WO2020186932A1 - 发光器件及其制造方法、显示装置 - Google Patents

发光器件及其制造方法、显示装置 Download PDF

Info

Publication number
WO2020186932A1
WO2020186932A1 PCT/CN2020/074342 CN2020074342W WO2020186932A1 WO 2020186932 A1 WO2020186932 A1 WO 2020186932A1 CN 2020074342 W CN2020074342 W CN 2020074342W WO 2020186932 A1 WO2020186932 A1 WO 2020186932A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
base substrate
packaging
layer
emitting unit
Prior art date
Application number
PCT/CN2020/074342
Other languages
English (en)
French (fr)
Inventor
高昊
王涛
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/960,197 priority Critical patent/US11404670B2/en
Publication of WO2020186932A1 publication Critical patent/WO2020186932A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the application relates to a light emitting device, a manufacturing method thereof, and a display device.
  • Organic Light-Emitting Diode (English: Organic Light-Emitting Diode; Abbreviation: OLED) device is a kind of electroluminescent device, which has the advantages of low power consumption, self-luminescence, fast response, wide viewing angle and flexible display. It is the current research in the display industry. Hot spot.
  • the application provides a light emitting device, a manufacturing method thereof, and a display device.
  • the technical solutions are as follows:
  • a light-emitting device in one aspect, includes:
  • a light-emitting unit located on the base substrate;
  • the thin film packaging structure located on the side of the light emitting unit away from the base substrate, wherein the thin film packaging structure includes at least one packaging film layer, and the target packaging film layers in the at least one packaging film layer have the same layer distribution and
  • the first packaging portion and the second packaging portion are in contact with each other, the orthographic projection of the first packaging portion on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially overlap, and The orthographic projection of the second packaging portion on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially do not overlap, and the refractive index of the first packaging portion is smaller than that of the second packaging
  • the refractive index of the part, the target packaging film layer is used to refract the light emitted by the light emitting unit from the light emitting surface of the light emitting device.
  • the target encapsulation film layer is the encapsulation film layer closest to the light emitting unit among the at least one encapsulation film layer.
  • the target encapsulation film layer is an inorganic layer.
  • the range of the difference between the refractive index of the second packaging part and the refractive index of the first packaging part is about 0.1-0.5.
  • the refractive index of the first packaging part is in the range of about 1.45 to 1.55, and the refractive index of the second packaging part is in the range of about 1.65 to 1.85.
  • the material of the first packaging portion includes silicon oxide
  • the material of the second packaging portion includes silicon oxynitride.
  • the thin film packaging structure includes inorganic layers and organic layers alternately superimposed in a direction away from the light emitting unit.
  • the packaging film layer closest to the light emitting unit and the packaging film layer closest to the light emitting unit are the most distant from the light emitting unit.
  • the far encapsulation film layers are all inorganic layers, and the target encapsulation film layer is the inorganic layer closest to the light-emitting unit.
  • the first horizontal distance between the boundary of the first packaging portion and the boundary of the light-emitting unit ranges from about 2 ⁇ m to 6 ⁇ m, and the first horizontal distance is a distance of the first packaging portion.
  • the base substrate has a packaging area, an orthographic projection of the light-emitting unit on the base substrate is located in the packaging area, and an orthographic projection of the first packaging portion on the base substrate
  • the orthographic projection of the light-emitting unit on the base substrate is completely covered, and the orthographic projection of the second packaging part on the base substrate covers the packaging area, except that the first packaging part is on the The area outside the area where the orthographic projection on the base substrate is located.
  • the light emitting device further includes: a reflective layer distributed around the light emitting unit, and an included angle exists between the reflective surface of the reflective layer and the plate surface of the base substrate.
  • the base substrate has a packaging area
  • the orthographic projection of the light-emitting unit on the base substrate and the orthographic projection of the reflective layer on the base substrate are both located in the packaging area
  • the orthographic projection of the first package portion on the base substrate completely covers the orthographic projection of the light-emitting unit on the base substrate, and completely covers the orthographic projection of the reflective layer on the base substrate
  • the orthographic projection of the second packaging portion on the base substrate covers an area of the packaging area except for the area where the orthographic projection of the first packaging portion on the base substrate is located.
  • the second horizontal distance between the boundary of the first packaging portion and the boundary of the reflective surface of the reflective layer ranges from about 1 micrometer to 4 micrometers, and the second horizontal distance is the first horizontal distance.
  • the light-emitting unit includes a first electrode, a light-emitting layer, and a second electrode that are sequentially stacked in a direction away from the base substrate, and the reflective layer is distributed around the first electrode.
  • the light emitting device further includes: a flat layer having a groove on the flat layer, and the reflective layer is on a sidewall of the groove.
  • the light emitting device further includes: a defining layer having a light emitting opening, and the light emitting unit is located in the light emitting opening.
  • a method of manufacturing a light emitting device including:
  • a thin film packaging structure is formed on the side of the light emitting unit away from the base substrate, wherein the thin film packaging structure includes at least one packaging film layer, and the target packaging film layers in the at least one packaging film layer have the same layer distribution And the first packaging portion and the second packaging portion that are in contact with each other, the orthographic projection of the first packaging portion on the base substrate and the orthographic projection of the light emitting unit on the base substrate at least partially overlap, and The orthographic projection of the second packaging portion on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially do not overlap, and the refractive index of the first packaging portion is smaller than that of the second The refractive index of the encapsulation part, the target encapsulation film layer is used to refract the light emitted by the light-emitting unit from the light-emitting surface of the light-emitting device.
  • forming a thin film packaging structure on the side of the light-emitting unit away from the base substrate includes:
  • An organic layer is formed on the side of the target encapsulation film layer away from the light emitting unit.
  • the method further includes: forming a reflective layer surrounding the light-emitting unit, and an angle exists between the reflective surface of the reflective layer and the plate surface of the base substrate.
  • forming a light-emitting unit on the base substrate includes:
  • the forming a reflective layer surrounding the light-emitting unit includes:
  • the reflective layer and the first electrode are formed at the same time.
  • the method before forming the reflective layer surrounding the first electrode, the method further includes:
  • the forming a reflective layer surrounding the first electrode includes:
  • the reflective layer surrounding the first electrode is formed on the sidewall of the trench.
  • the method further includes: forming a defining layer, the defining layer having a light emitting opening, and the light emitting unit is located in the light emitting opening.
  • a display device which includes the light emitting device described in the above aspect or any optional manner of the aspect.
  • FIG. 1 is a schematic structural diagram of an OLED device related to an embodiment of the present application
  • FIG. 2 is a schematic diagram of light propagation in the OLED device shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a light emitting device provided by an embodiment of the present application.
  • Fig. 4 is a top view of the light emitting device shown in Fig. 3;
  • FIG. 5 is a schematic structural diagram of another light-emitting device provided by an embodiment of the present application.
  • Fig. 6 is a top view of the light emitting device shown in Fig. 5;
  • FIG. 7 is an enlarged view of the area Q of the light emitting device shown in FIG. 5;
  • FIG. 8 is a schematic diagram of light propagation in the light emitting device shown in FIG. 3;
  • Fig. 9 is a schematic diagram of light propagation in the light emitting device shown in Fig. 5;
  • FIG. 10 is a method flowchart of a method for manufacturing a light-emitting device according to an embodiment of the present application.
  • FIG. 11 is a method flowchart of another method for manufacturing a light emitting device according to an embodiment of the present application.
  • 12 to 18 are schematic diagrams of the manufacturing process of a light-emitting device provided by embodiments of the present application.
  • OLED devices are currently a research hotspot in the display industry. They usually include a light-emitting unit and a thin-film packaging structure for packaging the light-emitting unit.
  • the thin-film packaging structure can extend the service life of the OLED device while ensuring the flexibility of the OLED device.
  • the outcoupling efficiency of OLED devices is a hot and difficult point in industry research.
  • the outcoupling efficiency is also called light extraction efficiency, which refers to the ratio of the power of the light emitted theoretically to the power of the actually detected light.
  • the light emitted by the light-emitting unit is emitted through the thin-film packaging structure.
  • the light with an incident angle within a certain range will have a waveguide effect in the thin-film packaging structure and be consumed, so that the light emitted from the thin-film packaging structure is weakened.
  • the coupling efficiency is low.
  • the top-emitting OLED device is a typical OLED device.
  • the waveguide effect is one of the main factors affecting the external coupling efficiency of the top-emitting OLED device.
  • the thin-film packaging structure intensifies the waveguide effect of the top-emitting OLED device, making the top-emitting OLED device more external The coupling efficiency is lower.
  • FIG. 1 shows a schematic structural diagram of an OLED device 01 related to an embodiment of the present application.
  • the OLED device 01 may be a top-emitting OLED device.
  • the OLED device 01 includes a base substrate 011, a light emitting unit 012 located on the base substrate 011, a thin film packaging structure 013 located on the side of the light emitting unit 012 away from the base substrate 011, and, on the base substrate 011
  • the defining layer 014 has a light-emitting opening E, and the light-emitting unit 012 is located in the light-emitting opening E of the defining layer 014.
  • the light-emitting unit 012 includes an anode 0121, a light-emitting layer 0122, and a cathode 0123 that are sequentially stacked along a direction away from the base substrate 011.
  • the thin film packaging structure 013 includes an inorganic layer 0131, an organic layer 0132, and an Inorganic layer 0133.
  • FIG. 2 shows a schematic diagram of light propagation in the OLED device 01 shown in FIG. 1. Referring to FIG. 2, under the action of the anode 0121 and the cathode 0123, the light-emitting layer 0122 emits light.
  • the light R1 is directly emitted from the light-emitting surface of the OLED device 01 (that is, the side of the inorganic layer 0133 away from the base substrate 011) through the thin film encapsulation structure 013;
  • the waveguide effect occurs in the boundary layer 014 and propagates laterally, and is finally consumed by the boundary layer 014; after the light R3 enters the thin film packaging structure 013, a waveguide effect occurs in the thin film packaging structure 013 (for example, the inorganic layer 0131) and propagates laterally, and is finally Thin film packaging structure 013 is consumed.
  • FIG. 3 shows a schematic structural diagram of a light emitting device 02 provided by an embodiment of the present application.
  • the light emitting device 02 includes: a base substrate 021; a light emitting unit 022 located on the base substrate 021; And, the thin film packaging structure 023 on the side of the light emitting unit 022 away from the base substrate 021, wherein the thin film packaging structure 023 includes at least one packaging film layer, and the target packaging film layer 0231 in the at least one packaging film layer has the same layer distribution and The first package portion 02311 and the second package portion 02312 are in contact with each other.
  • the orthographic projection of the first package portion 02311 on the base substrate 021 and the orthographic projection of the light-emitting unit 022 on the base substrate 021 at least partially overlap, and the second package
  • the orthographic projection of the part 02312 on the base substrate 021 and the orthographic projection of the light-emitting unit 022 on the base substrate 021 at least partially do not overlap, the refractive index of the first encapsulation part 02311 is smaller than the refractive index of the second encapsulation part 02312, and the target encapsulation film
  • the layer 0231 is used to refract the light emitted by the light-emitting unit 022 from the light-emitting surface of the light-emitting device 02.
  • the light-emitting surface of the light-emitting device 02 is the side of the film packaging structure 023 away from the base substrate 021.
  • FIG. 4 is a top view of the light-emitting device 02 shown in FIG. 3.
  • the orthographic projection of the first package part 02311 on the base substrate 021 completely covers the light-emitting unit 022 on the base substrate 021
  • the orthographic projection of the second package portion 02312 on the base substrate 021 and the orthographic projection of the light-emitting unit 022 on the base substrate 021 do not overlap.
  • the first packaging portion 02311, and the second packaging portion 02312 other structures of the thin-film packaging structure 023 are not shown in FIG. 4, and the light-emitting unit 022 is drawn with a dotted line in FIG.
  • the boundary of indicates that the light-emitting unit 022 is located under the first packaging portion 02311 and is completely covered by the first packaging portion 02311.
  • the target packaging film layer of the thin-film packaging structure has a first packaging part and a second packaging part that are distributed in the same layer and are in contact with each other.
  • the orthographic projection on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially overlap, and the orthographic projection of the second package portion on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially do not overlap,
  • the refractive index of the first packaging part is smaller than the refractive index of the second packaging part.
  • the target encapsulation film layer After the light emitted by the light-emitting unit enters the target encapsulation film layer, it first propagates in the first encapsulation part, and then is refracted to the second encapsulation part at the interface of the first encapsulation part and the second encapsulation part toward the light-emitting surface of the light-emitting device Finally, it exits from the light-emitting surface of the light-emitting device through the second packaging part, so the target packaging film layer can make the light emerge from the light-emitting surface of the light-emitting device through refraction, which helps to avoid the light waveguide effect in the film packaging structure. Helps improve the external coupling efficiency of the light emitting device.
  • the light-emitting unit 022 includes a first electrode 0221, a light-emitting layer 0222, and a second electrode 0223 that are sequentially stacked in a direction away from the base substrate 021.
  • the light-emitting device 02 further includes a defining layer 024 and a flat layer.
  • the flat layer 025 is a film layer with a flat surface (that is, the side of the flat layer 025 away from the base substrate 021).
  • the defining layer 024 has a light-emitting opening K.
  • the first electrode 0221, the light-emitting layer 0222, and the second electrode 0223, The parts that are sequentially stacked and contact each other are located in the light-emitting opening K of the defining layer 024.
  • the light-emitting unit 022 is composed of parts of the first electrode 0221, the light-emitting layer 0222, and the second electrode 0223 that are sequentially stacked and contact each other, the light-emitting unit 022 is located in the light-emitting opening K.
  • the light-emitting device 02 shown in FIG. 3 may be a top-emitting light-emitting device.
  • the first horizontal distance between the boundary of the first encapsulation portion 02311 and the boundary of the light emitting unit 022 is d1, and the range of the first horizontal distance d1 is about 2 ⁇ m to 6 ⁇ m. It can be ensured that the orthographic projection of the first packaging portion 02311 on the base substrate 021 completely covers the orthographic projection of the light-emitting unit 022 on the base substrate 021, which reduces the precision requirements of the preparation process of the first packaging portion 02311, and facilitates the first packaging. Preparation of part 02311.
  • the range of the first horizontal distance d1 is about 2 to 6 microns, which may mean that the range of the first horizontal distance d1 can float around 20% (100%) based on the range of 2 to 6 microns.
  • the range of the first horizontal distance d1 may be (2 ⁇ 2 ⁇ 20%) micrometers to (6 ⁇ 6 ⁇ 20%) micrometers, that is, the range of the first horizontal distance d1 may be (2 ⁇ 0.4) micrometer to (6 ⁇ 1.2) micrometer, for example, the range of the first horizontal distance d1 may be 1.6 micrometers to 4.8 micrometers, or the range of the first horizontal distance d1 may be 2.4 micrometers to 7.2 micrometers, or , The range of the first horizontal distance d1 may be 1.6 ⁇ m to 7.2 ⁇ m, or the range of the first horizontal distance d1 may be 2.4 ⁇ m to 4.8 ⁇ m.
  • the first horizontal distance d1 may be the minimum distance between the boundary of the first package part 02311 and the boundary of the light-emitting unit 022 in a direction parallel to the surface of the base substrate 021.
  • the light-emitting unit 022 The boundary may be a boundary that defines the light emitting opening of the layer 024.
  • the base substrate 021 has a packaging area W
  • the orthographic projection of the light emitting unit 022 on the base substrate 021 is located in the packaging area W
  • the first packaging portion 02311 is on the base substrate 021.
  • the orthographic projection on the upper surface completely covers the orthographic projection of the light-emitting unit 022 on the base substrate 021, and the orthographic projection of the second package portion 02312 on the base substrate 021 covers the package area W, except for the first package portion 02311 on the base substrate 021
  • the area outside of the area where the orthographic projection of the upper part is located that is, the orthographic projection of the target packaging film layer 0231 on the base substrate 021 completely covers the packaging area W, so that the target packaging film layer 0231 is formed by the adjacent first packaging The portion 02311 and the second packaging portion 02312 are formed, and the boundary of the first packaging portion 02311 is also the boundary between the first packaging portion 02311 and the second packaging portion 02312.
  • FIG. 5 is a schematic structural diagram of another light-emitting device 02 provided by an embodiment of the present application
  • FIG. 6 is a top view of the light-emitting device 02 shown in FIG. 5, see FIGS. 5 and 6.
  • the light emitting device 02 further includes a reflective layer 026 distributed around the light emitting unit 022.
  • the reflective layer 026 is distributed around the first electrode 0221.
  • FIG. 7 is an enlarged view of the area Q of the light-emitting device 02 shown in FIG. 5. In combination with FIG. 5 and FIG. 7, there is an angle a between the reflective surface M of the reflective layer 026 and the surface of the base substrate 021.
  • the included angle a may be an obtuse angle, for example, the included angle a may be 120 degrees, 140 degrees, or 150 degrees. It is easy to understand that FIG. 7 shows the structure related to the included angle a in the area Q, and does not show other structures in the area Q.
  • the area of the opening surface of the trench G may be larger than the area of the light-emitting opening K of the defining layer 024, and the trench G is on the base substrate 021
  • the orthographic projection covers the orthographic projection of the light-emitting opening K of the defining layer 024 on the base substrate 021.
  • the reflective layer 026 is located on the sidewall (not shown in FIG. 4) of the trench G and surrounds the first electrode 0221.
  • the reflective layer 026 The reflective surface M faces the light-emitting opening K of the defining layer 024.
  • the reflective surface M of the reflective layer 026 refers to the surface of the reflective layer 026 that is away from the sidewall of the trench G of the flat layer 025.
  • the material of the reflective layer 026 and the material of the first electrode 0221 can be the same, and reflective
  • the layer 026 and the first electrode 0221 may be formed at the same time, that is, the reflective layer 026 and the first electrode 0221 may be formed by the same process.
  • the light emitting device 02 shown in FIG. 5 may be a reflective cup type light emitting device.
  • the base substrate 021 has a packaging area W, and the orthographic projection of the light-emitting unit 022 on the base substrate 021 and the orthographic projection of the reflective layer 026 on the base substrate 021 are both located in the package.
  • area W the orthographic projection of the first encapsulation portion 02311 on the base substrate 021 completely covers the orthographic projection of the light emitting unit 022 on the base substrate 021, and completely covers the orthographic projection of the reflective layer 026 on the base substrate 021.
  • the orthographic projection of the second packaging portion 02312 on the base substrate 021 covers the packaging area W, except for the area where the orthographic projection of the first packaging portion 02311 on the base substrate 021 is located, that is, the target packaging film layer 0231
  • the orthographic projection on the base substrate 021 completely covers the packaging area W.
  • the target packaging film layer 0231 is composed of the adjacent first packaging portion 02311 and the second packaging portion 02312, and the boundary of the first packaging portion 02311 is also The boundary between the first package portion 02311 and the second package portion 02312.
  • the second horizontal distance between the boundary of the first encapsulation portion 02311 and the boundary of the reflective surface M of the reflective layer 026 is d2, and the range of the second horizontal distance d2 is about 1 micron ⁇ 4 microns, which can ensure that the orthographic projection of the first packaging portion 02311 on the base substrate 021 completely covers the light emitting unit 022 and the orthographic projection of the reflective layer 026 on the base substrate 021, reducing the preparation of the first packaging portion 02311 The process precision is required to facilitate the preparation of the first packaging part 02311.
  • the range of the second horizontal distance d2 is about 1 micron to 4 micrometers, which may mean that the range of the second horizontal distance d2 can float around 20% on the basis of the range of 1 micron to 4 micrometers.
  • the range of the second horizontal distance d2 may be (1 ⁇ 1 ⁇ 20%) micrometers to (4 ⁇ 4 ⁇ 20%) micrometers, that is, the range of the second horizontal distance d2 may be (1 ⁇ 0.2) Micrometer to (4 ⁇ 0.8) micrometer, for example, the range of the second horizontal distance d2 may be 0.8 micrometer to 3.2 micrometers, or the range of the second horizontal distance d2 may be 1.2 micrometers to 4.8 micrometers, or the second horizontal distance The range of d2 may be 0.8 micrometers to 4.8 micrometers, or the range of the second horizontal distance d2 may be 1.2 micrometers to 3.2 micrometers.
  • the second horizontal distance d2 may be the minimum distance between the boundary of the first packaging portion 02311 and the boundary of the reflective surface M of the reflective layer 026 in a direction parallel to the surface of the base substrate 021.
  • the target encapsulation film layer 0231 is at least one encapsulation film layer of the thin-film encapsulation structure 023, the encapsulation film layer closest to the light-emitting unit 022, and the target encapsulation film layer 0231 may be inorganic Floor.
  • the thin-film packaging structure 023 may include inorganic and organic layers alternately stacked in a direction away from the light-emitting unit 022.
  • the packaging film layer closest to the light-emitting unit 022 is the farthest from the light-emitting unit 022.
  • the encapsulation film layer of may be an inorganic layer
  • the target encapsulation film layer 0231 may be the inorganic layer closest to the light-emitting unit 022.
  • the thin-film packaging structure 023 includes a target packaging film layer 0231 (inorganic layer), an organic layer 0232, and an inorganic layer 0233 that are sequentially stacked in a direction away from the light emitting unit 022. It is easy to understand that the embodiment of the present application takes the thin film packaging structure 023 including three packaging film layers, and the packaging film layer closest to the light emitting unit 022 as the target packaging film layer as an example.
  • the thin film packaging structure 023 may also include two packaging films.
  • the target packaging film layer can also be multiple, as long as the thin film packaging structure 023 includes alternately superimposed inorganic and organic layers, and the thin film packaging structure 023 includes the target packaging film layer.
  • the embodiments of this application do not limit this.
  • the range of the difference between the refractive index of the second packaging portion 02312 and the refractive index of the first packaging portion 02311 is about 0.1 to 0.5, which can ensure that the light is transmitted from the first packaging portion 02311 When entering the second encapsulation part 02312, it can better refract to the side where the light-emitting surface of the light-emitting device 02 is located.
  • the range of the desired refraction angle can be determined first, and then the range of the difference between the refractive index of the second package part 02312 and the refractive index of the first package part 02311 can be determined according to the range of the desired refraction angle and the law of refraction.
  • the range of the difference between the refractive index of the second encapsulation portion 02312 and the refractive index of the first encapsulation portion 02311 is about 0.1 to 0.5, which may refer to: the refractive index of the second encapsulation portion 02312 and the first encapsulation
  • the range of the difference of the refractive index of the part 02311 can be around 20% on the basis of 0.1-0.5.
  • the range of the difference between the refractive index of the second encapsulation part 02312 and the refractive index of the first encapsulation part 02311 can be It is (0.1 ⁇ 0.1 ⁇ 20%) ⁇ (0.5 ⁇ 0.5 ⁇ 20%), that is, the range of the difference between the refractive index of the second package part 02312 and the refractive index of the first package part 02311 can be (0.1 ⁇ 0.02) ⁇ (0.5 ⁇ 0.04), for example, the range of the difference between the refractive index of the second encapsulation part 02312 and the refractive index of the first encapsulation part 02311 may be 0.08 ⁇ 0.46, or the refractive index of the second encapsulation part 02312
  • the refractive index difference with the first encapsulation portion 02311 may range from 0.12 to 0.54, or the refractive index difference between the second encapsulation portion 02312 and the first encapsulation portion 02311 may range from 0.08 to 0.54, Alternatively, the range of the difference between the refr
  • the refractive index of the first packaging portion 02311 is in the range of about 1.45 to 1.55, and the refractive index of the second packaging portion 02312 is in the range of about 1.65 to 1.85. In this way, the refractive index of the first packaging portion 02311 can be guaranteed
  • the difference between the refractive index and the refractive index of the second encapsulation part 02312 meets the above-mentioned difference range requirement.
  • the range of the refractive index of the first packaging portion 02311 is about 1.45 to 1.55, and the range of the refractive index of the second packaging portion 02312 is about 1.65 to 1.85, which can facilitate the comparison of the materials of the first packaging portion 02311 and the second packaging portion 02312
  • the selection of materials for the first package portion 02311 and the second package portion 02312 is easy to understand by those skilled in the art that the range of the refractive index of the first package portion 02311 and the range of the refractive index of the second package portion 02312 are also Other ranges may be used, as long as it can be ensured that the difference between the refractive index of the first encapsulation portion 02311 and the refractive index of the second encapsulation portion 02312 meets the above-mentioned difference range requirement.
  • the range of the refractive index of the first encapsulation portion 02311 is about 1.45 to 1.55, which may mean that the range of the refractive index of the first encapsulation portion 02311 can float around 20% on the basis of 1.45 to 1.55.
  • the range of the refractive index of the second encapsulation portion 02312 is about 1.65 to 1.85 may mean that the range of the refractive index of the second encapsulation portion 02312 can float about 20% on the basis of 1.65 to 1.85.
  • the range of the refractive index of the first packaging portion 02311 may be (1.45 ⁇ 1.45 ⁇ 20%) to (1.55 ⁇ 1.55 ⁇ 20%), and the range of the refractive index of the second packaging portion 02312 may be (1.65 ⁇ 1.65 ⁇ 20%) ⁇ (1.85 ⁇ 1.85 ⁇ 20%), that is, the range of the refractive index of the first package part 02311 can be (1.45 ⁇ 0.29) ⁇ (1.55 ⁇ 0.31), the refractive index of the second package part 02312 The range of can be (1.65 ⁇ 0.33) ⁇ (1.85 ⁇ 0.37).
  • the refractive index of the first packaging portion 02311 may be in the range of 1.16 to 1.24, or the refractive index of the first packaging portion 02311 may be in the range of 1.74 to 1.86, or the refractive index of the first packaging portion 02311 may be in the range 1.16 to 1.86;
  • the refractive index of the second encapsulation portion 02312 may range from 1.32 to 1.48, or the refractive index of the second encapsulation portion 02312 may range from 1.98 to 2.22, or the refractive index of the second encapsulation portion 02312 is The range can be from 1.32 to 2.22.
  • the material of the first packaging part 02311 may include silicon oxide (SiOx), and the material of the second packaging part 02312 may include silicon oxynitride (SiOxNy) to satisfy the refraction of the first packaging part 02311 and the second packaging part 02312. Rate requirements. It is easy to understand that the material of the first encapsulation portion 02311 and the material of the second encapsulation portion 02312 are not limited to this, as long as the above-mentioned refractive index requirements are met.
  • the light-emitting device 02 may be an electroluminescence (English: Electroluminescence; abbreviation: EL) device
  • the light-emitting unit 022 may be an electroluminescence unit
  • the light-emitting layer 0222 may be an electroluminescence layer
  • a light-emitting device 02 can be an OLED device or a quantum dot light emitting diode (English: Quantum Dot Light Emitting Diodes; abbreviation: QLED) device.
