处理24小时,得到TiO2溶胶凝胶;将得到的TiO2溶胶凝胶样品转入马弗炉进行高温煅烧处理,以5℃/min的速率升温至450℃并保温4小时,冷却得到高比表面积TiO2纳米结构样品;
(2)、具有缺陷的TiO2可见光固氮催化剂的制备,将步骤(1)制得的高比表面积TiO2纳米结构样品与300mg的硼氢化钠(分析纯)混合并均匀研磨1小时,得到混合样品;在氩气的保护下使用管式炉以10℃/min的速率升温至300℃将上述混合样品煅烧30分钟,得到的样品装入50mL离心管,加入20mL去离子水,放置36小时,使其充分反应;反应后对样品进行离心处理,其离心转速5000rpm、离心时间3min,弃上清液,沉淀物用去离子水清洗并超声处理3min,重复一次上述离心、去离子水清洗过程,再离心,自然条件下沥干即形成:具有表面缺陷改性TiO2样品。
(3)、疏水化的缺陷TiO2可见光固氮催化剂的制备,将50mg氟化铵(分析纯)固体溶解于30mL异丙醇(分析纯)中,混合搅拌30min,转速为600rpm。再将0.2g的步骤(2)所得样品加入溶液中搅拌1小时,转速为600rpm。将上述搅拌后的溶液转移到100 mL反应釜中,在电热鼓风干燥箱中120℃下保温20小时。反应后将反应釜中的样品转移到离心试管中对样品进行离心处理,其离心转速5000rpm、离心时间3min,弃上清液,沉淀物用去离子水清洗并做超声处理3min,重复两次上述离心、去离子水清洗过程,所得到的产物放入真空干燥箱中,60℃下干燥3小时,得到最终产物——疏水化的缺陷TiO2可见光固氮催化剂。
采用X射线衍射(XRD)、固体紫外漫反射、透射电子显微镜及高分辨透射电子显微镜表征上述方法制备的疏水化的缺陷TiO2可见光固氮催化剂,从图1样品的XRD图像可以看出,缺陷TiO2光催化剂的所有的衍射峰位置都对应TiO2的峰,并且无任何杂质峰,说明所制备出的缺陷TiO2光催化剂纯度很高,结晶性很好;从图2固体紫外漫反射图像可以看出,所制备的疏水化的缺陷TiO2可见光固氮催化剂将吸收光谱扩展到了可见光,且证实了光催化剂具有缺陷;从图3透射电子显微镜及高分辨透射电子显微镜图像可以看出,所制备出的疏水化的缺陷TiO2可见光固氮催化剂,TiO2的尺寸为10nm左右;从图4光催化固氮性能示意图可以看出光催化固氮效果良好。
1、上述步骤(1)(2)(3)中试剂用量不可按比例放大。
2、上述步骤(1)(2)(3)中试剂均为分析纯,未经过进一步处理。

Claims (2)

1.一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法,其特征在于:该方法包括以下步骤:
(1)、高比表面积TiO2纳米结构的制备,向30mL乙醇溶剂中加入1.6g的F127,60℃下搅拌1小时,转速为500rpm,使其充分溶解;再向溶液中加入2.3mL浓度35%的醋酸和0.7mL浓度36%的盐酸、3.5mL的TBT继续搅拌30分钟,转速依然为500rpm;将混合溶液移入电热鼓风干燥箱中,60℃条件下,干燥处理24小时,得到TiO2溶胶凝胶;将得到的TiO2溶胶凝胶样品转入马弗炉进行高温煅烧处理,以5℃/min的速率升温至450℃并保温4小时,冷却得到高比表面积TiO2纳米结构样品;
(2)、具有缺陷的TiO2可见光固氮催化剂的制备,将步骤(1)制得的高比表面积TiO2纳米结构样品与300mg的硼氢化钠混合并均匀研磨1小时,得到混合样品;在氩气的保护下使用管式炉以10℃/min的速率升温至300℃将上述混合样品煅烧30分钟,得到的样品装入50mL离心管,加入20mL去离子水,放置36小时,使其充分反应;反应后对样品进行离心处理,其离心转速5000rpm、离心时间3min,弃上清液,沉淀物用去离子水清洗并超声处理3min,重复一次上述离心、去离子水清洗过程,再离心,自然条件下沥干即形成——具有表面缺陷改性TiO2样品;
(3)、疏水化的缺陷TiO2可见光固氮催化剂的制备,将50mg氟化铵固体溶解于30mL异丙醇中,混合搅拌30min,转速为600rpm,再将0.2g的步骤(2)所得样品加入溶液中搅拌1小时,转速为600rpm,将上述搅拌后的溶液转移到100mL反应釜中,在电热鼓风干燥箱中120℃下保温20小时,反应后将反应釜中的样品转移到离心试管中对样品进行离心处理,其离心转速5000rpm、离心时间3min,弃上清液,沉淀物用去离子水清洗并做超声处理3min,重复两次上述离心、去离子水清洗过程,所得到的产物放入真空干燥箱中,60℃下干燥3小时,得到最终产物——疏水化的缺陷TiO2可见光固氮催化剂。
2.根据权利要求1所述的一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法,其特征在于:所述F127是指(乙二醇)-block-聚(丙二醇)-block-聚(乙二醇),分子量:13000;所述TBT是钛酸四丁酯、所述硼氢化钠、氟化铵和异丙醇为分析纯。
CN201910499398.0A 2019-06-11 2019-06-11 一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法 Active CN110127722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910499398.0A CN110127722B (zh) 2019-06-11 2019-06-11 一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910499398.0A CN110127722B (zh) 2019-06-11 2019-06-11 一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110127722A CN110127722A (zh) 2019-08-16
CN110127722B true CN110127722B (zh) 2022-04-15

