WO2022017051A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2022017051A1
WO2022017051A1 PCT/CN2021/099444 CN2021099444W WO2022017051A1 WO 2022017051 A1 WO2022017051 A1 WO 2022017051A1 CN 2021099444 W CN2021099444 W CN 2021099444W WO 2022017051 A1 WO2022017051 A1 WO 2022017051A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flexible substrate
island
shaped display
microlens
Prior art date
Application number
PCT/CN2021/099444
Other languages
English (en)
French (fr)
Inventor
孙中元
闫萌
安澈
袁广才
柳锦女
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/771,015 priority Critical patent/US20220384747A1/en
Publication of WO2022017051A1 publication Critical patent/WO2022017051A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to, but is not limited to, the field of display technology, and more particularly, to a display substrate, a method for manufacturing the same, and a display device.
  • OLED Organic Light Emitting Diode
  • the display product includes a rigid display area and an elastic wire area connecting the rigid display area.
  • the rigid display area does not bear the amount of stretching deformation, and the elastic wire area connecting the rigid display area can withstand certain deformation. Thus, the stretching of the entire display product is realized.
  • the present disclosure provides a display substrate, a preparation method thereof, and a display device.
  • the present disclosure provides a display substrate, including: a flexible substrate body, a thickness adjustment layer, and a microlens layer.
  • the flexible substrate body includes: a plurality of island-shaped display areas spaced apart from each other, a hollow area arranged between adjacent island-shaped display areas, and a connection area connecting adjacent island-shaped display areas.
  • the thickness adjustment layer is disposed on the light emitting side of the plurality of island-shaped display areas of the flexible substrate body.
  • the microlens layer is disposed on the side of the thickness adjustment layer away from the flexible substrate body.
  • the orthographic projection of the thickness adjustment layer on the flexible substrate body includes the orthographic projection of the microlens layer on the flexible substrate body, and the orthographic projection of the microlens layer on the flexible substrate body is the same as the orthographic projection of the microlens layer on the flexible substrate body.
  • the plurality of island-shaped display areas at least partially overlap.
  • the thickness adjustment layer and the microlens layer are configured to magnify an image displayed by the plurality of island-shaped display areas.
  • the present disclosure provides a display device including the display substrate as described above.
  • the present disclosure provides a method for manufacturing a display substrate, including: preparing a flexible substrate body, the flexible substrate body comprising: a plurality of island-shaped display areas spaced apart from each other, disposed between adjacent island-shaped display areas A hollow area and a connection area connecting adjacent island-shaped display areas; a thickness adjustment layer is formed on the light-emitting side of the plurality of island-shaped display areas of the flexible substrate body; a thickness adjustment layer is far away from the flexible substrate body.
  • a microlens layer is formed on the side.
  • the orthographic projection of the thickness adjustment layer on the flexible substrate body includes the orthographic projection of the microlens layer on the flexible substrate body, and the orthographic projection of the microlens layer on the flexible substrate body is the same as the orthographic projection of the microlens layer on the flexible substrate body.
  • the plurality of island-shaped display areas at least partially overlap.
  • the thickness adjustment layer and the microlens layer are configured to magnify an image displayed by the plurality of island-shaped display areas.
  • FIG. 1 is a schematic structural diagram of a display substrate according to at least one embodiment of the disclosure
  • Fig. 2 is a schematic cross-sectional view along the P-P direction in Fig. 1;
  • FIG. 3 is a schematic diagram of a display substrate after forming a flexible substrate according to at least one embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a display substrate after forming a driving structure layer in at least one embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a display substrate after forming a planarization layer according to at least one embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a display substrate after forming a first electrode layer in at least one embodiment of the disclosure
  • FIG. 7 is a schematic diagram of a display substrate after forming a pixel definition layer according to at least one embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a display substrate after forming a second electrode in at least one embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a display substrate after a thin film encapsulation layer is formed in at least one embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of a display substrate after forming a hard mask layer according to at least one embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a display substrate after etching away the film layer structure of the hollow area according to at least one embodiment of the disclosure
  • FIG. 12 is a schematic diagram of a display substrate after forming a microlens layer according to at least one embodiment of the disclosure
  • FIG. 13 is a schematic diagram of a display substrate after forming a first protective layer according to at least one embodiment of the disclosure
  • FIG. 14 is a schematic view of the dimensions of the microlenses of the thickness adjustment layer and the microlens layer according to at least one embodiment of the disclosure
  • FIG. 15 includes FIG. 15( a ) and FIG. 15( b ), which is a comparison diagram of the display effect of the display substrate;
  • 16 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • FIG. 17 is still another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • FIG. 18 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • FIG. 19 is a schematic diagram of a display device according to at least one embodiment of the disclosure.
  • Electrode connected includes the case where constituent elements are connected together by means of an element having a certain electrical effect.
  • the "element having a certain electrical effect” is not particularly limited as long as it can transmit and receive electrical signals between the connected constituent elements.
  • Examples of “elements having some electrical function” include not only electrodes and wirings, but also switching elements such as transistors, resistors, inductors, capacitors, other elements having one or more functions, and the like.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • a transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, the channel region, and the source electrode .
  • the channel region refers to a region through which current mainly flows.
  • the first electrode may be the drain electrode and the second electrode may be the source electrode, or the first electrode may be the source electrode and the second electrode may be the drain electrode.
  • the functions of the "source electrode” and the “drain electrode” may be interchanged when using transistors of opposite polarities or when the direction of the current changes during circuit operation. Therefore, in the present disclosure, “source electrode” and “drain electrode” may be interchanged with each other.
  • parallel refers to a state in which the angle formed by two straight lines is -10° or more and 10° or less, and thus can include a state in which the angle is -5° or more and 5° or less.
  • perpendicular refers to a state in which the angle formed by two straight lines is 80° or more and 100° or less, and therefore can include a state in which an angle of 85° or more and 95° or less is included.
  • film and “layer” are interchangeable.
  • conductive layer may be replaced by “conductive film” in some cases.
  • insulating film may be replaced with “insulating layer” in some cases.
  • stretchable means that a material, structure, device, or device assembly undergoes tensile deformation (eg, lengthening, or widening, or both lengthening and widening) without permanent deformation or such as rupture Failure-like ability, for example, the ability to elongate at least 10% of the length without permanently deforming, splitting, or breaking.
  • tensile deformation eg, lengthening, or widening, or both lengthening and widening
  • rupture Failure-like ability for example, the ability to elongate at least 10% of the length without permanently deforming, splitting, or breaking.
  • “Stretchable” is also intended to encompass substrates having components (whether or not the components themselves are individually stretchable as described above) constructed in a manner to accommodate a stretchable, expandable, or deployable surface, And when applied to a stretched, inflated, or deployed stretchable, inflatable, or deployable surface, functionality is maintained.
  • Stretchable is also intended to encompass a substrate that can be elastically or plastically deformed (ie, after being stretched, the substrate can return to its original dimensions when the stretching force is released, or the substrate cannot return to its original dimensions and in some examples may be maintained in a stretched configuration), and may be used during manufacture of the substrate, during assembly of a device with the substrate (which may be considered part of a manufacturing operation), or in use (e.g., a user may be able to stretch and may Deformation (eg, stretching and optionally bending) occurs during bending of the substrate.
  • a flexible display substrate comprising: a flexible substrate on which is arranged a plurality of island-shaped display areas spaced apart from each other, a hollow area arranged between adjacent island-shaped display areas, and a flexible connection connecting adjacent island-shaped display areas connection unit.
  • the flexible substrate under the island-shaped display area and the flexible connection unit remains, and the flexible substrate in the hollow area is removed.
  • the island-shaped display area is provided with a plurality of light-emitting units.
  • the screen effect displayed by the flexible display substrate is an island-shaped mosaic image, and there are mosaics in the hollow area and the flexible connection unit. seams, will affect the display effect.
  • At least one embodiment of the present disclosure provides a display substrate, including: a flexible substrate body, a thickness adjustment layer, and a microlens layer.
  • the flexible substrate body includes: a plurality of island-shaped display areas spaced apart from each other, a hollow area arranged between adjacent island-shaped display areas, and a connection area connecting adjacent island-shaped display areas.
  • the thickness adjustment layer is arranged on the light emitting side of the plurality of island-shaped display areas of the flexible substrate body.
  • the microlens layer is disposed on the side of the thickness adjustment layer away from the flexible substrate body.
  • the orthographic projection of the thickness adjustment layer on the flexible substrate body includes the orthographic projection of the microlens layer on the flexible substrate body, and the orthographic projection of the microlens layer on the flexible substrate body at least partially overlaps the plurality of island-shaped display areas.
  • the thickness adjustment layer and the microlens layer are configured to magnify images displayed by the plurality of island-shaped display areas.
  • the thickness adjustment layer and the microlens layer are arranged, so that the images displayed in the plurality of island-shaped display areas are enlarged in a certain proportion after passing through the thickness adjustment layer and the microlens layer, so that the displayed image observed by the human eye has no seams. , or greatly weaken the effect of seams on the displayed image, thereby optimizing the display effect.
  • the microlens layer includes a plurality of microlenses.
  • the types of the plurality of microlenses may include at least one of the following: plano-convex, biconvex.
  • the plurality of microlenses of the microlens layer are all plano-convex lenses, or, the plurality of microlenses of the microlens layer are all biconvex lenses, or, some of the microlenses of the microlens layer are plano-convex lenses, and the other part of the microlenses are biconvex lenses .
  • this embodiment does not limit this.
  • the magnification of an image displayed in an island-shaped display area may be determined according to the focal length of a microlens corresponding to the island-shaped display area.
  • the magnification can be between L/f and 1+L/f, where L represents the distance between the human eye and the display substrate, and f represents the focal length of the microlens.
  • a mobile phone product including the display substrate of this embodiment when the types and parameters of the multiple microlenses in the microlens layer are the same, and the distance from which the human eye observes the mobile phone product is the minimum photopic distance of 25 centimeters (cm),
  • the magnification of the displayed image is between 25/f and 1+25/f, where f is the focal length of the microlenses of the microlens layer.
  • the focal length of a plano-convex lens can be determined according to the following equation:
  • r represents the spherical radius of the plano-convex lens
  • n represents the refractive index of the lens.
  • f- convex 2r, that is, the larger the spherical radius, the larger the focal length of the lens.
  • the focal length of the lenticular lens can be determined according to the following equation:
  • r 1 represents the first spherical radius of the lenticular lens
  • r 2 represents the second spherical radius of the lenticular lens
  • n represents the refractive index of the lens
  • the orthographic projection of at least one of the plurality of microlenses on the flexible substrate body at least partially overlaps with one of the plurality of island-shaped display areas.
  • any one of the plurality of island-shaped display regions and the orthographic projection of the at least one microlens on the flexible substrate body at least partially overlap. That is, there is a one-to-one or many-to-one correspondence between the microlenses and the island-shaped display areas.
  • the orthographic projection of any one of the plurality of microlenses on the flexible substrate body at least partially overlaps with one of the plurality of island-shaped display areas, and different microlenses are formed on the flexible substrate at least partially.
  • the orthographic projection on the body at least partially overlaps the different island-shaped display areas. That is, the plurality of microlenses correspond to the plurality of island-shaped display areas one-to-one.
  • the orthographic projections of at least two adjacent microlenses of the plurality of microlenses on the flexible substrate body at least partially overlap with the same island display region of the plurality of island display regions. That is, at least two microlenses correspond to one island-shaped display area.
  • the first number of microlenses and the first number of island-shaped display areas are in one-to-one correspondence
  • the second number of microlenses and the third number of island-shaped display areas are in a many-to-one correspondence
  • the sum of the first number and the second number is the total number of microlenses
  • the sum of the first number and the third number is the total number of island-shaped display areas.
  • this embodiment does not limit this.
  • the orthographic projection of any one of the plurality of microlenses on the flexible substrate body is located in an island-shaped display area, and the orthographic projections of different microlenses on the flexible substrate body and different island-shaped displays Regions overlap. That is, the plurality of microlenses are in one-to-one correspondence with the plurality of island-shaped display areas, and the orthographic projection of each microlens on the flexible substrate body is located in the corresponding island-shaped display area.
  • this embodiment does not limit this.
  • a plurality of microlenses and a plurality of island-shaped display areas may be in one-to-one correspondence, and the orthographic projection of each microlens on the flexible substrate body may partially overlap with the corresponding island-shaped display area, for example, each microlens in The orthographic projection on the flexible substrate body may at least partially overlap the corresponding island-shaped display area, at least one hollow area around the island-shaped display area, and at least one connection area.
  • the orthographic projections of at least two adjacent microlenses of the plurality of microlenses on the flexible substrate body are located in the same island-shaped display area. That is, at least two microlenses correspond to one island-shaped display area, and the orthographic projections of the at least two microlenses on the flexible substrate body are located in the corresponding island-shaped display area.
  • this embodiment does not limit this.
  • the orthographic projection of at least two adjacent microlenses among the plurality of microlenses on the flexible substrate body may be the same as the same island-shaped display area, at least one hollow area around the island-shaped display area, and at least one connection area. at least partially overlap.
  • the orthographic projection of any one of the plurality of microlenses on the flexible substrate body at least partially overlaps with at least two adjacent island-shaped display regions of the plurality of island-shaped display regions.
  • the same microlens corresponds to at least two island-shaped display areas.
  • the orthographic projection of one microlens on the flexible substrate body at least partially overlaps with four adjacent island-shaped display areas, at least one hollow area around the four adjacent island-shaped display areas, and at least one connection area .
  • the types of the plurality of microlenses of the microlens layer may be the same (eg, all plano-convex lenses or all biconvex lenses), or all different , or partially the same.
  • the dimensions (eg, spherical radii) of multiple microlenses of the same type may be different, partially the same, or identical. However, this embodiment does not limit this.
  • the types of at least two microlenses corresponding to the same island-shaped display area may be the same, and the types of microlenses corresponding to different island-shaped display areas may be the same or different.
  • the size (eg, spherical radius) of at least two microlenses corresponding to the same island-shaped display area is the same, and the sizes of the microlenses corresponding to different island-shaped display areas are the same. Can be the same, or different.
  • the plurality of microlenses corresponding to one island-shaped display area are all plano-convex lenses, and the spherical radius is the first value, and the plurality of microlenses corresponding to the other island-shaped display area are plano-convex lenses, and the spherical radius is the second value.
  • the first value is different from the second value.
  • this embodiment does not limit this.
  • the types of the plurality of microlenses may be the same, different, or partially the same.
  • the dimensions (eg, spherical radii) of multiple microlenses of the same type may be different, partially the same, or identical. However, this embodiment does not limit this.
  • the thickness adjustment layer may include a plurality of thickness adjustment regions, and the plurality of thickness adjustment regions are in one-to-one correspondence with the plurality of microlenses.
  • the orthographic projection of any thickness adjustment region on the flexible substrate body includes the orthographic projection of the corresponding microlens on the flexible substrate body.
  • thickness refers to the height perpendicular to the plane direction of the flexible substrate, from the surface away from the flexible substrate to the surface close to the flexible substrate.
  • the thickness adjustment layer can be made of a stretchable material, for example, polydimethylsiloxane (PDMS, polydimethylsiloxane), hydrogenated styrene-butadiene block copolymer (SEBS, Styrene Ethylene Butylene) Styrene), Ecoflex and other materials with high elastic elongation.
  • PDMS polydimethylsiloxane
  • SEBS hydrogenated styrene-butadiene block copolymer
  • SEBS Styrene Ethylene Butylene Styrene
  • Ecoflex Ecoflex and other materials with high elastic elongation.
  • the thickness adjustment layer adopts a stretchable material, which can ensure that the display image optimization can still be achieved under a certain amount of stretching.
  • the at least one island-shaped display area includes: a flexible substrate, a display structure layer disposed on the flexible substrate, and a color filter layer disposed on a light exit side of the display structure layer.
  • the display structure layer includes a plurality of light-emitting units;
  • the color filter layer includes: a black matrix and a plurality of filter units located in the sub-pixel area defined by the black matrix and corresponding to the plurality of light-emitting units one-to-one.
  • the display structure layer, the color filter layer, the thickness adjustment layer, and the microlens layer are disposed on the same side of the flexible substrate; or, the display structure layer is disposed on one side of the flexible substrate, and the color filter layer, The thickness adjustment layer and the microlens layer are disposed on the other side of the flexible substrate.
  • the display substrate may be a top emission structure or a bottom emission structure.
  • this embodiment does not limit this.
  • the plurality of island-shaped display areas may further include: a thin film encapsulation layer disposed on a side of the display structure layer away from the flexible substrate.
  • a thin film encapsulation layer disposed on a side of the display structure layer away from the flexible substrate.
  • the plurality of island-shaped display areas may further include: a hard mask layer disposed on a side of the color filter layer away from the flexible substrate.
  • a hard mask layer disposed on a side of the color filter layer away from the flexible substrate.
  • the display substrate may further include: a first adhesive layer and a first protective layer sequentially disposed on the side of the microlens layer away from the flexible substrate body, and sequentially disposed on the side of the flexible substrate body away from the microlens layer the second adhesive layer and the second protective layer.
  • the top and bottom surfaces of the display substrate can be protected by the first protective layer and the second protective layer.
  • FIG. 1 is a schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • the display substrate shown in FIG. 1 is, for example, in a stretched state.
  • the display substrate body of this embodiment includes: a plurality of island-shaped display areas 100 spaced apart from each other, and hollow areas disposed between adjacent island-shaped display areas 100 300 and the connecting area 200 connecting the adjacent island-shaped display areas 100 .
  • Each island-shaped display area 100 is configured to perform image display
  • each hollow area 300 is configured to provide deformation space when the display substrate is stretched
  • each connection area 200 is configured to set signal lines and transmit tensile force.
  • Each island-shaped display area 100 may include one or more pixel units, and each pixel unit may include three light-emitting units that emit different colors (for example, light-emitting units that emit three colors of red, green, and blue), or four light-emitting units that emit different colors light-emitting units (for example, light-emitting units with four colors of red, green, blue, and white).
  • Each light emitting unit may include a light emitting element and a driving circuit configured to drive the light emitting element to emit light.
  • the plurality of connection regions 200 may connect the plurality of island-shaped display regions 100 to each other.
  • each island-shaped display area 100 in the plurality of island-shaped display areas 100 may be rectangular, and each island-shaped display area 100 is connected with four connection areas 200 connected to four connections of one island-shaped display area 100
  • the area 200 may extend in different directions to be respectively connected to four other island-shaped display areas 100 surrounding the island-shaped display area 100 .
  • this embodiment does not limit this.
  • each island-shaped display area of the plurality of island-shaped display areas may be a regular polygon or other irregular shape.
  • the shapes of the plurality of island-shaped display areas may be different.
  • the hollow area on a plane parallel to the display substrate, when the display substrate is in an unstretched state, the hollow area may be an L-shape, or a shape in which multiple L-shapes are connected, such as an I-shape, a T-shape equal shape.
  • the width of the hollow region may be 10 micrometers ( ⁇ m) to 500 ⁇ m.
  • the connection area can be L-shaped, or multiple L-shaped connected shapes, such as T-shaped, shape, etc.
  • the width of the connection region may be 10 micrometers ( ⁇ m) to 500 ⁇ m. However, this embodiment does not limit this.
  • the microlens layer may include a plurality of microlenses 720 .
  • An island-shaped display area 100 only includes an orthographic projection of one microlens 720 on the display substrate body. In other words, there is a one-to-one correspondence between the plurality of microlenses 720 and the plurality of island-shaped display areas 100 .
  • FIG. 1 shows that on a plane parallel to the display substrate, the microlens layer may include a plurality of microlenses 720 .
  • An island-shaped display area 100 only includes an orthographic projection of one microlens 720 on the display substrate body. In other words, there is a one-to-one correspondence between the plurality of microlenses 720 and the plurality of island-shaped display areas 100 .
  • each island-shaped display area 100 may be square, the orthographic projection of each microlens 720 on the display substrate body may be circular, and one microlens 720 may be on the display substrate body
  • the center of the orthographic projection of may coincide with the center of a corresponding island-shaped display area 100 .
  • the orthographic projection of the microlenses 720 corresponding to an island-shaped display area 100 on the display substrate body is an inscribed circle of the island-shaped display area 100 .
  • the size of any island-shaped display area may range from 0.1 millimeter (mm) ⁇ 0.1 mm to 1.5 mm ⁇ 1.5 mm, and the diameter of the microlens corresponding to the island-shaped display area may range from 0.1 mm to 1.5 mm mm.
  • the island-shaped display area may be a rectangle, and the orthographic projection of the microlenses corresponding to the island-shaped display area on the display substrate body may be an ellipse in the island-shaped display area.
  • the orthographic projection of the microlenses corresponding to one island-shaped display area on the display substrate body may partially overlap the island-shaped display area.
  • an island-shaped display area is a square
  • the orthographic projection of the microlenses corresponding to the island-shaped display area on the display substrate body may be an ellipse.
  • the orthographic projection of the microlenses corresponding to the island-shaped display area on the display substrate body may partially overlap with the island-shaped display area, the hollow area around the island-shaped display area, and the connection area.
  • the island-shaped display area 100 may include: a flexible substrate 10 , a display structure layer and a thin film encapsulation layer sequentially disposed on the flexible substrate 10 40.
  • the display structure layer of the island-shaped display area 100 includes: a driving structure layer and a light-emitting structure layer stacked on the flexible substrate 10.
  • the driving structure layer includes a plurality of driving circuits, each of which includes a plurality of transistors, or includes a plurality of transistors and at least one storage capacitor, for example, it may be a 2T1C, 3T1C or 7T1C design.
  • the light emitting structure layer includes a plurality of light emitting elements.
  • the plurality of driving circuits are connected to the plurality of light-emitting elements in one-to-one correspondence.
  • Each light-emitting element includes a first electrode (eg, a reflective anode), an organic light-emitting layer, and a second electrode (eg, a transparent cathode).
  • the color filter layer includes: a black matrix 51 disposed on the thin film encapsulation layer 40 , a plurality of filter units 52 located in the sub-pixel area defined by the black matrix 51 and corresponding to the plurality of light-emitting elements one-to-one, and covering the black matrix 51 and the filter protective layers 53 of the plurality of filter units 52 .
  • FIG. 2 only one transistor, one light-emitting element and one filter unit are used as examples for illustration.
  • the orthographic projection of the microlens layer 72 on the flexible substrate 10 is located within the orthographic projection of the thickness adjustment layer 71 on the flexible substrate 10 . However, this embodiment does not limit this. In some examples, the orthographic projection of the microlens layer 72 on the flexible substrate 10 may coincide with the orthographic projection of the thickness adjustment layer 71 on the flexible substrate 10 .
  • the connection area 200 may include a flexible substrate 10 , an inorganic insulating layer disposed on the flexible substrate 10 , an inorganic insulating layer disposed on the inorganic insulating layer A plurality of signal lines (only one signal line 26 is shown in FIG. 2), the flat layer 14 covering the signal line 26, the thin film encapsulation layer 40, the hard mask layer 60, the third adhesive layer 70, the thickness adjustment layer 71, The first adhesive layer 80 and the first protective layer 81, and the second adhesive layer 90 and the second protective layer 91 disposed on the side of the flexible substrate 10 away from the display structure layer.
  • the inorganic insulating layer may include: a first insulating layer 11 , a second insulating layer 12 and a third insulating layer 13 stacked on the flexible substrate 10 .
  • the plurality of signal lines of the connection region 200 are configured to realize signal communication between adjacent island-shaped display regions 100, for example, to transmit signals to one island-shaped display region 100 among the plurality of island-shaped display regions, or to transmit signals from a plurality of island-shaped display regions 100.
  • One of the island-shaped display areas 100 transmits a signal.
  • Signal communication between adjacent island-shaped display areas refers to signal communication between light-emitting units in one island-shaped display area and light-emitting units in another adjacent island-shaped display area.
  • the plurality of signal lines may include, for example, connecting lines connecting gate lines in adjacent island-shaped display regions, connecting lines connecting data lines in adjacent island-shaped display regions, and connecting lines for power signals.
  • the plurality of signal lines may be a plurality of flexible signal lines.
  • each hollow area 300 may include: a third adhesive layer 70 , a thickness adjustment layer 71 , a first adhesive layer 80 and a first protective layer 81 , which are sequentially arranged on the side of the display structure layer away from the flexible substrate 10 , and are sequentially arranged on the flexible substrate 10 . 10.
  • the second adhesive layer 90 and the second protective layer 91 on the side away from the display structure layer.
  • the technical solution of this embodiment will be described below with reference to FIGS. 2 to 13 through an example of a manufacturing process of the display substrate of this embodiment.
  • 2 to 13 are sectional views along the P-P direction in FIG. 1 .
  • the "patterning process" mentioned in this embodiment includes processes such as depositing a film layer, coating photoresist, mask exposure, developing, etching and stripping photoresist.
  • Deposition can be selected from any one or more of sputtering, evaporation, chemical vapor deposition
  • coating can be selected from any one or more of spray coating and spin coating
  • etching can be selected from dry etching. and any one or more of wet engraving.
  • “Film” refers to a thin film made of a material on a substrate by a deposition or coating process. If the "thin film” does not require a patterning process or a photolithography process in the entire manufacturing process, the “thin film” may also be referred to as a "layer”. If the "thin film” needs a patterning process or a photolithography process in the whole manufacturing process, it is called a “thin film” before the patterning process, and a “layer” after the patterning process. A “layer” after a patterning process or a photolithography process contains at least one "pattern".
  • a and B are arranged in the same layer means that A and B are simultaneously formed through the same patterning process.
  • the same layer does not always mean that the thickness of the layer or the height of the layer is the same in the cross-sectional view.
  • the orthographic projection of A includes the orthographic projection of B means that the orthographic projection of B falls within the range of the orthographic projection of A, or the orthographic projection of A covers the orthographic projection of B.
  • the preparation process of the display substrate of this embodiment includes the following steps (1) to (12).
  • the flexible substrate 10 is formed by coating a flexible material on the glass carrier 1 and curing into a film.
  • the thickness of the flexible substrate 10 may range from 5 micrometers ( ⁇ m) to 30 ⁇ m.
  • the flexible material may be a material such as polyimide (PI), polyethylene terephthalate (PET), or a soft surface-treated polymer film.
  • the island-shaped display area 100 , the hollow area 300 and the connection area 200 all include the flexible substrate 10 , as shown in FIG. 3 .
  • the driving structure layer of the island-shaped display area 100 includes a plurality of driving circuits.
  • Each drive circuit includes a plurality of transistors, or includes a plurality of transistors and at least one storage capacitor, for example, may be of a 2T1C, 3T1C or 7T1C design.
  • the preparation process of the driving structure layer may refer to the following description.
  • FIG. 4 only takes one thin film transistor (Thin Film Transistor, TFT) of one driving circuit of the island-shaped display area 100 as an example for illustration.
  • TFT Thin Film Transistor
  • a first insulating film and an active layer film are sequentially deposited on the flexible substrate 10 , and the active layer film is patterned through a patterning process to form a first insulating layer 11 covering the entire flexible substrate 10 and disposed on the first insulating layer 11
  • the active layer pattern includes at least the first active layer 21 .
  • a second insulating film and a first metal film are sequentially deposited, and the first metal film is patterned through a patterning process to form a second insulating layer 12 covering the pattern of the active layer, and a gate metal disposed on the second insulating layer 12 layer pattern, the gate metal layer includes at least the first gate electrode 22 .
  • a third insulating film is deposited, and the third insulating film is patterned by a patterning process to form a pattern of a third insulating layer 13 covering the gate metal layer.
  • the third insulating layer 13 is provided with at least two first via holes, two The third insulating layer 13 and the second insulating layer 12 in the first via hole are etched away, exposing the surface of the first active layer 21 .
  • a second metal film is deposited, the second metal film is patterned through a patterning process, and a source-drain metal layer pattern is formed on the third insulating layer 13 , and the source-drain metal layer at least includes the first source electrode located in the island-shaped display area 100 . 23 , the first drain electrode 24 , and the signal line 26 in the connection region 200 .
  • the first source electrode 23 and the first drain electrode 24 may be connected to the first active layer 21 through a first via hole.
  • the signal lines 26 of the connection areas 200 may be configured to achieve signal communication between adjacent island-shaped display areas 100 .
  • the signal lines 26 may be connecting lines connecting gate lines in adjacent island-shaped display regions 100 , or connecting lines connecting data lines in adjacent island-shaped display regions 100 , or connecting lines for power signals .
