WO2015192517A1 - 彩膜基板及其制备方法、有机发光显示面板和显示装置 - Google Patents

彩膜基板及其制备方法、有机发光显示面板和显示装置 Download PDF

Info

Publication number
WO2015192517A1
WO2015192517A1 PCT/CN2014/087080 CN2014087080W WO2015192517A1 WO 2015192517 A1 WO2015192517 A1 WO 2015192517A1 CN 2014087080 W CN2014087080 W CN 2014087080W WO 2015192517 A1 WO2015192517 A1 WO 2015192517A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
black matrix
color
color film
color filter
Prior art date
Application number
PCT/CN2014/087080
Other languages
English (en)
French (fr)
Inventor
刘威
王东方
宋泳锡
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/771,566 priority Critical patent/US10263049B2/en
Publication of WO2015192517A1 publication Critical patent/WO2015192517A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8428Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers

Definitions

  • Embodiments of the present invention generally relate to the field of display technologies, and in particular, to a color filter or color filter (CF) substrate, a method of fabricating the same, an organic light emitting display panel, and a display device.
  • CF color filter or color filter
  • AMOLED Active Matrix/Organic Light Emitting Diode panel is the next-generation display technology that is superior to traditional thin film transistor LCD (TFT-LCD, Thin Film Transistor LCD) in terms of image quality, performance and cost. ).
  • TFT-LCD Thin Film Transistor LCD
  • AMOLED has a faster response speed, higher contrast, and wider viewing angle; AMOLED consumes less power, and its power consumption is only about 60% of that of TFT-LCD; in addition, AMOLED has self-luminous Features, no need to use a backlight, so it can be made thinner than TFT-LCD, and can also save the cost of the backlight module, and the cost of the backlight module accounts for 30-40% of the TFT-LCD manufacturing cost.
  • AMOLED the biggest problem with AMOLED is the yield. At the current yield, the price of AMOLED is much higher than that of TFT-LCD, which greatly limits the widespread use of AMOLED.
  • the WOLED+CF method uses a color filter (CF) in combination on a white OLED backplane.
  • CF color filter
  • the WOLED+CF method has the advantages of high utilization rate of organic electroluminescence (EL) material, high aperture ratio, and easy realization of large screen, and it is easy to ensure the yield in mass production.
  • the WOLED+CF method usually adopts the method of aligning the array back plate and the CF substrate.
  • the structure of the CF substrate conventionally used for LCD display is as shown in FIG. 1.
  • a black shading area or a black matrix is usually prepared first.
  • BM Black Matrix
  • R/G/B red/green/blue sub-pixel color film
  • OC over-coat
  • the present invention provides a color filter substrate, a method of fabricating the same, an organic light emitting display panel, and a display device.
  • a color film substrate comprising a substrate substrate, and a color film matrix, a black matrix and a spacer formed on the substrate substrate in sequence, the color film matrix being composed of a plurality of red and green colors , blue three-color photoresist composition, of which:
  • Red, green, and blue three-color photoresists are separately formed in the corresponding pixel regions and overlap each other in a three-layer stacked structure in the void regions between adjacent pixel regions;
  • the black matrix and the spacer are sequentially formed over the stacked structure in each of the void regions.
  • the color film substrate may further include a barrier layer formed between the color film matrix and the black matrix for reducing residual of the black matrix material.
  • the barrier layer may be made of an inorganic material such as silica.
  • the barrier layer may be ashed.
  • the color film substrate may further include an auxiliary electrode layer covering the color film matrix, the black matrix, and the spacer.
  • the black matrix is composed of a plurality of light shielding units, one spacer is formed on each light shielding unit, and an orthographic projection area of each spacer on the base substrate may be smaller than The orthographic projection area of the corresponding shading unit on the base substrate.
  • an organic light emitting display panel comprising the above color film substrate is provided.
  • a display device including the above organic light emitting display panel is provided.
  • a method of fabricating a color filter substrate comprising the steps of:
  • a black matrix and a spacer pattern are sequentially formed over the laminated structure in the void region.
  • the above preparation method may further include the step of forming a barrier layer on the color film matrix before forming the black matrix, the barrier layer for reducing the residue of the black matrix material.
  • the barrier layer may be made of an inorganic material such as silica.
  • the above preparation method may further include the step of performing ashing treatment on the barrier layer.
  • the ashing treatment atmosphere may be oxygen or fluorine, and the treatment time is 10 s to 30 s.
  • the above preparation method may further include the step of forming an auxiliary electrode layer covering the color filter matrix, the black matrix, and the spacer on the color filter substrate after forming the spacer.
  • the red, green, and blue color photoresists overlap at the gaps between the corresponding adjacent pixels, and the red, green, and blue color photoresists are separately disposed in the corresponding pixel regions,
  • the height of the color filter having the laminated structure is greater than the height of the existing color filter, thereby reducing the fabrication height of the spacer, thereby reducing the difficulty of the process and improving the production yield of the color filter;
  • the arrangement of the barrier layer of the present invention can greatly reduce the residual of the black matrix material, further improving the fabrication yield of the color filter substrate; on the other hand, the black matrix is disposed on the color film matrix, closer to the pixel illumination.
  • the light leakage phenomenon between the pixel regions can be better reduced, and the basic height of the color filter substrate can be further improved, thereby further reducing the fabrication height of the spacer, reducing the difficulty of the process, and improving the color filter.
  • the production yield of the light sheet; on the other hand, the stacking of the laminated color film matrix, the black matrix and the spacer of the present invention makes the obtained color film substrate in the opposite box Process, compared with the prior art single spacer design is more robust, thus further improving the reliability and production yield of the color filter substrate.
  • FIG. 1 is a schematic structural view of a CF substrate in the prior art
  • FIG. 2 is a schematic structural view of a CF substrate according to an embodiment of the invention.
  • FIG. 3 is a schematic structural view of a CF substrate according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a CF substrate according to still another embodiment of the present invention.
  • FIG. 5 is a flow chart showing a process of fabricating a CF substrate according to an embodiment of the invention.
  • FIG. 6 is a flow chart showing a process of fabricating a CF substrate according to another embodiment of the present invention.
  • FIG. 7 is a flow chart showing a process of fabricating a CF substrate according to still another embodiment of the present invention.
  • FIG. 8 is a flow chart showing a process of fabricating a CF substrate according to still another embodiment of the present invention.
  • the color film substrate includes a substrate substrate 1, and a color film matrix 2, which is sequentially formed on the substrate substrate 1, Matrix 3 (BM) and spacer 4 (PS).
  • BM Matrix 3
  • PS spacer 4
  • the material of the base substrate 1 may include materials such as glass, silicon wafer, quartz, plastic, and silicon wafer, preferably glass.
  • the color film matrix 2 is composed of a plurality of sets of red photoresists 5, green photoresists 6, and blue photoresists 7 corresponding to the pixel array, and the red, green, and blue three-color photoresists 5, 6, and 7 are separately formed in the corresponding ones.
  • the three-layer laminated structure is overlapped with each other in the pixel region and in the void region V between the adjacent pixel regions P. In other words, there is only a corresponding one-color photoresist in each pixel region P, and red, green, and blue three-color photoresists are stacked in each of the gap regions V between adjacent pixel regions.
  • a color filter is a key to display color of a display device such as a liquid crystal display, and the light source provides a corresponding hue through at least red, green, and blue three-color photoresists in the color filter, and finally forms a color phase.
  • a color display screen in which three colors of red, green, and blue photoresists are separately formed on regions of corresponding pixels. As shown in FIG. 2, the three recessed regions shown in FIG. 2 are pixel regions P. In the three pixel regions, a red photoresist 5, a green photoresist 6, and a blue photoresist 7 are respectively formed, so that the light source is transparent. When the color filter is over-colored, red, green, and blue light can be formed in the corresponding pixel regions.
  • the red, green, and blue color resists are formed to overlap the gap regions between the adjacent pixel regions.
  • the four protrusions shown in FIG. 2 correspond to the gap region V between the adjacent pixel regions P, at which the red, green, and blue three-color photoresists are overlapped, and the thus formed color having a laminated structure is formed.
  • the filter has a higher height than the color filter of the prior art, so that the height of the spacer 4 can be reduced, thereby reducing the difficulty of the process and improving the production yield of the color filter.
  • the black matrix 3 and the spacer 4 are sequentially formed into three colors of red, green and blue in the color film matrix 2 Above the laminated structure, that is, the black matrix 3 and the spacer 4 are formed on each of the stacked structures formed by the red, green, and blue three-color photoresists 5, 6, and 7 in the color filter matrix 2.
  • the black matrix 3 may be constituted by a plurality of light shielding units 3-1 corresponding to the pixel array, and a spacer 4 is formed on each of the light shielding units 3-1.
  • the black matrix 3 may be made of a high light-shielding material, and alternatively, the black matrix 3 material may be a resin material doped with a light-shielding material.
  • the spacer 4 plays a supporting role, and is made of a material having a high elastic recovery rate and a high external pressure deformation bearing capability, so that the fabricated substrate can be made more stable in the process of the box, and the finally obtained AMOLED is obtained. It is more resistant to pressure and deformation.
  • the above arrangement of the black matrix 3 can reduce light leakage between the pixel regions, and can further improve the basic height of the color filter substrate, further reduce the fabrication height of the spacer 4, reduce the difficulty of the process, and improve the color filter. Yield.
  • the arrangement of the stacked color film matrix, the black matrix and the spacers in the present invention makes the obtained color film substrate more stable in the process of the boxing than the single spacer in the prior art, further improving the structure. The reliability and production yield of the color film substrate are described.
  • the color filter substrate further includes a barrier layer 8, and the barrier layer 8 Formed on the color film matrix 2.
  • the black matrix material and the color film matrix material are usually resin materials, the material properties are similar and the adhesion is strong. Therefore, in the process of forming a black matrix pattern directly on the color film matrix, the residual phenomenon of the black matrix at the corresponding pixel region is obvious, that is, in the black matrix patterning process, the region where the black matrix material needs to be completely removed still leaves a part of black.
  • Matrix material which causes a decrease in transmittance and color purity of the overall color film substrate.
  • a barrier layer 8 is formed between the color film matrix and the black matrix, wherein the barrier layer 8 can be made of an inorganic material, and the adhesion to the black matrix is higher.
  • the inorganic material may be silicon dioxide (SiO 2 ), preferably a silicon dioxide film.
  • the barrier layer 8 is formed by a semiconductor process such as plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the thickness can be obtained by PECVD deposition at 350 ° C.
  • the SiO 2 film has a deposition atmosphere of N 2 O+N 2 +SiH 4 and a deposition condition of 800 W and a pressure of 1500 mTorr.
  • the black matrix is used for the red, green and blue photoresists of the color filter, and its main function is to prevent background light leakage, improve display contrast, prevent color mixing and increase color purity, that is,
  • the non-pixel area formed with the black matrix can block the background light, and the pixel area not formed with the black matrix can transmit the background light, and then the three colored lights of red, green and blue can be used to reveal the three colored lights of red, green and blue.
  • the background light here refers to the light emitted by the back plate from the other side of the color filter substrate, which is a backlight for the LCD, and is the light emitted by the EL device for the OLED.
  • the black matrix is usually made of a high light-shielding material, and the black matrix material and the color film matrix material are usually resin materials, the material properties of the two are similar, the adhesion is strong, and when the black matrix is formed, due to development or water washing
  • the technical limitations of the fabrication process therefore, in the process of forming a black matrix pattern directly on the color film matrix, the residual phenomenon of the black matrix in the corresponding pixel region is obvious, that is, in the black matrix patterning process, the black matrix material needs to be completely removed.
  • Some black matrix materials will remain in the area, which will cause the light corresponding to the pixel area to be blocked by the residual black matrix material to some extent, which will lead to quality defects such as color purity of the color filter and display contrast reduction of the display panel. In severe cases, it is also possible to directly cause the color filter to be unusable.
  • a barrier layer for reducing the residual of the black matrix material is formed on the color film matrix 2, and then the black matrix material is spin-coated thereon, so that after exposure development and patterning, the residue of the black matrix material can be greatly reduced. Further, the production yield of the color filter substrate is improved. Further, since SiO 2 has good hydrophobicity and transmittance, it can further reduce the residual of the black matrix material as a barrier layer.
  • the barrier layer is ashed.
  • Ashing is a surface treatment method that uses a plasma of a reactive gas (mainly oxygen plasma) for ashing (incineration) to change certain properties of the surface of the material or to remove certain materials directly.
  • a reactive gas mainly oxygen plasma
  • the substrate on which the barrier layer has been formed is subjected to ashing treatment before the spin coating of the black matrix material, and after the ashing treatment, the surface characteristics of the barrier layer may be changed, and the barrier layer and the black layer are changed.
  • the surface contact angle of the matrix material makes it easier for the BM to be peeled off from the surface of the barrier layer, further reducing the BM residue.
  • the ashing treatment atmosphere may be O 2 and the processing time is 10 s-30 s.
  • FIG. 4 is a schematic structural view of a CF substrate according to another embodiment of the present invention.
  • an auxiliary electrode layer 9 is formed on the color filter substrate for The auxiliary electrode is electrically connected to the cathode to reduce the cathode resistance and reduce the voltage drop.
  • the auxiliary electrode layer 9 is made of a transparent conductive material, which may include a transparent metal Thin film, transparent metal oxide film, non-metal oxide film, and conductive particle-dispersed ferroelectric materials, such as single-layer film, two-layer film, multilayer film or multi-layer film, undoped type, doped Hetero and multi-element.
  • the transparent conductive material is a metal oxide film such as an indium tin oxide (ITO) film.
  • FIG. 4 is only an exemplary description of the present embodiment.
  • the auxiliary electrode layer 9 may be formed on the basis of the color filter substrate shown in FIG. 2 . That is, the present invention does not limit the combination relationship between the individual material layers as long as any possible combination of functions capable of realizing the color film substrate of the present invention falls within the scope of the present invention.
  • the orthographic projection area of the spacer 4 on the base substrate 1 is smaller than the orthographic projection area of the corresponding black matrix unit 3-1 on the base substrate 1.
  • the protrusion of the auxiliary electrode layer in the structure of the invention exhibits a small gradient and a high adhesion to each film layer. Thereby, the auxiliary electrode layer is not easily peeled off during the process of the cartridge.
  • the red, green, and blue color photoresists are separately formed in the corresponding pixel regions and overlap each other in a three-layer stacked structure in a void region between adjacent pixel regions, and Compared with the existing color filter, the height of the color filter having the laminated structure is increased, thereby reducing the manufacturing height of the spacer, thereby reducing the difficulty of the process and improving the production yield of the color filter.
  • the arrangement of the barrier layer can greatly reduce the residual of the black matrix material, further improving the fabrication yield of the color filter substrate; further, the black matrix is disposed on the color film matrix, closer to the pixel light emitting region, Compared with the prior art, the light leakage phenomenon between the pixel regions can be better reduced, and the basic height of the color filter substrate can be further improved, thereby further reducing the fabrication height of the spacer, reducing the difficulty of the process, and improving the color filter.
  • the production yield is good; on the other hand, the laminated arrangement of the color film matrix, the black matrix and the spacer in the present invention makes the obtained color film substrate in the process of the box, Prior art single spacer design is more robust, thus further improving the reliability and production yield of the color filter substrate.
  • an organic light emitting display panel including the color film substrate as described above.
  • Such an organic light emitting display panel may be, for example, an AMOLED.
  • a display device including the organic light emitting display panel as described above.
  • a method for preparing a color film substrate is further proposed, as shown in the figure.
  • the preparation method may include the following steps:
  • a red, green, and blue three-color photoresist layer is formed on the base substrate 1 and patterned to form a color film matrix 2 including a plurality of sets of red photoresist 5, green photoresist 6, and blue photoresist 7 corresponding to the pixel array.
  • the red, green, and blue three-color photoresists 5, 6, and 7 are separately formed in the corresponding pixel regions and overlap each other in the void region V between the adjacent pixel regions P.
  • a three-layer laminate structure is shown in Figures 5a and 5b.
  • the material of the base substrate 1 may include materials such as glass, silicon wafer, quartz, plastic, and silicon wafer, preferably glass.
  • the red, green, and blue color photoresist layers are formed by a semiconductor process such as spin coating, and patterned by a semiconductor process such as exposure development to form a plurality of sets of red photoresists 5 and green corresponding to the pixel array.
  • Figure 5b shows a color film matrix 2 having a stacked structure obtained in accordance with an embodiment of the present invention.
  • the red, green and blue three-color photoresists 5, 6, 7 are coated and patterned to make red and green
  • the blue three-color photoresists 5, 6, and 7 are separately formed in the corresponding pixel regions and overlap each other in a three-layer laminated structure in the void regions between adjacent pixel regions.
  • those skilled in the art can also form red, green, and blue light resists by other means.
  • the present invention does not impose any limitation on the formation manner and the process, as long as only a corresponding color of light can be formed in each pixel region. Resisting, a three-layer laminated structure of red, green, and blue three-color photoresist is formed in each of the gap regions between adjacent pixel regions.
  • red, green, and blue color resists are separately formed in the corresponding pixel regions
  • red, green, and blue are also formed in the gap regions between the corresponding adjacent pixels.
  • FIG. 5b For a three-layer laminated structure of color resists, please also refer to FIG. 5b.
  • the four protrusions shown in FIG. 5b correspond to the gap regions between adjacent pixel regions, and overlap in the gap regions between the four adjacent pixel regions.
  • There are three kinds of red, green and blue photoresists, and the height of the color filter having the laminated structure thus formed is increased compared with the color filter of the prior art, so that the fabrication height of the spacer 4 can be reduced. , thereby reducing the difficulty of the process and improving the production yield of the color filter.
  • the black matrix and the spacer pattern are sequentially formed on the overlapping of the red, green and blue photoresists in the color film matrix 2, and the red, green and blue photoresists are formed in the red, green and blue colors.
  • the black matrix 3 and the spacers 4 are formed on the stacked structure as shown in FIG. 5c.
  • the black matrix 3 is made of a high light-shielding material.
  • the spacer 4 plays a supporting role, and is made of a material having a high elastic recovery rate and a high external pressure deformation bearing capability, so that the fabricated substrate can be made more stable in the process of the box, and the finally obtained AMOLED is obtained. It is more resistant to pressure and deformation.
  • the above arrangement of the black matrix 3 can reduce light leakage between the pixel regions, and further improve the basic height of the color filter substrate, further reduce the fabrication height of the spacer 4, reduce the difficulty of the process, and improve the color filter. Production yield.
  • the stacking arrangement of the color film matrix, the black matrix and the spacer provided by the embodiment of the invention makes the obtained color film substrate more stable in the process of the boxing than the single spacer in the prior art, and further improves the design. The reliability and production yield of the color film substrate.
  • FIG. 6 is a flow chart showing a fabrication process of a CF substrate according to another embodiment of the present invention.
  • a color film matrix is formed on the substrate 1 shown in FIGS. 6a and 6b.
  • the preparation method further comprises the step of forming a barrier layer 8 on the color film matrix 2, as shown in FIG. 6c; wherein the barrier layer 8 is made of an inorganic material to reduce the residue of the black matrix material while Ensure that the black matrix can be formed smoothly at the superposition of the color film.
  • the inorganic material is silicon dioxide (SiO 2 ), more preferably, a thin silicon dioxide film.
  • the barrier layer 8 can be formed using a semiconductor process such as plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the thickness can be obtained by PECVD deposition at 350 ° C.
  • the SiO 2 film has a deposition atmosphere of N 2 O+N 2 +SiH 4 and a deposition condition of 800 W and a pressure of 1500 mTorr.
  • a barrier layer for reducing the residual of the black matrix material is formed on the color film matrix 2, and then the black matrix material is spin-coated thereon, so that after exposure development and patterning, the black color can be greatly reduced.
  • the residue of the matrix material further improves the fabrication yield of the color filter substrate. Since SiO 2 has good hydrophobicity and transmittance, it can further reduce the residual of the black matrix material as a barrier layer.
  • the step of sequentially forming the black matrix 3 and the spacers 4 on the barrier layer 8 as shown in FIG. 6d is further included.
  • FIG. 7 is a flow chart showing a process of fabricating a CF substrate according to still another embodiment of the present invention.
  • a color film matrix 2 is formed on the substrate 1 as shown in FIGS. 7a and 7b.
  • the preparation method further includes the step of performing ashing treatment on the barrier layer 8, as shown in FIG. 7d.
  • Ashing is a surface treatment method that uses a plasma of a reactive gas (mainly oxygen plasma) for ashing (incineration) to change certain properties of the surface of the material or to remove certain materials directly.
  • a reactive gas mainly oxygen plasma
  • the substrate on which the barrier layer has been formed is subjected to ashing treatment before the spin coating of the black matrix material, and after the ashing treatment, the surface characteristics of the barrier layer may be changed, and the barrier layer and the black layer are changed.
  • the surface contact angle of the matrix material makes it easier for the BM to be peeled off from the surface of the barrier layer, further reducing the BM residue.
  • the ashing treatment atmosphere is O 2 and the treatment time is 10 s-30 s.
  • the step of sequentially forming the black matrix 3 and the spacer 4 on the ash-treated barrier layer 8 as shown in FIG. 7e is further included.
  • FIG. 8 is a flow chart showing a process of fabricating a CF substrate according to still another embodiment of the present invention.
  • a color film matrix is formed on the substrate 1 as shown in FIGS. 8a and 8b. 2.
  • the preparation method further includes The step of forming the auxiliary electrode layer 9 on the color filter substrate is as shown in FIG. 8e, wherein the auxiliary electrode layer 9 is used for electrically connecting the auxiliary electrode and the cathode to reduce the cathode resistance and reduce the voltage drop.
  • the auxiliary electrode layer 9 is made of a transparent conductive material including a transparent metal film, a transparent metal oxide film, a non-metal oxide film, and a conductive particle-dispersed ferroelectric material, and the film form includes a single layer film. , two-layer film, multilayer film or multi-layer film, undoped type, doped type and multi-element type.
  • the transparent conductive material is a metal oxide film such as an indium tin oxide (ITO) film.
  • the orthographic projection area of the spacer 4 on the base substrate 1 is smaller than the orthographic projection area of the corresponding black matrix unit 3-1 on the base substrate 1.
  • the protrusion of the auxiliary electrode layer in the embodiment exhibits a small gradient and a high adhesion to each film layer, thereby making The auxiliary electrode layer is not easily peeled off during the process of the cartridge.
  • the preparation method may further include a step of cleaning the substrate substrate 1 before spin coating the red, green, and blue photoresists on the base substrate 1.
  • the cleaning of the substrate substrate can be performed by a standard cleaning method.
  • the cleaning method of the substrate substrate is not limited in the present invention.
  • the red, green, and blue color photoresists are separately formed in the corresponding pixel regions and overlap each other in a three-layer stacked structure in a void region between adjacent pixel regions, and Compared with the existing color filter, the height of the color filter having the laminated structure is increased, thereby reducing the fabrication height of the spacer, thereby reducing the difficulty of the process and improving the color filter.
  • the setting of the barrier layer can greatly reduce the residual of the black matrix material, and the further ashing treatment of the barrier layer can more significantly reduce the residual phenomenon of the black matrix, further improving the fabrication yield of the color filter substrate;
  • the black matrix is disposed on the color film matrix, which is closer to the pixel light emitting region, which can better reduce the light leakage phenomenon between the pixel regions, and can further improve the basic height of the color film substrate.

Abstract

一种彩膜基板,其包括衬底基板(1),以及依次形成在衬底基板(1)上的彩膜矩阵(2)、黑矩阵(3)和隔垫物(4),彩膜矩阵(2)由多个红、绿、蓝三色光阻(5,6,7)构成,其中红、绿、蓝三色光阻(5,6,7)分别单独地形成在对应的像素区域(P)中并在相邻的像素区域(P)之间的空隙区域(V)中彼此重叠成三层层叠结构,并且所述黑矩阵(3)及隔垫物(4)依次形成在每个空隙区域(V)中的所述层叠结构之上。提供彩膜基板的制备方法、有机发光显示面板和显示装置,通过在相邻的素区域(P)之间的空隙区域(V)中交叠形成红、绿、蓝三色光阻(5,6,7)的层叠结构,能够增加彩膜基板的高度,降低隔垫物(4)的制作高度,降低工艺实现难度,提高彩色滤光片的制作良率;另外,阻挡层(8)还能够大大减少黑矩阵材料的残留,进一步提高彩膜基板的制作良率。

Description

彩膜基板及其制备方法、有机发光显示面板和显示装置 技术领域
本发明的实施例一般地涉及显示技术领域,并且具体地,涉及一种彩色滤光片或彩膜(Color Filter,CF)基板及其制备方法、有机发光显示面板、以及显示装置。
背景技术
有源矩阵有机发光二极管(AMOLED,Active Matrix/Organic Light Emitting Diode)面板作为下一代显示技术,不管在画质、效能及成本上都优于传统的薄膜晶体管LCD(TFT-LCD,Thin Film Transistor LCD)。具体来说,在显示效能方面,AMOLED反应速度较快、对比度更高、视角也较广;AMOLED耗电量小,其耗电量大约仅有TFT-LCD的60%;另外,AMOLED具有自发光特色,不需要使用背光源,因此能够比TFT-LCD做得更轻薄,而且还能够节省背光模块的成本,而背光模块的成本在TFT-LCD制作成本中占有高达30-40%的比重。
但是AMOLED存在的最大的问题是良率,以目前的良率,AMOLED的价格比TFT-LCD高出很多,这就在很大程度上限制了AMOLED的广泛使用。
目前有些显示器厂商采用WOLED+CF方式来实现彩色显示,WOLED+CF方式即为在白色OLED背板上组合使用彩色滤光片(CF)。作为AMOLED的一种技术选择,WOLED+CF方式除了具有有机电致发光(EL)材料利用率高、开口率高、容易实现大屏幕化等优点外,还易于确保量产时的成品率。
WOLED+CF方式通常采用阵列背板与CF基板对位压盒的方式,常规用于LCD显示的CF基板的结构如图1所示,制作该CF基板时,通常先制作黑色遮光区或黑矩阵(Black Matrix,BM),然后制作红/绿/蓝(R/G/B)三种颜色的亚像素彩膜,最后在BM对应的位置处制作起支撑作用的柱状隔垫物(Post Spacer,PS),其具体工艺步骤包括:进行BM材料涂布及图形化;分别进行红色、绿色、蓝色光阻涂布及图形化;形成保护膜(Over-coat,OC);形成PS柱。
但是由于AMOLED的WOLED+CF技术方案需要较大的盒厚,这就要求 在CF基板中起支撑作用的PS柱的高度较高,这在工艺上实现的难度较大,工艺实现步骤较为复杂,良率不能够保证。并且,这种PS结构在和OLED背板的对盒过程中,容易产生破损,进而导致AMOLED整体良率降低。
发明内容
为了解决上述现有技术中存在的问题中的至少一种,本发明提出一种彩膜基板及其制备方法、有机发光显示面板和显示装置。
根据本发明的一方面,提出一种彩膜基板,包括衬底基板、以及依次形成在衬底基板上的彩膜矩阵、黑矩阵和隔垫物,所述彩膜矩阵由多个红、绿、蓝三色光阻构成,其中:
红、绿、蓝三色光阻分别单独地形成在对应的像素区域中并在相邻的像素区域之间的空隙区域中彼此重叠成三层层叠结构;并且
所述黑矩阵及隔垫物依次形成在每个空隙区域中的所述层叠结构之上。
上述彩膜基板还可以包括阻挡层,所述阻挡层形成在所述彩膜矩阵和所述黑矩阵之间,用于减少黑矩阵材料的残留。
在上述彩膜基板中,阻挡层可以由无机材料制成,如由二氧化硅制成。
在上述彩膜基板中,所述阻挡层可以是经过灰化处理的。
上述彩膜基板还可以包括覆盖所述彩膜矩阵、黑矩阵和隔垫物的辅助电极层。
在上述彩膜基板中,所述黑矩阵由多个遮光单元构成,在每个遮光单元上形成有一个所述隔垫物,并且每个隔垫物在衬底基板上的正投影面积可以小于对应的遮光单元在衬底基板上的正投影面积。
根据本发明的另一个方面,提供了一种有机发光显示面板,包括上述彩膜基板。
根据本发明的又一个方面,提供了一种显示装置,包括上述有机发光显示面板。
根据本发明的再一个方面,提供了一种彩膜基板的制备方法,包括以下步骤:
在衬底基板上形成红、绿、蓝三色光阻层并进行图形化,以形成彩膜矩阵,使得红、绿、蓝三色光阻分别单独地形成在对应的像素区域中并在相邻的像素区域之间的空隙区域中彼此重叠成三层层叠结构;以及
在空隙区域中的层叠结构之上依次形成黑矩阵及隔垫物图形。
上述制备方法还可以包括形成黑矩阵之前在所述彩膜矩阵上形成阻挡层的步骤,所述阻挡层用于减少黑矩阵材料的残留。
阻挡层可以由无机材料制成,如由二氧化硅制成。
在形成所述阻挡层之后,上述制备方法还可以包括对所述阻挡层进行灰化处理的步骤。灰化处理的气氛可以为氧或氟,处理时间为10s-30s。
上述制备方法还可以包括在形成隔垫物之后,在所述彩膜基板上形成覆盖所述彩膜矩阵、黑矩阵和隔垫物的辅助电极层的步骤。
根据本发明的上述技术方案,一方面,红、绿、蓝三色光阻在对应相邻像素之间的空隙处交叠存在,并且红、绿、蓝三色光阻分别在对应像素区域单独设置,具有层叠结构的彩色滤光片的高度大于现有彩色滤光片的高度,这样就降低了隔垫物的制作高度,进而降低了工艺实现难度,提高了彩色滤光片的制作良率;另一方面,本发明阻挡层的设置能够大大减少黑矩阵材料的残留,进一步提高了所述彩膜基板的制作良率;另一方面,黑矩阵设置在彩膜矩阵之上,更接近于像素发光区域,较现有技术可更好地降低像素区域之间的漏光现象,并可进一步提高所述彩膜基板的基础高度,从而进一步降低隔垫物的制作高度,降低工艺实现难度,提高彩色滤光片的制作良率;再一方面,本发明叠层彩膜矩阵、黑矩阵和隔垫物的堆叠设置使得制得的彩膜基板在对盒过程中,较现有技术中单个隔垫物的设计更为稳固,从而更进一步提高了所述彩膜基板的可靠性和制作良率。
附图说明
图1是现有技术中的CF基板的结构示意图;
图2是根据本发明一实施例的CF基板的结构示意图;
图3是根据本发明另一实施例的CF基板的结构示意图;
图4是根据本发明再一实施例的CF基板的结构示意图;
图5是根据本发明一实施例的CF基板的制作工艺流程图;
图6是根据本发明另一实施例的CF基板的制作工艺流程图;
图7是根据本发明又一实施例的CF基板的制作工艺流程图;以及
图8是根据本发明再一实施例的CF基板的制作工艺流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
在下面的详细描述中,为便于说明,阐述了许多具体的细节以提供对本发明的实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其它情况下,公知的结构和装置以图示的方式体现以简化附图。
根据本发明的一个示例性实施例,提出一种彩膜基板,如图2所示,所述彩膜基板包括衬底基板1、以及依次形成在衬底基板1上的彩膜矩阵2、黑矩阵3(BM)和隔垫物4(PS)。
示例性地,所述衬底基板1的制作材料可以包括玻璃、硅片、石英、塑料以及硅片等材料,优选为玻璃。
彩膜矩阵2是由与像素阵列对应的多组红色光阻5、绿色光阻6、蓝色光阻7构成的,红、绿、蓝三色光阻5、6、7分别单独地形成在对应的像素区域中并在相邻的像素区域P之间的空隙区域V中彼此重叠成三层层叠结构。换句话说,在每个像素区域P中仅存在对应的一种颜色的光阻,而在相邻像素区域之间的每个空隙区域V中层叠有红、绿、蓝色三色光阻。
本领域技术人员应当了解,彩色滤光片是液晶显示器等显示装置能够显示色彩的关键,光源透过彩色滤光片中的至少红、绿、蓝色三色光阻提供相应的色相,最终形成了彩色显示画面,其中,红、绿、蓝色三色光阻需单独形成在相应像素的区域上。如图2所示,图2示出的三处凹陷区域为像素区域P,在这三个像素区域中,分别形成有红色光阻5、绿色光阻6、蓝色光阻7,这样光源在透过彩色滤光片时,就可以在相应的像素区域分别形成红、绿、蓝三色光。
本发明的实施例在保证红、绿、蓝三色光阻单独形成在相应像素区域中的情况下,还在对应相邻像素区域之间的空隙区域交叠形成有红、绿、蓝三色光阻,请参照图2。图2中示出的四处凸起对应相邻像素区域P之间的空隙区域V,在这四个空隙区域处交叠形成有红、绿、蓝三色光阻,如此形成的具有层叠结构的彩色滤光片,相较现有技术中的彩色滤光片而言,高度增加,这样就能够降低隔垫物4的制作高度,进而降低工艺实现难度,提高彩色滤光片的制作良率。所述黑矩阵3及隔垫物4依次形成在彩膜矩阵2中红、绿、蓝三色光 阻的层叠结构之上,即彩膜矩阵2中由红、绿、蓝三色光阻5、6、7形成的每个层叠结构之上均形成有黑矩阵3和隔垫物4。示例性地,黑矩阵3可以由与像素阵列对应的多个遮光单元3-1构成,在每个遮光单元3-1上形成有一个隔垫物4。
黑矩阵3可以由高遮光材料制成,可选地,黑矩阵3材料可以为掺有遮光材料的树脂材料。
所述隔垫物4起支撑作用,其由具有高弹性恢复率和高外压形变承受能力的材料制成,这样就可以使得制作的基板在对盒过程中更为稳固、最终制得的AMOLED抗压、抗形变能力更强。
黑矩阵3的上述布置可降低像素区域之间的漏光,并可进一步提高所述彩膜基板的基础高度,进一步降低隔垫物4的制作高度,降低工艺实现难度,提高彩色滤光片的制作良率。另外,本发明中层叠彩膜矩阵、黑矩阵和隔垫物的布置使得制得的彩膜基板在对盒过程中,较现有技术中单个隔垫物的设计更为稳固,进一步提高了所述彩膜基板的可靠性和制作良率。
图3是根据本发明另一实施例的CF基板的结构示意图,在该实施例中,除了图2中所示的结构之外,所述彩膜基板还包括阻挡层8,所述阻挡层8形成在所述彩膜矩阵2上。
在彩膜基板中,由于黑矩阵材料和彩膜矩阵材料通常为树脂材料,二者之间材料特性相近、粘结力较强。因此,直接在彩膜矩阵上形成黑矩阵图形的过程中,黑矩阵在对应像素区域处残留现象明显,即在黑矩阵构图工艺过程中,需要完全去除黑矩阵材料的区域仍然会留有部分黑矩阵材料,这会导致整体彩膜基板的透过率和色彩纯度降低。为解决上述问题,在本实施例中,在彩膜矩阵和黑矩阵之间形成一层阻挡层8,其中,所述阻挡层8可以由无机材料制成,其与黑矩阵的粘附力较小,可减少黑矩阵材料的残留,同时保证黑矩阵能够在彩膜叠加处顺利形成。示例性地,所述无机材料可以为二氧化硅(SiO2),优选地,为二氧化硅薄膜。
可选地,采用等离子体增强化学气相沉积法(PECVD)等半导体工艺形成所述阻挡层8。
在一个示例中,可以在350℃下利用PECVD沉积得到厚度为
Figure PCTCN2014087080-appb-000001
的SiO2薄膜,沉积气氛为N2O+N2+SiH4,沉积条件为功率为800W,压强为1500mTorr。
本领域技术人员应当了解,黑矩阵用于间隔彩色滤光片的红、绿、蓝三色光阻,其主要作用是防止背景光泄漏、提高显示对比度、防止混色和增加颜色的纯度,也就是说形成有黑矩阵的非像素区域能够阻止背景光,而未形成有黑矩阵的像素区域能够透过背景光,再借助红、绿、蓝三色光阻进而透出红、绿、蓝三种有色光。需要说明的是,此处的背景光是指背板从彩膜基板另一侧发出的光,对于LCD来说就是背光,而对于OLED来说是EL器件主动发出的光。因此,黑矩阵通常由高遮光材料制成,黑矩阵材料和彩膜矩阵材料通常为树脂材料,二者之间材料特性相近,粘结力较强,并且在形成黑矩阵时,由于显影或水洗等制作工艺的技术限制,因此,直接在彩膜矩阵上形成黑矩阵图形的过程中,黑矩阵在对应像素区域处残留现象明显,即在黑矩阵构图工艺过程中,需要完全去除黑矩阵材料的区域仍然会留有部分黑矩阵材料,这样就会导致像素区域对应的光在一定程度上被残留的黑矩阵材料遮挡,进而导致彩色滤光片颜色纯度下降、显示面板显示对比度降低等质量缺陷,严重情况下,还有可能直接导致彩色滤光片无法使用。
将用于减少黑矩阵材料的残留的阻挡层制作在彩膜矩阵2之上,再在其上旋涂黑矩阵材料,这样在经过曝光显影及图形化之后,可以大大减少黑矩阵材料的残留,进而提高彩膜基板的制作良率。进一步,SiO2由于疏水性及透过率良好,其作为阻挡层可以进一步减少黑矩阵材料的残留。
优选地,所述阻挡层是经过灰化处理的。
灰化处理属于一种表面处理方法,其使用反应气体的等离子体(主要是氧等离子体)进行灰化(焚烧),以改变材料表面的某些特性或者直接去除某些材料。
为了进一步降低BM残留现象,在进行黑矩阵材料旋涂之前,对已形成有阻挡层的基板进行灰化处理,经过灰化处理之后,可改变所述阻挡层的表面特性,改变阻挡层与黑矩阵材料的表面接触角,从而使得BM更容易从阻挡层表面剥离洗去,进一步降低BM残留现象。在一个示例中,所述灰化处理的气氛可以为O2,处理时间为10s-30s。
图4是根据本发明另一实施例的CF基板的结构示意图,在该实施例中,除了图3中示出的结构之外,所述彩膜基板上还形成有辅助电极层9,用于辅助电极与阴极进行电连接,以降低阴极电阻,降低电压降。
辅助电极层9由透明导电材料制成,所述透明导电材料可以包括透明金属 薄膜、透明金属氧化物薄膜、非金属氧化物薄膜以及导电性颗粒分散铁电材料等材料,薄膜的形式包括单层膜、二层膜、多层膜或复层膜、无掺杂型、掺杂型和多元素型。优选地,所述透明导电材料为金属氧化物薄膜,比如氧化铟锡(ITO)薄膜。
需要说明的是,图4只是对于本实施例进行示例性的说明,当然也可以在图2所示彩膜基板的基础上形成辅助电极层9。也就是说,本发明对于各个独立材料层之间的组合关系不作任何的限定,只要能够实现本发明的彩膜基板功能的任何可能的组合关系都属于本发明的保护范围。
优选地,所述隔垫物4在衬底基板1上的正投影面积小于对应的黑矩阵单元3-1的在衬底基板1上的正投影面积。
与现有技术中辅助电极层形成在单个隔垫物上的结构相比,本发明所述结构中辅助电极层的凸起所呈现的坡度较小,与各膜层的粘附力较高,从而使得所述辅助电极层在对盒过程中不容易脱落。
根据本发明的实施例,一方面,红、绿、蓝三色光阻分别单独地形成在对应的像素区域中并在相邻的像素区域之间的空隙区域中彼此重叠成三层层叠结构,与现有的彩色滤光片相比,具有该层叠结构的彩色滤光片高度增加,这样就降低了隔垫物的制作高度,进而降低了工艺实现难度,提高了彩色滤光片的制作良率;另一方面,阻挡层的设置能够大大减少黑矩阵材料的残留,进一步提高了所述彩膜基板的制作良率;进一步,黑矩阵设置在彩膜矩阵之上,更接近于像素发光区域,较现有技术可更好地降低像素区域之间的漏光现象,并可进一步提高所述彩膜基板的基础高度,从而进一步降低隔垫物的制作高度,降低工艺实现难度,提高彩色滤光片的制作良率;再一方面,本发明中彩膜矩阵、黑矩阵和隔垫物的层叠布置使得制得的彩膜基板在对盒过程中,较现有技术中单个隔垫物的设计更为稳固,从而更进一步提高彩膜基板的可靠性和制作良率。
根据本发明的另一示例性实施例,还提出一种有机发光显示面板,所述有机发光显示面板包括如上所述的彩膜基板。这种有机发光显示面板例如可以是AMOLED。
根据本发明的另一示例性实施例,还提出一种显示装置,所述显示装置包括如上所述的有机发光显示面板。
根据本发明的再一示例性实施例,还提出一种彩膜基板的制备方法,如图 5a-5c所示,所述制备方法可以包括以下步骤:
在衬底基板1上形成红、绿、蓝三色光阻层并进行图形化,形成包括与像素阵列对应的多组红色光阻5、绿色光阻6、蓝色光阻7的彩膜矩阵2。在所述彩膜矩阵2中,红、绿、蓝三色光阻5、6、7分别单独地形成在对应的像素区域中并在相邻的像素区域P之间的空隙区域V中彼此重叠成三层层叠结构,如图5a和图5b所示。示例性地,所述衬底基板1的制作材料可以包括玻璃、硅片、石英、塑料以及硅片等材料,优选为玻璃。
在一个示例中,采用旋涂等半导体工艺形成所述红、绿、蓝三色光阻层,利用曝光显影等半导体工艺进行图形化处理,以形成与像素阵列对应的多组红色光阻5、绿色光阻6、蓝色光阻7。
图5b示出了根据本发明一实施例得到的具有层叠结构的彩膜矩阵2,图5b中,红、绿、蓝三色光阻5、6、7被涂布并图形化,使得红、绿、蓝三色光阻5、6、7分别单独地形成在对应的像素区域中并在相邻的像素区域之间的空隙区域中彼此重叠成三层层叠结构。当然,本领域技术人员也可以采用其他方式形成红、绿、蓝三色光阻,对于形成方式和工艺,本发明不作任何限制,只要能够在每个像素区域中仅形成对应的一种颜色的光阻,而在相邻像素区域之间的每个空隙区域中形成红、绿、蓝色三色光阻的三层层叠结构。
根据本发明的实施例,在保证红、绿、蓝三色光阻单独形成在相应像素区域中的情况下,还在对应相邻像素之间的空隙区域中交叠形成有红、绿、蓝三色光阻的三层层叠结构,还请参照图5b,图5b中示出的四处凸起对应相邻像素区域之间的空隙区域,在这四处相邻像素区域之间的空隙区域中交叠形成有红、绿、蓝三色光阻,相较现有技术中的彩色滤光片而言,如此形成的具有层叠结构的彩色滤光片的高度增加,这样就能够降低隔垫物4的制作高度,进而降低工艺实现难度,提高彩色滤光片的制作良率。
根据本实施例的制备方法,还在所述彩膜矩阵2中红、绿、蓝三色光阻的交叠处之上依次形成黑矩阵及隔垫物图形,在红、绿、蓝三色光阻的层叠结构之上均形成黑矩阵3及隔垫物4,如图5c所示。
黑矩阵3由高遮光材料制成。
所述隔垫物4起支撑作用,其由具有高弹性恢复率和高外压形变承受能力的材料制成,这样就可以使得制作的基板在对盒过程中更为稳固、最终制得的AMOLED抗压、抗形变能力更强。
其中,黑矩阵3的上述布置可降低像素区域之间的漏光,并可进一步提高所述彩膜基板的基础高度,进一步降低隔垫物4的制作高度,降低工艺实现难度,提高彩色滤光片的制作良率。本发明实施例提供的彩膜矩阵、黑矩阵和隔垫物的堆叠布置使得制得的彩膜基板在对盒过程中,较现有技术中单个隔垫物的设计更为稳固,进一步提高了所述彩膜基板的可靠性和制作良率。
图6是根据本发明另一实施例的CF基板的制作工艺流程图,如图6所示,在该实施例中,在图6a和图6b所示的在衬底基板1上形成彩膜矩阵2之后,所述制备方法还包括在彩膜矩阵2上形成阻挡层8的步骤,如图6c所示;其中,所述阻挡层8由无机材料制成,以减少黑矩阵材料的残留,同时保证黑矩阵能够在彩膜叠加处顺利形成。优选地,所述无机材料为二氧化硅(SiO2),更优选地,为薄二氧化硅薄膜。
示例性地,可以采用等离子体增强化学气相沉积法(PECVD)等半导体工艺形成所述阻挡层8。
在一个示例中,可以在350℃下利用PECVD沉积得到厚度为
Figure PCTCN2014087080-appb-000002
的SiO2薄膜,沉积气氛为N2O+N2+SiH4,沉积条件为功率为800W,压强为1500mTorr。
如前所述,将用于减少黑矩阵材料的残留的阻挡层制作在彩膜矩阵2之上,再在其上旋涂黑矩阵材料,这样在经过曝光显影及图形化之后,可以大大减少黑矩阵材料的残留,进而提高彩膜基板的制作良率。SiO2由于疏水性及透过率良好,其作为阻挡层可以进一步减少黑矩阵材料的残留。
当然,本实施例中,还包括如图6d所示的在所述阻挡层8上依次形成黑矩阵3和隔垫物4的步骤。
需要说明的是,图6所示的其他步骤与图5所示实施例中的相应步骤相同或相似,在此不再一一详细说明。
图7是根据本发明又一实施例的CF基板的制作工艺流程图,如图7所示,在该实施例中,如图7a和图7b所示在衬底基板1上形成彩膜矩阵2、如图7c所示在彩膜矩阵2上形成阻挡层8之后,所述制备方法还包括对于所述阻挡层8进行灰化处理的步骤,如图7d所示。
灰化处理属于一种表面处理方法,其使用反应气体的等离子体(主要是氧等离子体)进行灰化(焚烧),以改变材料表面的某些特性或者直接去除某些材料。
为了进一步降低BM残留现象,在进行黑矩阵材料旋涂之前,对已形成有阻挡层的基板进行灰化处理,经过灰化处理之后,可改变所述阻挡层的表面特性,改变阻挡层与黑矩阵材料的表面接触角,从而使得BM更容易从阻挡层表面剥离洗去,进一步降低BM残留现象。在一个示例中,所述灰化处理的气氛为O2,处理时间为10s-30s。
当然,本实施例中,还包括如图7e所示的在经过灰化处理的阻挡层8上依次形成黑矩阵3和隔垫物4的步骤。
需要说明的是,图7所示的其他步骤与图5、图6所示实施例中的相应步骤相同或相似,在此不再一一详细说明。
图8是根据本发明再一实施例的CF基板的制作工艺流程图,如图8所示,在该实施例中,在如图8a和图8b所示在衬底基板1上形成彩膜矩阵2、如图8c所示的在彩膜矩阵2上形成阻挡层8、如图8d所示在阻挡层8上依次形成黑矩阵3和隔垫物4之后,所述制备方法还包括在制得的所述彩膜基板上形成辅助电极层9的步骤,如图8e所示,其中,所述辅助电极层9用于辅助电极与阴极进行电连接,以降低阴极电阻,降低电压降。
辅助电极层9由透明导电材料制成,所述透明导电材料包括透明金属薄膜、透明金属氧化物薄膜、非金属氧化物薄膜以及导电性颗粒分散铁电材料等材料,薄膜的形式包括单层膜、二层膜、多层膜或复层膜、无掺杂型、掺杂型和多元素型。优选地,所述透明导电材料为金属氧化物薄膜,比如氧化铟锡(ITO)薄膜。
优选地,隔垫物4在衬底基板1上的正投影面积小于对应的黑矩阵单元3-1的在衬底基板1上的正投影面积。
与现有技术中辅助电极层形成在单个隔垫物上的结构相比,本实施例中辅助电极层的凸起所呈现的坡度较小,与各膜层的粘附力较高,从而使得所述辅助电极层在对盒过程中不易脱落。
需要说明的是,图8所示的其他步骤与图5、图6、图7所示实施例中的相应步骤相同或相似,在此不再一一详细说明。
在本发明再一实施例中,所述制备方法在在所述衬底基板1上旋涂红、绿、蓝三色光阻之前,还可以包括对于所述衬底基板1进行清洗的步骤。
其中,对于所述衬底基板的清洗可采用标准清洗方法进行清洗,本发明对于衬底基板的清洗方法不作任何限定。
需要说明的是,以上制备工艺流程图只是对于各个实施例进行示例性的说明,以上所描述的步骤在不违背常识的情况下可随意组合,本发明对于各个独立步骤之间的组合及顺序关系不作任何的限定,只要能够制得本发明所述彩膜基板的任何可能的步骤组合都属于本发明的保护范围。
根据本发明的实施例,一方面,红、绿、蓝三色光阻分别单独地形成在对应的像素区域中并在相邻的像素区域之间的空隙区域中彼此重叠成三层层叠结构,与现有的彩色滤光片相比,具有这种层叠结构的彩色滤光片的高度增加,这样就降低了隔垫物的制作高度,进而降低了工艺实现难度,提高了彩色滤光片的制作良率;另一方面,阻挡层的设置能够大大减少黑矩阵材料的残留,阻挡层的进一步灰化处理可以更明显地减少黑矩阵残留现象,进一步提高了所述彩膜基板的制作良率;进一步地,黑矩阵设置在彩膜矩阵之上,更接近于像素发光区域,较现有技术可更好地降低像素区域之间的漏光现象,并可进一步提高所述彩膜基板的基础高度,从而进一步降低隔垫物的制作高度,降低工艺实现难度,提高彩色滤光片的制作良率;再一方面,彩膜矩阵、黑矩阵和隔垫物的堆叠布置使得制得的彩膜基板在对盒过程中,较现有技术中单个隔垫物的设计更为稳固,从而更进一步提高了所述彩膜基板的可靠性和制作良率。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种彩膜基板,包括衬底基板、以及依次形成在衬底基板上的彩膜矩阵、黑矩阵和隔垫物,所述彩膜矩阵由多个红、绿、蓝三色光阻构成,其中:
    红、绿、蓝三色光阻分别单独地形成在对应的像素区域中并在相邻的像素区域之间的空隙区域中彼此重叠成三层层叠结构;并且
    所述黑矩阵和隔垫物依次形成在每个空隙区域中的所述层叠结构之上。
  2. 根据权利要求1所述的彩膜基板,还包括阻挡层,所述阻挡层形成在所述彩膜矩阵和所述黑矩阵之间,用于减少黑矩阵材料的残留。
  3. 根据权利要求2所述的彩膜基板,其中,所述阻挡层由无机材料制成。
  4. 根据权利要求3所述的彩膜基板,其中,所述阻挡层由二氧化硅制成。
  5. 根据权利要求2-4中任一项所述的彩膜基板,其中,所述阻挡层经过灰化处理。
  6. 根据权利要求1-4中任一项所述的彩膜基板,还包括辅助电极层,所述辅助电极层覆盖所述彩膜矩阵、黑矩阵和隔垫物。
  7. 根据权利要求1-4中任一项所述的彩膜基板,其中,所述黑矩阵由多个遮光单元构成,在每个遮光单元上形成有一个所述隔垫物,并且每个隔垫物在衬底基板上的正投影面积小于对应的遮光单元在衬底基板上的正投影面积。
  8. 一种有机发光显示面板,包括如权利要求1-7中任一项所述的彩膜基板。
  9. 一种显示装置,包括如权利要求8所述的有机发光显示面板。
  10. 一种彩膜基板的制备方法,包括以下步骤:
    在衬底基板上形成红、绿、蓝三色光阻层并进行图形化,以形成彩膜矩阵,使得红、绿、蓝三色光阻分别单独地形成在对应的像素区域中并在相邻的像素区域之间的空隙区域中彼此重叠成三层层叠结构;以及
    在空隙区域中的层叠结构之上依次形成黑矩阵及隔垫物图形。
  11. 根据权利要求10所述的制备方法,还包括形成黑矩阵之前在所述彩膜矩阵上形成阻挡层的步骤,所述阻挡层用于减少黑矩阵材料的残留。
  12. 根据权利要求11所述的制备方法,其中,所述阻挡层由无机材料制成。
  13. 根据权利要求12所述的制备方法,其中,所述阻挡层由二氧化硅制 成。
  14. 根据权利要求11-13中任一项所述的制备方法,其中,在形成所述阻挡层之后,还包括对所述阻挡层进行灰化处理的步骤。
  15. 根据权利要求14所述的制备方法,其中,所述灰化处理的气氛为氧或氟,处理时间为10s-30s。
  16. 根据权利要求10-13中任一项所述的制备方法,还包括在形成隔垫物之后,在所述彩膜基板上形成覆盖所述彩膜矩阵、黑矩阵和隔垫物的辅助电极层的步骤。
PCT/CN2014/087080 2014-06-16 2014-09-22 彩膜基板及其制备方法、有机发光显示面板和显示装置 WO2015192517A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/771,566 US10263049B2 (en) 2014-06-16 2014-09-22 Color filter substrate and method of manufacturing the same, organic light emitting display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410267499.2A CN104166265B (zh) 2014-06-16 2014-06-16 一种彩色滤光片基板及其制备方法、有机发光显示面板、显示装置
CN201410267499.2 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015192517A1 true WO2015192517A1 (zh) 2015-12-23

Family

ID=51910151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087080 WO2015192517A1 (zh) 2014-06-16 2014-09-22 彩膜基板及其制备方法、有机发光显示面板和显示装置

Country Status (3)

Country Link
US (1) US10263049B2 (zh)
CN (1) CN104166265B (zh)
WO (1) WO2015192517A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289985B1 (ko) * 2014-12-08 2021-08-17 삼성디스플레이 주식회사 표시 장치
CN106324870A (zh) * 2015-06-17 2017-01-11 南京瀚宇彩欣科技有限责任公司 液晶显示面板的像素结构及像素形成方法
CN105140247B (zh) * 2015-10-10 2018-02-16 京东方科技集团股份有限公司 有机发光二极管阵列基板、制造方法及使用其的显示器
KR102589859B1 (ko) * 2016-03-22 2023-10-16 삼성디스플레이 주식회사 색필터 표시판 및 이를 포함하는 표시 장치
US10020351B2 (en) * 2016-06-24 2018-07-10 Lg Display Co., Ltd. Electroluminescence display device
CN106125412A (zh) * 2016-08-31 2016-11-16 武汉华星光电技术有限公司 液晶显示面板
CN108630829B (zh) * 2017-03-17 2019-11-08 京东方科技集团股份有限公司 显示面板的制作方法、显示面板及显示装置
CN107505766B (zh) * 2017-10-12 2020-05-05 深圳市华星光电半导体显示技术有限公司 彩膜基板及制造方法、增加膜层厚度的结构
CN108231846B (zh) * 2018-01-02 2021-01-26 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN109309170B (zh) * 2018-09-26 2020-07-10 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN208969389U (zh) * 2018-09-28 2019-06-11 惠科股份有限公司 显示面板及显示装置
KR20200059369A (ko) * 2018-11-20 2020-05-29 삼성디스플레이 주식회사 표시 패널
CN109901335B (zh) * 2019-03-27 2023-08-25 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110491925A (zh) * 2019-08-27 2019-11-22 昆山工研院新型平板显示技术中心有限公司 显示面板及其制备方法、显示装置
CN110707132A (zh) * 2019-09-06 2020-01-17 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制作方法
CN110707138A (zh) * 2019-10-31 2020-01-17 深圳市华星光电半导体显示技术有限公司 一种oled显示面板及其制造方法
CN111323959B (zh) * 2020-04-07 2023-01-24 Tcl华星光电技术有限公司 彩膜基板、彩膜基板制备方法及其在液晶显示中的应用
CN111785170B (zh) * 2020-07-16 2022-04-29 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
CN113299542B (zh) * 2021-05-20 2023-03-10 安徽熙泰智能科技有限公司 一种高分辨率硅基彩色oled微显示器件的制备方法
CN116685899A (zh) * 2021-11-05 2023-09-01 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003854A (ja) * 2003-06-11 2005-01-06 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及びその製造方法
CN101364014A (zh) * 2008-08-29 2009-02-11 昆山龙腾光电有限公司 一种液晶显示面板及其制作方法
JP2009169064A (ja) * 2008-01-16 2009-07-30 Dainippon Printing Co Ltd 横電界液晶駆動方式用カラーフィルタ
US20120169977A1 (en) * 2009-10-15 2012-07-05 Sharp Kabushiki Kaisha Color filter substrate and liquid crystal display device
CN103681693A (zh) * 2013-12-05 2014-03-26 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN103700688A (zh) * 2013-12-23 2014-04-02 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
CN103943659A (zh) * 2014-03-31 2014-07-23 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720170B1 (fr) * 1994-05-17 1996-07-05 Thomson Lcd Procédé de fabrication d'un écran LCD muni d'un masque opaque.
KR100218498B1 (ko) * 1994-11-04 1999-09-01 윤종용 액정 디스플레이용 칼라 필터 기판 및 그 제조 방법
CN1206116A (zh) * 1997-05-23 1999-01-27 三星电管株式会社 制造颜色过滤器的方法
CN101675377B (zh) * 2007-06-11 2012-05-09 夏普株式会社 彩色滤光片基板的制造方法、液晶显示装置的制造方法、彩色滤光片基板、和液晶显示装置
JPWO2009037874A1 (ja) * 2007-09-19 2011-01-06 富士電機ホールディングス株式会社 色変換フィルタ、ならびに色変換フィルタおよび有機elディスプレイの製造方法
KR101596372B1 (ko) * 2008-02-15 2016-03-08 삼성디스플레이 주식회사 표시장치용 투명전극, 표시장치 및 표시장치의 제조방법
CN101387716B (zh) * 2008-11-03 2012-03-21 友达光电股份有限公司 彩色滤光片、显示面板、光电装置及其制作方法
TW201038981A (en) * 2009-04-21 2010-11-01 Chi Mei Optoelectronics Corp Liquid crystal display panel, corlor filter substrate and manufacturing method thereof
US20140098332A1 (en) 2012-10-10 2014-04-10 Apple Inc. Displays With Logos and Alignment Marks
JP2014127441A (ja) * 2012-12-27 2014-07-07 Sony Corp 表示装置、表示装置の製造方法および電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003854A (ja) * 2003-06-11 2005-01-06 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及びその製造方法
JP2009169064A (ja) * 2008-01-16 2009-07-30 Dainippon Printing Co Ltd 横電界液晶駆動方式用カラーフィルタ
CN101364014A (zh) * 2008-08-29 2009-02-11 昆山龙腾光电有限公司 一种液晶显示面板及其制作方法
US20120169977A1 (en) * 2009-10-15 2012-07-05 Sharp Kabushiki Kaisha Color filter substrate and liquid crystal display device
CN103681693A (zh) * 2013-12-05 2014-03-26 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN103700688A (zh) * 2013-12-23 2014-04-02 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
CN103943659A (zh) * 2014-03-31 2014-07-23 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置

Also Published As

Publication number Publication date
US20160365386A1 (en) 2016-12-15
CN104166265B (zh) 2017-12-19
US10263049B2 (en) 2019-04-16
CN104166265A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2015192517A1 (zh) 彩膜基板及其制备方法、有机发光显示面板和显示装置
US11233095B2 (en) Display substrate, manufacturing method thereof and display device
JP7294808B2 (ja) カラーフィルム基板及びその製造方法、表示パネルと表示装置
US11056543B2 (en) Display panel and manufacturing method thereof
US9065001B2 (en) Light-emitting display backplane, display device and manufacturing method of pixel define layer
WO2016101452A1 (zh) 显示基板及其制作方法、显示装置
US9722005B2 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
WO2016056364A1 (ja) 表示装置、表示装置の製造方法および電子機器
WO2016101576A1 (zh) 阵列基板及其制作方法和显示装置
CN110890406B (zh) 一种有机发光显示背板、其制作方法及显示装置
WO2018120730A1 (zh) 显示基板及其制备方法
WO2015096308A1 (zh) Oled显示面板及其制作方法
JP2013175433A (ja) 表示装置
CN103700688A (zh) 彩膜基板及其制作方法、显示装置
JP2021520024A (ja) 有機発光ダイオード表示装置及びその製造方法
WO2016074372A1 (zh) Amoled显示面板及其制作方法、显示装置
CN111769210B (zh) 显示基板及其制备方法、显示装置
WO2022017051A1 (zh) 显示基板及其制备方法、显示装置
CN109461838A (zh) 一种显示基板及其制备方法、显示面板和显示装置
WO2020172953A1 (zh) Oled显示装置及其制作方法
JP2016018734A (ja) 表示装置及びその製造方法
WO2020232915A1 (zh) 一种显示面板及其制作方法、智能终端
KR102015847B1 (ko) 유기전계 발광소자
WO2021254150A1 (zh) 显示基板及其制备方法、显示装置
US9508958B2 (en) Display substrate and manufacturing method thereof and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14771566

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14895113

Country of ref document: EP

Kind code of ref document: A1