Family

ID=67580896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910499398.0A Active CN110127722B (zh) 2019-06-11 2019-06-11 一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110127722B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544721A (zh) * 2019-08-21 2019-12-06 大同新成新材料股份有限公司 一种半导体材料的制备方法
CN110694630A (zh) * 2019-10-24 2020-01-17 吉林师范大学 一种二价镍离子掺杂改性二氧化钛(镍-二氧化钛)可见光催化剂的制备方法
CN110681403A (zh) * 2019-10-24 2020-01-14 吉林师范大学 一种具有缺陷的二氧化钛/磷化二镍异质结可见光催化剂的制备方法
CN110813271A (zh) * 2019-11-29 2020-02-21 吉林师范大学 一种改善BaTiO3太阳光氮还原产氨活性催化剂的制备方法
CN110937625A (zh) * 2019-12-02 2020-03-31 吉林师范大学 一种具有缺陷的钛酸镧纳米颗粒的制备方法
CN110921702A (zh) * 2019-12-02 2020-03-27 吉林师范大学 一种小尺寸钛酸镧纳米颗粒的制备方法
CN110937627A (zh) * 2019-12-12 2020-03-31 吉林师范大学 一种具有缺陷的钛酸钙纳米颗粒的制备方法
CN111036191B (zh) * 2019-12-13 2023-04-14 吉林师范大学 一种金属钼掺杂改性二氧化钛可见光催化剂的制备方法
CN111704146B (zh) * 2020-06-09 2021-12-31 山西大学 一种光催化固氮合成氨的Pickering微泡体系构建方法及应用
CN111569870B (zh) * 2020-06-12 2022-08-26 苏州大学 一种光复合催化剂的制备方法、光复合催化剂及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149543A (ja) * 1989-11-07 1991-06-26 Fuji Photo Film Co Ltd ハロゲン化銀感光材料、ハロゲン化銀感光材料の処理液および処理方法
CN101785481A (zh) * 2010-01-21 2010-07-28 董南男 一种含有纳米二氧化钛的植物生长调节剂及其制备方法
CN102266792A (zh) * 2011-06-13 2011-12-07 华东理工大学 一种氟化铵改性二氧化钛可见光催化剂的合成方法
CN102500351A (zh) * 2011-10-27 2012-06-20 济南大学 一种基于TiO2的纳米复合叠层薄膜及其制备方法
CN102502484A (zh) * 2011-09-28 2012-06-20 重庆大学 一种改性二氧化钛纳米粒子纳米管及其制备方法
CN102881455A (zh) * 2012-09-21 2013-01-16 上海交通大学 基于二氧化钛纳米管的透明电极制备方法
CN103232088A (zh) * 2013-05-08 2013-08-07 复旦大学 一种三元杂化催化剂催化可见光降解有机染料的方法
CN103657645A (zh) * 2013-12-23 2014-03-26 吉林师范大学 可见光下降解染料复合结构催化剂的制备方法及其应用
JP2015009224A (ja) * 2013-07-01 2015-01-19 荏原工業洗浄株式会社 化学洗浄廃液の処理方法
CN108470903A (zh) * 2018-03-20 2018-08-31 上海电力学院 一种钠离子电池负极材料二氧化钛的改性方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149543A (ja) * 1989-11-07 1991-06-26 Fuji Photo Film Co Ltd ハロゲン化銀感光材料、ハロゲン化銀感光材料の処理液および処理方法
CN101785481A (zh) * 2010-01-21 2010-07-28 董南男 一种含有纳米二氧化钛的植物生长调节剂及其制备方法
CN102266792A (zh) * 2011-06-13 2011-12-07 华东理工大学 一种氟化铵改性二氧化钛可见光催化剂的合成方法
CN102502484A (zh) * 2011-09-28 2012-06-20 重庆大学 一种改性二氧化钛纳米粒子纳米管及其制备方法
CN102500351A (zh) * 2011-10-27 2012-06-20 济南大学 一种基于TiO2的纳米复合叠层薄膜及其制备方法
CN102881455A (zh) * 2012-09-21 2013-01-16 上海交通大学 基于二氧化钛纳米管的透明电极制备方法
CN103232088A (zh) * 2013-05-08 2013-08-07 复旦大学 一种三元杂化催化剂催化可见光降解有机染料的方法
JP2015009224A (ja) * 2013-07-01 2015-01-19 荏原工業洗浄株式会社 化学洗浄廃液の処理方法
CN103657645A (zh) * 2013-12-23 2014-03-26 吉林师范大学 可见光下降解染料复合结构催化剂的制备方法及其应用
CN108470903A (zh) * 2018-03-20 2018-08-31 上海电力学院 一种钠离子电池负极材料二氧化钛的改性方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A novel self-cleaning, non-enzymatic glucose sensor working under a very low applied potential based on a Pt nanoparticle-decorated TiO2 nanotube array electrode;Wang, Y et al.;《ELECTROCHIMICA ACTA 》;20140101;全文 *
Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation;Nor, NAM et al.;《DESALINATION》;20160801;全文 *
Preparation, characterization and photocatalytic activity of size selected platinum nanoclusters;Farrag, M et al.;《JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY》;20160301;全文 *
新型高效改性纳米二氧化钛光催化剂的制备、表征及其降解污染物的研究;邢明阳;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20120715;全文 *
氧空位掺杂TiO2的制备及其光还原CO2催化性能的研究;李君莉;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20180515;全文 *
用于降解室内挥发性有机物的TiO2光催化材料的改性研究进展;邓月等;《材料导报》;20150210;全文 *
负载型和掺杂型纳米TiO2制备及可见光催化性能研究;汪群;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20090415;全文 *
阳极氧化法可控制备二氧化钛纳米管阵列研究;赵宇等;《化学工程师》;20180825;全文 *