  • this embodiment does not limit this.
  • the connecting lines disposed in the connecting region 200 and configured to connect the gate lines in the adjacent island-shaped display regions 100 may be disposed in the same layer as the first gate electrodes 22 .
  • the driving structure layers of the plurality of island-shaped display areas 100 are prepared on the flexible substrate 10 .
  • the first active layer 21 , the gate electrode 22 , the first source electrode 23 and the first drain electrode 24 may constitute a first thin film transistor.
  • connection area 200 includes the first insulating layer 11 , the second insulating layer 12 , the third insulating layer 13 and the signal line 26 stacked on the flexible substrate 10 .
  • the hollow area 300 includes a first insulating layer 11 , a second insulating layer 12 and a third insulating layer 13 stacked on the flexible substrate 10 .
  • the first insulating layer 11 , the second insulating layer 12 and the third insulating layer 13 are any one of silicon oxide (SiOx), silicon nitride (SiNx) and silicon oxynitride (SiON) One or more, it can be a single layer, a multi-layer or a composite layer.
  • the first insulating layer 11 is called a buffer layer, which is used to improve the water and oxygen resistance of the flexible substrate 10;
  • the second insulating layer 12 is called a gate insulating (GI, Gate Insulator) layer;
  • the third insulating layer 13 is called It is an interlayer dielectric (ILD, Inter Layer Dielectric) layer.
  • ILD Inter Layer Dielectric
  • the first metal film and the second metal film are made of metal materials, such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo), or the above Metal alloy materials, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti and the like.
  • metal materials such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo), or the above Metal alloy materials, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb)
  • AlNd aluminum neodymium alloy
  • MoNb molybdenum niobium alloy
  • the active layer film is made of amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polycrystalline silicon (p-Si), One or more materials such as hexathiophene and polythiophene, that is, the present disclosure is applicable to transistors manufactured based on oxide technology, silicon technology and organic matter technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • One or more materials such as hexathiophene and polythiophene, that is, the present disclosure is applicable to transistors manufactured based on oxide technology, silicon technology and organic matter technology.
  • a flat thin film of organic material is coated on the flexible substrate 10 formed with the aforementioned pattern to form a flat layer 14 covering the entire flexible substrate 10, and the island-shaped display area is formed by masking, exposing, and developing processes.
  • a plurality of second via holes are formed on the flat layer 14 of 100 . As shown in FIG. 5 , only one second via hole K2 is used as an example for illustration in FIG. 5 .
  • the flat layer 14 in the second via hole K2 is developed away, exposing the surface of the first drain electrode 24 of the first thin film transistor.
  • connection region 200 includes the first insulating layer 11 , the second insulating layer 12 , the third insulating layer 13 , the signal lines 26 and the flat layer 14 covering the signal lines 26 stacked on the flexible substrate 10 .
  • the hollow area 300 includes a first insulating layer 11 , a second insulating layer 12 , a third insulating layer 13 and a flat layer 14 stacked on the flexible substrate 10 .
  • a conductive thin film is deposited on the flexible substrate 10 formed with the aforementioned pattern, and the conductive thin film is patterned through a patterning process to form a first electrode layer pattern.
  • the first electrode layer is formed on the flat layer 14 of the island-shaped display area 100 .
  • the first electrode layer includes a plurality of anodes. As shown in FIG. 6 , only one anode 31 is used as an example for illustration. The anode 31 is connected to the first drain electrode 24 of the first thin film transistor through the second via hole K2.
  • the plurality of anodes of the first electrode layer may be reflective anodes.
  • the first electrode layer may include: a first light-transmitting conductive layer, a reflective layer on the first light-transmitting conductive layer, and a second light-transmitting conductive layer on the reflective layer.
  • the first light-transmitting conductive layer and the second light-transmitting conductive layer may be light-transmitting conductive materials such as indium tin oxide (ITO, Indium Tin Oxide) or indium zinc oxide (IZO, Indium Zinc Oxide).
  • the reflective layer can be a metal layer, for example, made of silver. However, this embodiment does not limit this.
  • the conductive thin film may be a metal material such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo).
  • the alloy material, or the alloy material of the above metals such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti and the like.
  • the film structure of the connection region 200 and the hollow region 300 does not change.
  • a pixel-defining film is coated on the flexible substrate 10 formed with the aforementioned patterns, and a pattern of the pixel-defining layer 34 is formed by masking, exposing, and developing processes.
  • the pixel definition layer 34 is formed in the island-shaped display area 100 .
  • a plurality of sub-pixel openings are formed on the pixel definition layer 34 .
  • only one sub-pixel opening K3 is used as an example for illustration.
  • the pixel defining layer 34 in the sub-pixel opening K3 is developed away, exposing the surface of the anode 31 .
  • the pixel definition layer 34 may be a material such as polyimide, acrylic, or polyethylene terephthalate.
  • the film structure of the connection region 200 and the hollow region 300 does not change.
  • the organic light-emitting layer 32 can be formed in the sub-pixel opening K3 of the pixel definition layer 17 of the island-shaped display area 100 by means of evaporation or inkjet printing, so as to realize the connection between the organic light-emitting layer 32 and the anode 31
  • a second electrode 33 is formed on the pixel defining layer 34 and the organic light-emitting layer 32 by means of vapor deposition, and the second electrode 33 is connected to the organic light-emitting layer 32, as shown in FIG. 8 .
  • the organic light-emitting layer 32 may include an emission layer (EML, Emitting Layer).
  • the organic light emitting layer may include a stacked hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer to improve the efficiency of electron and hole injection into the light emitting layer.
  • the second electrode 34 is a transparent cathode, for example, a light-transmitting conductive material such as ITO or IZO can be used.
  • the light-emitting element can emit light from the side away from the flexible substrate 10 through the transparent cathode to realize top emission.
  • the film structure of the connection region 200 and the hollow region 300 does not change.
  • TFE Thin-Film Encapsulation
  • an encapsulation film is coated on the flexible substrate 10 formed with the aforementioned pattern, and the encapsulation film covers the entire flexible substrate 10 to form a pattern of the thin film encapsulation layer 40 , as shown in FIG. 9 .
  • the encapsulation film may be an inorganic-organic laminated structure, such as an inorganic/organic/inorganic three-layer structure, or an inorganic/organic/inorganic/organic/inorganic five-layer structure, and the inorganic materials may be silicon oxide, aluminum oxide, etc. , silicon nitride or silicon oxynitride, etc.
  • the organic material can be a flexible polymer material based on PET, which has a good encapsulation effect, can effectively prevent water and oxygen from entering the organic light-emitting layer, and has the characteristics of flexible deformation, which can realize the pulling of the display substrate. stretch deformation.
  • connection region 200 includes the first insulating layer 11 , the second insulating layer 12 , the third insulating layer 13 , the signal line 26 , the flat layer 14 that sequentially covers the signal line 26 and stacked on the flexible substrate 10 , and Thin film encapsulation layer 40 .
  • the hollow area 300 includes a first insulating layer 11 , a second insulating layer 12 , a third insulating layer 13 , a flat layer 14 and a thin film encapsulation layer 40 stacked on the flexible substrate 10 .
  • a black pigment or a black chrome (Cr) film is coated on the flexible substrate 10 formed with the aforementioned pattern, and the black pigment or black chrome film is patterned through a patterning process to form a black matrix 51 pattern, and then , in the sub-pixel area defined by the black matrix 51, the filter units 52 of different colors are formed in turn, and then, the organic material is coated in the island-shaped display area 100 to form a filter protection covering the filter unit 52 and the black matrix 51 ( OC, Over Coat) layer 53, as shown in FIG. 10 .
  • OC, Over Coat black matrix 51
  • FIG. 10 only one filter unit 52 is used as an example for illustration.
  • the color filter layer includes: a black matrix 51 , a plurality of filter units 52 disposed in the sub-pixel area defined by the black matrix 51 and corresponding to the plurality of light-emitting units one-to-one, and a plurality of filter units 52 covering the black matrix 51 and the filter units 52 .
  • Filter protection layer 53 .
  • a color filter layer is formed on the island-shaped display area 100. The color of each filter unit 52 is the same as the color of the light emitted by the overlapping light emitting elements in the direction perpendicular to the display substrate.
  • the color filter layer may include periodically arranged red filter units, green filter units and blue filter units, the red filter units correspond to the red light emitting units one-to-one, and the green filter units correspond to the green filter units.
  • the light-emitting units are in one-to-one correspondence
  • the blue filter units are in one-to-one correspondence with the blue light-emitting units.
  • the red resin can be firstly coated on the thin film encapsulation layer on which the black matrix has been formed, and after baking and curing, the red filter unit is formed by masking, exposing and developing.
  • the formation processes of the green filter unit and the blue filter unit are similar, so they will not be repeated here.
  • the material used for forming the color filter layer may be a low temperature curing material, and the curing temperature is less than 100 degrees to avoid affecting the organic light emitting layer.
  • the hardmask layer 60 is formed by low temperature deposition of inorganic materials on the flexible substrate 10 on which the color filter layer is formed.
  • the hard mask layer 60 may adopt any one or more of silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON). Since the film structure of the hollow area 300 needs to be etched away in the subsequent process, the non-etching area can be protected from being damaged by the etching gas by providing the hard mask layer 60 .
  • connection region 300 includes the first insulating layer 11 , the second insulating layer 12 , the third insulating layer 13 , the signal lines 26 , and the flat layer 14 sequentially covering the signal lines 26 , which are stacked on the flexible substrate 10 . , a thin film encapsulation layer 40 and a hard mask layer 60 .
  • the hollow area 300 includes a first insulating layer 11 , a second insulating layer 12 , a third insulating layer 13 , a flat layer 14 , a thin film encapsulation layer 40 and a hard mask layer 60 stacked on the flexible substrate 10 .
  • the film layer structure of the hollow region 300 is completely etched away by a dry etching process.
  • the flexible substrate 10 , the first insulating layer 11 , the second insulating layer 12 , the third insulating layer 13 , the flat layer 14 , the thin film encapsulation layer 40 and the hard mask layer 60 in the hollow area 300 are all etched away, as shown in FIG. 11 shown. After this process, the structure of the film layers in the island-shaped display area 100 and the connection area 200 does not change.
  • the flexible substrate body is prepared on the flexible substrate 10 .
  • the island-shaped display area 100 includes a flexible substrate 10 , and a driving structure layer, a light emitting structure layer, a thin film encapsulation layer 40 , a color filter layer and a hard mask layer 60 stacked on the flexible substrate 10 .
  • the hollow area 300 is an opening area penetrating the flexible substrate body.
  • the connection area 300 includes: a flexible substrate 10 , a first insulating layer 11 , a second insulating layer 12 , a third insulating layer 13 , a signal line 26 , and a flat layer 14 that sequentially covers the signal line 26 and are stacked on the flexible substrate 10 , thin film encapsulation layer 40 and hard mask layer 60 .
  • an optical adhesive (OCA, Optically Clear Adhesive) is coated on the flexible substrate 10 formed with the aforementioned pattern, a third adhesive layer 70 is formed, and a thickness adjusting material is coated on the third adhesive layer 70, A thickness adjustment layer (TAL, Thickness Adjusting Layer) 71 is formed, and then, a microlens layer 72 is prepared on the thickness adjustment layer 71 using an imprinting process, as shown in FIG. 12 .
  • the thickness adjustment layer 71 may be adhered on the hard mask layer 60 through the third adhesive layer 70 , and the microlens layer 72 is located on the thickness adjustment layer 71 .
  • the thickness adjustment layer 71 can be used as a carrier of the microlens layer 72 to carry the microlens layer 72 .
  • the orthographic projection of the thickness adjustment layer 71 on the glass carrier 1 includes the orthographic projection of the microlens layer 72 on the glass carrier 1 .
  • the orthographic projection of the thickness adjustment layer 71 on the glass carrier 1 may cover the island-shaped display area 100 , the connection area 200 and the hollow area 300 , and the orthographic projection of the microlens layer 72 on the glass carrier 1 is located in a plurality of island-shaped display areas 100 . Inside. However, this embodiment does not limit this.
  • the orthographic projection of the microlens layer on the glass carrier is located in a plurality of island-shaped display areas, the orthographic projection of the thickness adjustment layer on the glass carrier may cover the plurality of island-shaped display areas, and the connection area and the hollow area may be There is no overlap.
  • the thickness adjustment material may be a material with a higher elastic stretch rate, such as PDMS, SEBS, and Ecoflex.
  • Optical glue can choose acrylic resin material.
  • the microlens layer 72 can be made of an organic resin material.
  • the microlens layer 72 may include a plurality of microlenses 720 .
  • At least one microlens 720 may be a plano-convex lens.
  • the plano-convex lens includes a flat surface and a convex surface opposite to each other.
  • the flat surface of the plano-convex lens is adjacent to the thickness adjustment layer 71 , and the convex surface is far away from the thickness adjustment layer 71 .
  • this embodiment does not limit this.
  • at least one microlens may be a lenticular lens.
  • the plurality of microlenses of the microlens layer 72 may be of the same type, or partially the same, or all different.
  • one island-shaped display area 100 may correspond to one microlens 720 .
  • One island-shaped display area 100 only includes an orthographic projection of one microlens 720 on the flexible substrate 10 .
  • this embodiment does not limit this.
  • the orthographic projection of one microlens on the flexible substrate may only overlap one island-shaped display area, and the hollowed-out and connecting areas around the island-shaped display area.
  • the thickness adjustment layer 71 may include a plurality of thickness adjustment regions 710 , and the plurality of thickness adjustment regions 710 are in one-to-one correspondence with the plurality of microlenses 720 .
  • the orthographic projection of any thickness adjustment region 710 on the flexible substrate body includes the orthographic projection of the corresponding microlens 720 on the flexible substrate body.
  • the following relationship exists between the thickness of the microlens 720 and the corresponding thickness adjustment region 710: 1/f 1/h+1/L, where f represents the focal length of the microlens, h represents the thickness of the thickness adjustment region, and L represents the human The distance between the eye and the display substrate. Clear imaging can be achieved through the coordination of the thickness of the thickness adjustment layer and the focal length of the microlens.
  • the thicknesses of the plurality of thickness adjustment regions may be the same, or different, or partially the same. However, this embodiment does not limit this.
  • the plurality of microlenses 720 included in the microlens layer 72 correspond to the plurality of island-shaped display regions in one-to-one correspondence, and the types (eg, all plano-convex lenses) and sizes of the plurality of microlenses 720 are the same.
  • each island-shaped display area 100 ranges from 0.1 millimeter (mm) ⁇ 0.1 mm to 1.5 mm ⁇ 1.5 mm
  • the diameter D of the microlenses 720 corresponding to the island-shaped display area may range from about 0.1 mm to about 1.5 mm
  • the central thickness H of the microlens 720 may be about 10 ⁇ m to about 80 ⁇ m
  • the thickness h of the thickness adjustment layer may be in the range of about 3 mm to about 15 mm.
  • optical glue is coated on the flexible substrate 10 formed with the aforementioned pattern to form the first adhesive layer 80
  • a first protective film is coated on the first adhesive layer 80 to form the first protective layer 81 , as shown in Figure 13.
  • the first protective layer 81 is pasted on the microlens layer 72 through the first adhesive layer 80 to protect the microlens layer 72 .
  • the first protective film may be a material with high elastic stretch rate, such as PDMS, SEBS, Ecoflex, etc.
  • Optical glue can choose acrylic resin material.
  • the flexible substrate 10 is peeled off from the glass carrier 1 by a laser lift-off process, and then an optical adhesive is coated on the side of the flexible substrate 10 where the glass carrier 1 is peeled off to form the second adhesive layer 90, A second protective film is coated on the second adhesive layer 90 to form a second protective layer 91 , as shown in FIG. 2 .
  • the second protective layer 91 is pasted on the flexible substrate 10 through the second adhesive layer 90 to protect the flexible substrate 10 .
  • the second protective film may be a material with a higher elastic stretch rate, such as PDMS, SEBS, and Ecoflex.
  • Optical glue can choose acrylic resin material.
  • the structure of the display substrate and the manufacturing process of the display substrate in this embodiment are merely illustrative. In some exemplary embodiments, corresponding structures may be changed and patterning processes may be increased or decreased according to actual needs.
  • the driving structure layer may include two gate metal layers, the first gate metal layer may include the gate electrode of the thin film transistor and one electrode of the storage capacitor, and the second gate metal layer may include the other electrode of the storage capacitor.
  • a flexible substrate can be fabricated with hollow regions itself. The present disclosure is not limited herein.
  • FIG. 15 is an effect comparison diagram of a display substrate according to at least one embodiment of the disclosure.
  • Fig. 15(a) shows an example of the display effect of the display substrate without the thickness adjustment layer and the microlens layer
  • Fig. 15(b) shows an example of the display effect of the display substrate with the thickness adjustment layer and the microlens layer.
  • Figure 15(a) since only a plurality of island-shaped display areas can display images, the hollow areas and connection areas cannot display images, and the image displayed on the display substrate is an island-shaped mosaic image, which affects the display effect.
  • the images displayed in the plurality of island-shaped display areas can be enlarged in a certain proportion, so that the images observed by the human eye have no seams, or , greatly weaken the influence of seams and optimize the display effect.
  • the distance between the microlens and the light-emitting unit can be adjusted through the thickness adjustment layer, and the magnification ratio of the displayed image can be controlled in coordination with the focal length of the microlens.
  • FIG. 16 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • FIG. 16 is a schematic cross-sectional view along the P-P direction in FIG. 1 .
  • the display substrate of the present exemplary embodiment is a display substrate of a bottom emission structure.
  • at least one island-shaped display area 100 may include: a flexible substrate 10, a display structure layer, an encapsulation film layer 40, a second The adhesive layer 90 and the second protective layer 91, and the color filter layer, the hard mask layer 60, the third adhesive layer 70, the thickness adjustment layer 71, the microlens layer 72, the first The adhesive layer 80 and the first protective layer 81 .
  • the first side and the second side are opposite sides of the flexible substrate 10 .
  • the display structure layer of at least one island-shaped display area 100 includes: a driving structure layer and a light-emitting structure layer stacked on the flexible substrate 10 .
  • the driving structure layer includes a plurality of driving circuits, each of which includes a plurality of transistors, or includes a plurality of transistors and at least one storage capacitor, for example, it may be a 2T1C, 3T1C or 7T1C design.
  • the light emitting structure layer includes a plurality of light emitting elements. The plurality of driving circuits are connected to the plurality of light-emitting elements in one-to-one correspondence.
  • Each light-emitting element includes a first electrode 31 (eg, a transparent anode), an organic light-emitting layer 32 and a second electrode 33 (eg, a reflective cathode).
  • the color filter layer includes: a black matrix 51 disposed on the encapsulation film layer 40 , a plurality of filter units 52 located in the sub-pixel area defined by the black matrix 51 and corresponding to the plurality of light-emitting elements one-to-one, and covering the black matrix 51 and the filter protective layers 53 of the plurality of filter units 52 .
  • FIG. 16 only one transistor, one light-emitting element and one filter unit are used as examples for illustration.
  • the orthographic projection of the microlens layer 72 on the flexible substrate 10 is located within the orthographic projection of the thickness adjustment layer 71 on the flexible substrate 10 .
  • this embodiment does not limit this.
  • the orthographic projection of the microlens layer 72 on the flexible substrate 10 may coincide with the orthographic projection of the thickness adjustment layer 71 on the flexible substrate 10 .
  • At least one connection area 200 may include a flexible substrate 10 , an inorganic insulating layer disposed on the first side of the flexible substrate 10 , an inorganic insulating layer disposed on the inorganic a plurality of signal lines on the insulating layer (only one signal line 26 is shown in FIG. 16 ), the flat layer 14 covering the signal line 26 in sequence, the thin film encapsulation layer 40 , the second adhesive layer 90 and the second protective layer 91 , and The third adhesive layer 70 , the thickness adjustment layer 71 , the first adhesive layer 80 and the first protective layer 81 are sequentially disposed on the second side of the flexible substrate 10 .
  • the inorganic insulating layer may include: a first insulating layer 11 , a second insulating layer 12 and a third insulating layer 13 stacked on the flexible substrate 10 .
  • the flexible substrate 10 in the hollow area 300 is removed.
  • the hollow area 300 may include: a second adhesive layer 90 and a second protective layer 91 arranged on the first side of the flexible substrate 10 in sequence, and a third adhesive layer 70, a thickness adjustment layer 71, The first adhesive layer 80 and the first protective layer 81 .
  • FIG. 17 is still another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • the microlens layer may include a plurality of microlenses 720 .
  • An island-shaped display area 100 includes orthographic projections of at least two microlenses 720 (eg, four microlenses) on the display substrate body.
  • the plurality of microlenses 720 correspond to one island-shaped display area 100 .
  • FIG. 17 is still another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • the microlens layer may include a plurality of microlenses 720 .
  • An island-shaped display area 100 includes orthographic projections of at least two microlenses 720 (eg, four microlenses) on the display substrate body.
  • the plurality of microlenses 720 correspond to one island-shaped display area 100 .
  • each island-shaped display area 100 may be square, the orthographic projection of each microlens 720 on the display substrate body may be circular, and each microlens 720 may be on the display substrate body
  • the orthographic projection of ⁇ may cover at least one light-emitting unit in an island-shaped display area 100 , and there is no overlap between adjacent microlenses 720 .
  • FIG. 18 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • the microlens layer may include a plurality of microlenses 720 .
  • the orthographic projection of one microlens 720 on the display substrate body may intersect with a plurality of island-shaped display areas 100 (for example, four island-shaped display areas), and a plurality of connection areas 200 and hollow areas 300 around these island-shaped display areas. stack.
  • one microlens 720 corresponds to a plurality of island-shaped display areas 100 .
  • FIG. 18 is another schematic structural diagram of a display substrate according to at least one embodiment of the disclosure.
  • the microlens layer may include a plurality of microlenses 720 .
  • the orthographic projection of one microlens 720 on the display substrate body may intersect with a plurality of island-shaped display areas 100 (for example, four island-shaped display areas), and a plurality of connection areas 200 and hollow areas 300 around these island-shaped display areas. stack.
  • each island-shaped display area 100 may be square, the orthographic projection of each microlens 720 on the display substrate body may be circular, and each microlens 720 may be on the display substrate body
  • the orthographic projection of ⁇ may overlap with the four island-shaped display areas 100, and there is no overlap between adjacent microlenses.
  • the display images of the plurality of island-shaped display areas are enlarged by a certain ratio through a microlens, so that there is overlap between adjacent display images, and the overlapping of the display images of the plurality of island-shaped display areas is used to eliminate or Reduce the effect of seams and increase the resolution of stretchable display substrates to optimize display performance.
  • At least one embodiment of the present disclosure further provides a method for fabricating a display substrate, including: fabricating a flexible substrate body, the flexible substrate body comprising: a plurality of island-shaped display areas spaced apart from each other, disposed between adjacent island-shaped display areas The hollowed-out area between them and the connection area connecting the adjacent island-shaped display areas; a thickness adjustment layer is formed on the light-emitting side of the plurality of island-shaped display areas of the flexible substrate body; the thickness adjustment layer is far from the flexible substrate body.
  • a microlens layer is formed on one side.
  • the orthographic projection of the thickness adjustment layer on the flexible substrate body includes the orthographic projection of the microlens layer on the flexible substrate body, and the orthographic projection of the microlens layer on the flexible substrate body is the same as the orthographic projection of the microlens layer on the flexible substrate body.
  • the plurality of island-shaped display areas at least partially overlap.
  • the thickness adjustment layer and the microlens layer are configured to magnify an image displayed by the plurality of island-shaped display areas.
  • the preparation of the flexible substrate body includes: providing a flexible substrate; forming a display structure layer on the flexible substrate of the plurality of island-shaped display areas, the display structure layer including a plurality of light emitting units; A thin film encapsulation layer is formed on the side of the display structure layer away from the flexible substrate; a color filter layer is formed on the light-emitting side of the display structure layer in the plurality of island-shaped display areas, and the color filter layer includes: a black matrix and a a plurality of filter units defined by the black matrix and corresponding to the plurality of light-emitting units one-to-one; a hard mask layer is formed on the side of the color filter layer away from the flexible substrate.
  • the preparation method further includes: sequentially forming a first adhesive layer and a first protective layer on a side of the microlens layer away from the flexible substrate body; A second adhesive layer and a second protective layer are sequentially formed on one side of the microlens layer.
  • FIG. 19 is a schematic diagram of a display device according to at least one embodiment of the disclosure.
  • this embodiment provides a display device 900 including: a display substrate 910 .
  • the display substrate 910 is the display substrate provided in the foregoing embodiments.
  • the display substrate 910 may be an OLED display substrate.
  • the display device 900 may be: OLED display device, mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame, navigator, vehicle display, watch, wristband, etc. any product or component with display function. However, this embodiment does not limit this.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板(910),包括:柔性基板本体、厚度调节层(71)以及微透镜层(72)。柔性基板本体,包括:彼此隔开的多个岛状显示区域(100)、设置在相邻岛状显示区域(100)之间的镂空区域(300)以及连接相邻岛状显示区域(100)的连接区域(200)。厚度调节层(71)设置在柔性基板本体的多个岛状显示区域(100)的出光侧。微透镜层(72)设置在厚度调节层(71)远离柔性基板本体的一侧。厚度调节层(71)在柔性基板本体上的正投影包含微透镜层(72)在柔性基板本体上的正投影;微透镜层(72)在柔性基板本体上的正投影与多个岛状显示区域(100)至少部分交叠。厚度调节层(71)和微透镜层(72)配置为放大多个岛状显示区域(100)显示的图像。

Description

显示基板及其制备方法、显示装置
本申请要求于2020年7月24日提交中国专利局、申请号为202010727526.5、发明名称为“显示基板及其制备方法、显示装置”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开涉及但不限于显示技术领域,尤指一种显示基板及其制备方法、显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)为主动发光显示器件,具有自发光、超轻薄、响应速度快、视角宽、功耗低等优点。随着OLED显示技术的不断发展,采用OLED显示技术的显示产品已经由目前的弯曲产品形态逐渐发展为可折叠、甚至可拉伸产品形态。目前的可拉伸OLED显示方案中,显示产品包括刚性显示区域和连接刚性显示区域的弹性导线区,刚性显示区域不承受拉伸变形量,连接刚性显示区域的弹性导线区能够承受一定的变形,从而实现整个显示产品的拉伸化。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供一种显示基板及其制备方法、显示装置。
一方面,本公开提供一种显示基板,包括:柔性基板本体、厚度调节层和微透镜层。柔性基板本体包括:彼此隔开的多个岛状显示区域、设置在相邻岛状显示区域之间的镂空区域以及连接相邻岛状显示区域的连接区域。厚度调节层设置在所述柔性基板本体的多个岛状显示区域的出光侧。微透镜层设置在所述厚度调节层远离所述柔性基板本体的一侧。所述厚度调节层在所 述柔性基板本体上的正投影包含所述微透镜层在所述柔性基板本体上的正投影,所述微透镜层在所述柔性基板本体上的正投影与所述多个岛状显示区域至少部分交叠。所述厚度调节层和所述微透镜层配置为放大所述多个岛状显示区域显示的图像。
另一方面,本公开提供一种显示装置,包括如上所述的显示基板。
另一方面,本公开提供一种显示基板的制备方法,包括:制备柔性基板本体,所述柔性基板本体包括:彼此隔开的多个岛状显示区域、设置在相邻岛状显示区域之间的镂空区域以及连接相邻岛状显示区域的连接区域;在所述柔性基板本体的多个岛状显示区域的出光侧形成厚度调节层;在所述厚度调节层远离所述柔性基板本体的一侧形成微透镜层。其中,所述厚度调节层在所述柔性基板本体上的正投影包含所述微透镜层在所述柔性基板本体上的正投影,所述微透镜层在所述柔性基板本体上的正投影与所述多个岛状显示区域至少部分交叠。所述厚度调节层和所述微透镜层配置为放大所述多个岛状显示区域显示的图像。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开至少一实施例的显示基板的结构示意图;
图2为图1中沿P-P方向的剖面示意图;
图3为本公开至少一实施例中形成柔性基底后的显示基板的示意图;
图4为本公开至少一实施例中形成驱动结构层后的显示基板的示意图;
图5为本公开至少一实施例中形成平坦层后的显示基板的示意图;
图6为本公开至少一实施例中形成第一电极层后的显示基板的示意图;
图7为本公开至少一实施例中形成像素定义层后的显示基板的示意图;
图8为本公开至少一实施例中形成第二电极后的显示基板的示意图;
图9为本公开至少一实施例中形成薄膜封装层后的显示基板的示意图;
图10为本公开至少一实施例中形成硬掩模版层后的显示基板的示意图;
图11为本公开至少一实施例中刻蚀掉镂空区域的膜层结构后的显示基板的示意图;
图12为本公开至少一实施例中形成微透镜层后的显示基板的示意图;
图13为本公开至少一实施例中形成第一保护层后的显示基板的示意图;
图14为本公开至少一实施例的厚度调节层和微透镜层的微透镜的尺寸示意图;
图15包括图15(a)和图15(b),为显示基板的显示效果的对比图;
图16为本公开至少一实施例的显示基板的另一结构示意图;
图17为本公开至少一实施例的显示基板的再一结构示意图;
图18为本公开至少一实施例的显示基板的又一结构示意图;
图19为本公开至少一实施例的显示装置的示意图。
具体实施方式
本公开描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说显而易见的是,在本公开所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在实施方式中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
本公开包括并设想了与本领域普通技术人员已知的特征和元件的组合。本公开已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的独特的方案。任何实施例的任何特征或元件也可以与来自其它方案的特征或元件组合,以形成另一个由权利要求限定的独特的 方案。因此,应当理解,在本公开中示出或讨论的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行一种或多种修改和改变。
此外,在描述具有代表性的实施例时,说明书可能已经将方法或过程呈现为特定的步骤序列。然而,在该方法或过程不依赖于本文所述步骤的特定顺序的程度上,该方法或过程不应限于所述的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序也是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本公开实施例的精神和范围内。
在附图中,有时为了明确起见,夸大表示了构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中每个部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
除非另外定义,本公开使用的技术术语或科学术语为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。本公开中,“多个”可以表示两个或两个以上的数目。“包括”或者“包含”等类似的词语意指出现该词前面的元件或物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“耦接”、“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“电性的连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且可以包括晶体管等开关元件、电阻器、电感器、电容器、其它具有一种或多种功能的元件等。
在本公开中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端 子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。在本公开中,沟道区域是指电流主要流过的区域。
在本公开中,可以是第一极为漏电极、第二极为源电极,或者可以是第一极为源电极、第二极为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本公开中,“源电极”和“漏电极”可以互相调换。
在本公开中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,可以包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,可以包括85°以上且95°以下的角度的状态。
在本公开中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
在本公开中,“可拉伸”是指材料、结构、装置或装置组件承受拉力变形(例如,变长、或变宽、或变长和变宽)而不会产生永久变形或者诸如破裂之类故障的能力,例如,伸长长度的至少10%而不会永久变形、裂开或断开的能力。“可拉伸”也旨在包含以如下方式构造的、具有组件(无论这些组件本身是否可以单独地如上所述地拉伸)的基板:容纳可拉伸、可膨胀、或可展开的表面,并且当应用于拉伸了、膨胀了、或展开了的可拉伸、可膨胀、或可展开的表面时,保持功能。“可拉伸”还旨在包含可以弹性地或可塑地变形的基板(即,在被拉伸之后,该基板在解除了拉伸力时可变回原始尺寸,或者该基板可不变回原始尺寸并在一些示例中可保持在拉伸形态),并且可以在基板的制造期间、在具有基板的装置的组装(可被认为是制造操作的一部分)期间或使用(例如,用户能够拉伸以及可选地弯曲基板)期间产生变形(例如,拉伸以及可选地弯曲)。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了部分已知功能和已知部件的详细说明。本公开实施例附图只涉及到与本公开实施例涉 及到的结构,其他结构可参考通常设计。
一种柔性显示基板,包括:柔性基底,柔性基底上设置有彼此隔开的多个岛状显示区域、设置在相邻岛状显示区域之间的镂空区域以及连接相邻岛状显示区域的柔性连接单元。岛状显示区域和柔性连接单元下方的柔性基底保留,镂空区域的柔性基底被去除。岛状显示区域设置有多个发光单元。上述柔性显示基板中只有岛状显示区域能够显示图像,而镂空区域和柔性连接单元无法显示图像,因此,柔性显示基板所显示的画面效果为岛状拼接图像,在镂空区域和柔性连接单元有拼接缝,会影响显示效果。
本公开至少一实施例提供一种显示基板,包括:柔性基板本体、厚度调节层以及微透镜层。柔性基板本体包括:彼此隔开的多个岛状显示区域、设置在相邻岛状显示区域之间的镂空区域以及连接相邻岛状显示区域的连接区域。厚度调节层设置在柔性基板本体的多个岛状显示区域的出光侧。微透镜层设置在厚度调节层远离柔性基板本体的一侧。厚度调节层在柔性基板本体上的正投影包含微透镜层在柔性基板本体上的正投影,微透镜层在柔性基板本体上的正投影与多个岛状显示区域至少部分交叠。厚度调节层和微透镜层配置为放大多个岛状显示区域显示的图像。
本实施例通过设置厚度调节层和微透镜层,使得多个岛状显示区域显示的图像通过厚度调节层和微透镜层后按照一定比例放大,从而使得人眼观察到的显示图像没有拼接缝,或者大幅弱化拼接缝对显示图像的影响,进而优化显示效果。
在一些示例性实施方式中,微透镜层包括多个微透镜。在一些示例中,多个微透镜的类型可以包括以下至少之一:平凸透镜、双凸透镜。例如,微透镜层的多个微透镜均为平凸透镜,或者,微透镜层的多个微透镜均为双凸透镜,或者,微透镜层的一部分微透镜为平凸透镜,另一部分微透镜为双凸透镜。然而,本实施例对此并不限定。
在一些示例中,一个岛状显示区域所显示图像的放大倍数可以根据该岛状显示区域对应的微透镜的焦距来确定。例如,根据凸透镜呈虚像原理,放大倍数可以为L/f至1+L/f之间,其中,L表示人眼与显示基板之间的距离,f表示微透镜的焦距。以包括本实施例的显示基板的手机产品为例,当微透 镜层的多个微透镜的类型和参数均相同,且人眼观察手机产品的距离为最小明视距离25厘米(cm)时,显示图像的放大倍数为25/f至1+25/f之间,f为微透镜层的微透镜的焦距。
在一些示例中,平凸透镜的焦距可以根据以下式子确定:
Figure PCTCN2021099444-appb-000001
其中,r表示平凸透镜的球面半径,n表示透镜折射率。例如,n=1/5,则f =2r,即球面半径越大,透镜焦距越大。
在一些示例中,双凸透镜的焦距可以根据以下式子确定:
Figure PCTCN2021099444-appb-000002
其中,r 1表示双凸透镜的第一球面半径,r 2表示双凸透镜的第二球面半径,n表示透镜折射率。
在一些示例性实施方式中,多个微透镜中的至少一个微透镜在柔性基板本体上的正投影与多个岛状显示区域中的一个岛状显示区域至少部分交叠。换言之,多个岛状显示区域中的任一个岛状显示区域与至少一个微透镜在柔性基板本体上的正投影至少部分交叠。即,微透镜与岛状显示区域之间为一对一或多对一的对应关系。在一些示例中,多个微透镜中的任一个微透镜在柔性基板本体上的正投影与多个岛状显示区域中的一个岛状显示区域至少部分交叠,且不同的微透镜在柔性基板本体上的正投影与不同的岛状显示区域至少部分交叠。即,多个微透镜和多个岛状显示区域一一对应。或者,在一些示例中,多个微透镜中的至少两个相邻的微透镜在柔性基板本体上的正投影与多个岛状显示区域中的同一个岛状显示区域至少部分交叠。即,至少两个微透镜与一个岛状显示区域对应。或者,在一些示例中,第一数目的微透镜与第一数目的岛状显示区域一一对应,且第二数目的微透镜与第三数目的岛状显示区域为多对一的对应关系,第一数目和第二数目之和为微透镜的总数,第一数目和第三数目之和为岛状显示区域的总数。然而,本实施例对此并不限定。
在一些示例中,多个微透镜中的任一个微透镜在柔性基板本体上的正投 影位于一个岛状显示区域内,且不同的微透镜在柔性基板本体上的正投影与不同的岛状显示区域交叠。即,多个微透镜与多个岛状显示区域一一对应,且每个微透镜在柔性基板本体上的正投影位于对应的岛状显示区域内。然而,本实施例对此并不限定。例如,多个微透镜与多个岛状显示区域可以一一对应,且每个微透镜在柔性基板本体上的正投影可以与对应的岛状显示区域部分交叠,比如,每个微透镜在柔性基板本体上的正投影可以与对应的岛状显示区域、该岛状显示区域周边的至少一个镂空区域和至少一个连接区域均至少部分交叠。
在一些示例中,多个微透镜中的至少两个相邻的微透镜在柔性基板本体上的正投影位于同一个岛状显示区域内。即,至少两个微透镜与一个岛状显示区域对应,且至少两个微透镜在柔性基板本体上的正投影位于对应的岛状显示区域内。然而,本实施例对此并不限定。例如,多个微透镜中的至少两个相邻的微透镜在柔性基板本体上的正投影可以与同一个岛状显示区域、该岛状显示区域周边的至少一个镂空区域和至少一个连接区域均至少部分交叠。
在一些示例性实施方式中,多个微透镜中的任一个微透镜在柔性基板本体上的正投影与多个岛状显示区域中的至少两个相邻的岛状显示区域至少部分交叠。换言之,同一个微透镜与至少两个岛状显示区域对应。例如,一个微透镜在柔性基板本体上的正投影与四个相邻的岛状显示区域、所述四个相邻的岛状显示区域周边的至少一个镂空区域和至少一个连接区域至少部分交叠。
在一些示例中,当多个微透镜与多个岛状显示区域一一对应,微透镜层的多个微透镜的类型可以相同(例如,均为平凸透镜或均为双凸透镜),或者均不同,或部分相同。相同类型的多个微透镜的尺寸(例如,球面半径)可以不同,或部分相同,或完全相同。然而,本实施例对此并不限定。
在一些示例中,当至少两个相邻的微透镜与同一个岛状显示区域对应,则对应同一个岛状显示区域的至少两个微透镜的类型(例如,均为平凸透镜或双凸透镜)和尺寸(例如,球面半径)可以相同,与不同岛状显示区域对应的微透镜的类型可以相同或不同。当不同岛状显示区域对应的微透镜的类型相同,则对应同一个岛状显示区域的至少两个微透镜的尺寸(例如,球面 半径)相同,与不同岛状显示区域对应的微透镜的尺寸可以相同,或不同。例如,一个岛状显示区域对应的多个微透镜均为平凸透镜,且球面半径为第一数值,另一个岛状显示区域对应的多个微透镜均为平凸透镜,且球面半径为第二数值,第一数值不同于第二数值。然而,本实施例对此并不限定。
在一些示例中,当多个微透镜中的任一个微透镜与至少两个相邻的岛状显示区域对应,则多个微透镜的类型可以相同,或不同,或部分相同。相同类型的多个微透镜的尺寸(例如,球面半径)可以不同,或部分相同,或完全相同。然而,本实施例对此并不限定。
在一些示例性实施方式中,厚度调节层可以包括多个厚度调节区域,多个厚度调节区域与多个微透镜一一对应。任一个厚度调节区域在柔性基板本体上的正投影包含对应的微透镜在柔性基板本体上的正投影。针对微透镜层的任一个微透镜,所述微透镜与对应的厚度调节区域的厚度之间存在以下关系:1/f=1/h+1/L,其中,f表示所述微透镜的焦距,h表示所述厚度调节区域的厚度,L表示人眼与显示基板之间的距离。
在本公开中,“厚度”指垂直于柔性基底的平面方向上,远离柔性基底的表面距离靠近柔性基底表面的高度。
在一些示例性实施方式中,厚度调节层可以采用可拉伸材质,例如,聚二甲基硅氧烷(PDMS,polydimethylsiloxane)、氢化苯乙烯-丁二烯嵌段共聚物(SEBS,Styrene Ethylene Butylene Styrene)、Ecoflex等弹性拉伸率较高的材料。在本示例性实施方式中,厚度调节层采用可拉伸材料,可以确保在一定拉伸量下仍能实现显示图像优化。
在一些示例性实施方式中,至少一个岛状显示区域包括:柔性基底、设置在柔性基底上的显示结构层、以及设置在显示结构层的出光侧的彩色滤光层。显示结构层包括多个发光单元;彩色滤光层包括:黑矩阵以及位于黑矩阵限定的子像素区域内与多个发光单元一一对应的多个滤光单元。
在一些示例性实施方式中,显示结构层、彩色滤光层、厚度调节层和微透镜层设置在柔性基底的同一侧;或者,显示结构层设置在柔性基底的一侧,彩色滤光层、厚度调节层和微透镜层设置在柔性基底的另一侧。换言之,显示基板可以为顶发射结构,或者底发射结构。然而,本实施例对此并不限定。
在一些示例性实施方式中,多个岛状显示区域还可以包括:薄膜封装层,设置在显示结构层远离柔性基底的一侧。通过设置薄膜封装层,可以保护发光单元免受水氧侵蚀。
在一些示例性实施方式中,多个岛状显示区域还可以包括:硬掩模版层,设置在彩色滤光层远离柔性基底的一侧。通过设置硬掩模版层,可以在刻蚀镂空区域的膜层结构时,避免非镂空区域(即岛状显示区域和连接区域)受到刻蚀气体的损伤。
在一些示例性实施方式中,显示基板还可以包括:依次设置在微透镜层远离柔性基板本体一侧的第一粘着层和第一保护层,以及依次设置在柔性基板本体远离微透镜层一侧的第二粘着层和第二保护层。通过第一保护层和第二保护层,可以对显示基板的顶面和底面进行保护。
图1为本公开至少一实施例的显示基板的结构示意图。图1所示的显示基板例如处于拉伸状态下。如图1所示,在平行于显示基板的平面上,本实施例的显示基板本体包括:彼此隔开的多个岛状显示区域100、设置在相邻岛状显示区域100之间的镂空区域300以及连接相邻岛状显示区域100的连接区域200。每个岛状显示区域100配置为进行图像显示,每个镂空区域300配置为在显示基板拉伸时提供变形空间,每个连接区域200配置为设置信号线并传递拉力。每个岛状显示区域100可以包括一个或多个像素单元,每个像素单元可以包括三个出射不同颜色的发光单元(例如,红绿蓝三种颜色的发光单元),或四个出射不同颜色的发光单元(例如,红绿蓝白四种颜色的发光单元)。每个发光单元可以包括发光元件以及配置为驱动发光元件发光的驱动电路。
在一些示例性实施方式中,如图1所示,在平行于显示基板的平面上,多个连接区域200可以将多个岛状显示区域100互相连接。例如,多个岛状显示区域100中的每个岛状显示区域100可以是矩形,且每个岛状显示区域100连接有四个连接区域200,连接至一个岛状显示区域100的四个连接区域200可以在不同的方向上延伸,以分别连接至围绕该岛状显示区域100的四个其他岛状显示区域100。然而,本实施例对此并不限定。在一些示例中,多个岛状显示区域中的每个岛状显示区域可以是正多边形或其他不规则形状。 或者,在一些示例中,多个岛状显示区域的形状可以不相同。
在一些示例性实施方式中,在平行于显示基板的平面上,在显示基板处于未拉伸状态下,镂空区域可以为L型,或者多个L型相连的形状,例如工字型、T型等形状。镂空区域的宽度可以为10微米(μm)至500μm。连接区域可以为L形,或者多个L形相连的形状,如T型、
Figure PCTCN2021099444-appb-000003
型等形状。连接区域的宽度可以为10微米(μm)至500μm。然而,本实施例对此并不限定。
在一些示例性实施方式中,如图1所示,在平行于显示基板的平面上,微透镜层可以包括多个微透镜720。一个岛状显示区域100仅包括一个微透镜720在显示基板本体上的正投影。换言之,多个微透镜720与多个岛状显示区域100之间为一一对应关系。在一些示例中,如图1所示,每个岛状显示区域100可以呈正方形,每个微透镜720在显示基板本体上的正投影可以为圆形,且一个微透镜720在显示基板本体上的正投影的圆心可以与对应的一个岛状显示区域100的中心重合。例如,一个岛状显示区域100对应的微透镜720在显示基板本体上的正投影为该岛状显示区域100的内切圆。在一些示例中,任一个岛状显示区域的尺寸范围可以为0.1毫米(mm)×0.1mm至1.5mm×1.5mm,则该岛状显示区域对应的微透镜的直径范围可以为0.1mm至1.5mm。然而,本实施例对此并不限定。在一些示例中,岛状显示区域可以为长方形,该岛状显示区域对应的微透镜在显示基板本体上的正投影可以为位于该岛状显示区域内的椭圆形。或者,在一些示例中,一个岛状显示区域对应的微透镜在显示基板本体上的正投影可以与该岛状显示区域部分交叠。例如,一个岛状显示区域为正方形,该岛状显示区域对应的微透镜在显示基板本体上的正投影可以为椭圆形。其中,该岛状显示区域对应的微透镜在显示基板本体上的正投影可以与该岛状显示区域、该岛状显示区域周边的镂空区域和连接区域均部分交叠。
在一些示例性实施方式中,如图2所示,在垂直于显示基板的平面上,岛状显示区域100可以包括:柔性基底10,依次设置在柔性基底10上的显示结构层、薄膜封装层40、彩色滤光层、硬掩模版层60、第三粘着层70、厚度调节层71、微透镜层72、第一粘着层80和第一保护层81,以及设置在柔性基底10远离显示结构层一侧的第二粘着层90和第二保护层91。岛状显 示区域100的显示结构层包括:在柔性基底10上叠设的驱动结构层和发光结构层。驱动结构层包括多个驱动电路,每个驱动电路包括多个晶体管,或者包括多个晶体管和至少一个存储电容,例如,可以是2T1C、3T1C或7T1C设计。发光结构层包括多个发光元件。多个驱动电路与多个发光元件一一对应连接。每个发光元件包括第一电极(例如,反射阳极)、有机发光层和第二电极(例如,透明阴极)。彩色滤光层包括:设置在薄膜封装层40上的黑矩阵51、位于黑矩阵51限定的子像素区域内并与多个发光元件一一对应的多个滤光单元52、以及覆盖黑矩阵51和多个滤光单元52的滤光保护层53。在图2中仅以一个晶体管、一个发光元件和一个滤光单元为例进行示意。微透镜层72在柔性基底10上的正投影位于厚度调节层71在柔性基底10上的正投影内。然而,本实施例对此并不限定。在一些示例中,微透镜层72在柔性基底10上的正投影可以与厚度调节层71在柔性基底10上的正投影重合。
在一些示例性实施方式中,如图2所示,在垂直于显示基板的平面上,连接区域200可以包括柔性基底10,设置在柔性基底10上的无机绝缘层、设置在无机绝缘层上的多条信号线(图2中仅以一条信号线26作为示意)、依次覆盖信号线26的平坦层14、薄膜封装层40、硬掩模版层60、第三粘着层70、厚度调节层71、第一粘着层80和第一保护层81,以及设置在柔性基底10远离显示结构层一侧的第二粘着层90和第二保护层91。无机绝缘层可以包括:叠设在柔性基底10上的第一绝缘层11、第二绝缘层12和第三绝缘层13。连接区域200的多条信号线配置为实现相邻岛状显示区域100之间的信号连通,例如,将信号传输至多个岛状显示区域中的一个岛状显示区域100中,或者,从多个岛状显示区域中的一个岛状显示区域100传输出信号。相邻岛状显示区域之间的信号连通是指一个岛状显示区域中的发光单元与相邻的另一个岛状显示区域中的发光单元之间的信号连通。多条信号线例如可以包括:连接相邻岛状显示区域中的栅线的连接线、连接相邻岛状显示区域中的数据线的连接线、电源信号的连接线。在一些示例中,多条信号线可以是多条柔性信号线。
在一些示例性实施方式中,如图2所示,在垂直于显示基板的平面上,每个镂空区域300内的柔性基底10被去掉。每个镂空区域300可以包括:依 次设置在显示结构层远离柔性基底10一侧的第三粘着层70、厚度调节层71、第一粘着层80和第一保护层81,以及依次设置在柔性基底10远离显示结构层一侧的第二粘着层90和第二保护层91。镂空区域300通过去掉柔性基底10、显示结构层和彩色滤光层,可以在显示基板拉伸时提供变形空间,实现可拉伸的显示基板。
下面参照图2至图13通过本实施例的显示基板的制备过程的示例说明本实施例的技术方案。图2至图13的结构示意图均为图1中P-P方向的剖视图。本实施例中所说的“构图工艺”包括沉积膜层、涂覆光刻胶、掩模曝光、显影、刻蚀和剥离光刻胶等处理。沉积可以采用选自溅射、蒸镀、化学气相沉积中的任意一种或多种,涂覆可以采用选自喷涂和旋涂中的任意一种或多种,刻蚀可以采用选自干刻和湿刻中的任意一种或多种。“薄膜”是指将某一种材料在基底上利用沉积或涂覆工艺制作出的一层薄膜。若在整个制作过程当中该“薄膜”无需构图工艺或光刻工艺,则该“薄膜”还可以称为“层”。若在整个制作过程当中该“薄膜”还需构图工艺或光刻工艺,则在构图工艺前称为“薄膜”,构图工艺后称为“层”。经过构图工艺或光刻工艺后的“层”中包含至少一个“图案”。
本公开中所说的“A和B同层设置”是指,A和B通过同一次构图工艺同时形成。“相同层”不总是意味着层的厚度或层的高度在截面图中是相同的。“A的正投影包含B的正投影”是指,B的正投影落入A的正投影范围内,或者A的正投影覆盖B的正投影。
本实施例的显示基板的制备过程包括以下步骤(1)至步骤(12)。
(1)、在玻璃载板上制备柔性基底。在一些示例性实施方式中,在玻璃载板1上涂布柔性材料,固化成膜,形成柔性基底10。在一些示例中,柔性基底10的厚度范围可以为5微米(μm)至30μm。在一些示例中,柔性材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料。
在本次工艺之后,岛状显示区域100、镂空区域300和连接区域200均包括柔性基底10,如图3所示。
(2)、在柔性基底上制备驱动结构层。岛状显示区域100的驱动结构层 包括多个驱动电路。每个驱动电路包括多个晶体管,或者包括多个晶体管和至少一个存储电容,例如可以是2T1C、3T1C或7T1C设计。
在一些示例性实施方式中,驱动结构层的制备过程可以参照以下说明。图4仅以岛状显示区域100的一个驱动电路的一个薄膜晶体管(Thin Film Transistor,TFT)为例进行示意。
在柔性基底10上依次沉积第一绝缘薄膜和有源层薄膜,通过构图工艺对有源层薄膜进行构图,形成覆盖整个柔性基底10的第一绝缘层11,以及设置在第一绝缘层11上的有源层图案,有源层至少包括第一有源层21。
随后,依次沉积第二绝缘薄膜和第一金属薄膜,通过构图工艺对第一金属薄膜进行构图,形成覆盖有源层图案的第二绝缘层12,以及设置在第二绝缘层12上的栅金属层图案,栅金属层至少包括第一栅电极22。
随后,沉积第三绝缘薄膜,通过构图工艺对第三绝缘薄膜进行构图,形成覆盖栅金属层的第三绝缘层13图案,第三绝缘层13上开设有至少两个第一过孔,两个第一过孔内的第三绝缘层13和第二绝缘层12被刻蚀掉,暴露出第一有源层21的表面。
随后,沉积第二金属薄膜,通过构图工艺对第二金属薄膜进行构图,在第三绝缘层13上形成源漏金属层图案,源漏金属层至少包括位于岛状显示区域100的第一源电极23和第一漏电极24、以及位于连接区域200的信号线26。第一源电极23和第一漏电极24可以通过第一过孔与第一有源层21连接。连接区域200的信号线26可以配置为实现相邻岛状显示区域100之间的信号连通。在一些示例中,信号线26可以为连接相邻岛状显示区域100中的栅线的连接线、或者连接相邻岛状显示区域区100中的数据线的连接线、或者电源信号的连接线。然而,本实施例对此并不限定。在一些示例中,设置在连接区域200内配置为连接相邻岛状显示区域100中的栅线的连接线可以与第一栅电极22同层设置。
至此,在柔性基底10上制备完成多个岛状显示区域100的驱动结构层。如图4所示,在一个岛状显示区域100的驱动结构层中,第一有源层21、栅电极22、第一源电极23和第一漏电极24可以组成第一薄膜晶体管。
在本次工艺之后,连接区域200包括叠设在柔性基底10上的第一绝缘层 11、第二绝缘层12、第三绝缘层13和信号线26。镂空区域300包括叠设在柔性基底10上的第一绝缘层11、第二绝缘层12和第三绝缘层13。
在一些示例性实施方式中,第一绝缘层11、第二绝缘层12和第三绝缘层13采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或多种,可以是单层、多层或复合层。第一绝缘层11称之为缓冲(Buffer)层,用于提高柔性基底10的抗水氧能力;第二绝缘层12称之为栅绝缘(GI,Gate Insulator)层;第三绝缘层13称之为层间介质(ILD,Inter Layer Dielectric)层。第一金属薄膜和第二金属薄膜采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。有源层薄膜采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩、聚噻吩等一种或多种材料,即本公开适用于基于氧化物(Oxide)技术、硅技术以及有机物技术制造的晶体管。
(3)、在形成前述图案的柔性基底上形成平坦层。
在一些示例性实施方式中,在形成前述图案的柔性基底10上涂覆有机材料的平坦薄膜,形成覆盖整个柔性基底10的平坦层14,并通过掩膜、曝光、显影工艺在岛状显示区域100的平坦层14上形成多个第二过孔。如图5所示,图5中仅以一个第二过孔K2为例进行示意。第二过孔K2内的平坦层14被显影掉,暴露出第一薄膜晶体管的第一漏电极24的表面。
在本次构图工艺之后,连接区域200包括叠设在柔性基底10上的第一绝缘层11、第二绝缘层12、第三绝缘层13、信号线26以及覆盖信号线26的平坦层14。镂空区域300包括叠设在柔性基底10上的第一绝缘层11、第二绝缘层12、第三绝缘层13和平坦层14。
(4)、在形成前述图案的柔性基底上形成第一电极层。
在一些示例性实施方式中,在形成前述图案的柔性基底10上沉积导电薄膜,通过构图工艺对导电薄膜进行构图,形成第一电极层图案。第一电极层形成在岛状显示区域100的平坦层14上。第一电极层包括多个阳极(Anode)。如图6所示,图6中仅以一个阳极31为例进行示意。阳极31通过第二过孔 K2与第一薄膜晶体管的第一漏电极24连接。
在一些示例性实施方式中,第一电极层的多个阳极可以为反射阳极。第一电极层可以包括:第一透光导电层、位于第一透光导电层的反射层以及位于反射层上的第二透光导电层。第一透光导电层和第二透光导电层可以采用氧化铟锡(ITO,Indium Tin Oxide)或氧化铟锌(IZO,Indium Zinc Oxide)等透光导电材料。反射层可以是金属层,例如,采用银材质制成。然而,本实施例对此并不限定。在一些示例中,导电薄膜可以采用金属材料,如镁(Mg)、银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。
在本次构图工艺之后,连接区域200和镂空区域300的膜层结构没有变化。
(5)、在形成前述图案的柔性基底上,形成像素定义层(PDL,Pixel Definition Layer)。
在一些示例性实施方式中,在形成前述图案的柔性基底10上涂覆像素定义薄膜,通过掩模、曝光、显影工艺形成像素定义层34图案。如图7所示,像素定义层34形成在岛状显示区域100。像素定义层34上开设有多个子像素开口。图7中仅以一个子像素开口K3为例进行示意。子像素开口K3内的像素定义层34被显影掉,暴露出阳极31的表面。
在一些示例中,像素定义层34可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等材料。
在本次工艺之后,连接区域200和镂空区域300的膜层结构没有变化。
(6)、在形成前述图案的柔性基底上,依次形成有机发光层和第二电极。
在一些示例性实施方式中,可以采用蒸镀或喷墨打印等方式在岛状显示区域100的像素定义层17的子像素开口K3内形成有机发光层32,实现有机发光层32与阳极31连接,然后,采用蒸镀方式在像素定义层34和有机发光层32上形成第二电极33,第二电极33与有机发光层32连接,如图8所示。有机发光层32可以包括发光层(EML,Emitting Layer)。在一些示例中, 有机发光层可以包括叠设的空穴注入层、空穴传输层、发光层、电子传输层和电子注入层,以提高电子和空穴注入发光层的效率。
在一些示例中,第二电极34为透明阴极(Cathode),例如可以采用ITO或IZO等透光导电材料。发光元件可以通过透明阴极从远离柔性基底10的一侧出光,实现顶发射。
在本次工艺之后,连接区域200和镂空区域300的膜层结构没有变化。
(7)、在形成前述图案的柔性基底上形成薄膜封装(TFE,Thin-Film Encapsulation)层。
在一些示例性实施方式中,在形成前述图案的柔性基底10上涂覆封装薄膜,封装薄膜覆盖整个柔性基底10,形成薄膜封装层40图案,如图9所示。在一些示例中,封装薄膜可以为无机有机叠层结构,如无机/有机/无机的三层结构,或无机/有机/无机/有机/无机的五层结构,无机材料可以采用氧化硅、氧化铝、氮化硅或氮氧化硅等,有机材料可以采用基于PET的柔性高分子材料,具有良好的封装效果,可以有效阻止水氧进入有机发光层,而且具有柔性变形特点,可以实现显示基板的拉伸变形。
在本次工艺之后,连接区域200包括叠设在柔性基底10上的第一绝缘层11、第二绝缘层12、第三绝缘层13、信号线26、依次覆盖信号线26的平坦层14以及薄膜封装层40。镂空区域300包括叠设在柔性基底10上的第一绝缘层11、第二绝缘层12、第三绝缘层13、平坦层14以及薄膜封装层40。
(8)、在形成前述图案的柔性基底上形成彩色滤光层和硬掩模版(Hard Mask)层。
在一些示例性实施方式中,在形成前述图案的柔性基底10上涂覆黑色颜料或沉积黑铬(Cr)薄膜,通过构图工艺对黑色颜料或黑铬薄膜进行构图,形成黑矩阵51图案,然后,在黑矩阵51限定出的子像素区域内依次形成不同颜色的滤光单元52,然后,在岛状显示区域100涂覆有机材料,形成覆盖滤光单元52和黑矩阵51的滤光保护(OC,Over Coat)层53,如图10所示。图10中仅以一个滤光单元52为例进行示意。彩色滤光层包括:黑矩阵51、设置在由黑矩阵51限定出的子像素区域内且与多个发光单元一一对应的多个滤光单元52以及覆盖黑矩阵51和滤光单元52的滤光保护层53。彩色滤 光层形成在岛状显示区域100。每个滤光单元52的颜色与在垂直于显示基板的方向上相交叠的发光元件的出光颜色相同。在一些示例中,彩色滤光层可以包括周期性排布的红色滤光单元、绿色滤光单元和蓝色滤光单元,红色滤光单元与红色发光单元一一对应,绿色滤光单元与绿色发光单元一一对应,蓝色滤光单元与蓝色发光单元一一对应。以形成红色滤光单元为例,可以先在已形成黑矩阵的薄膜封装层上涂覆红色树脂,经烘烤固化后,通过掩模、曝光、显影,形成红色滤光单元。绿色滤光单元和蓝色滤光单元的形成过程类似,故于此不再赘述。
在一些示例性实施方式中,形成彩色滤光层所使用的材料可以为低温固化材料,且固化温度小于100度,以避免影响有机发光层。
在一些示例性实施方式中,在形成彩色滤光层的柔性基底10上通过低温沉积无机材料,形成硬掩膜版层60。硬掩模版层60可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或多种。由于在后续过程中镂空区域300的膜层结构需要被刻蚀掉,通过设置硬掩膜版层60可以保护非刻蚀区域避免受到刻蚀气体的损伤。
在本次工艺之后,连接区域300包括叠设在柔性基底10上的第一绝缘层11、第二绝缘层12、第三绝缘层13、信号线26、以及依次覆盖信号线26的平坦层14、薄膜封装层40和硬掩膜版层60。镂空区域300包括叠设在柔性基底10上的第一绝缘层11、第二绝缘层12、第三绝缘层13、平坦层14、薄膜封装层40以及硬掩模版层60。
(9)、在形成前述图案的柔性基底10上,通过干刻工艺将镂空区域300的膜层结构全部刻蚀掉。镂空区域300内的柔性基底10、第一绝缘层11、第二绝缘层12、第三绝缘层13、平坦层14、薄膜封装层40和硬掩模版层60均被刻蚀掉,如图11所示。在本次工艺之后,岛状显示区域100和连接区域200内的膜层结构没有变化。
至此,在柔性基底10上制备完成柔性基板本体。岛状显示区域100包括柔性基底10、以及叠设在柔性基底10上的驱动结构层、发光结构层、薄膜封装层40、彩色滤光层和硬掩膜版层60。镂空区域300即为穿透柔性基板本体的开口区域。连接区域300包括:柔性基底10、以及叠设在柔性基底10 上的第一绝缘层11、第二绝缘层12、第三绝缘层13、信号线26、以及依次覆盖信号线26的平坦层14、薄膜封装层40和硬掩模版层60。
(10)、在形成前述图案的柔性基底上形成厚度调节层和微透镜层。
在一些示例性实施方式中,在形成前述图案的柔性基底10上涂覆光学胶(OCA,Optically Clear Adhesive),形成第三粘着层70,并在第三粘着层70上涂覆厚度调节材料,形成厚度调节层(TAL,Thickness Adjusting Layer)71,然后,使用压印工艺在厚度调节层71上制备微透镜层72,如图12所示。厚度调节层71可以通过第三粘着层70粘贴在硬掩模版层60上,微透镜层72位于厚度调节层71上。厚度调节层71可以作为微透镜层72的载体,承载微透镜层72。厚度调节层71在玻璃载体1上的正投影包含微透镜层72在玻璃载体1上的正投影。例如,厚度调节层71在玻璃载体1上的正投影可以覆盖岛状显示区域100、连接区域200和镂空区域300,微透镜层72在玻璃载体1上的正投影位于多个岛状显示区域100内。然而,本实施例对此并不限定。在一些示例中,微透镜层在玻璃载体上的正投影位于多个岛状显示区域内,厚度调节层在玻璃载体上的正投影可以覆盖多个岛状显示区域,与连接区域和镂空区域可以没有交叠。
在一些示例性实施方式中,厚度调节材料可以采用PDMS、SEBS、Ecoflex等弹性拉伸率较高的材料。光学胶可以选用亚克力系树脂材料。微透镜层72可以采用有机树脂类材料。
在一些示例性实施方式中,如图1和图12所示,微透镜层72可以包括多个微透镜720。至少一个微透镜720可以为平凸透镜。平凸透镜包括相对而设的一个平面和一个凸面,平凸透镜的平面邻近厚度调节层71,凸面远离厚度调节层71。然而,本实施例对此并不限定。在一些示例中,至少一个微透镜可以为双凸透镜。另外,在一些示例中,微透镜层72的多个微透镜的类型可以相同,或部分相同,或均不同。
在一些示例性实施方式中,如图1和图12所示,一个岛状显示区域100可以对应一个微透镜720。一个岛状显示区域100仅包括一个微透镜720在柔性基底10上的正投影。然而,本实施例对此并不限定。在一些示例中,一个微透镜在柔性基底上的正投影可以仅与一个岛状显示区域、以及该岛状显 示区域周边的镂空区域和连接区域交叠。
图14为本公开至少一实施例的厚度调节层71和微透镜层72的微透镜720的尺寸示意图。在一些示例中,厚度调节层71可以包括多个厚度调节区域710,多个厚度调节区域710与多个微透镜720一一对应。任一个厚度调节区域710在柔性基板本体上的正投影包含对应的微透镜720在柔性基板本体上的正投影。微透镜720与对应的厚度调节区域710的厚度之间存在以下关系:1/f=1/h+1/L,其中,f表示微透镜的焦距,h表示厚度调节区域的厚度,L表示人眼与显示基板之间的距离。通过厚度调节层的厚度与微透镜的焦距的配合可以实现清晰成像。在一些示例中,多个厚度调节区域的厚度可以相同,或不同,或部分相同。然而,本实施例对此并不限定。
在一些示例中,微透镜层72包括的多个微透镜720与多个岛状显示区域一一对应,多个微透镜720的类型(例如,均为平凸透镜)和尺寸均相同。当每个岛状显示区域100的尺寸范围为0.1毫米(mm)×0.1mm至1.5mm×1.5mm,则该岛状显示区域对应的微透镜720的直径D的范围可以为约0.1mm至约1.5mm,该微透镜720的中心厚度H可以为约10μm至约80μm,厚度调节层的厚度h的范围可以为约3mm至约15mm。
(11)、在形成前述图案的柔性基底上形成第一保护层。
在一些示例性实施方式中,在形成前述图案的柔性基底10上涂覆光学胶,形成第一粘着层80,并在第一粘着层80上涂覆第一保护薄膜,形成第一保护层81,如图13所示。第一保护层81通过第一粘着层80粘贴在微透镜层72上,可以保护微透镜层72。
在一些示例中,第一保护薄膜可以采用PDMS、SEBS、Ecoflex等弹性拉伸率较高的材料。光学胶可以选用亚克力系树脂材料。
(12)、在形成前述图案的柔性基底上形成第二保护层。
在一些示例性实施方式中,通过激光剥离工艺将柔性基底10从玻璃载体1上揭下,然后在柔性基底10剥离玻璃载体1的一侧涂覆光学胶,形成第二粘着层90,并在第二粘着层90上涂覆第二保护薄膜,形成第二保护层91,如图2所示。第二保护层91通过第二粘着层90粘贴在柔性基底10上,可以保护柔性基底10。
在一些示例中,第二保护薄膜可以采用PDMS、SEBS、Ecoflex等弹性拉伸率较高的材料。光学胶可以选用亚克力系树脂材料。
本实施例的显示基板的结构及其制备过程仅仅是一种示例性说明。在一些示例性实施方式中,可以根据实际需要变更相应结构以及增加或减少构图工艺。例如,驱动结构层可以包括两个栅金属层,第一栅金属层可以包括薄膜晶体管的栅电极和存储电容的一个电极,第二栅金属层可以包括存储电容的另一个电极。又如,柔性基底可以制造为本身具有镂空区域。本公开在此不做限定。
图15为本公开至少一实施例的显示基板的效果对比图。图15(a)所示为未设置厚度调节层和微透镜层的显示基板的显示效果示例图,图15(b)所示为设置厚度调节层和微透镜层的显示基板的显示效果示例图。如图15(a)所示,由于只有多个岛状显示区域可以显示图像,镂空区域和连接区域无法显示图像,显示基板所显示的图像为岛状拼接图像,影响显示效果。如图15(b)所示,通过厚度调节层和微透镜层的配合,可以使得多个岛状显示区域显示的图像按照一定比例放大,从而使得人眼观察到的图像没有拼接缝,或者,大幅弱化拼接缝的影响,优化显示效果。其中,通过厚度调节层可以调节微透镜与发光单元之间的距离,配合微透镜的焦距,可以控制显示图像的放大比例。
图16为本公开至少一实施例的显示基板的另一结构示意图。图16为图1中沿P-P方向的剖面示意图。本示例性实施例的显示基板为底发射结构的显示基板。如图16所示,在垂直于显示基板的平面上,至少一个岛状显示区域100可以包括:柔性基底10,依次设置在柔性基底10第一侧的显示结构层、封装薄膜层40、第二粘着层90和第二保护层91,以及依次设置在柔性基底10第二侧的彩色滤光层、硬掩模版层60、第三粘着层70、厚度调节层71、微透镜层72、第一粘着层80和第一保护层81。第一侧和第二侧为柔性基底10的相对两侧。至少一个岛状显示区域100的显示结构层包括:在柔性基底10上叠设的驱动结构层和发光结构层。驱动结构层包括多个驱动电路,每个驱动电路包括多个晶体管,或者包括多个晶体管和至少一个存储电容,例如,可以是2T1C、3T1C或7T1C设计。发光结构层包括多个发光元件。 多个驱动电路与多个发光元件一一对应连接。每个发光元件包括第一电极31(例如,透明阳极)、有机发光层32和第二电极33(例如,反射阴极)。彩色滤光层包括:设置在封装薄膜层40上的黑矩阵51、位于黑矩阵51限定的子像素区域内并与多个发光元件一一对应的多个滤光单元52、以及覆盖黑矩阵51和多个滤光单元52的滤光保护层53。在图16中仅以一个晶体管、一个发光元件和一个滤光单元为例进行示意。微透镜层72在柔性基底10上的正投影位于厚度调节层71在柔性基底10上的正投影内。然而,本实施例对此并不限定。在一些示例中,微透镜层72在柔性基底10上的正投影可以与厚度调节层71在柔性基底10上的正投影重合。
在一些示例性实施方式中,如图16所示,在垂直于显示基板的平面上,至少一个连接区域200可以包括柔性基底10,设置在柔性基底10第一侧的无机绝缘层、设置在无机绝缘层上的多条信号线(图16中仅以一条信号线26作为示意)、依次覆盖信号线26的平坦层14、薄膜封装层40、第二粘着层90和第二保护层91,以及依次设置在柔性基底10第二侧的第三粘着层70、厚度调节层71、第一粘着层80和第一保护层81。无机绝缘层可以包括:叠设在柔性基底10上的第一绝缘层11、第二绝缘层12和第三绝缘层13。
在一些示例性实施方式中,如图16所示,在垂直于显示基板的平面上,镂空区域300内的柔性基底10被去掉。镂空区域300可以包括:依次设置在柔性基底10第一侧的第二粘着层90和第二保护层91,以及依次设置在柔性基底10第二侧的第三粘着层70、厚度调节层71、第一粘着层80和第一保护层81。
关于本实施例的岛状显示区域、连接区域和镂空区域的相关结构、以及厚度调节层和微透镜层的相关结构可以参照以上实施方式的说明,故于此不再赘述。
本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图17为本公开至少一实施例的显示基板的再一结构示意图。在一些示例性实施方式中,如图17所示,在平行于显示基板的平面上,微透镜层可以包括多个微透镜720。一个岛状显示区域100包括至少两个微透镜720(例如, 四个微透镜)在显示基板本体上的正投影。换言之,多个微透镜720与一个岛状显示区域100对应。在一些示例中,如图17所示,每个岛状显示区域100可以呈正方形,每个微透镜720在显示基板本体上的正投影可以为圆形,每个微透镜720在显示基板本体上的正投影可以覆盖一个岛状显示区域100中的至少一个发光单元,且相邻微透镜720之间没有交叠。
本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图18为本公开至少一实施例的显示基板的又一结构示意图。在一些示例性实施方式中,如图18所示,在平行于显示基板的平面上,微透镜层可以包括多个微透镜720。一个微透镜720在显示基板本体上的正投影可以与多个岛状显示区域100(例如,四个岛状显示区域)、以及这些岛状显示区域周边的多个连接区域200和镂空区域300交叠。换言之,一个微透镜720与多个岛状显示区域100对应。在一些示例中,如图18所示,每个岛状显示区域100可以呈正方形,每个微透镜720在显示基板本体上的正投影可以为圆形,每个微透镜720在显示基板本体上的正投影可以与四个岛状显示区域100交叠,且相邻微透镜之间没有交叠。在本示例性实施例中,通过一个微透镜将多个岛状显示区域的显示图像放大一定比例,使得相邻显示图像之间存在重叠,利用多个岛状显示区域的显示图像重叠来消除或减弱拼接缝的影响,并提升可拉伸显示基板的分辨率,从而优化显示效果。
本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
本公开至少一实施例还提供一种显示基板的制备方法,包括:制备柔性基板本体,所述柔性基板本体包括:彼此隔开的多个岛状显示区域、设置在相邻岛状显示区域之间的镂空区域以及连接相邻岛状显示区域的连接区域;在所述柔性基板本体的多个岛状显示区域的出光侧形成厚度调节层;在所述厚度调节层远离所述柔性基板本体的一侧形成微透镜层。其中,所述厚度调节层在所述柔性基板本体上的正投影包含所述微透镜层在所述柔性基板本体上的正投影,所述微透镜层在所述柔性基板本体上的正投影与所述多个岛状显示区域至少部分交叠。所述厚度调节层和所述微透镜层配置为放大所述多 个岛状显示区域显示的图像。
在一些示例性实施方式中,所述制备柔性基板本体,包括:提供柔性基底;在多个岛状显示区域的柔性基底上形成显示结构层,所述显示结构层包括多个发光单元;在所述显示结构层远离所述柔性基底的一侧形成薄膜封装层;在多个岛状显示区域的显示结构层的出光侧形成彩色滤光层,所述彩色滤光层包括:黑矩阵以及由所述黑矩阵限定的、与所述多个发光单元一一对应的多个滤光单元;在所述彩色滤光层远离所述柔性基底的一侧形成硬掩模版层。
在一些示例性实施方式中,所述制备方法还包括:在所述微透镜层远离所述柔性基板本体的一侧依次形成第一粘着层和第一保护层;在所述柔性基板本体远离所述微透镜层的一侧依次形成第二粘着层和第二保护层。
关于本实施例的制备方法可以参照前述实施例的说明,故于此不再赘述。
图19为本公开至少一实施例的显示装置的示意图。如图19所示,本实施例提供一种显示装置900,包括:显示基板910。显示基板910为前述实施例提供的显示基板。在一些示例中,显示基板910可以为OLED显示基板。显示装置900可以为:OLED显示装置、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、车载显示器、手表、手环等任何具有显示功能的产品或部件。然而,本实施例对此并不限定。
在本公开实施例的描述中,术语“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (16)

  1. 一种显示基板,包括:
    柔性基板本体,包括:彼此隔开的多个岛状显示区域、设置在相邻岛状显示区域之间的镂空区域以及连接相邻岛状显示区域的连接区域;
    厚度调节层,设置在所述柔性基板本体的多个岛状显示区域的出光侧;
    微透镜层,设置在所述厚度调节层远离所述柔性基板本体的一侧;
    所述厚度调节层在所述柔性基板本体上的正投影包含所述微透镜层在所述柔性基板本体上的正投影,所述微透镜层在所述柔性基板本体上的正投影与所述多个岛状显示区域至少部分交叠;所述厚度调节层和所述微透镜层配置为放大所述多个岛状显示区域显示的图像。
  2. 根据权利要求1所述的显示基板,其中,所述微透镜层包括多个微透镜;所述多个微透镜中的至少一个微透镜在所述柔性基板本体上的正投影与所述多个岛状显示区域中的一个岛状显示区域至少部分交叠;或者,所述多个微透镜中的任一个微透镜在所述柔性基板本体上的正投影与所述多个岛状显示区域中的至少两个相邻的岛状显示区域至少部分交叠。
  3. 根据权利要求2所述的显示基板,其中,所述多个微透镜中的任一个微透镜在所述柔性基板本体上的正投影与所述多个岛状显示区域中的一个岛状显示区域至少部分交叠,且不同的微透镜在所述柔性基板本体上的正投影与不同的岛状显示区域至少部分交叠。
  4. 根据权利要求3所述的显示基板,其中,所述多个微透镜中的任一个微透镜在所述柔性基板本体上的正投影位于一个岛状显示区域内。
  5. 根据权利要求2所述的显示基板,其中,所述多个微透镜中的至少两个相邻的微透镜在所述柔性基板本体上的正投影与所述多个岛状显示区域中的同一个岛状显示区域至少部分交叠。
  6. 根据权利要求2所述的显示基板,其中,所述厚度调节层包括多个厚度调节区域,所述多个厚度调节区域与所述多个微透镜一一对应,任一个厚度调节区域在所述柔性基板本体上的正投影包含对应的微透镜在所述柔性基板本体上的正投影;
    针对所述微透镜层的任一个微透镜,所述微透镜与对应的厚度调节区域的厚度之间存在以下关系:1/f=1/h+1/L,其中,f表示所述微透镜的焦距,h表示所述厚度调节区域的厚度,L表示人眼与显示基板之间的距离。
  7. 根据权利要求2所述的显示基板,其中,所述多个微透镜的类型包括以下至少之一:平凸透镜、双凸透镜。
  8. 根据权利要求1所述的显示基板,其中,所述厚度调节层采用可拉伸材质。
  9. 根据权利要求1所述的显示基板,其中,至少一个岛状显示区域包括:柔性基底、设置在所述柔性基底上的显示结构层、以及设置在所述显示结构层的出光侧的彩色滤光层;
    所述显示结构层包括多个发光单元;
    所述彩色滤光层包括:黑矩阵以及由所述黑矩阵限定的、与所述多个发光单元一一对应的多个滤光单元。
  10. 根据权利要求9所述的显示基板,其中,所述显示结构层、所述彩色滤光层、所述厚度调节层和所述微透镜层设置在所述柔性基底的同一侧;或者,所述显示结构层设置在所述柔性基底的一侧,所述彩色滤光层、所述厚度调节层和所述微透镜层设置在所述柔性基底的另一侧。
  11. 根据权利要求9所述的显示基板,其中,所述岛状显示区域还包括:
    薄膜封装层,设置在所述显示结构层远离所述柔性基底的一侧;
    硬掩模版层,设置在所述彩色滤光层远离所述柔性基底的一侧。
  12. 根据权利要求9所述的显示基板,还包括:依次设置在所述微透镜层远离所述柔性基板本体一侧的第一粘着层和第一保护层,以及依次设置在所述柔性基板本体远离所述微透镜层一侧的第二粘着层和第二保护层。
  13. 一种显示装置,包括如权利要求1至12中任一项所述的显示基板。
  14. 一种显示基板的制备方法,包括:
    制备柔性基板本体,所述柔性基板本体包括:彼此隔开的多个岛状显示区域、设置在相邻岛状显示区域之间的镂空区域以及连接相邻岛状显示区域 的连接区域;
    在所述柔性基板本体的多个岛状显示区域的出光侧形成厚度调节层;
    在所述厚度调节层远离所述柔性基板本体的一侧形成微透镜层;
    其中,所述厚度调节层在所述柔性基板本体上的正投影包含所述微透镜层在所述柔性基板本体上的正投影,所述微透镜层在所述柔性基板本体上的正投影与所述多个岛状显示区域至少部分交叠;所述厚度调节层和所述微透镜层配置为放大所述多个岛状显示区域显示的图像。
  15. 根据权利要求14所述的制备方法,其中,所述制备柔性基板本体,包括:
    提供柔性基底;
    在所述多个岛状显示区域的柔性基底上形成显示结构层,所述显示结构层包括多个发光单元;
    在所述显示结构层远离所述柔性基底的一侧形成薄膜封装层;
    在所述多个岛状显示区域的显示结构层的出光侧形成彩色滤光层,所述彩色滤光层包括:黑矩阵以及由所述黑矩阵限定的、与所述多个发光单元一一对应的多个滤光单元;
    在所述彩色滤光层远离所述柔性基底的一侧形成硬掩模版层。
  16. 根据权利要求15所述的制备方法,还包括:
    在所述微透镜层远离所述柔性基板本体的一侧依次形成第一粘着层和第一保护层;
    在所述柔性基板本体远离所述微透镜层的一侧依次形成第二粘着层和第二保护层。
PCT/CN2021/099444 2020-07-24 2021-06-10 显示基板及其制备方法、显示装置 WO2022017051A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/771,015 US20220384747A1 (en) 2020-07-24 2021-06-10 Display substrate and preparation method therefor, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010727526.5 2020-07-24
CN202010727526.5A CN113972336B (zh) 2020-07-24 2020-07-24 显示基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022017051A1 true WO2022017051A1 (zh) 2022-01-27

Family

ID=79585959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099444 WO2022017051A1 (zh) 2020-07-24 2021-06-10 显示基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20220384747A1 (zh)
CN (1) CN113972336B (zh)
WO (1) WO2022017051A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230101112A (ko) * 2021-12-29 2023-07-06 엘지디스플레이 주식회사 표시 장치
CN115152031B (zh) * 2022-05-30 2023-09-01 京东方科技集团股份有限公司 显示基板及显示装置
CN115241235A (zh) * 2022-06-20 2022-10-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
WO2024082142A1 (zh) * 2022-10-18 2024-04-25 京东方科技集团股份有限公司 显示面板、显示装置、可穿戴设备
CN116068773B (zh) * 2023-03-06 2023-07-25 惠科股份有限公司 头戴式显示装置及头戴式显示装置的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809846A (zh) * 2011-05-30 2012-12-05 三星康宁精密素材株式会社 显示设备
US20130134438A1 (en) * 2007-05-31 2013-05-30 U.S. Gov. as represented by the Administrator of the National Aeronautics and Space Administration Light Emitting, Photovoltaic Or Other Electronic Apparatus and System
CN106199899A (zh) * 2015-05-25 2016-12-07 超金光学有限公司 一种光变焦方法及其模块与应用
US20170125719A1 (en) * 2015-10-30 2017-05-04 Samsung Display Co., Ltd. Light-emitting display device and method of fabricating the same
CN110416266A (zh) * 2019-07-29 2019-11-05 京东方科技集团股份有限公司 显示基板及包含其的显示面板
CN110851028A (zh) * 2019-11-08 2020-02-28 京东方科技集团股份有限公司 一种柔性可拉伸oled显示触摸屏装置及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598125B (zh) * 2018-05-07 2019-09-13 京东方科技集团股份有限公司 柔性显示面板、柔性显示装置和柔性显示面板的制作方法
CN111223904B (zh) * 2019-12-20 2023-04-18 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置及其控制方法
CN111370592B (zh) * 2020-03-17 2023-04-11 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130134438A1 (en) * 2007-05-31 2013-05-30 U.S. Gov. as represented by the Administrator of the National Aeronautics and Space Administration Light Emitting, Photovoltaic Or Other Electronic Apparatus and System
CN102809846A (zh) * 2011-05-30 2012-12-05 三星康宁精密素材株式会社 显示设备
CN106199899A (zh) * 2015-05-25 2016-12-07 超金光学有限公司 一种光变焦方法及其模块与应用
US20170125719A1 (en) * 2015-10-30 2017-05-04 Samsung Display Co., Ltd. Light-emitting display device and method of fabricating the same
CN110416266A (zh) * 2019-07-29 2019-11-05 京东方科技集团股份有限公司 显示基板及包含其的显示面板
CN110851028A (zh) * 2019-11-08 2020-02-28 京东方科技集团股份有限公司 一种柔性可拉伸oled显示触摸屏装置及其制作方法

Also Published As

Publication number Publication date
CN113972336A (zh) 2022-01-25
CN113972336B (zh) 2023-05-26
US20220384747A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2022017051A1 (zh) 显示基板及其制备方法、显示装置
WO2022057491A1 (zh) 显示基板及其制备方法、显示装置
US10916592B2 (en) Organic light-emitting diode display device
CN110634937B (zh) 显示基板及其制备方法、显示装置
CN107516665B (zh) 有机发光显示装置及制造该有机发光显示装置的方法
JP2024045217A (ja) 電子機器
CN108885847B (zh) 显示装置和电子设备
CN111584571B (zh) 屏下摄像头显示面板及其制备方法
CN110120405B (zh) 显示装置
WO2016056364A1 (ja) 表示装置、表示装置の製造方法および電子機器
WO2015192517A1 (zh) 彩膜基板及其制备方法、有机发光显示面板和显示装置
US11374070B2 (en) Organic light emitting diode display panel and apparatus having a connecting electrode in an electrode connecting region
WO2022012235A1 (zh) 显示基板及其制备方法、显示装置
CN217955863U (zh) 显示装置
WO2021238755A1 (zh) 触控面板及其制备方法、显示装置
WO2021254150A1 (zh) 显示基板及其制备方法、显示装置
US20240114743A1 (en) Display module having increased transmittance and electronic device including the display module
CN113555400A (zh) 显示基板及其制备方法、显示装置
US11545648B2 (en) Light emitting display device and method of fabricating the same
CN111584586B (zh) 背膜、显示基板及显示装置
US20220208866A1 (en) Display panel and display apparatus including the same
CN115497998A (zh) 显示基板及其制备方法、显示装置
WO2022226737A1 (zh) 显示基板及其制备方法、显示装置
WO2022133829A1 (zh) 显示基板及其制备方法、显示装置
US20220384764A1 (en) Display panel and electronic device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846160

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.08.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21846160

Country of ref document: EP

Kind code of ref document: A1