  • the first electrode 0221 may be an anode (English: anode)
  • the second electrode 0223 may be a cathode (English: cathode).
  • the light-emitting device 02 may be a display device
  • the above-mentioned definition layer 024 may be a pixel definition layer (English: Pixel Definition Layer; abbreviation: PDL)
  • the light-emitting device 02 may also include, for example, a thin film transistor (English: Thin Film Transistor; Abbreviation: TFT) and other switching units, driving circuits such as pixel circuits, and optical functional layers such as polarizers.
  • the planarization layer 025 is mainly used to planarize the surface of the substrate after the TFT is formed, which will not be repeated in the embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the propagation of light in the light emitting device 02 shown in FIG. 3.
  • the light emitting layer 0222 emits light.
  • light R1 directly exits the light-emitting surface of the light-emitting device 02 (that is, the side of the inorganic layer 0233 away from the base substrate 021) through the thin-film packaging structure 023;
  • light R2 enters the defining layer 024, and
  • the waveguide effect occurs in the boundary layer 024 and propagates laterally, and is eventually consumed by the boundary layer 024;
  • the light R3 enters the first package portion 02311 of the target package film layer 0231, and propagates in the first package portion 02311, and the light travels to the first package portion 02311.
  • an encapsulation part 02311 and a second encapsulation part 02312 it refracts to the second encapsulation part 02312 on the side where the light-emitting surface of the light-emitting device 02 is located, and finally passes through the second encapsulation part 02312, the organic layer 0232 and the inorganic
  • the layer 0233 is emitted from the light emitting surface of the light emitting device 02. Because of the light emitted by the light-emitting layer 0222, both the light R1 and the light R3 can be emitted from the light-emitting surface of the light-emitting device 02, and only the light R2 is consumed by the light-emitting device 02. Therefore, compared with the OLED device 01 shown in FIG. Application The light-emitting device 02 shown in FIG. 3 can effectively extract the waveguide energy in the thin-film packaging structure and improve the external coupling efficiency of the light-emitting device.
  • FIG. 9 shows a schematic diagram of light propagation in the light emitting device 02 shown in FIG. 5.
  • the light emitting layer 0222 emits light.
  • light R1 directly exits the light-emitting surface of the light-emitting device 02 (that is, the side of the inorganic layer 0233 away from the base substrate 021) through the thin-film packaging structure 023;
  • light R2 enters the defining layer 024, and It is emitted to the reflective layer 026 through the defining layer 024.
  • the first encapsulation part 02311 propagates in the first encapsulation part 02311.
  • the light When the light propagates to the interface between the first encapsulation part 02311 and the second encapsulation part 02312, the light is refracted to the side of the light-emitting surface of the light emitting device 02 at the interface To the second encapsulation part 02312, finally exit from the light-emitting surface of the light-emitting device 02 through the second encapsulation part 02312, the organic layer 0232 and the inorganic layer 0233; the light R3 enters the first encapsulation part 02311 of the target encapsulation film layer 0231, and is When light propagates through an encapsulation part 02311, when the light propagates to the interface between the first encapsulation part 02311 and the second encapsulation part 02312, it is refracted to the second encapsulation part 02312 on the interface where the light-emitting surface of the light emitting device 02 is located, and finally It emits from the light emitting surface of the light emitting device 02 through the second encapsulation portion 02312,
  • the light-emitting layer 0222, the light R1, the light R2, and the light R3 can all be emitted from the light-emitting surface of the light-emitting device 02, therefore, compared with the OLED device 01 shown in FIG. 1, the light-emitting device 01 shown in FIG.
  • the light emitting device 02 can effectively extract the waveguide energy in the thin film packaging structure, and improve the external coupling efficiency of the light emitting device.
  • the refractive index of the first encapsulation part 02311 is smaller than the refractive index of the second encapsulation part 02312, when light is refracted at the interface between the first encapsulation part 02311 and the second encapsulation part 02312, the refraction angle is If the incident angle is greater, the light (for example, light R3) is refracted to the side where the light-emitting surface of the light-emitting device 02 is located, and finally emitted from the light-emitting surface of the light-emitting device 02. It is easy to understand that when light enters another medium from one medium, it is usually refracted. Therefore, whether it is in the OLED device 01 shown in FIG.
  • FIGS. 8 and 9 When light enters another film layer from one film layer, it will be refracted at a certain angle. Figures 8 and 9 only show the refracted rays that have a greater contribution to improving the outcoupling efficiency. Other refractions are not shown.
  • Light For example, in FIGS. 8 and 9, when the light R1 enters the second electrode 0223 from the light-emitting layer 0222, when it enters the first encapsulation portion 02311 from the second electrode 0223, it enters the organic layer 0232 from the first encapsulation portion 02311. When entering the inorganic layer 0233 from the organic layer 0232, and when exiting from the inorganic layer 0233, a certain angle of refraction will occur. FIGS. 8 and 9 do not show the refraction process of the light R1.
  • the light-emitting device provided by the embodiment of the present application has higher outcoupling efficiency, and it can be seen from comparing FIGS. 8 and 9 Among the two light-emitting devices provided by the embodiments of the present application, the light-emitting device (reflective cup light-emitting device) shown in FIG. 5 has a higher outcoupling efficiency than the light-emitting device (top-emitting light-emitting device) shown in FIG. 3,
  • the light-emitting device shown in FIG. 5 may be suitable for application scenarios with relatively high requirements for external coupling efficiency, and the light-emitting device shown in FIG. 3 may be suitable for application scenarios with relatively low requirements for external coupling efficiency. This embodiment of the application does not do this limited.
  • the target packaging film layer of the thin-film packaging structure has a first packaging part and a second packaging part that are distributed in the same layer and are in contact with each other.
  • the orthographic projection on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially overlap, and the orthographic projection of the second package portion on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially do not overlap,
  • the refractive index of the first packaging part is smaller than the refractive index of the second packaging part.
  • the target encapsulation film layer After the light emitted by the light-emitting unit enters the target encapsulation film layer, it first propagates in the first encapsulation part, and then is refracted to the second encapsulation part at the interface of the first encapsulation part and the second encapsulation part toward the light-emitting surface of the light-emitting device Finally, it exits from the light-emitting surface of the light-emitting device through the second packaging part, so the target packaging film layer can make the light emerge from the light-emitting surface of the light-emitting device through refraction, which helps to avoid the light waveguide effect in the film packaging structure. Helps improve the external coupling efficiency of the light emitting device.
  • the light-emitting device provided in the embodiment of the present application can be applied to the following method, and the manufacturing method and manufacturing principle of the light-emitting device in the embodiment of the present application can be referred to the description in each embodiment below.
  • FIG. 10 shows a flow chart of a method for manufacturing a light-emitting device provided by an embodiment of the present application, and the method can be used for manufacturing the light-emitting device provided by the foregoing embodiment.
  • the method may include the following steps:
  • step 801 a base substrate is provided.
  • step 802 a light-emitting unit is formed on a base substrate.
  • a thin film packaging structure is formed on the side of the light emitting unit away from the base substrate, where the thin film packaging structure includes at least one packaging film layer, and the target packaging film layers in the at least one packaging film layer have the same layer distribution and are in contact with each other
  • the first packaging portion and the second packaging portion, the orthographic projection of the first packaging portion on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially overlap, and the orthographic projection of the second packaging portion on the base substrate
  • the projection and the orthographic projection of the light-emitting unit on the base substrate are at least partially non-overlapping, the refractive index of the first packaging part is smaller than that of the second packaging part, and the target packaging film layer is used to refract the light emitted by the light-emitting unit Emitted from the light emitting surface of the light emitting device.
  • the target packaging film layer of the thin-film packaging structure has a first packaging part and a second packaging part that are distributed in the same layer and are in contact with each other.
  • the orthographic projection of the packaging portion on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially overlap, and the orthographic projection of the second packaging portion on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially overlap Without overlapping, the refractive index of the first encapsulation part is smaller than the refractive index of the second encapsulation part.
  • the target encapsulation film layer After the light emitted by the light-emitting unit enters the target encapsulation film layer, it first propagates in the first encapsulation part, and then is refracted to the second encapsulation part at the interface of the first encapsulation part and the second encapsulation part toward the light-emitting surface of the light-emitting device Finally, it exits from the light-emitting surface of the light-emitting device through the second encapsulation part, so the target encapsulation film layer can make light exit from the light-emitting surface of the light-emitting device through refraction, thus helping to avoid light waveguide effects in the thin-film packaging structure. It helps to improve the external coupling efficiency of the light emitting device.
  • step 803 may include:
  • a second packaging part is formed on the side of the light emitting unit away from the base substrate, and the first packaging part and the second packaging part constitute a target packaging film layer;
  • An organic layer is formed on the side of the target encapsulation film layer away from the light-emitting unit.
  • the method further includes: forming a reflective layer surrounding the light-emitting unit, and an angle exists between the reflective surface of the reflective layer and the plate surface of the base substrate.
  • step 802 may include:
  • Form a reflective layer surrounding the light-emitting unit including:
  • a reflective layer surrounding the first electrode is formed.
  • the reflective layer is formed simultaneously with the first electrode.
  • the method before forming the reflective layer surrounding the first electrode, the method further includes:
  • forming the reflective layer surrounding the first electrode includes forming a reflective layer surrounding the first electrode on the sidewall of the trench.
  • the method further includes: forming a defining layer, the defining layer having a light emitting opening, and the light emitting unit is located in the light emitting opening.
  • FIG. 11 shows a flow chart of another method for manufacturing a light-emitting device provided by an embodiment of the present application.
  • the method can be used to manufacture the light-emitting device provided by the foregoing embodiment.
  • the light-emitting device 02 shown as an example is used to describe the method, and the manufacturing process of the light-emitting device 02 shown in FIG. 3 can refer to this embodiment.
  • the method may include the following steps:
  • step 901 a base substrate is provided.
  • the base substrate may be a rigid substrate made of glass, quartz, or transparent resin with a certain degree of robustness.
  • the base substrate is a glass substrate, or the base substrate may be polyimide (English: Polyimide; referred to as PI) and other flexible substrates made of flexible materials.
  • the base substrate is a flexible substrate, the base substrate can be provided by a rigid substrate (that is, the base substrate is provided on the rigid substrate).
  • step 902 a flat layer is formed on the base substrate, and the flat layer has a groove.
  • FIG. 12 shows a schematic diagram of a flat layer 025 formed on a base substrate 021 according to an embodiment of the present application.
  • the flat layer 025 has a groove G, and the shape of the opening of the groove G may be a horn
  • the depth of the trench G may be equal to the thickness of the flat layer 025, and the thickness of the flat layer 025 may be the size of the flat layer 025 in a direction perpendicular to the surface of the base substrate 021.
  • the material of the flat layer 025 may include transparent organic materials such as organic resin, or the material of the flat layer 025 may include SiOx, SiNx (Chinese: silicon nitride), Al 2 O 3 (Chinese: alumina) or SiOxNy And other transparent inorganic materials.
  • forming the flat layer 025 on the base substrate 021 may include: magnetron sputtering, thermal evaporation, or plasma enhanced chemical vapor deposition (English: Plasma Enhanced Chemical Vapor Deposition).
  • Chemical Vapor Deposition abbreviation: PECVD
  • PECVD chemical Vapor Deposition
  • an electrode pattern layer is formed on the base substrate on which the flat layer is formed.
  • the electrode pattern layer includes a first electrode located in the trench and a reflective layer distributed on the sidewall of the trench around the first electrode.
  • FIG. 13 shows a schematic diagram of an electrode pattern layer (not shown in FIG. 11) formed on a base substrate 021 formed with a flat layer 025 according to an embodiment of the present application, combined with FIG. 12 and FIG. 13.
  • the electrode pattern layer includes a first electrode 0221 located in the trench G of the flat layer 025 and a reflective layer 026 distributed on the sidewall of the trench G around the first electrode 0221.
  • the reflective surface M of the reflective layer 026 and the substrate There is an angle between the surfaces of the substrate 021.
  • the material of the electrode pattern layer may include metallic Mo (Chinese: molybdenum), metallic Cu (Chinese: copper), metallic Al (Chinese: aluminum) and alloy materials thereof.
  • forming the electrode pattern layer on the base substrate 021 formed with the flat layer 025 may include any of processes such as magnetron sputtering, thermal evaporation, or PECVD.
  • a layer of metal Mo is deposited on a base substrate 021 with a flat layer 025 to obtain a metal Mo material layer, and the metal Mo material layer is processed through a patterning process to obtain an electrode pattern layer.
  • a defining layer is formed on the base substrate on which the electrode pattern layer is formed.
  • the defining layer has a light-emitting opening, and the first electrode is at least located in the light-emitting opening.
  • FIG. 14 shows a schematic diagram of a defining layer 024 formed on a base substrate 021 formed with an electrode pattern layer according to an embodiment of the present application.
  • the defining layer 024 has a light-emitting opening K, in conjunction with FIGS. 12 to 14.
  • the light-emitting opening K is located in the trench G, and the first electrode 0221 is at least located in the light-emitting opening K.
  • the material of the defining layer 024 may include transparent organic materials such as organic resin, or the material of the defining layer 024 may include transparent inorganic materials such as SiOx, SiNx, Al 2 O 3 or SiOxNy.
  • forming the delimiting layer 024 on the base substrate 021 with the electrode pattern layer may include any one of processes such as magnetron sputtering, thermal evaporation, or PECVD.
  • a layer of SiOx is deposited on the base substrate 021 with the electrode pattern layer to obtain the SiOx material layer, and the SiOx material layer is processed through a patterning process to obtain the defining layer 024.
  • step 905 a light-emitting layer and a second electrode are sequentially formed on the base substrate on which the boundary layer is formed.
  • the overlapping part of the first electrode, the light-emitting layer and the second electrode constitutes a light-emitting unit, and the light-emitting unit is located in the light-emitting opening.
  • FIG. 15 shows a schematic diagram of a light-emitting layer 0222 and a second electrode 0223 formed in sequence on a base substrate 021 formed with a defining layer 024 according to an embodiment of the present application
  • the light-emitting layer 0222 and the second electrode 0223 is stacked in sequence, and the light-emitting layer 0222 and the second electrode 0223 are both partially located in the light-emitting opening K, the portion of the light-emitting layer 0222 and the second electrode 0223 located in the light-emitting opening K overlaps the first electrode 0221, the first electrode 0221, the light-emitting layer
  • the part where the 0222 and the second electrode 0223 overlap each other constitutes the light-emitting unit 022, which is located in the light-emitting opening K.
  • the material of the light-emitting layer 0222 may include an electroluminescent material, for example, the material of the light-emitting layer 0222 may be an organic light-emitting material, and the material of the second electrode 0223 may include indium tin oxide (English: Indium tin oxide; abbreviation: ITO) , Indium zinc oxide (English: Indium zinc oxide; abbreviation: IZO) or aluminum-doped zinc oxide (English: aluminum-doped zinc oxide; abbreviation: ZnO:Al) and other metal oxides.
  • ITO Indium tin oxide
  • IZO Indium zinc oxide
  • ZnO aluminum-doped zinc oxide
  • forming the light-emitting layer 0222 and the second electrode 0223 in sequence on the base substrate 021 on which the defining layer 024 is formed may include : First, a layer of organic light-emitting material is formed and printed on the base substrate 021 on which the defined layer 024 is formed by an inkjet printing process, and the printed organic light-emitting material is dried to obtain the light-emitting layer 0222, and then, through magnetron sputtering, Either thermal evaporation or PECVD processes deposit a layer of ITO on the base substrate 021 formed with the light-emitting layer 0222 to obtain an ITO material layer, and process the ITO material layer through a patterning process to obtain the second electrode 0223.
  • a first packaging part is formed on the side of the second electrode away from the base substrate, and the orthographic projection of the first packaging part on the base substrate completely covers the orthographic projection of the light-emitting unit on the base substrate.
  • the orthographic projection of the reflective layer on the base substrate is formed on the side of the second electrode away from the base substrate, and the orthographic projection of the first packaging part on the base substrate completely covers the orthographic projection of the light-emitting unit on the base substrate.
  • FIG. 16 shows a schematic diagram after forming the first package portion 02311 on the side of the second electrode 0223 away from the base substrate 021 according to an embodiment of the present application.
  • the first The orthographic projection of the packaging portion 02311 on the base substrate 021 completely covers the orthographic projection of the light-emitting unit 022 on the base substrate 021, and the orthographic projection of the first packaging portion 02311 on the base substrate 021 completely covers the reflective layer 026 on the substrate.
  • the second horizontal distance d2 between the boundary of the first encapsulation portion 02311 and the boundary of the reflective surface of the reflective layer 026 ranges from about 1 micrometer to 4 micrometers.
  • the material of the first encapsulation part 02311 may include SiOx.
  • Forming the first package portion 02311 on the side of the second electrode 0223 away from the base substrate 021 may include: forming the first package portion 02311 on the side of the second electrode 0223 away from the base substrate 021 using SiOx.
  • SiOx For example, first, a layer of SiOx is deposited on the side of the second electrode 0223 away from the base substrate 021 by any of magnetron sputtering, thermal evaporation or PECVD to obtain a SiOx material layer, and then a patterning process The SiOx material layer is processed to obtain the first package part 02311.
  • a second packaging part is formed on the side of the second electrode away from the base substrate.
  • the second packaging part and the first packaging part are distributed in the same layer and in contact with each other.
  • the orthographic projection of the second packaging part on the base substrate There is no overlap with the orthographic projection of the light-emitting unit on the base substrate at all, and the first packaging part and the second packaging part constitute the target packaging film layer.
  • FIG. 17 shows a schematic diagram of the second encapsulation part 02312 formed on the side of the second electrode 0223 away from the base substrate 021 according to an embodiment of the present application.
  • the second encapsulation part 02312 and the first encapsulation part 02311 are distributed in the same layer and are in contact with each other. See FIG. 17 and in conjunction with FIG. 6.
  • the orthographic projection of the second packaging portion 02312 on the base substrate 021 and the orthographic projection of the light-emitting unit 022 on the base substrate 021 do not overlap, and the first packaging portion 02311 and the second packaging part 02312 constitute a target packaging film layer 0231.
  • the refractive index of the first packaging part 02311 is smaller than the refractive index of the second packaging part 02312, the material of the first packaging part 02311 includes SiOx, and the material of the second packaging part 02312 may include SiOxNy.
  • forming the second package portion 02312 on the side of the second electrode 0223 away from the base substrate 021 may include: forming the second package portion 02312 on the side of the second electrode 0223 away from the base substrate 021 by using SiOxNy.
  • SiOxNy For example, first, a layer of SiOxNy is deposited on the side of the second electrode 0223 away from the base substrate 021 to obtain a SiOxNy material layer by any of magnetron sputtering, thermal evaporation, or PECVD, and then a patterning process The SiOxNy material layer is processed to obtain the second package part 02312.
  • step 908 an organic layer is formed on the side of the target encapsulation film layer away from the second electrode.
  • FIG. 18 shows a schematic diagram of an organic layer 0232 formed on the side of the target encapsulation film layer 0231 away from the second electrode 0223 according to an embodiment of the present application.
  • the organic layer 0232 covers the target encapsulation film layer 0231
  • the material of the organic layer 0232 can be organic resin.
  • forming the organic layer 0232 on the side of the target encapsulation film layer 0231 away from the second electrode 0223 may include: printing a layer of organic resin on the side of the target encapsulation film layer 0231 away from the second electrode 0223 through an inkjet printing process, The printed organic resin is dried to obtain an organic layer 0232.
  • an inorganic layer is formed on the side of the organic layer away from the target encapsulation film layer, and the target encapsulation film layer, the organic layer and the inorganic layer constitute a thin film encapsulation structure.
  • the target encapsulation film layer 0231, the organic layer 0232, and the inorganic layer 0233 constitute the thin film encapsulation structure 023.
  • the material of the inorganic layer 0233 may include transparent inorganic materials such as SiOx, SiNx, Al 2 O 3 or SiOxNy.
  • forming the inorganic layer 0233 on the side of the organic layer 0232 away from the target encapsulation film layer 0231 may include: any of processes such as magnetron sputtering, thermal evaporation, or PECVD.
  • a layer of SiOx is deposited on the side of the organic layer 0232 away from the target packaging film layer 0231 to obtain the SiOx material layer, and the SiOx material layer is processed through a patterning process to obtain the inorganic layer 0233.
  • the involved patterning process may include photoresist coating, exposure, development, etching and photoresist stripping, and the material layer (such as ITO) (Material layer) processing may include: coating a layer of photoresist on the material layer (for example, ITO material layer) to form a photoresist layer, and using a mask to expose the photoresist layer so that the photoresist layer is completely formed The exposed area and the non-exposed area are then processed by a development process to completely remove the photoresist in the fully exposed area, and all the photoresist in the non-exposed area is retained.
  • the material layer such as ITO
  • ITO material layer
  • the material layer (such as ITO material layer) is completely covered by an etching process.
  • the area corresponding to the exposed area is etched, and finally the photoresist in the non-exposed area is stripped to obtain a corresponding structure (for example, the second electrode 0223).
  • the description here takes the photoresist as a positive photoresist as an example.
  • the process of one patterning process can refer to the description in this paragraph. This will not be repeated here.
  • the order of the steps of the method for manufacturing the light-emitting device provided by the embodiments of the present application can be adjusted appropriately, and the steps can also be increased or decreased according to the situation.
  • the method can also include forming thin film transistors and pixels.
  • the process of circuits and polarizers, etc., any method that can be easily conceived by a person skilled in the art within the technical scope disclosed in this application should be covered by the protection scope of this application, and therefore will not be repeated.
  • the target packaging film layer of the thin-film packaging structure has a first packaging part and a second packaging part that are distributed in the same layer and contact each other.
  • the orthographic projection of one package portion on the base substrate and the orthographic projection of the light-emitting unit on the base substrate at least partially overlap, and the orthographic projection of the second package portion on the base substrate and the orthographic projection of the light-emitting unit on the base substrate are at least Part is not overlapped, and the refractive index of the first encapsulation part is smaller than the refractive index of the second encapsulation part.
  • the target encapsulation film layer After the light emitted by the light-emitting unit enters the target encapsulation film layer, it first propagates in the first encapsulation part, and then is refracted to the second encapsulation part at the interface of the first encapsulation part and the second encapsulation part toward the light-emitting surface of the light-emitting device Finally, it exits from the light-emitting surface of the light-emitting device through the second packaging part, so the target packaging film layer can make the light emerge from the light-emitting surface of the light-emitting device through refraction, which helps to avoid the light waveguide effect in the film packaging structure. Helps improve the external coupling efficiency of the light emitting device.
  • an embodiment of the present application also provides a display device.
  • the display device includes the light-emitting device 02 provided in the above-mentioned embodiment.
  • the light-emitting device 02 may be an electroluminescent device.
  • the light-emitting device 02 is an OLED device or
  • the QLED device correspondingly, the display device may be an OLED display device or a QLED display device.
  • the display device may be any product or component with display function such as electronic paper, display substrate, display panel, watch, bracelet, mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame or navigator. .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开一种发光器件及其制造方法、显示装置。发光器件包括:衬底基板;位于衬底基板上的发光单元;以及,位于发光单元远离衬底基板一侧的薄膜封装结构,薄膜封装结构包括至少一个封装膜层,至少一个封装膜层中的目标封装膜层具有同层分布且相互接触的第一封装部和第二封装部,第一封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分重叠,第二封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分不重叠,第一封装部的折射率小于第二封装部的折射率。本申请有助于避免发光单元发射出的光线在薄膜封装结构发生波导效应,有助于提高发光器件的外耦合效率。

Description

发光器件及其制造方法、显示装置
本申请要求于2019年03月15日提交的申请号为201910197672.9、发明名称为“发光器件及其制造方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种发光器件及其制造方法、显示装置。
背景技术
有机发光二极管(英文:Organic Light-Emitting Diode;简称:OLED)器件是一种电致发光器件,具有低功耗、自发光、快速响应、宽视角以及可柔性显示等优点,是当前显示行业研究的热点。
发明内容
本申请提供一种发光器件及其制造方法、显示装置。技术方案如下:
一方面,提供一种发光器件,所述发光器件包括:
衬底基板;
位于所述衬底基板上的发光单元;以及,
位于所述发光单元远离所述衬底基板一侧的薄膜封装结构,其中,所述薄膜封装结构包括至少一个封装膜层,所述至少一个封装膜层中的目标封装膜层具有同层分布且相互接触的第一封装部和第二封装部,所述第一封装部在所述衬底基板上的正投影与所述发光单元在所述衬底基板上的正投影至少部分重叠,且所述第二封装部在所述衬底基板上的正投影与所述发光单元在所述衬底基板上的正投影至少部分不重叠,所述第一封装部的折射率小于所述第二封装部的折射率,所述目标封装膜层用于以折射的方式使所述发光单元发射出的光线从所述发光器件的出光面射出。
可选地,所述目标封装膜层为所述至少一个封装膜层中,距离所述发光单元最近的封装膜层。
可选地,所述目标封装膜层为无机层。
可选地,所述第二封装部的折射率与所述第一封装部的折射率的差值的范围约为0.1~0.5。
可选地,所述第一封装部的折射率的范围约为1.45~1.55,所述第二封装部的折射率的范围约为1.65~1.85。
可选地,所述第一封装部的材料包括氧化硅,所述第二封装部的材料包括氮氧化硅。
可选地,所述薄膜封装结构包括沿远离所述发光单元的方向交替叠加的无机层和有机层,所述薄膜封装结构中距离所述发光单元最近的封装膜层和距离所述发光单元最远的封装膜层均为无机层,所述目标封装膜层为距离所述发光单元最近的无机层。
可选地,所述第一封装部的边界与所述发光单元的边界之间的第一水平距离的范围约为2微米~6微米,所述第一水平距离为所述第一封装部的边界与所述发光单元的边界在平行于所述衬底基板的板面的方向上的最小距离。
可选地,所述衬底基板具有封装区域,所述发光单元在所述衬底基板上的正投影位于所述封装区域内,所述第一封装部在所述衬底基板上的正投影完全覆盖所述发光单元在所述衬底基板上的正投影,所述第二封装部在所述衬底基板上的正投影覆盖所述封装区域中,除所述第一封装部在所述衬底基板上的正投影所在区域之外的区域。
可选地,所述发光器件还包括:围绕所述发光单元分布的反射层,所述反射层的反射面与所述衬底基板的板面之间存在夹角。
可选地,所述衬底基板具有封装区域,所述发光单元在所述衬底基板上的正投影和所述反射层在所述衬底基板上的正投影均位于所述封装区域内,所述第一封装部在所述衬底基板上的正投影完全覆盖所述发光单元在所述衬底基板上的正投影,且完全覆盖所述反射层在所述衬底基板上的正投影,所述第二封装部在所述衬底基板上的正投影覆盖所述封装区域中,除所述第一封装部在所述衬底基板上的正投影所在区域之外的区域。
可选地,所述第一封装部的边界与所述反射层的反射面的边界之间的第二水平距离的范围约为1微米~4微米,所述第二水平距离为所述第一封装部的边界与所述反射层的反射面的边界在平行于所述衬底基板的板面的方向上的最小距离。
可选地,所述发光单元包括沿远离所述衬底基板的方向依次叠加的第一电 极、发光层和第二电极,所述反射层围绕所述第一电极分布。
可选地,所述发光器件还包括:平坦层,所述平坦层上具有沟槽,所述反射层于所述沟槽的侧壁上。
可选地,所述发光器件还包括:界定层,所述界定层具有发光开口,所述发光单元位于所述发光开口中。
另一方面,提供一种发光器件的制造方法,所述方法包括:
提供衬底基板;
在所述衬底基板上形成发光单元;
在所述发光单元远离所述衬底基板的一侧形成薄膜封装结构,其中,所述薄膜封装结构包括至少一个封装膜层,所述至少一个封装膜层中的目标封装膜层具有同层分布且相互接触的第一封装部和第二封装部,所述第一封装部在所述衬底基板上的正投影与所述发光单元在所述衬底基板上的正投影至少部分重叠,且所述第二封装部在所述衬底基板上的正投影与所述发光单元在所述衬底基板上的正投影至少部分不重叠,所述第一封装部的折射率小于所述第二封装部的折射率,所述目标封装膜层用于以折射的方式使所述发光单元发射出的光线从所述发光器件的出光面射出。
可选地,在所述发光单元远离所述衬底基板的一侧形成薄膜封装结构,包括:
在所述发光单元远离所述衬底基板的一侧形成所述第一封装部;
在所述发光单元远离所述衬底基板的一侧形成所述第二封装部,所述第一封装部和所述第二封装部构成所述目标封装膜层;
在所述目标封装膜层远离所述发光单元的一侧形成有机层。
可选地,所述方法还包括:形成围绕所述发光单元的反射层,所述反射层的反射面与所述衬底基板的板面之间存在夹角。
可选地,在所述衬底基板上形成发光单元,包括:
在所述衬底基板上形成依次叠加的第一电极、发光层和第二电极;
所述形成围绕所述发光单元的反射层,包括:
形成围绕所述第一电极的反射层;
可选地,所述反射层与所述第一电极同时形成。
可选地,在形成围绕所述第一电极的反射层之前,所述方法还包括:
在所述衬底基板上形成平坦层,所述平坦层上具有沟槽;
所述形成围绕所述第一电极的反射层,包括:
在所述沟槽的侧壁上形成围绕所述第一电极的所述反射层。
可选地,所述方法还包括:形成界定层,所述界定层具有发光开口,所述发光单元位于所述发光开口中。
再一方面,提供一种显示装置,包括上述一方面或一方面的任一可选方式所述的发光器件。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例所涉及的一种OLED器件的结构示意图;
图2是光线在图1所示的OLED器件中的传播示意图;
图3是本申请实施例提供一种发光器件的结构示意图;
图4是图3所示的发光器件的俯视图;
图5是本申请实施例提供另一种发光器件的结构示意图;
图6是图5所示的发光器件的俯视图;
图7是图5所示的发光器件的区域Q的放大图;
图8是光线在图3所示的发光器件中的传播示意图;
图9是光线在图5所示的发光器件中的传播示意图;
图10是本申请实施例提供的一种发光器件的制造方法的方法流程图;
图11是本申请实施例提供的另一种发光器件的制造方法的方法流程图;
图12至图18是本申请实施例提供的一种发光器件的制造过程的示意图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了使本申请的原理、技术方案和优点更加清楚,下面将结合附图对本申请作详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性 劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
OLED器件是当前显示行业的研究热点,其通常包括发光单元以及用于对发光单元进行封装的薄膜封装结构,薄膜封装结构可以在延长OLED器件的使用寿命的同时,保证OLED器件的柔性。
OLED器件的外耦合效率是行业研究的热点和难点,外耦合效率又称为出光效率,指的是理论发射出的光线的功率与实际探测到的光线的功率的比值。OLED器件在工作时,发光单元发射出的光线通过薄膜封装结构射出。然而,从发光单元射入薄膜封装结构的光线中,入射角在一定范围内的光线会在薄膜封装结构内发生波导效应而被消耗,使得从薄膜封装结构射出的光线被削弱,OLED器件的外耦合效率较低。
顶发射OLED器件是一种典型的OLED器件,波导效应是影响顶发射OLED器件的外耦合效率的主要因素之一,薄膜封装结构加剧了顶发射OLED器件的波导效应,使得顶发射OLED器件的外耦合效率更低。示例地,请参考图1,其示出了本申请实施例涉及的一种OLED器件01的结构示意图,该OLED器件01可以为顶发射OLED器件。参见图1,该OLED器件01包括衬底基板011,位于衬底基板011上的发光单元012,位于发光单元012远离衬底基板011一侧的薄膜封装结构013,以及,位于衬底基板011上的界定层014,界定层014具有发光开口E,发光单元012位于界定层014的发光开口E中,发光单元012包括沿远离衬底基板011的方向依次叠加的阳极0121、发光层0122和阴极0123(也即是位于发光开口E内且叠加的阳极0121、发光层0122和阴极0123构成发光单元012),薄膜封装结构013包括沿远离发光单元012的方向依次叠加的无机层0131、有机层0132和无机层0133。图2示出了光线在图1所示的OLED器件01中的传播示意图,参见图2,在阳极0121和阴极0123的作用下,发光层0122发射出光线。发光层0122发射出的光线中:光线R1直接通过薄膜封装结构013从OLED器件01的出光面(也即是无机层0133远离衬底基板011的一面)射出;光线R2射入界定层014后,在界定层014中发生波导效应而横向传播,最终被界定层014消耗;光线R3射入薄膜封装结构013后,在薄膜封装结构013(例如无机层0131)中发生波导效应而横向传播,最终被薄膜封装结构013消耗。由于发光层0122发射出的光线中,仅光线R1从OLED器件01的出光面射出,光线R2和光线R3都被OLED器件01消耗,因此,发光层0122发射出光线中,大部分光线在OLED器件01中被消耗,仅有少量光线从OLED 器件01的出光面射出,OLED器件01的外耦合效率较低。
请参考图3,其示出了本申请实施例提供的一种发光器件02的结构示意图,参见图3,该发光器件02包括:衬底基板021;位于衬底基板021上的发光单元022;以及,位于发光单元022远离衬底基板021一侧的薄膜封装结构023,其中,薄膜封装结构023包括至少一个封装膜层,该至少一个封装膜层中的目标封装膜层0231具有同层分布且相互接触的第一封装部02311和第二封装部02312,第一封装部02311在衬底基板021上的正投影与发光单元022在衬底基板021上的正投影至少部分重叠,且第二封装部02312在衬底基板021上的正投影与发光单元022在衬底基板021上的正投影至少部分不重叠,第一封装部02311的折射率小于第二封装部02312的折射率,目标封装膜层0231用于以折射的方式使发光单元022发射出的光线从发光器件02的出光面射出,该发光器件02的出光面也即是薄膜封装结构023远离衬底基板021的一面。
可选地,图4是图3所示的发光器件02的俯视图,参见图4并结合图3,第一封装部02311在衬底基板021上的正投影完全覆盖发光单元022在衬底基板021上的正投影,第二封装部02312在衬底基板021上的正投影与发光单元022在衬底基板021上的正投影不重叠。其中,为了清楚示出发光单元022、第一封装部02311和第二封装部02312的投影关系,图4中并未示出薄膜封装结构023的其他结构,并且图4中采用虚线绘制发光单元022的边界,表示该发光单元022位于第一封装部02311的下方且被第一封装部02311完全覆盖。
综上所述,本申请实施例提供的发光器件,在发光器件中,薄膜封装结构的目标封装膜层具有同层分布且相互接触的第一封装部和第二封装部,第一封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分重叠,第二封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分不重叠,第一封装部的折射率小于第二封装部的折射率。发光单元发射出的光线射入目标封装膜层后,首先在第一封装部中传播,然后在第一封装部与第二封装部的交界面向发光器件的出光面所在侧折射至第二封装部,最终通过第二封装部从发光器件的出光面射出,因此目标封装膜层可以通过折射的方式使光线从发光器件的出光面射出,有助于避免光线在薄膜封装结构内发生波导效应,有助于提高发光器件的外耦合效率。
可选地,如图3所示,发光单元022包括沿远离衬底基板021的方向依次 叠加的第一电极0221、发光层0222和第二电极0223,发光器件02还包括界定层024和平坦层025,平坦层025为表面(也即是平坦层025远离衬底基板021的一面)平坦的膜层,界定层024具有发光开口K,第一电极0221、发光层0222和第二电极0223中,依次叠加且相互接触的部分位于界定层024的发光开口K中。由于发光单元022是由第一电极0221、发光层0222和第二电极0223中,依次叠加且相互接触的部分构成,因此发光单元022位于发光开口K中。其中,该图3示出的发光器件02可以为顶发射发光器件。
可选地,如图3所示,第一封装部02311的边界与发光单元022的边界之间的第一水平距离为d1,该第一水平距离d1的范围约为2微米~6微米,这样可以保证第一封装部02311在衬底基板021上的正投影完全覆盖发光单元022在衬底基板021上的正投影的情况下,降低第一封装部02311的制备工艺精度要求,便于第一封装部02311的制备。在本申请实施例中,第一水平距离d1的范围约为2微米~6微米可以是指:第一水平距离d1的范围可以在2微米~6微米的范围的基础上左右浮动20%(百分之),可选地,第一水平距离d1的范围可以为(2±2×20%)微米~(6±6×20%)微米,也即是,第一水平距离d1的范围可以为(2±0.4)微米~(6±1.2)微米,示例地,第一水平距离d1的范围可以为1.6微米~4.8微米,或者,第一水平距离d1的范围可以为2.4微米~7.2微米,或者,第一水平距离d1的范围可以为1.6微米~7.2微米,或者,第一水平距离d1的范围可以为2.4微米~4.8微米。示例地,d1=2微米,d1=3微米或者d1=4微米等。其中,该第一水平距离d1可以为第一封装部02311的边界与发光单元022的边界在平行于衬底基板021的板面的方向上的最小距离,如图3所示,发光单元022的边界可以是界定层024的发光开口的边界。
可选地,如图3和图4所示,衬底基板021具有封装区域W,发光单元022在衬底基板021上的正投影位于封装区域W内,第一封装部02311在衬底基板021上的正投影完全覆盖发光单元022在衬底基板021上的正投影,第二封装部02312在衬底基板021上的正投影覆盖封装区域W中,除第一封装部02311在衬底基板021上的正投影所在区域之外的区域,也即是,目标封装膜层0231在衬底基板021上的正投影完全覆盖封装区域W,这样一来,目标封装膜层0231由邻接的第一封装部02311和第二封装部02312构成,第一封装部02311的边界也即是第一封装部02311与第二封装部02312的交界。
可选地,请参考图5和图6,图5是本申请实施例提供的另一种发光器件 02的结构示意图,图6是图5所示的发光器件02的俯视图,参见图5和图6,该发光器件02还包括围绕发光单元022分布的反射层026。可选地,反射层026围绕第一电极0221分布。可选地,图7是图5所示的发光器件02的区域Q的放大图,结合图5和图7,反射层026的反射面M与衬底基板021的板面之间存在夹角a,该夹角a可以为钝角,例如该夹角a可以为120度、140度或150度等。容易理解,图7示出了区域Q中与夹角a相关的结构,并未示出区域Q中的其他结构。
可选地,如图5所示,平坦层025上具有沟槽G,沟槽G的开口面的面积可以大于界定层024的发光开口K的面积,且沟槽G在衬底基板021上的正投影覆盖界定层024的发光开口K在衬底基板021上的正投影,反射层026位于沟槽G的侧壁(图4中未标出)上且围绕第一电极0221,反射层026的反射面M朝向界定层024的发光开口K。其中,反射层026的反射面M指的是反射层026的表面中,远离平坦层025的沟槽G的侧壁的一面,反射层026的材质与第一电极0221的材质可以相同,且反射层026与第一电极0221可以同时形成,也即是,反射层026与第一电极0221可以通过同一次工艺制备。其中,该图5示出的发光器件02可以为反射杯式发光器件。
可选地,如图5和图6所示,衬底基板021具有封装区域W,发光单元022在衬底基板021上的正投影和反射层026在衬底基板021上的正投影均位于封装区域W内,第一封装部02311在衬底基板021上的正投影完全覆盖发光单元022在衬底基板021上的正投影,且完全覆盖反射层026在衬底基板021上的正投影,第二封装部02312在衬底基板021上的正投影覆盖封装区域W中,除第一封装部02311在衬底基板021上的正投影所在区域之外的区域,也即是,目标封装膜层0231在衬底基板021上的正投影完全覆盖封装区域W,这样一来,目标封装膜层0231由邻接的第一封装部02311和第二封装部02312构成,第一封装部02311的边界也即是第一封装部02311与第二封装部02312的交界。
可选地,如图5所示,第一封装部02311的边界与反射层026的反射面M的边界之间的第二水平距离为d2,该第二水平距离d2的范围约为1微米~4微米,这样可以保证第一封装部02311在衬底基板021上的正投影完全覆盖发光单元022以及反射层026在衬底基板021上的正投影的情况下,降低第一封装部02311的制备工艺精度要求,便于第一封装部02311的制备。在本申请实施例中,第二水平距离d2的范围约为1微米~4微米可以是指:第二水平距离d2 的范围可以在1微米~4微米的范围的基础上左右浮动20%,可选地,第二水平距离d2的范围可以为(1±1×20%)微米~(4±4×20%)微米,也即是,第二水平距离d2的范围可以为(1±0.2)微米~(4±0.8)微米,示例地,第二水平距离d2的范围可以为0.8微米~3.2微米,或者,第二水平距离d2的范围可以为1.2微米~4.8微米,或者,第二水平距离d2的范围可以为0.8微米~4.8微米,或者,第二水平距离d2的范围可以为1.2微米~3.2微米。示例地,d2=2微米,d2=2.5微米或者d2=3微米等。其中,该第二水平距离d2可以为第一封装部02311的边界与反射层026的反射面M的边界在平行于衬底基板021的板面的方向上的最小距离。
可选地,如图3和图5所示,目标封装膜层0231为薄膜封装结构023的至少一个封装膜层中,距离发光单元022最近的封装膜层,该目标封装膜层0231可以为无机层。在本申请实施例中,薄膜封装结构023可以包括沿远离发光单元022的方向交替叠加的无机层和有机层,薄膜封装结构023中距离发光单元022最近的封装膜层和距离发光单元022最远的封装膜层均可以为无机层,目标封装膜层0231可以为距离发光单元022最近的无机层。例如,如图3和图5所示,薄膜封装结构023包括沿远离发光单元022的方向依次叠加的目标封装膜层0231(无机层)、有机层0232和无机层0233。容易理解,本申请实施例是以薄膜封装结构023包括三个封装膜层,距离发光单元022最近的封装膜层为目标封装膜层为例说明的,薄膜封装结构023也可以包括两个封装膜层,或者包括三个以上封装膜层,目标封装膜层也可以为多个,只要保证薄膜封装结构023包括交替叠加的无机层和有机层,且薄膜封装结构023包括目标封装膜层即可,本申请实施例对此不做限定。
可选地,在本申请实施例中,第二封装部02312的折射率与第一封装部02311的折射率的差值的范围约为0.1~0.5,这样可以保证光线在从第一封装部02311射入第二封装部02312时,能够更好的向发光器件02的出光面所在侧折射。在设计时,首先可以确定期望的折射角的范围,然后根据期望的折射角的范围以及折射定律确定第二封装部02312的折射率与第一封装部02311的折射率的差值的范围。在本申请实施例中,第二封装部02312的折射率与第一封装部02311的折射率的差值的范围约为0.1~0.5可以是指:第二封装部02312的折射率与第一封装部02311的折射率的差值的范围可以在0.1~0.5的基础上左右浮动20%,可选地,第二封装部02312的折射率与第一封装部02311的折射率的差值的范 围可以为(0.1±0.1×20%)~(0.5±0.5×20%),也即是,第二封装部02312的折射率与第一封装部02311的折射率的差值的范围可以为(0.1±0.02)~(0.5±0.04),示例地,第二封装部02312的折射率与第一封装部02311的折射率的差值的范围可以为0.08~0.46,或者,第二封装部02312的折射率与第一封装部02311的折射率的差值的范围可以为0.12~0.54,或者,第二封装部02312的折射率与第一封装部02311的折射率的差值的范围可以为0.08~0.54,或者,第二封装部02312的折射率与第一封装部02311的折射率的差值的范围可以为0.12~0.46。
可选地,第一封装部02311的折射率的范围约为1.45~1.55,第二封装部02312的折射率的范围约为1.65~1.85,这样一来,可以保证第一封装部02311的折射率与第二封装部02312的折射率的差值满足上述差值范围要求。其中,第一封装部02311的折射率的范围约为1.45~1.55,第二封装部02312的折射率的范围约为1.65~1.85,可以便于对第一封装部02311的材料和第二封装部02312的材料的选择,从而便于第一封装部02311和第二封装部02312的制备,本领域技术人员容易理解,第一封装部02311的折射率的范围和第二封装部02312的折射率的范围还可以为其他范围,只要能保证第一封装部02311的折射率与第二封装部02312的折射率的差值满足上述差值范围要求即可。
在本申请实施例中,第一封装部02311的折射率的范围约为1.45~1.55可以是指:第一封装部02311的折射率的范围可以在1.45~1.55的基础上左右浮动20%,第二封装部02312的折射率的范围约为1.65~1.85可以是指:第二封装部02312的折射率的范围可以在1.65~1.85的基础上左右浮动20%。可选地,第一封装部02311的折射率的范围可以为(1.45±1.45×20%)~(1.55±1.55×20%),第二封装部02312的折射率的范围可以为(1.65±1.65×20%)~(1.85±1.85×20%),也即是,第一封装部02311的折射率的范围可以为(1.45±0.29)~(1.55±0.31),第二封装部02312的折射率的范围可以为(1.65±0.33)~(1.85±0.37)。示例地,第一封装部02311的折射率的范围可以为1.16~1.24,或者,第一封装部02311的折射率的范围可以为1.74~1.86,或者,第一封装部02311的折射率的范围可以为1.16~1.86;第二封装部02312的折射率的范围可以为1.32~1.48,或者,第二封装部02312的折射率的范围可以为1.98~2.22,或者,第二封装部02312的折射率的范围可以为1.32~2.22。
可选地,第一封装部02311的材料可以包括氧化硅(SiOx),第二封装部02312的材料可以包括氮氧化硅(SiOxNy),以满足第一封装部02311和第二封装部 02312的折射率要求。容易理解,第一封装部02311的材料和第二封装部02312的材料并不局限于此,只要保证满足上述折射率要求即可。
在本申请实施例中,发光器件02可以为电致发光(英文:Electroluminescence;简称:EL)器件,发光单元022可以为电致发光单元,发光层0222可以为电致发光层,例如,发光器件02可以为OLED器件或量子点发光二极管(英文:Quantum Dot Light Emitting Diodes;简称:QLED)器件。在如图3和图5所示的发光器件02中,第一电极0221可以为阳极(英文:anode),第二电极0223可以为阴极(英文:cathode)。可选地,该发光器件02可以为显示器件,上述界定层024可以为像素界定层(英文:Pixel Definition Layer;简称:PDL),发光器件02还可以包括诸如薄膜晶体管(英文:Thin Film Transistor;简称:TFT)之类的开关单元,诸如像素电路之类的驱动电路,以及诸如偏光片之类的光学功能层等。其中,平坦层025主要用于对形成TFT后的基板表面进行平坦化,本申请实施例在此不再赘述。
下面结合图8和图9对本申请实施例提供的发光器件02提高光线的外耦合效率的过程进行说明如下。
请参考图8,其示出了光线在图3所示的发光器件02中的传播示意图,参见图8,在第一电极0221和第二电极0223的作用下,发光层0222发射出光线。发光层0222发射出的光线中:光线R1直接通过薄膜封装结构023从发光器件02的出光面(也即是无机层0233远离衬底基板021的一面)射出;光线R2射入界定层024,并在界定层024中发生波导效应而横向传播,最终被界定层024消耗;光线R3射入目标封装膜层0231的第一封装部02311,并在第一封装部02311中传播,光线在传播至第一封装部02311与第二封装部02312的交界面时,在该交界面上向发光器件02的出光面所在侧折射至第二封装部02312,最终通过第二封装部02312、有机层0232和无机层0233从发光器件02的出光面射出。由于发光层0222发射出的光线中,光线R1和光线R3均能够从发光器件02的出光面射出,仅光线R2被发光器件02消耗,因此,相比于图1所示的OLED器件01,本申请图3所示的发光器件02能够有效提取薄膜封装结构中的波导能量,提高发光器件的外耦合效率。
请参考图9,其示出了光线在图5所示的发光器件02中的传播示意图,参见图9,在第一电极0221和第二电极0223的作用下,发光层0222发射出光线。发光层0222发射出的光线中:光线R1直接通过薄膜封装结构023从发光器件 02的出光面(也即是无机层0233远离衬底基板021的一面)射出;光线R2射入界定层024,并通过界定层024射向反射层026,在反射层026的反射面M发生反射后,再次射入界定层024,并依次通过界定层024、发光层0222和阴极0223射入目标封装膜层0231的第一封装部02311而在第一封装部02311中传播,光线在传播至第一封装部02311与第二封装部02312的交界面时,在该交界面上向发光器件02的出光面所在侧折射至第二封装部02312,最终通过第二封装部02312、有机层0232和无机层0233从发光器件02的出光面射出;光线R3射入目标封装膜层0231的第一封装部02311,并在第一封装部02311中传播,光线在传播至第一封装部02311与第二封装部02312的交界面时,在该交界面上向发光器件02的出光面所在侧折射至第二封装部02312,最终通过第二封装部02312、有机层0232和无机层0233从发光器件02的出光面射出。由于发光层0222发射出的光线中,光线R1、光线R2和光线R3均能够从发光器件02的出光面射出,因此,相比于图1所示的OLED器件01,本申请图5所示的发光器件02能够有效提取薄膜封装结构中的波导能量,提高发光器件的外耦合效率。
在本申请实施例中,由于第一封装部02311的折射率小于第二封装部02312的折射率,因此,光线在第一封装部02311与第二封装部02312的交界面发生折射时,折射角大于入射角,使得光线(例如光线R3)向发光器件02的出光面所在侧折射,并最终从发光器件02的出光面射出。容易理解,光线在从一种介质射入另一种介质时,通常会发生折射,因此,无论是在图2所示的OLED器件01中,还是在图8以及图9所示的发光器件02中,光线在从一个膜层射入另一个膜层时,都会发生一定角度的折射,图8和图9仅示出了对提高外耦合效率贡献较大的折射光线,并未示出其他折射光线。例如,在图8和图9中,光线R1在从发光层0222射入第二电极0223时,从第二电极0223射入第一封装部02311时,从第一封装部02311射入有机层0232时,从有机层0232射入无机层0233时,以及从无机层0233射出时,均会发生一定角度的折射,图8和图9未示出光线R1的该折射过程。
对比图2、图8和图9容易理解,相比于图1所示的OLED器件,本申请实施例提供的发光器件具有较高的外耦合效率,并且,对比图8和图9可以看出,在本申请实施例提供的两种发光器件中,图5所示的发光器件(反射杯式发光器件)相对图3所示的发光器件(顶发射发光器件)具有更高的外耦合效率,图5所示的发光器件可以适用于对外耦合效率要求相对较高的应用场景,图3 所示的发光器件可以适用于对外耦合效率要求相对较低的应用场景,本申请实施例对此不做限定。
综上所述,本申请实施例提供的发光器件,在发光器件中,薄膜封装结构的目标封装膜层具有同层分布且相互接触的第一封装部和第二封装部,第一封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分重叠,第二封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分不重叠,第一封装部的折射率小于第二封装部的折射率。发光单元发射出的光线射入目标封装膜层后,首先在第一封装部中传播,然后在第一封装部与第二封装部的交界面向发光器件的出光面所在侧折射至第二封装部,最终通过第二封装部从发光器件的出光面射出,因此目标封装膜层可以通过折射的方式使光线从发光器件的出光面射出,有助于避免光线在薄膜封装结构内发生波导效应,有助于提高发光器件的外耦合效率。
本申请实施例提供的发光器件可以应用于下文的方法,本申请实施例中发光器件的制造方法和制造原理可以参见下文各实施例中的描述。
请参考图10,其示出了本申请实施例提供的一种发光器件的制造的方法流程图,该方法可以用于制造上述实施例提供的发光器件。参见图10,该方法可以包括如下步骤:
在步骤801中、提供衬底基板。
在步骤802中、在衬底基板上形成发光单元。
在步骤803中、在发光单元远离衬底基板的一侧形成薄膜封装结构,其中,薄膜封装结构包括至少一个封装膜层,至少一个封装膜层中的目标封装膜层具有同层分布且相互接触的第一封装部和第二封装部,第一封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分重叠,且第二封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分不重叠,第一封装部的折射率小于第二封装部的折射率,目标封装膜层用于以折射的方式使发光单元发射出的光线从发光器件的出光面射出。
综上所述,本申请实施例提供的发光器件的制造方法,在发光器件中,薄膜封装结构的目标封装膜层具有同层分布且相互接触的第一封装部和第二封装部,第一封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分重叠,第二封装部在衬底基板上的正投影与发光单元在衬底基板上的正投 影至少部分不重叠,第一封装部的折射率小于第二封装部的折射率。发光单元发射出的光线射入目标封装膜层后,首先在第一封装部中传播,然后在第一封装部与第二封装部的交界面向发光器件的出光面所在侧折射至第二封装部,最终通过第二封装部从发光器件的出光面射出,因此目标封装膜层可以通过折射的方式使光线从发光器件的出光面射出,因此有助于避免光线在薄膜封装结构内发生波导效应,有助于提高发光器件的外耦合效率。
可选地,步骤803可以包括:
在发光单元远离衬底基板的一侧形成第一封装部;
在发光单元远离衬底基板的一侧形成第二封装部,第一封装部和第二封装部构成目标封装膜层;
在目标封装膜层远离发光单元的一侧形成有机层。
可选地,该方法还包括:形成围绕发光单元的反射层,反射层的反射面与衬底基板的板面之间存在夹角。
可选地,步骤802可以包括:
在衬底基板上形成依次叠加的第一电极、发光层和第二电极;
形成围绕发光单元的反射层,包括:
形成围绕第一电极的反射层。
可选地,反射层与第一电极同时形成。
可选地,在形成围绕第一电极的反射层之前,该方法还包括:
在衬底基板上形成平坦层,平坦层上具有沟槽;
相应地,形成围绕第一电极的反射层包括:在沟槽的侧壁上形成围绕第一电极的反射层。
可选地,该方法还包括:形成界定层,该界定层具有发光开口,发光单元位于该发光开口中。
上述所有可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
请参考图11,其示出了本申请实施例提供的另一种发光器件的制造的方法流程图,该方法可以用于制造上述实施例提供的发光器件,本申请实施例以制造图5所示的发光器件02为例来对该方法进行说明,图3所示的发光器件02的制造过程可以参考本实施例。参见图11,该方法可以包括如下步骤:
在步骤901中、提供衬底基板。
其中,衬底基板可以是采用玻璃、石英或透明树脂等具有一定坚固性的材料制成的刚性基板,例如衬底基板是玻璃基板,或者,衬底基板可以是采用聚酰亚胺(英文:Polyimide;简称:PI)等柔性材料制成的柔性基板。当衬底基板是柔性基板时,可以通过刚性基板提供衬底基板(也即是将衬底基板设置在刚性基板上提供)。
在步骤902中、在衬底基板上形成平坦层,平坦层上具有沟槽。
请参考图12,其示出了本申请实施例提供的一种在衬底基板021上形成平坦层025后的示意图,平坦层025上具有沟槽G,沟槽G的开口的形状可以为喇叭形,沟槽G的深度可以等于平坦层025的厚度,该平坦层025的厚度可以是该平坦层025在垂直于衬底基板021的板面的方向上的尺寸。
可选地,平坦层025的材料可以包括有机树脂等透明有机材料,或者,平坦层025的材料可以包括SiOx、SiNx(中文:氮化硅)、Al 2O 3(中文:氧化铝)或SiOxNy等透明无机材料。以平坦层025的材料为有机树脂为例,可选地,在衬底基板021上形成平坦层025可以包括:通过磁控溅射、热蒸发或者等离子体增强化学气相沉积法(英文:Plasma Enhanced Chemical Vapor Deposition;简称:PECVD)等工艺中的任一种在衬底基板021上沉积一层有机树脂得到树脂材质层,对树脂材质层依次进行曝光和显影得到平坦层025。
在步骤903中、在形成有平坦层的衬底基板上形成电极图案层,电极图案层包括位于沟槽中的第一电极以及围绕第一电极分布在沟槽的侧壁上的反射层。
请参考图13,其示出了本申请实施例提供的一种在形成有平坦层025的衬底基板021上形成电极图案层(图11中未标出)后的示意图,结合图12和图13,电极图案层包括位于平坦层025的沟槽G中的第一电极0221以及围绕第一电极0221分布在沟槽G的侧壁上的反射层026,反射层026的反射面M与衬底基板021的板面之间存在夹角。
可选地,电极图案层的材料可以包括金属Mo(中文:钼)、金属Cu(中文:铜)、金属Al(中文:铝)及其合金材料。以电极图案层的材料为金属Mo为例,可选地,在形成有平坦层025的衬底基板021上形成电极图案层可以包括:通过磁控溅射、热蒸发或者PECVD等工艺中的任一种在形成有平坦层025的衬底基板021上沉积一层金属Mo得到金属Mo材质层,通过一次构图工艺对金属 Mo材质层进行处理得到电极图案层。
在步骤904中、在形成有电极图案层的衬底基板上形成界定层,界定层具有发光开口,第一电极至少位于发光开口中。
请参考图14,其示出了本申请实施例提供的一种在形成有电极图案层的衬底基板021上形成界定层024后的示意图,界定层024具有发光开口K,结合图12至图14,发光开口K位于沟槽G中,第一电极0221至少位于发光开口K中。
可选地,界定层024的材料可以包括有机树脂等透明有机材料,或者,界定层024的材料可以包括SiOx、SiNx、Al 2O 3或SiOxNy等透明无机材料。以界定层024的材料为SiOx为例,可选地,在形成有电极图案层的衬底基板021上形成界定层024可以包括:通过磁控溅射、热蒸发或者PECVD等工艺中的任一种在形成有电极图案层的衬底基板021上沉积一层SiOx得到SiOx材质层,通过一次构图工艺对SiOx材质层进行处理得到界定层024。
在步骤905中、在形成有界定层的衬底基板上依次形成发光层和第二电极,第一电极、发光层和第二电极相互叠加的部分构成发光单元,发光单元位于发光开口中。
请参考图15,其示出了本申请实施例提供的一种在形成有界定层024的衬底基板021上依次形成发光层0222和第二电极0223后的示意图,发光层0222和第二电极0223依次叠加,且发光层0222和第二电极0223均部分位于发光开口K中,发光层0222和第二电极0223位于发光开口K中的部分与第一电极0221叠加,第一电极0221、发光层0222和第二电极0223相互叠加的部分构成发光单元022,该发光单元022位于发光开口K中。
可选地,发光层0222的材料可以包括电致发光材料,例如发光层0222的材料可以为有机发光材料,第二电极0223的材料可以包括氧化铟锡(英文:Indium tin oxide;简称:ITO)、氧化铟锌(英文:Indium zinc oxide;简称:IZO)或掺铝氧化锌(英文:aluminum-doped zinc oxide;简称:ZnO:Al)等金属氧化物。以发光层0222的材料为有机发光材料,第二电极0223的材料为ITO为例,可选地,在形成有界定层024的衬底基板021上依次形成发光层0222和第二电极0223可以包括:首先,通过喷墨打印工艺在形成有界定层024的衬底基板021上形成打印一层有机发光材料,并对打印的有机发光材料进行干燥得到发光层0222,然后,通过磁控溅射、热蒸发或者PECVD等工艺中的任一种在形成有发 光层0222的衬底基板021上沉积一层ITO得到ITO材质层,通过一次构图工艺对ITO材质层进行处理得到第二电极0223。
在步骤906中、在第二电极远离衬底基板的一侧形成第一封装部,第一封装部在衬底基板上的正投影完全覆盖发光单元在衬底基板上的正投影,且完全覆盖反射层在衬底基板上的正投影。
请参考图16,其示出了本申请实施例提供的一种在第二电极0223远离衬底基板021的一侧形成第一封装部02311后的示意图,参见图16并结合图6,第一封装部02311在衬底基板021上的正投影完全覆盖发光单元022在衬底基板021上的正投影,且第一封装部02311在衬底基板021上的正投影完全覆盖反射层026在衬底基板021上的正投影,第一封装部02311的边界与反射层026的反射面的边界之间的第二水平距离d2的范围约为1微米~4微米。
可选地,第一封装部02311的材料可以包括SiOx。在第二电极0223远离衬底基板021的一侧形成第一封装部02311可以包括:采用SiOx在第二电极0223远离衬底基板021的一侧形成第一封装部02311。示例地,首先,通过磁控溅射、热蒸发或者PECVD等工艺中的任一种在第二电极0223远离衬底基板021的一侧沉积一层SiOx得到SiOx材质层,然后,通过一次构图工艺对SiOx材质层进行处理得到第一封装部02311。
在步骤907中、在第二电极远离衬底基板的一侧形成第二封装部,第二封装部与第一封装部同层分布且相互接触,第二封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影完全不重叠,第一封装部和第二封装部构成目标封装膜层。
请参考图17,其示出了本申请实施例提供的一种在第二电极0223远离衬底基板021的一侧形成第二封装部02312后的示意图,第二封装部02312与第一封装部02311同层分布且相互接触,参见图17并结合图6,第二封装部02312在衬底基板021上的正投影与发光单元022在衬底基板021上的正投影不重叠,第一封装部02311和第二封装部02312构成目标封装膜层0231。第一封装部02311的折射率小于第二封装部02312的折射率,第一封装部02311的材料包括SiOx,第二封装部02312材料可以包括SiOxNy。
可选地,在第二电极0223远离衬底基板021的一侧形成第二封装部02312可以包括:采用SiOxNy在第二电极0223远离衬底基板021的一侧形成第二封装部02312。示例地,首先,通过磁控溅射、热蒸发或者PECVD等工艺中的任 一种在第二电极0223远离衬底基板021的一侧沉积一层SiOxNy得到SiOxNy材质层,然后,通过一次构图工艺对SiOxNy材质层进行处理得到第二封装部02312。
在步骤908中、在目标封装膜层远离第二电极的一侧形成有机层。
请参考图18,其示出了本申请实施例提供的一种在目标封装膜层0231远离第二电极0223的一侧形成有机层0232后的示意图,有机层0232为覆盖目标封装膜层0231的整层结构,有机层0232的材料可以为有机树脂。
可选地,在目标封装膜层0231远离第二电极0223的一侧形成有机层0232可以包括:通过喷墨打印工艺在目标封装膜层0231远离第二电极0223的一侧打印一层有机树脂,并对打印的有机树脂进行干燥得到有机层0232。
在步骤909中、在有机层远离目标封装膜层的一侧形成无机层,目标封装膜层、有机层和无机层构成薄膜封装结构。
在有机层0232远离目标封装膜层0231的一侧形成无机层0233后的示意图可以参考图5,目标封装膜层0231、有机层0232和无机层0233构成薄膜封装结构023。其中,无机层0233的材料可以包括SiOx、SiNx、Al 2O 3或SiOxNy等透明无机材料。
以无机层0233的材料为SiOx为例,可选地,在有机层0232远离目标封装膜层0231的一侧形成无机层0233可以包括:通过磁控溅射、热蒸发或者PECVD等工艺中的任一种在有机层0232远离目标封装膜层0231的一侧沉积一层SiOx得到SiOx材质层,通过一次构图工艺对SiOx材质层进行处理得到无机层0233。
在本申请实施例提供的发光器件的制造方法中,所涉及的一次构图工艺可以包括光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离,通过一次构图工艺对材质层(例如ITO材质层)进行处理可以包括:在材质层(例如ITO材质层)上涂覆一层光刻胶形成光刻胶层,采用掩膜版对光刻胶层进行曝光,使得光刻胶层形成完全曝光区和非曝光区,之后采用显影工艺处理,使完全曝光区的光刻胶被完全去除,非曝光区的光刻胶全部保留,采用刻蚀工艺对材质层(例如ITO材质层)上完全曝光区对应的区域进行刻蚀,最后剥离非曝光区的光刻胶得到相应的结构(例如第二电极0223)。容易理解,这里是以光刻胶为正性光刻胶为例进行说明的,当光刻胶为负性光刻胶时,一次构图工艺的过程可以参考本段的描述,本申请实施例在此不再赘述。
本申请实施例提供的发光器件的制造方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,例如,当发光器件为显示器件时,该方法还可以包括形成薄膜晶体管、像素电路以及偏光片等的过程,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
综上所述,本申请实施例提供的发光器件的制造的方法,在发光器件中,薄膜封装结构的目标封装膜层具有同层分布且相互接触的第一封装部和第二封装部,第一封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分重叠,第二封装部在衬底基板上的正投影与发光单元在衬底基板上的正投影至少部分不重叠,第一封装部的折射率小于第二封装部的折射率。发光单元发射出的光线射入目标封装膜层后,首先在第一封装部中传播,然后在第一封装部与第二封装部的交界面向发光器件的出光面所在侧折射至第二封装部,最终通过第二封装部从发光器件的出光面射出,因此目标封装膜层可以通过折射的方式使光线从发光器件的出光面射出,有助于避免光线在薄膜封装结构内发生波导效应,有助于提高发光器件的外耦合效率。
基于同样的发明构思,本申请实施例还提供了一种显示装置,该显示装置包括上述实施例提供的发光器件02,发光器件02可以为电致发光器件,例如,发光器件02为OLED器件或QLED器件,相应地,显示装置可以为OLED显示装置或QLED显示装置。
可选地,该显示装置可以为电子纸、显示基板、显示面板、手表、手环、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航仪等任何具有显示功能的产品或部件。
应理解,本文中术语“至少一个”表示一个或多个,多个表示一个以上。“第一”、“第二”等词汇仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或 光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (23)

  1. 一种发光器件,包括:
    衬底基板;
    位于所述衬底基板上的发光单元;以及,
    位于所述发光单元远离所述衬底基板一侧的薄膜封装结构,其中,所述薄膜封装结构包括至少一个封装膜层,所述至少一个封装膜层中的目标封装膜层具有同层分布且相互接触的第一封装部和第二封装部,所述第一封装部在所述衬底基板上的正投影与所述发光单元在所述衬底基板上的正投影至少部分重叠,且所述第二封装部在所述衬底基板上的正投影与所述发光单元在所述衬底基板上的正投影至少部分不重叠,所述第一封装部的折射率小于所述第二封装部的折射率,所述目标封装膜层用于以折射的方式使所述发光单元发射出的光线从所述发光器件的出光面射出。
  2. 根据权利要求1所述的发光器件,其中,所述目标封装膜层为所述至少一个封装膜层中,距离所述发光单元最近的封装膜层。
  3. 根据权利要求1或2所述的发光器件,其中,所述目标封装膜层为无机层。
  4. 根据权利要求1-3任一项所述的发光器件,其中,所述第二封装部的折射率与所述第一封装部的折射率的差值的范围约为0.1~0.5。
  5. 根据权利要求1-4任一项所述的发光器件,其中,所述第一封装部的折射率的范围约为1.45~1.55,所述第二封装部的折射率的范围约为1.65~1.85。
  6. 根据权利要求1-5任一项所述的发光器件,其中,所述第一封装部的材料包括氧化硅,所述第二封装部的材料包括氮氧化硅。
  7. 根据权利要求1-6任一项所述的发光器件,其中,所述薄膜封装结构包括沿远离所述发光单元的方向交替叠加的无机层和有机层,所述薄膜封装结构 中距离所述发光单元最近的封装膜层和距离所述发光单元最远的封装膜层均为无机层,所述目标封装膜层为距离所述发光单元最近的无机层。
  8. 根据权利要求1-7任一项所述的发光器件,其中,所述第一封装部的边界与所述发光单元的边界之间的第一水平距离的范围约为2微米~6微米,所述第一水平距离为所述第一封装部的边界与所述发光单元的边界在平行于所述衬底基板的板面的方向上的最小距离。
  9. 根据权利要求1-8任一项所述的发光器件,其中,所述衬底基板具有封装区域,所述发光单元在所述衬底基板上的正投影位于所述封装区域内,所述第一封装部在所述衬底基板上的正投影完全覆盖所述发光单元在所述衬底基板上的正投影,所述第二封装部在所述衬底基板上的正投影覆盖所述封装区域中,除所述第一封装部在所述衬底基板上的正投影所在区域之外的区域。
  10. 根据权利要求1-8任一项所述的发光器件,其中,所述发光器件还包括:围绕所述发光单元分布的反射层,所述反射层的反射面与所述衬底基板的板面之间存在夹角。
  11. 根据权利要求10所述的发光器件,其中,所述衬底基板具有封装区域,所述发光单元在所述衬底基板上的正投影和所述反射层在所述衬底基板上的正投影均位于所述封装区域内,所述第一封装部在所述衬底基板上的正投影完全覆盖所述发光单元在所述衬底基板上的正投影,且完全覆盖所述反射层在所述衬底基板上的正投影,所述第二封装部在所述衬底基板上的正投影覆盖所述封装区域中,除所述第一封装部在所述衬底基板上的正投影所在区域之外的区域。
  12. 根据权利要求11所述的发光器件,其中,所述第一封装部的边界与所述反射层的反射面的边界之间的第二水平距离的范围约为1微米~4微米,所述第二水平距离为所述第一封装部的边界与所述反射层的反射面的边界在平行于所述衬底基板的板面的方向上的最小距离。
  13. 根据权利要求10-12任一项所述的发光器件,其中,所述发光单元包括沿远离所述衬底基板的方向依次叠加的第一电极、发光层和第二电极,所述反射层围绕所述第一电极分布。
  14. 根据权利要求13所述的发光器件,其中,所述发光器件还包括:平坦层,所述平坦层上具有沟槽,所述反射层于所述沟槽的侧壁上。
  15. 根据权利要求1-14任一项所述的发光器件,其中,所述发光器件还包括:界定层,所述界定层具有发光开口,所述发光单元位于所述发光开口中。