Also Published As

Publication number Publication date
CN110127722A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN110127722B (zh) 一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法
US11192093B2 (en) Two-dimensional nitrogen-doped carbon-based titanium dioxide composite material, and preparation method and application thereof for degrading and removing organic pollutants in water
CN105817253B (zh) 石墨相氮化碳纳米片/二氧化钛纳米管阵列光催化材料的制备方法
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
CN105195131B (zh) 一种石墨烯量子点/钒掺杂介孔二氧化钛复合光催化剂的制备方法
CN113457711B (zh) 一种石墨相氮化碳负载镁单原子复合材料及其制备方法、光催化制备过氧化氢的方法
CN112495415B (zh) 一种纳米管催化材料及其制备方法和用途
CN114377707B (zh) 利用废弃太阳能光伏板制备SiC/TiO2基光催化剂的方法及光催化剂
CN113000061B (zh) 一种带状石墨氮化碳纳米片的制备方法
CN103253704B (zh) 半导体多孔氧化铋纳米球及其制备方法和应用
CN111939958B (zh) 一种g-C3N4/Bi2WO6/CuS三元复合光催化剂及其制备方法
CN115999614A (zh) 一种紫外-可见-近红外光响应的二氧化碳还原光催化剂
CN111604063A (zh) g-C3N4/In2Se3复合光催化剂及其制备方法和应用
CN106517311B (zh) 一种镓酸锌双壳层纳米空心球的制备方法
CN111250138A (zh) 一种多孔纳米片状石墨相氮化碳及其制备方法和应用
CN110918099A (zh) 一种氧化镍-钴酸镍-黑二氧化钛复合物光催化还原处理含六价铬废水的方法
WO2024032097A1 (zh) 一种铋/钛酸铋异质结中空纳米球及其制备方法与应用
CN109954509B (zh) 一种碳化硅基光催化剂的制备方法及应用
CN108654662A (zh) 一种熔盐法制备氟氮共掺杂单晶介孔TiO2催化材料的方法
CN110937625A (zh) 一种具有缺陷的钛酸镧纳米颗粒的制备方法
CN113797937A (zh) 一种铌酸钠/硫化镉复合棒状热释电催化剂的制备方法及应用
CN109078636B (zh) 一种等离子体光催化剂、其制备方法及其在制氢中的应用
CN106698502B (zh) 一种基于相转变的无还原剂制备TinO2n-1/TiO2复合纳米纤维的方法
CN111036191B (zh) 一种金属钼掺杂改性二氧化钛可见光催化剂的制备方法
CN110803712A (zh) 一种卵状碳包裹单晶二氧化钛微球的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant