WO2024022071A1 - 一种显示模组及其制备方法、显示面板 - Google Patents

一种显示模组及其制备方法、显示面板 Download PDF

Info

Publication number
WO2024022071A1
WO2024022071A1 PCT/CN2023/105987 CN2023105987W WO2024022071A1 WO 2024022071 A1 WO2024022071 A1 WO 2024022071A1 CN 2023105987 W CN2023105987 W CN 2023105987W WO 2024022071 A1 WO2024022071 A1 WO 2024022071A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
lens
additional
display module
light
Prior art date
Application number
PCT/CN2023/105987
Other languages
English (en)
French (fr)
Inventor
张云颢
杨宗顺
余洪涛
苏冬冬
黄冠达
卜维亮
杨超
张福爽
吴操
Original Assignee
京东方科技集团股份有限公司
云南创视界光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 云南创视界光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024022071A1 publication Critical patent/WO2024022071A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the invention belongs to the field of display technology, and in particular relates to a display module, a preparation method thereof, and a display panel.
  • OLED organic light-emitting diode
  • a lens structure is provided above the light-emitting structure layer with pixel units of the Micro-OLED display to improve the light extraction effect of the Micro-OLED display.
  • the lens structure is made of organic materials such as photoresist, and its refractive index is small, so that the light emitted by the light-emitting structural layer has a certain reflectivity, which affects the overall light emission effect of the product.
  • a display module including:
  • the light-emitting structure layer includes a pixel unit layer having a plurality of pixel units and a color filter layer disposed on the pixel unit layer, and the color filter layer has a color conversion unit corresponding to the plurality of pixel units;
  • a lens structure is provided on the light-emitting structure layer and has a plurality of lens units.
  • the plurality of lens units are arranged in one-to-one correspondence with the color conversion unit; wherein the lens units are formed of inorganic materials.
  • the lens structure includes:
  • a lens body having a convex first surface
  • a lens layer is added, attached to the first surface of the lens body, and consistent with the shape of the first surface of the lens body.
  • the material of the additional lens layer and the lens body are the same.
  • the additional lens layer includes a first additional lens layer provided on the lens body, a second additional lens layer provided on the surface of the first additional lens layer, and a second additional lens layer provided on the surface of the second additional lens layer.
  • a third additional lens layer is added to the surface of the layer.
  • the lens body, the first additional lens layer, the second additional lens layer It is assumed that the refractive index of the lens layer and the third additional lens layer are the same or increase sequentially.
  • the thicknesses of the lens body, the first additional lens layer, the second additional lens layer and the third additional lens layer decrease in sequence.
  • a protective layer is provided between the light-emitting structure layer and the lens structure.
  • the material of the protective layer is one of Al2O3, ZnO, TiO2, ITO and IZO; and/or,
  • the thickness of the protective layer is and / or,
  • the material of the lens structure is SiNx; and/or,
  • the refractive index of the lens structure is greater than or equal to 1.88.
  • a display panel including the display module as described above.
  • a method for manufacturing a display module including:
  • a light-emitting structure layer includes a pixel unit layer having a plurality of pixel units and a color filter layer disposed on the pixel unit layer.
  • the color filter layer has a one-to-one correspondence with the plurality of pixel units. color conversion unit;
  • a lens structure is provided on the light-emitting structure layer.
  • the lens structure has a plurality of lens units, and the plurality of lens units are arranged in one-to-one correspondence with the color conversion unit; wherein, the lens unit is formed of inorganic material.
  • arranging a lens structure on the light-emitting structural layer includes:
  • the inorganic material layer is etched to form the lens structure.
  • forming the inorganic material layer on the light-emitting structure layer includes:
  • An etching glue layer is provided on the surface of the inorganic material layer
  • the etching glue layer is etched to form a transfer lens structure;
  • the transfer lens structure has the same shape as the lens structure;
  • the inorganic material layer is etched by transfer printing to form the lens structure.
  • the lens structure includes a lens body and an additional lens layer disposed on the surface of the lens body, and etching the inorganic material layer by transfer to form the lens structure includes:
  • the inorganic material layer is etched to form the lens body, which has a convex first surface.
  • the method includes:
  • An additional lens layer is formed on the first surface of the lens body.
  • the additional lens layer includes a first additional lens layer provided on the lens body, a second additional lens layer provided on the surface of the first additional lens layer, and a second additional lens layer provided on the surface of the second additional lens layer.
  • a third additional lens layer is added to the surface of the layer, and the method includes:
  • a third additional lens layer is provided on the surface of the second additional lens layer to form the lens structure.
  • the lens body, the first additional lens layer, the second additional lens layer It is assumed that the refractive index of the lens layer and the third additional lens layer are the same or increase sequentially.
  • the thicknesses of the lens body, the first additional lens layer, the second additional lens layer, and the third additional lens layer decrease in sequence.
  • the method before disposing the lens structure on the light-emitting structure layer, the method includes:
  • a protective layer is formed on the light-emitting structure layer.
  • the material of the protective layer is one of Al2O3, ZnO, TiO2, ITO and IZO; and/or,
  • the thickness of the protective layer is and / or,
  • the material of the lens structure is SiNx; and/or,
  • the refractive index of the lens structure is greater than or equal to 1.88; and/or,
  • the transmittance of the lens structure is greater than 95% at 460nm; and/or
  • the transmittance of the lens structure is greater than 95% at 460 nm.
  • the above-mentioned display module, its preparation method, and display device provided by this application adopt a lens structure formed of inorganic materials. Compared with the existing lens structure formed of organic materials such as photoresist, it has a higher refractive index and is beneficial to The focus of the lens structure is brought closer to the light-emitting unit (pixel unit) of the light-emitting structure layer, which is beneficial to improving the light transmittance and improving the light efficiency of the display module.
  • Figure 1 is a schematic cross-sectional view of a display module according to an embodiment of the present invention.
  • Figure 2 is a schematic cross-sectional view of another display module according to an embodiment of the present invention.
  • Figure 3 is a method flow chart of a method for manufacturing a display module according to an embodiment of the present invention.
  • 4 to 10 are manufacturing process diagrams of a display module according to embodiments of the present invention.
  • 11 to 25 are manufacturing process diagrams of another display module according to embodiments of the present invention.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • the words “upper” and/or “lower” and similar words are for convenience of explanation only and are not limited to a position or a spatial orientation.
  • the singular forms “a,””the” and “the” are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that the term “and/or” as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.
  • the display module includes a light-emitting structure layer and a lens structure.
  • the light-emitting structure layer includes a pixel unit layer having a plurality of pixel units and a color filter layer disposed on the pixel unit layer.
  • the color filter layer has a color conversion unit corresponding to the plurality of pixel units; the lens structure device On the light-emitting structure layer, there are a plurality of lens units, and the plurality of lens units are arranged in one-to-one correspondence with the color conversion unit; wherein, the lens units are formed of inorganic materials.
  • the above structure uses a lens structure formed of inorganic materials.
  • the existing lens structure formed of organic materials such as photoresist it has a higher refractive index, which is beneficial to making the focus of the lens structure closer to the light-emitting unit of the light-emitting structure layer. (pixel unit), which is conducive to improving the light transmittance and improving the light efficiency of the display module.
  • the display panel mentioned in this application can be a Micro-OLED display device, which can be used in products or components with display functions such as mobile phones, tablet computers, televisions, notebook computers, etc., as mobile phones, tablet computers, televisions, notebook computers, etc. , and other products or components with display functions.
  • the display module, its preparation method, and the display panel provided by the present application will be described in detail below with reference to FIGS. 1 to 25 .
  • the display module 100 includes a light-emitting structure layer 10 and a lens structure 20 .
  • the light-emitting structure layer 10 includes a pixel unit layer 11 having a plurality of pixel units 111 and a color filter layer 12 disposed on the pixel unit layer 11.
  • the color filter layer 12 has a one-to-one correspondence with the plurality of pixel units 111.
  • the lens structure 20 is provided on the light-emitting structure layer 10 and has a plurality of lens units 202.
  • the plurality of lens units 202 are arranged in one-to-one correspondence with the elongated color conversion unit 121; wherein, the lens unit 202 is made of inorganic Material formation.
  • a substrate below the light-emitting structure layer 10 mentioned here such as an array substrate provided with a driving circuit layer.
  • the material of the lens structure 20 is SiNx or other similar inorganic materials with higher refractive index.
  • the refractive index of the lens structure 20 is greater than or equal to 1.88.
  • the transmittance of the lens structure is greater than 95% at 460 nm, that is, the transmittance of the lens structure for light with a wavelength of 460 nm or approximately 460 nm is greater than 95%. by Ensure light penetration.
  • the lens structure 20 includes a lens body 21 and an additional lens layer 22 .
  • the lens body 21 has a convex first surface.
  • the additional lens layer 22 is attached to the first surface of the lens body 21 and is consistent with the shape of the first surface of the lens body 21 .
  • the additional lens layer 22 can be deposited by chemical vapor deposition (Chemical Vapor Deposition, CVD).
  • the additional lens layer 22 is substantially completely attached to the first surface of the lens body 21 .
  • an extremely thin interface layer will be formed on the contact surface between the two, with a thickness of only about 4 to 5 Angstroms. This interface layer has basically no impact on the optical performance of the display module 100 . Influence.
  • the material of the additional lens layer 22 and the lens body 21 are the same.
  • a protective layer 30 is provided between the light-emitting structure layer 10 and the lens structure 20 .
  • the material of the protective layer 30 may be one of Al2O3, ZnO, TiO2, ITO and IZO.
  • the thickness of the protective layer 30 can be This way, while protecting the color filter layer 12, it does not affect the propagation of light within the structure.
  • this application provides another display module 200 .
  • the display module 200 has substantially the same structure as the above-mentioned display module 100 .
  • the difference is that the additional lens layer 22 in the display module 100 has a single-layer structure.
  • the additional lens layer 22 in the display module 200 includes a first additional lens layer 221 provided on the lens body 21 , a second additional lens layer 222 provided on the surface of the first additional lens layer 221 and The third additional lens layer 223 is on the surface of the second additional lens layer 222.
  • Each additional lens layer here can also be deposited by chemical vapor deposition (Chemical Vapor Deposition, CVD).
  • the refractive index of the lens body 21 , the first additional lens layer 221 , the second additional lens layer 222 and the third additional lens layer 223 is the same or increases sequentially, so that the lens
  • the refractive index between the main body 21 and each additional lens layer presents an increasing gradient, which is beneficial to reducing the light reflectivity and further improving the optical performance of the product.
  • the thicknesses of the lens body 21 , the first additional lens layer 221 , the second additional lens layer 222 and the third additional lens layer 223 decrease in sequence.
  • the maximum orthographic diameter (hereinafter referred to as diameter) of the lens body 21 may be 2.8 ⁇ m and the height may be 1.6 ⁇ m.
  • the thickness of the first additional lens layer 221 may be 0.3 ⁇ m, and the thickness of the second additional lens layer 222 may be 0.2 ⁇ m.
  • the thickness of the third additional lens layer 223 may be 0.1 ⁇ m. Due to the step coverage limit of vapor deposition, when each additional lens layer is formed to increase the size of the lens unit, for every additional lens layer with a thickness of 0.1 ⁇ m in the lens unit, the height of the entire lens unit can be increased by 0.1 ⁇ m accordingly.
  • the diameter can be correspondingly increased by approximately 0.07 ⁇ m. Therefore, the height of the lens unit 202 formed in this embodiment can reach 2.1 ⁇ m, and the diameter can reach about 3.2 ⁇ m.
  • the first surface of the lens body 21 in the lens unit 202 can be arranged away from the light-emitting structure layer, or can also be arranged towards the light-emitting structure layer 10, which is not limited in this application.
  • the present application also provides a method for preparing a display module, which can be used to prepare the above-mentioned display module 100 and display module 200 .
  • the preparation method of the display module includes the following steps S101 and S103:
  • a light-emitting structure layer is provided.
  • the light-emitting structure layer includes a pixel unit layer having a plurality of pixel units and a color filter layer disposed on the pixel unit layer.
  • the color filter layer has a plurality of pixels. Color conversion unit with one-to-one correspondence between units.
  • a lens structure is provided on the light-emitting structural layer, the lens structure has a plurality of lens units, and the plurality of lens units are arranged in one-to-one correspondence with the dichroic conversion unit; wherein, the lens unit Made of inorganic materials.
  • a light-emitting structure layer 10 is provided.
  • the light-emitting structure layer 10 includes a pixel unit layer 11 having a plurality of pixel units 111 and a color filter layer disposed on the pixel unit layer 11. 12.
  • the color filter layer 12 has a color conversion unit 121 corresponding to a plurality of pixel units 111 in a one-to-one manner.
  • a substrate below the light-emitting structure layer 10 mentioned here such as an array substrate provided with a driving circuit layer.
  • the improvement of the light-emitting structure layer mentioned here can be understood as providing the light-emitting structure layer disposed on the substrate. That is, a component composed of a substrate and a light-emitting structure layer is provided.
  • step S102 the method includes the following step S102:
  • step S102 a protective layer 30 is formed on the light-emitting structure layer 10.
  • the material of the protective layer 30 is one of Al2O3, ZnO, TiO2, ITO and IZO.
  • the thickness of the protective layer 30 is This way, while protecting the color filter layer 12, it does not affect the propagation of light within the structure.
  • the protective layer can be formed by atomic layer deposition (ALD) at low temperature (such as 90° C.) so as not to affect the color filter layer 12 and other structures below it during the preparation process.
  • ALD atomic layer deposition
  • step S103 may be implemented through the following steps S1031 and S1033:
  • step S1031 an inorganic material layer 201 is formed on the light-emitting structure layer 10.
  • step S1033 the inorganic material layer 201 is etched to form the lens structure 20.
  • the inorganic material layer 201 may be an inorganic material such as silicon oxide. It can be deposited using Chemical Vapor Deposition (CVD).
  • CVD Chemical Vapor Deposition
  • the required thickness of the inorganic material layer 201 can be determined according to specific circumstances.
  • the thickness of the inorganic material layer 201 may be 2 ⁇ m ⁇ 2.2 ⁇ m.
  • the inorganic material layer can also be set to other thicknesses. This application does not limit this.
  • step S1032 may be implemented through the following steps S1321 to S1323:
  • step S1321 an etching glue layer 401 is provided on the surface of the inorganic material layer 201.
  • step S1322 the etching glue layer 401 is etched to form a transfer lens structure 40; the transfer lens structure 40 has the same shape as the lens structure 20.
  • step S1323 the inorganic material layer 201 is etched by transfer to form the lens structure 20.
  • etching glue material is coated on the surface of the inorganic material layer 201 to form an etching glue layer 401 .
  • the material used for the etching glue layer 401 can be organic photosensitive materials used for preparing lens units in related technologies.
  • the etching layer 401 can be etched through exposure, development, or other methods to form a transfer lens structure 40 .
  • the transfer lens structure 40 includes a plurality of spaced transfer lens units.
  • the size of the transfer lens structure 40 can be set according to specific circumstances.
  • the transfer lens structure 40 may have a diameter of 3.6 ⁇ m and a height of 2.2 ⁇ m.
  • the same shape of the transfer lens structure 40 and the lens structure 20 mentioned here can be understood to mean that they have the same shape, but the sizes of the corresponding parts are in the same proportion.
  • the lens structure 20 includes a lens body 21 and an additional lens layer 22 provided on the surface of the lens body 21.
  • the inorganic material layer 201 is etched by transfer to form the lens.
  • Structure 20 can actually be understood as:
  • the inorganic material layer 201 is etched to form a plurality of lens bodies 21 corresponding to the transfer lens units.
  • the lens body 21 has a convex first surface.
  • the lens main body 21 has the same shape as the transfer lens unit, and the lens main bodies 21 are spaced apart from each other.
  • the transfer can be performed by plasma etching the material.
  • the transfer lens structure can be determined according to specific needs and the etching ratio of the plasma material to the interface between organic materials and inorganic materials can be adjusted to obtain the required lens body 21 .
  • the size of the transfer structure can be set to be consistent with the size of the required lens structure (which can be understood as approximately the same).
  • the size of the formed lens body 21 is slightly smaller than the size of the transfer lens unit in the transfer lens structure.
  • the reduction in the size of the lens unit caused by the transfer process can be reduced or even eliminated by providing an additional lens layer 22 on the surface of the lens body 21 situation, so that the size of the final lens unit and the transfer lens unit of the transfer lens structure are almost the same.
  • a layer of inorganic material is deposited on the first surface of the lens body 21 by CVD or other methods to form the additional lens layer 22 , thereby forming the lens body 21 with a single layer of the additional lens layer 22 .
  • Display module 100 As shown in FIG. 10 , after the lens body 21 is formed, a layer of inorganic material is deposited on the first surface of the lens body 21 by CVD or other methods to form the additional lens layer 22 , thereby forming the lens body 21 with a single layer of the additional lens layer 22 .
  • the thickness of the additional lens layer 22 can be set according to specific circumstances.
  • the preparation method of the display module 200 and similar display modules with multiple additional lens layers is described in detail below.
  • the preparation method of the display module 100 shown in FIGS. 4 to 10 is substantially the same.
  • the additional lens layer 22 of the display module 200 includes a first additional lens layer 221 provided on the lens body 21 and a second additional lens layer 221 provided on the surface of the first additional lens layer 221 .
  • step S13231 a first additional lens layer 221 is formed on the first surface of the lens body 21.
  • step S13232 a second additional lens layer 222 is formed on the surface of the first additional lens layer 221.
  • step S13233 a third additional lens layer 223 is provided on the surface of the second additional lens layer 222 to form the lens structure 20.
  • photolithography can be used to remove the inorganic material layer portion 2211 deposited between adjacent lens bodies 21 . removed to facilitate the placement of the second additional lens layer 222 while ensuring that the lens structure is consistent with the transfer lens structure 40 .
  • the corresponding photoresist layer 402 is coated on the first anti-lens layer 221 to form a through hole 4001 between adjacent lens bodies 21, and then the corresponding inorganic material layer is etched in the through hole 4001. 2211, and then remove the remaining photoresist layer 402.
  • a corresponding inorganic material layer is deposited on the structure formed in FIG. 20 to form a second additional lens layer 222 .
  • photolithography can be used to remove the inorganic material layer portion 2221 deposited between adjacent lens bodies 21 . This is to facilitate the placement of the third additional lens layer 223 while ensuring that the lens structure is consistent with the transfer lens structure 40 .
  • a corresponding photoresist layer 403 can be coated on the second additional lens layer 222 to form a through hole 4002 between adjacent lens bodies 21, and then the corresponding photoresist layer 403 can be etched in the through hole 4002. The inorganic material layer portion 2221 is removed, and then the remaining photoresist layer 403 is removed.
  • a corresponding inorganic material layer is deposited on the structure formed in FIG. 24 to form a third additional lens layer 223 .
  • the refractive indexes of the lens body 21 , the first additional lens layer 221 , the second additional lens layer 222 and the third additional lens layer 223 are the same or increase sequentially.
  • the thicknesses of the lens body 21 , the first additional lens layer 221 , the second additional lens layer 222 and the third additional lens layer 223 decrease in sequence.
  • the details of the lens body 21 of the lens structure 20 and the structure of each additional lens layer can be referred to the above related descriptions, and will not be described again here.
  • an extremely thin interface layer can be formed at the contact surface between the lens body 21 and the first additional lens layer 221 and at the contact surface between adjacent additional lens layers, with a thickness of only about 4 to 5 angstroms.
  • the layer has basically no impact on the optical performance of the display module 200 .
  • one-time transfer etching can also be performed by adjusting the etching ratio of the plasma etching material to the interface between organic materials and inorganic materials, adjusting the size of the transfer lens structure, etc.
  • An integral lens unit This application does not limit this and can be set according to specific circumstances.
  • This application further provides a display panel, which includes the above The display module described above.
  • the display panel can be a Micro-OLED display device, which can be used in products or components with display functions such as mobile phones, tablet computers, televisions, notebook computers, etc.
  • a display panel of a product or component that displays functionality can be used in products or components with display functions such as mobile phones, tablet computers, televisions, notebook computers, etc.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance.
  • plurality and “several” refer to two or more than two, unless otherwise expressly limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种显示模组及其制备方法、显示面板。所述显示模组包括发光结构层和透镜结构。发光结构层包括具有多个像素单元的像素单元层及设于所述像素单元层之上的彩膜层,所述彩膜层具有与多个像素单元一一对应的颜色转换单元;透镜结构设于所述发光结构层之上,具有多个透镜单元,多个所述透镜单元与所述颜色转换单元一一对应设置;其中,所述透镜单元采用无机材料形成。上述结构,采用无机材料形成的透镜结构,相对于现有的采用光刻胶等有机材料形成的透镜结构,具有更高的折射率,有利于使得透镜结构的焦点更靠近发光结构层的发光单元(像素单元),有利于提高光的透射率,提升显示模组的光线效率。

Description

一种显示模组及其制备方法、显示面板 技术领域
本发明属于显示技术领域,尤其涉及一种显示模组及其制备方法、显示面板。
背景技术
随着显示面板技术的不断发展,有机发光二极管(Organic Light-Emitting Diode,OLED)显示器件,由于其具有全固态结构、高亮度、全视角、响应速度快、可柔性显示等优点,已成为极具竞争力和发展前景的下一代显示结构。Micro-OLED显示器产品作为一种常用的有机发光二极管显示器件,被广泛应用。Micro-OLED显示器的具有像素单元的发光结构层上方对应设有透镜结构,以提高Micro-OLED显示器的出光效果。相关技术中,透镜结构采用光刻胶等有机材质制备而成,其折射率较小,使得发光结构层所发出的光线具有一定的反射率,影响产品的整体出光效果。
发明内容
根据本发明实施例的第一方面,提供一种显示模组,包括:
发光结构层,包括具有多个像素单元的像素单元层及设于所述像素单元层之上的彩膜层,所述彩膜层具有与多个像素单元一一对应的颜色转换单元;
透镜结构,设于所述发光结构层之上,具有多个透镜单元,多个所述透镜单元与所述颜色转换单元一一对应设置;其中,所述透镜单元采用无机材料形成。
在一些实施例中,所述透镜结构包括:
透镜主体,所述透镜主体具有外凸的第一表面;
增设透镜层,贴设于所述透镜主体的第一表面上,与所述透镜主体第一表面的形状一致。
在一些实施例中,所述增设透镜层的材料和所述透镜主体的材料相同。
在一些实施例中,所述增设透镜层包括设于所述透镜主体的第一增设透镜层、设于所述第一增设透镜层表面的第二增设透镜层及设于所述第二增设透镜层表面的第三增设透镜层。
在一些实施例中,所述透镜主体、所述第一增设透镜层、所述第二增 设透镜层及所述第三增设透镜层的折射率相同或依次增大。
在一些实施例中,所述透镜主体、所述第一增设透镜层、所述第二增设透镜层及所述第三增设透镜层的厚度依次减小。
在一些实施例中,发光结构层与所述透镜结构之间设有保护层。
在一些实施例中,所述保护层的材料为Al2O3、ZnO、TiO2、ITO和IZO中的一种;和/或,
所述保护层的厚度为和/或,
所述透镜结构的材料为SiNx;和/或,
所述透镜结构的折射率大于或等于1.88。
根据本发明实施例的第二方面,提供一种显示面板,包括如上所述的显示模组。
根据本发明实施例的第三方面,提供一种显示模组的制备方法,包括:
提供发光结构层,所述发光结构层包括具有多个像素单元的像素单元层及设于所述像素单元层之上的彩膜层,所述彩膜层具有与多个像素单元一一对应的颜色转换单元;
在所发光结构层之上设置透镜结构,所述透镜结构具有多个透镜单元,多个所述透镜单元与所述颜色转换单元一一对应设置;其中,所述透镜单元采用无机材料形成。
在一些实施例中,所述在所发光结构层之上设置透镜结构包括:
在所述发光结构层之上形成无机材料层;
对所述无机材料层刻蚀,形成所述透镜结构。
在一些实施例中,在所述发光结构层之上形成无机材料层之后包括:
在所述无机材料层表面设置刻蚀胶层;
对所述刻蚀胶层进行刻蚀,形成转印透镜结构;所述转印透镜结构与所述透镜结构的形状一致;
采用转印的方式对所述无机材料层进行刻蚀形成所述透镜结构。
在一些实施例中,所述透镜结构包括透镜主体及设于所述透镜主体表面的增设透镜层,所述采用转印的方式对所述无机材料层进行刻蚀形成所述透镜结构包括:
对所述无机材料层进行刻蚀形成所述透镜主体,所述透镜主体具有外凸的第一表面。
在一些实施例中,在形成所述透镜透镜主体之后,所述方法包括:
在所述透镜主体的第一表面形成增设透镜层。
在一些实施例中,所述增设透镜层包括设于所述透镜主体的第一增设透镜层、设于所述第一增设透镜层表面的第二增设透镜层及设于所述第二增设透镜层表面的第三增设透镜层,所述方法包括:
在所述透镜主体的第一表面形成第一增设透镜层;
在所述第一增设透镜层表面形成第二增设透镜层;
在所述第二增设透镜层表面设置第三增设透镜层,形成所述透镜结构。
在一些实施例中,所述透镜主体、所述第一增设透镜层、所述第二增 设透镜层及所述第三增设透镜层的折射率相同或依次增大。
在一些实施例中,所述透镜主体、所述第一增设透镜层、所述第二增设透镜层及所述第三增设透镜层的厚度依次减小.
在一些实施例中,在所发光结构层之上设置透镜结构之前,所述方法包括:
在发光结构层之上形成保护层。
在一些实施例中,所述保护层的材料为Al2O3、ZnO、TiO2、ITO和IZO中的一种;和/或,
所述保护层的厚度为和/或,
所述透镜结构的材料为SiNx;和/或,
所述透镜结构的折射率大于或等于1.88;和/或,
所述透镜结构的透过率在460nm处大于95%;和/或
所述透镜结构的透过率在460nm处大于95%。
本申请提供的上述显示模组及其制备方法、显示装置,采用无机材料形成的透镜结构,相对于现有的采用光刻胶等有机材料形成的透镜结构,具有更高的折射率,有利于使得透镜结构的焦点更靠近发光结构层的发光单元(像素单元),有利于提高光的透射率,提升显示模组的光线效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1为根据本发明实施例示出的一种显示模组的剖视示意图;
图2为根据本发明实施例示出的另一种显示模组的剖视示意图;
图3为根据本发明实施例示出的显示模组的制备方法的方法流程图;
图4至图10为本发明实施例示出的一种显示模组的制备工艺图;
图11至图25为本发明实施例示出的另一种显示模组的制备工艺图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。除非另作定义,本申请使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本申请说明书以及权 利要求书中使用的“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“多个”表示两个或两个以上。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。“上”和/或“下”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。在本申请说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
本申请提供一种显示模组及其制备方法、显示面板。所述显示模组包括发光结构层和透镜结构。发光结构层包括具有多个像素单元的像素单元层及设于所述像素单元层之上的彩膜层,所述彩膜层具有与多个像素单元一一对应的颜色转换单元;透镜结构设于所述发光结构层之上,具有多个透镜单元,多个所述透镜单元与所述颜色转换单元一一对应设置;其中,所述透镜单元采用无机材料形成。上述结构,采用无机材料形成的透镜结构,相对于现有的采用光刻胶等有机材料形成的透镜结构,具有更高的折射率,有利于使得透镜结构的焦点更靠近发光结构层的发光单元(像素单元),有利于提高光的透射率,提升显示模组的光线效率。
本申请所说的显示面板可为Micro-OLED显示器件,可应用于手机、平板电脑、电视机、笔记本电脑、等具有显示功能的产品或部件中,作为手机、平板电脑、电视机、笔记本电脑、等具有显示功能的产品或部件的显示面板。
下面结合附图1至图25对本申请所提供的显示模组及其制备方法、显示面板进行详细描述。
请参照图1所示,本申请提供一种显示模组100。所述显示模组100包括发光结构层10及透镜结构20。发光结构层10包括具有多个像素单元111的像素单元层11及设于所述像素单元层11之上的彩膜层12,所述彩膜层12具有与多个像素单元111一一对应的颜色转换单元121。透镜结构20设于所述发光结构层10之上,具有多个透镜单元202,多个所述透镜单元202与所述延色转换单元121一一对应设置;其中,所述透镜单元202采用无机材料形成。
这里所说的发光结构层10下方还可具有基板,比如设有驱动电路层的阵列基板。
在一些实施例中,所述透镜结构20的材料为SiNx或其它类似的具有较高折射率的无机材料。
在一些实施例中,所述透镜结构20的折射率大于或等于1.88。
在一些实施例中,所述透镜结构的透过率在460nm处大于95%,即透镜结构对于波长为460nm或波长大致为460nm的光线的穿透率大于95%。以 保证光线的穿透率。
在一些实施例中,所述透镜结构20包括透镜主体21和增设透镜层22。
所述透镜主体21具有外凸的第一表面。增设透镜层22贴设于所述透镜主体21的第一表面上,与所述透镜主体21第一表面的形状一致。
增设透镜层22可通过化学气相沉积(Chemical VaporDeposition,CVD)的方法沉积形成。
这里增设透镜层22基本完全贴合于透镜主体21的第一表面上。只是由于透镜主体21与增设透镜层22分开制作,二者的接触面上会形成极薄的界面层,厚度仅为约4~5埃,该界面层对于显示模组100的光学性能等基本没有影响。
在一些实施例中,所述增设透镜层22的材料和所述透镜主体21的材料相同。
在一些实施例中,发光结构层10与所述透镜结构20之间设有保护层30。
所述保护层30的材料可以为Al2O3、ZnO、TiO2、ITO和IZO中的一种。
所述保护层30的厚度可为以在保护彩膜层12的同时,不影响结构内光线的传播。
请参照图2所示,本申请另提供一种显示模组200。该显示模组200与上述显示模组100结构大致相同。不同之处在于,上述显示模组100中的增设透镜层22为单层结构。显示模组200中的所述增设透镜层22包括设于所述透镜主体21的第一增设透镜层221、设于所述第一增设透镜层221表面的第二增设透镜层222及设于所述第二增设透镜层222表面的第三增设透镜层223。
这里各增设透镜层同样可通过化学气相沉积(Chemical VaporDeposition,CVD)的方法沉积形成。
在一些实施例中,所述透镜主体21、所述第一增设透镜层221、所述第二增设透镜层222及所述第三增设透镜层223的折射率相同或依次增大,以使得透镜主体21及各增设透镜层之间的折射率呈一增加梯度,有利于减小光反射率,进一步提高产品光学性能。
在一些实施例中,所述透镜主体21、所述第一增设透镜层221、所述第二增设透镜层222及所述第三增设透镜层223的厚度依次减小。
比如,在一些实施例中,透镜主体21的正投影最大直径(以下简称直径)可为2.8μm,高度为1.6μm。第一增设透镜层221的厚度可为0.3μm、所述第二增设透镜层222的厚度可为0.2μm。所述第三增设透镜层223的厚度可为0.1μm。由于气相沉积的台阶覆盖率限制,在形成各增设透镜层来增大透镜单元尺寸时,透镜单元中每增加0.1μm厚度的增设透镜层,整个透镜单元的高度可相应增加0.1μm,透镜单元的直径可相应增加大约0.07μm。因而,该实施例所形成的透镜单元202,其高度可达2.1μm,直径可达3.2μm左右。
此外,透镜单元的202中透镜主体21的第一表面可以背离发光结构层设置,也可朝向发光结构层10设置,本申请对此不做限定。
本申请另提供一种显示模组的制备方法,该制备方法可用于制备上述的显示模组100、显示模组200。所述显示模组的制备方法包括如下步骤S101和步骤S103:
在步骤S101中,提供发光结构层,所述发光结构层包括具有多个像素单元的像素单元层及设于所述像素单元层之上的彩膜层,所述彩膜层具有与多个像素单元一一对应的颜色转换单元。
在步骤S103中,在所发光结构层之上设置透镜结构,所述透镜结构具有多个透镜单元,多个所述透镜单元与所述延色转换单元一一对应设置;其中,所述透镜单元采用无机材料形成。
这里先对显示模组100及类似于显示模组100的显示模组的制备方法进行详细描述。下面请先参照图3并在必要时结合图4至图10所示,在一些实施例中,
如图4所示,在步骤S101中,提供发光结构层10,所述发光结构层10包括具有多个像素单元111的像素单元层11及设于所述像素单元层11之上的彩膜层12,所述彩膜层12具有与多个像素单元111一一对应的颜色转换单元121。
这里所说的发光结构层10下方还可具有基板,比如设有驱动电路层的阵列基板。
这里所说的提高发光结构层可以理解为提供设置于基板上的发光结构层。即提供基板和发光结构层所组成的组件。
如图5所示,在步骤S103之前,所述方法包括如下步骤S102:
在步骤S102中,在发光结构层10之上形成保护层30。
在一些实施例中,所述保护层30的材料为Al2O3、ZnO、TiO2、ITO和IZO中的一种。
所述保护层30的厚度为以在保护彩膜层12的同时,不影响结构内光线的传播。该保护层可采用低温(比如90℃)条件下单原子层沉积(atomic layer deposition,ALD)的方式形成,以在制备过程中不影响其下方彩膜层12及其它结构不受影响。
在一些实施例中,步骤S103可通过如下步骤S1031和S1033实现:
在步骤S1031中,在所述发光结构层10之上形成无机材料层201。
在步骤S1033中,对所述无机材料层201刻蚀,形成所述透镜结构20。
如图6所示,该无机材料层201可以是氧化硅等无机材料。可以采用化学气相沉积(Chemical VaporDeposition,CVD)的方法沉积形成。
该无机材料层201的可以根据具体情况确定所需的厚度。比如,在一些实施例中,该无机材料层201的厚度可以为2μm~2.2μm。当然,在其它实施例中,也可将无机材料层设置为其它厚度。本申请对此不做限定。
在一些实施例中,步骤S1032具体可以通过如下步骤S1321至步骤S1323实现:
在步骤S1321中,在所述无机材料层201表面设置刻蚀胶层401。
步骤S1322中,对所述刻蚀胶层401进行刻蚀,形成转印透镜结构40;所述转印透镜结构40与所述透镜结构20的形状一致。
在步骤S1323中,采用转印的方式对所述无机材料层201进行刻蚀形成所述透镜结构20。
如图7所示,在无机材料层201表面涂覆一层刻蚀胶材料形成刻蚀胶层401。
该刻蚀胶层401所采用的材料可以选用相关技术中用于制备透镜单元的有机感光材料。
如图8所示,可通过曝光、显影等方法对所述刻蚀胶层401进行刻蚀,形成转印透镜结构40。该转印透镜结构40包括多个间隔转印透镜单元。
该转印透镜结构40的尺寸可以根据具体情况进行设置。比如,在一些实施例中,该转印透镜结构40的直径可为3.6μm,高度可为2.2μm。
这里所说的转印透镜结构40与所述透镜结构20的形状一致可以理解为二者形状相同,但是各对应部分尺寸成一样的比例。
这里所述透镜结构20包括透镜主体21及设于所述透镜主体21表面的增设透镜层22,相应地,步骤S1323中采用转印的方式对所述无机材料层201进行刻蚀形成所述透镜结构20实际上可以理解为:
如图9所示,对所述无机材料层201进行刻蚀形成多个与转印透镜单元一一对应的透镜主体21。所述透镜主体21具有外凸的第一表面。透镜主体21与转印透镜单元形状一致,且各透镜主体21之间间隔设置。
需要说明的是,在对无机材料层201进行转印刻蚀形成透镜主体21时,可以通过等离子体刻蚀材料的方式进行转印。且在具体采用等离子体材料进行刻蚀时,可根据具体需求确定相应地转印透镜结构以及调节等离子体材料对有机材料和无机材料界面的刻蚀比,从而得到所需要的透镜主体21。比如一般可将转印结构的尺寸设置为所需的透镜结构尺寸一致(可理解为大致相同)。
基于在转印过程中刻蚀材料对有机材料和无机材料界面的刻蚀比不同,大部分刻蚀材料在同等情况下刻蚀无机材料的速度大于刻蚀有机材料的速度,使得所转印后所形成的透镜主体21的尺寸略小于转印透镜结构中的转印透镜单元的尺寸,这里可通过在透镜主体21表面设置增设透镜层22来缩小甚至消除转印过程导致的透镜单元尺寸减小的情况,使得最终形成透镜单元与转印透镜结构的转印透镜单元的大小差不多。
如图10所示,在透镜主体21形成之后,在透镜主体21的第一表面通过CVD等方法沉积一层无机材料形成增设透镜层22,从而形成透镜主体21具有单层的增设透镜层22的显示模组100。
这里增设透镜层22的厚度可以根据具体情况进行设置。
下面对显示模组200及类似的具有多层增设透镜层的显示模组的制备方法进行详细描述。与上述图4至图10中显示模组100的制备方法大致相同,相似或相同之处可参考上述相关描述,这里主要针对不同之处进行说明。请 结合图11至图25所示,该显示模组200所述增设透镜层22包括设于所述透镜主体21的第一增设透镜层221、设于所述第一增设透镜层221表面的第二增设透镜层222及设于所述第二增设透镜层222表面的第三增设透镜层223。相应地,相对于上述显示模组100的制备方法不同的是,在步骤S1323中形成透镜主体21之后,所述方法还包括如下步骤S13231至步骤S13233:
在步骤S13231中,在所述透镜主体21的第一表面形成第一增设透镜层221。
在步骤S13232中,在所述第一增设透镜层221表面形成第二增设透镜层222。
在步骤S13233中,在所述第二增设透镜层222表面设置第三增设透镜层223,形成所述透镜结构20。
如图18至图20所示,在形成第一增设透镜层221之后,在形成第二增设透镜层222之前,可采用光刻的形式将相邻透镜主体21之间沉淀的无机材料层部分2211去除,以便于第二增设透镜层222设置的同时保证透镜结构与转印透镜结构40一致。在具体实施时,在第一增透镜层221上涂覆相应的光刻胶层402,形成位于相邻透镜主体21之间的通孔4001,进而在通孔4001中刻蚀对应的无机材料层部分2211,进而再将剩余的光刻胶层402去除。
如图21所示,进而在图20所形成的结构上沉积相应的无机材料层形成第二增设透镜层222。
如图22至图24所示,在形成第二增设透镜222之后,形成第三增设透镜层223前,可采用光刻的形式将相邻透镜主体21之间沉淀的无机材料层部分2221去除,以便于第三增设透镜层223设置的同时保证透镜结构与转印透镜结构40一致。其中,在具体实施时,可在第二增设透镜层222上涂覆相应的光刻胶层403,形成位于相邻透镜主体21之间的通孔4002,进而在通孔4002中刻蚀对应的无机材料层部分2221,进而在将剩余的光刻胶层403去除。
如图25所示,进而在图24所形成的结构上沉积相应的无机材料层,形成第三增设透镜层223。
在一些实施例中,所述透镜主体21、所述第一增设透镜层221、所述第二增设透镜层222及所述第三增设透镜层223的折射率相同或依次增大。
在一些实施例中,所述透镜主体21、所述第一增设透镜层221、所述第二增设透镜层222及所述第三增设透镜层223的厚度依次减小。
这里透镜结构20的透镜主体21及各增设透镜层的结构等具体可以参照上述相关描述,此处不予以赘述。
需要说明的是,这里透镜主体21与第一增设透镜层221的接触面处以及各相邻增设透镜层的接触面处可形成极薄的界面层,厚度仅为约4~5埃,该界面层对于显示模组200的光学性能等基本没有影响。
此外,需要说明的是,在其它一些实施例中,还可以通过调节等离子体刻蚀材料对有机材料和无机材料界面的刻蚀比、调整转印透镜结构的大小等,一次性转印刻蚀形成一个整体的透镜单元。本申请对此不做限定,可根据具体情况进行设置。本申请另提供一种显示面板,该显示面板包括如上所 述的显示模组。所述显示面板可为Micro-OLED显示器件,可应用于手机、平板电脑、电视机、笔记本电脑、等具有显示功能的产品或部件中,作为手机、平板电脑、电视机、笔记本电脑、等具有显示功能的产品或部件的显示面板。
在本申请中,所述结构实施例与方法实施例在不冲突的情况下,可以互为补充。
在本发明中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”、“若干”指两个或两个以上,除非另有明确的限定。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (19)

  1. 一种显示模组,其特征在于,包括:
    发光结构层,包括具有多个像素单元的像素单元层及设于所述像素单元层之上的彩膜层,所述彩膜层具有与多个像素单元一一对应的颜色转换单元;
    透镜结构,设于所述发光结构层之上,具有多个透镜单元,多个所述透镜单元与所述颜色转换单元一一对应设置;其中,所述透镜单元采用无机材料形成。
  2. 如权利要求1所述的显示模组,其特征在于,所述透镜结构包括:
    透镜主体,所述透镜主体具有外凸的第一表面;
    增设透镜层,贴设于所述透镜主体的第一表面上,与所述透镜主体第一表面的形状一致。
  3. 如权利要求2所述的显示模组,其特征在于,所述增设透镜层的材料和所述透镜主体的材料相同。
  4. 如权利要求2所述的显示模组,其特征在于,所述增设透镜层包括设于所述透镜主体的第一增设透镜层、设于所述第一增设透镜层表面的第二增设透镜层及设于所述第二增设透镜层表面的第三增设透镜层。
  5. 如权利要求4所述的显示模组,其特征在于,所述透镜主体、所述第一增设透镜层、所述第二增设透镜层及所述第三增设透镜层的折射率相同或依次增大。
  6. 如权利要求4所述的显示模组,其特征在于,所述透镜主体、所述第一增设透镜层、所述第二增设透镜层及所述第三增设透镜层的厚度依次减小。
  7. 如权利要求1至6中任一项所述的显示模组,其特征在于,发光结构层与所述透镜结构之间设有保护层。
  8. 如权利要求7所述的显示模组,其特征在于,所述保护层的材料为Al2O3、ZnO、TiO2、ITO和IZO中的一种;和/或,
    所述保护层的厚度为和/或,
    所述透镜结构的材料为SiNx;和/或,
    所述透镜结构的折射率大于或等于1.88;和/或
    所述透镜结构的透过率在460nm处大于95%。
  9. 一种显示面板,其特征在于,包括如权利要求1至8中任一项所述的显示模组。
  10. 一种显示模组的制备方法,其特征在于,包括:
    提供发光结构层,所述发光结构层包括具有多个像素单元的像素单元层及设于所述像素单元层之上的彩膜层,所述彩膜层具有与多个像素单元一一对应的颜色转换单元;
    在所发光结构层之上设置透镜结构,所述透镜结构具有多个透镜单元,多个所述透镜单元与所述颜色转换单元一一对应设置;其中,所述透镜单元采用无机材料形成。
  11. 如权利要求10所述的显示模组的制备方法,其特征在于,所述在所发 光结构层之上设置透镜结构包括:
    在所述发光结构层之上形成无机材料层;
    对所述无机材料层刻蚀,形成所述透镜结构。
  12. 如权利要求10所述的显示模组的制备方法,其特征在于,在所述发光结构层之上形成无机材料层之后包括:
    在所述无机材料层表面设置刻蚀胶层;
    对所述刻蚀胶层进行刻蚀,形成转印透镜结构;所述转印透镜结构与所述透镜结构的形状一致;
    采用转印的方式对所述无机材料层进行刻蚀形成所述透镜结构。
  13. 如权利要求12所述的显示模组的制备方法,其特征在于,所述透镜结构包括透镜主体及设于所述透镜主体表面的增设透镜层,所述采用转印的方式对所述无机材料层进行刻蚀形成所述透镜结构包括:
    对所述无机材料层进行刻蚀形成所述透镜主体,所述透镜主体具有外凸的第一表面。
  14. 如权利要求13所述的显示模组的制备方法,其特征在于,在形成所述透镜透镜主体之后,所述方法包括:
    在所述透镜主体的第一表面形成增设透镜层。
  15. 如权利要求14所述的显示模组的制备方法,其特征在于,所述增设透镜层包括设于所述透镜主体的第一增设透镜层、设于所述第一增设透镜层表面的第二增设透镜层及设于所述第二增设透镜层表面的第三增设透镜层,所述方法包括:
    在所述透镜主体的第一表面形成第一增设透镜层;
    在所述第一增设透镜层表面形成第二增设透镜层;
    在所述第二增设透镜层表面设置第三增设透镜层,形成所述透镜结构。
  16. 如权利要求15所述的显示模组,其特征在于,所述透镜主体、所述第一增设透镜层、所述第二增设透镜层及所述第三增设透镜层的折射率相同或依次增大。
  17. 如权利要求15所述的显示模组,其特征在于,所述透镜主体、所述第一增设透镜层、所述第二增设透镜层及所述第三增设透镜层的厚度依次减小。
  18. 如权利要求10至17中任一项所述的显示模组,其特征在于,在所发光结构层之上设置透镜结构之前,所述方法包括:
    在发光结构层之上形成保护层。
  19. 如权利要求18所述的显示模组,其特征在于,所述保护层的材料为Al2O3、ZnO、TiO2、ITO和IZO中的一种;和/或,
    所述保护层的厚度为和/或,
    所述透镜结构的材料为SiNx;和/或,
    所述透镜结构的折射率大于或等于1.88;和/或
    所述透镜结构的透过率在460nm处大于95%。
PCT/CN2023/105987 2022-07-29 2023-07-06 一种显示模组及其制备方法、显示面板 WO2024022071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210908665.7 2022-07-29
CN202210908665.7A CN115274985A (zh) 2022-07-29 2022-07-29 一种显示模组及其制备方法、显示面板