  16. 一种发光器件的制造方法,包括:
    提供衬底基板;
    在所述衬底基板上形成发光单元;
    在所述发光单元远离所述衬底基板的一侧形成薄膜封装结构,其中,所述薄膜封装结构包括至少一个封装膜层,所述至少一个封装膜层中的目标封装膜层具有同层分布且相互接触的第一封装部和第二封装部,所述第一封装部在所述衬底基板上的正投影与所述发光单元在所述衬底基板上的正投影至少部分重叠,且所述第二封装部在所述衬底基板上的正投影与所述发光单元在所述衬底基板上的正投影至少部分不重叠,所述第一封装部的折射率小于所述第二封装部的折射率,所述目标封装膜层用于以折射的方式使所述发光单元发射出的光线从所述发光器件的出光面射出。
  17. 根据权利要求16所述的方法,其中,在所述发光单元远离所述衬底基板的一侧形成薄膜封装结构,包括:
    在所述发光单元远离所述衬底基板的一侧形成所述第一封装部;
    在所述发光单元远离所述衬底基板的一侧形成所述第二封装部,所述第一封装部和所述第二封装部构成所述目标封装膜层;
    在所述目标封装膜层远离所述发光单元的一侧形成有机层。
  18. 根据权利要求16或17所述的方法,其中,所述方法还包括:
    形成围绕所述发光单元的反射层,所述反射层的反射面与所述衬底基板的板面之间存在夹角。
  19. 根据权利要求18所述的方法,其中,
    在所述衬底基板上形成发光单元,包括:
    在所述衬底基板上形成依次叠加的第一电极、发光层和第二电极;
    所述形成围绕所述发光单元的反射层,包括:
    形成围绕所述第一电极的反射层。
  20. 根据权利要求19所述的方法,其中,所述反射层与所述第一电极同时形成。
  21. 根据权利要求19或20所述的方法,其中,
    在形成围绕所述第一电极的反射层之前,所述方法还包括:
    在所述衬底基板上形成平坦层,所述平坦层上具有沟槽;
    所述形成围绕所述第一电极的反射层,包括:
    在所述沟槽的侧壁上形成围绕所述第一电极的所述反射层。
  22. 根据权利要求16-21任一项所述的方法,其中,所述方法还包括:
    形成界定层,所述界定层具有发光开口,所述发光单元位于所述发光开口中。
  23. 一种显示装置,包括权利要求1-15任一项所述的发光器件。
PCT/CN2020/074342 2019-03-15 2020-02-05 发光器件及其制造方法、显示装置 WO2020186932A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/960,197 US11404670B2 (en) 2019-03-15 2020-02-05 Light-emitting device and method for manufacturing same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910197672.9 2019-03-15
CN201910197672.9A CN109904347B (zh) 2019-03-15 2019-03-15 发光器件及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020186932A1 true WO2020186932A1 (zh) 2020-09-24

Family

ID=66953263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074342 WO2020186932A1 (zh) 2019-03-15 2020-02-05 发光器件及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US11404670B2 (zh)
CN (1) CN109904347B (zh)
WO (1) WO2020186932A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11600234B2 (en) 2015-10-15 2023-03-07 Ordos Yuansheng Optoelectronics Co., Ltd. Display substrate and driving method thereof
WO2021035416A1 (zh) 2019-08-23 2021-03-04 京东方科技集团股份有限公司 显示装置及其制备方法
WO2021035414A1 (zh) 2019-08-23 2021-03-04 京东方科技集团股份有限公司 像素电路及驱动方法、显示基板及驱动方法、显示装置
CN105185816A (zh) 2015-10-15 2015-12-23 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN109904347B (zh) 2019-03-15 2020-07-31 京东方科技集团股份有限公司 发光器件及其制造方法、显示装置
CN112840461A (zh) 2019-08-23 2021-05-25 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
US11930664B2 (en) 2019-08-23 2024-03-12 Boe Technology Group Co., Ltd. Display device with transistors oriented in directions intersecting direction of driving transistor and manufacturing method thereof
EP4024466A4 (en) 2019-08-27 2022-10-05 BOE Technology Group Co., Ltd. ELECTRONIC DEVICE SUBSTRATE AND METHOD OF MAKING IT, AND ELECTRONIC DEVICE THEREOF
JP2023512500A (ja) * 2020-01-22 2023-03-27 アプライド マテリアルズ インコーポレイテッド ミラーを備えた有機発光ダイオード(oled)ディスプレイデバイス及びそれを作製するための方法
CN113363282B (zh) * 2020-03-05 2023-04-18 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
KR20210121933A (ko) * 2020-03-31 2021-10-08 삼성전자주식회사 디스플레이를 포함하는 전자 장치 및 그 디스플레이의 시야각을 제어하는 방법
CN111682126A (zh) * 2020-07-28 2020-09-18 合肥京东方卓印科技有限公司 显示面板及其制作方法、显示装置
CN113471383B (zh) * 2021-06-24 2022-08-23 武汉华星光电技术有限公司 显示面板以及移动终端
CN113838997B (zh) * 2021-09-24 2023-09-01 京东方科技集团股份有限公司 显示基板和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040113550A1 (en) * 2002-12-12 2004-06-17 Hitachi Displays, Ltd. Light-emitting element and display device using same
CN1508765A (zh) * 2002-12-17 2004-06-30 ������������ʽ���� 自发光元件,显示面板,显示装置以及自发光元件的制造方法
CN103426899A (zh) * 2012-05-22 2013-12-04 株式会社东芝 显示装置
CN104282719A (zh) * 2013-07-05 2015-01-14 索尼公司 发光装置
CN107331785A (zh) * 2016-04-11 2017-11-07 乐金显示有限公司 显示装置及其制造方法
CN109216584A (zh) * 2018-08-30 2019-01-15 武汉华星光电半导体显示技术有限公司 柔性oled显示面板
CN109904347A (zh) * 2019-03-15 2019-06-18 京东方科技集团股份有限公司 发光器件及其制造方法、显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759755B2 (en) * 2008-05-14 2010-07-20 International Business Machines Corporation Anti-reflection structures for CMOS image sensors
KR101900954B1 (ko) 2012-01-19 2018-09-21 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조방법
JP6061581B2 (ja) 2012-09-19 2017-01-18 ソニーセミコンダクタソリューションズ株式会社 ディスプレイ装置
KR102051103B1 (ko) * 2012-11-07 2019-12-03 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102169016B1 (ko) * 2014-02-13 2020-10-23 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102335812B1 (ko) * 2014-09-19 2021-12-09 삼성디스플레이 주식회사 유기발광 표시장치
KR20160034457A (ko) * 2014-09-19 2016-03-30 삼성디스플레이 주식회사 유기발광 표시장치
CN104733501B (zh) * 2015-02-13 2018-06-15 京东方科技集团股份有限公司 像素结构、显示装置以及像素结构的制作方法
US20160268554A1 (en) * 2015-03-11 2016-09-15 National Taiwan University Electroluminescent devices with improved optical out-coupling efficiencies
CN104851903B (zh) * 2015-04-22 2018-11-02 京东方科技集团股份有限公司 一种柔性oled显示器及其制备方法
KR20180016271A (ko) * 2016-08-05 2018-02-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP6982975B2 (ja) * 2017-04-17 2021-12-17 株式会社ジャパンディスプレイ 表示装置、及び表示装置の製造方法
KR102367247B1 (ko) * 2017-07-04 2022-02-25 삼성디스플레이 주식회사 표시 장치
KR102433274B1 (ko) * 2017-11-28 2022-08-18 삼성디스플레이 주식회사 유기 발광 표시 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040113550A1 (en) * 2002-12-12 2004-06-17 Hitachi Displays, Ltd. Light-emitting element and display device using same
CN1508765A (zh) * 2002-12-17 2004-06-30 ������������ʽ���� 自发光元件,显示面板,显示装置以及自发光元件的制造方法
CN103426899A (zh) * 2012-05-22 2013-12-04 株式会社东芝 显示装置
CN104282719A (zh) * 2013-07-05 2015-01-14 索尼公司 发光装置
CN107331785A (zh) * 2016-04-11 2017-11-07 乐金显示有限公司 显示装置及其制造方法
CN109216584A (zh) * 2018-08-30 2019-01-15 武汉华星光电半导体显示技术有限公司 柔性oled显示面板
CN109904347A (zh) * 2019-03-15 2019-06-18 京东方科技集团股份有限公司 发光器件及其制造方法、显示装置

Also Published As

Publication number Publication date
CN109904347A (zh) 2019-06-18
US20210217989A1 (en) 2021-07-15
CN109904347B (zh) 2020-07-31
US11404670B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2020186932A1 (zh) 发光器件及其制造方法、显示装置
CN104733501B (zh) 像素结构、显示装置以及像素结构的制作方法
US20210028404A1 (en) Display device and electronic apparatus
US11387297B2 (en) Organic light-emitting diode display substrate, manufacturing method thereof and display device
US11329258B2 (en) Display panel and manufacture method thereof, display device
CN110120405B (zh) 显示装置
US11581507B2 (en) Display panel and method for manufacturing same, and display apparatus
KR101972169B1 (ko) 유기 발광 표시 장치 및 그 제조방법
US11527590B2 (en) Light emitting display apparatus
KR20090028454A (ko) 조명장치 및 액정표시장치
US11527676B2 (en) Light-emitting unit and method for manufacturing the same
WO2019184901A1 (zh) 显示面板及其制造方法、显示装置
WO2018119784A1 (zh) 底发光型oled显示单元及其制作方法
JP2023179634A (ja) 画素構造、表示装置及び画素構造の製造方法
WO2022247180A1 (zh) 显示面板及显示装置
CN212934665U (zh) 一种显示面板
CN112103398A (zh) 一种显示面板
JP7348075B2 (ja) 画素構造、表示装置及び画素構造の製造方法
CN114023906B (zh) 显示面板、显示装置、待切割基板的制作方法
TWI757962B (zh) 有機發光二極體顯示面板
US20240081111A1 (en) Display substrate and display device
WO2023159502A1 (zh) 显示面板及显示装置
WO2023159501A1 (zh) 显示面板及显示装置
US20200194524A1 (en) Organic light emitting diode display and method of manufacturing thereof
KR20220096229A (ko) 발광 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772894

Country of ref document: EP

Kind code of ref document: A1