Publications (1)

Publication Number Publication Date
WO2024022071A1 true WO2024022071A1 (zh) 2024-02-01

Family

ID=83770937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105987 WO2024022071A1 (zh) 2022-07-29 2023-07-06 一种显示模组及其制备方法、显示面板

Country Status (2)

Country Link
CN (1) CN115274985A (zh)
WO (1) WO2024022071A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274985A (zh) * 2022-07-29 2022-11-01 京东方科技集团股份有限公司 一种显示模组及其制备方法、显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556023A (zh) * 2009-05-14 2009-10-14 上海广电光电子有限公司 带广角透镜的led光源
CN112382648A (zh) * 2020-11-13 2021-02-19 京东方科技集团股份有限公司 一种显示面板、显示装置以及制作方法
CN114518661A (zh) * 2020-11-19 2022-05-20 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN114551524A (zh) * 2020-11-18 2022-05-27 精工爱普生株式会社 电光装置和电子设备
CN114759074A (zh) * 2022-04-21 2022-07-15 云南创视界光电科技有限公司 显示装置及其制作方法
CN115274985A (zh) * 2022-07-29 2022-11-01 京东方科技集团股份有限公司 一种显示模组及其制备方法、显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556023A (zh) * 2009-05-14 2009-10-14 上海广电光电子有限公司 带广角透镜的led光源
CN112382648A (zh) * 2020-11-13 2021-02-19 京东方科技集团股份有限公司 一种显示面板、显示装置以及制作方法
CN114551524A (zh) * 2020-11-18 2022-05-27 精工爱普生株式会社 电光装置和电子设备
CN114518661A (zh) * 2020-11-19 2022-05-20 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN114759074A (zh) * 2022-04-21 2022-07-15 云南创视界光电科技有限公司 显示装置及其制作方法
CN115274985A (zh) * 2022-07-29 2022-11-01 京东方科技集团股份有限公司 一种显示模组及其制备方法、显示面板

Also Published As

Publication number Publication date
CN115274985A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN108987605B (zh) 显示设备
WO2020186932A1 (zh) 发光器件及其制造方法、显示装置
WO2020020224A1 (zh) 阵列基板及其制备方法、显示面板和显示装置
WO2019223456A1 (zh) 显示面板及其制备方法、显示装置
CN108885847B (zh) 显示装置和电子设备
CN104103648B (zh) 柔性显示设备、柔性显示母板及其制作方法
US11387425B2 (en) Display panel, display apparatus, and methods for making the same
WO2024022071A1 (zh) 一种显示模组及其制备方法、显示面板
US11581507B2 (en) Display panel and method for manufacturing same, and display apparatus
WO2015192517A1 (zh) 彩膜基板及其制备方法、有机发光显示面板和显示装置
WO2019227976A1 (zh) 显示面板、显示装置和制作显示面板的方法
JP2015035415A (ja) 表示パネル及びその製造方法
TW201319880A (zh) 影像顯示系統及觸控感測裝置之製造方法
WO2021227205A1 (zh) Oled的面板及其制造方法
WO2022017051A1 (zh) 显示基板及其制备方法、显示装置
CN106569633B (zh) 触控结构及其制造方法
WO2020238397A1 (zh) 显示面板及其制造方法、显示装置
CN103972265A (zh) 显示装置、显示装置的制造方法和电子装置
WO2015117468A1 (zh) 触摸屏及其制作方法、触摸显示装置
WO2021258757A1 (zh) 显示面板及显示装置
WO2014139221A1 (zh) 彩膜基板的制作方法、彩膜基板及显示装置
WO2019001285A1 (zh) 阵列基板及其制备方法和显示装置
US20220317503A1 (en) Preparation method of display module, display module, and electronic device
WO2015172450A1 (zh) 一种像素单元及其制作方法、显示装置
US10581021B2 (en) Display substrate, manufacturing method thereof, and display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845284

Country of ref document: EP

Kind code of ref document: A1