WO2014139221A1 - 彩膜基板的制作方法、彩膜基板及显示装置 - Google Patents

彩膜基板的制作方法、彩膜基板及显示装置 Download PDF

Info

Publication number
WO2014139221A1
WO2014139221A1 PCT/CN2013/076696 CN2013076696W WO2014139221A1 WO 2014139221 A1 WO2014139221 A1 WO 2014139221A1 CN 2013076696 W CN2013076696 W CN 2013076696W WO 2014139221 A1 WO2014139221 A1 WO 2014139221A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
color filter
filter layer
pattern
color
Prior art date
Application number
PCT/CN2013/076696
Other languages
English (en)
French (fr)
Inventor
齐永莲
舒适
惠官宝
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/348,444 priority Critical patent/US10254581B2/en
Publication of WO2014139221A1 publication Critical patent/WO2014139221A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to a method for fabricating a color filter substrate, a color filter substrate produced by the method, and a display device including the color film substrate. Background technique
  • the liquid crystal display is a non-self-illuminating display, it is necessary to configure a light source (such as a backlight, a front light source, or an external light source) for the display panel to display an image.
  • a light source such as a backlight, a front light source, or an external light source
  • the liquid crystal display can be classified into a transmissive display, a transflective display, and a reflective display depending on the manner in which the light source is utilized.
  • the transflective display is gradually attracting attention because it can simultaneously use the light emitted by the external light source and the backlight to have a good display effect in an outdoor sunlight environment, a low light or a low light environment.
  • the display panel in the transflective display is generally formed by an array substrate and a color filter (CF, Color Filter, also referred to as a color filter) substrate, and is filled with liquid crystal between the array substrate and the color filter substrate.
  • the color filter substrate comprises a black matrix (BM, Black Matrix), a color (RGB) filter layer and a flat protective layer (OC, Over Coat) disposed on the substrate of the village, the graphic of the black matrix in the village A plurality of sub-pixel regions are separated on the base substrate, and the color filter layer covers the plurality of sub-pixel regions.
  • Each sub-pixel region can be divided into a transmissive region and a reflective region, wherein the reflective region has a reflective electrode or reflective layer adapted to reflect light emitted by an external source such as sunlight or light. It can be seen that the light entering the reflective region passes through the color filter layer twice, and the light entering the transmissive region passes through the color filter layer only once, so that the image displayed by the transmissive region and the reflective region is generated for the same sub-pixel region. The phenomenon of color inconsistency.
  • the thickness of the color filter layer in the color filter substrate is generally adjusted, so that the thickness of the color filter layer corresponding to the transmissive area is increased, or the thickness of the color filter layer corresponding to the reflection area is reduced, thereby making the transmissive area
  • the color of the image presented in the reflection zone is uniform and the color coordination effect is achieved.
  • the invention provides a color film substrate prepared by the method, which can achieve the effect of color coordination, reduce the number of processes and reduce the thickness of the flat protective layer, and A display device including the color film substrate.
  • the method for fabricating a color filter substrate includes the steps of forming a black matrix pattern and a color filter layer pattern on a substrate of the village, and the black matrix pattern separates a plurality of sub-pixel regions on the substrate of the substrate.
  • the color filter layer covers the plurality of sub-pixel regions, and the sub-pixel region includes a transmissive region and/or a reflective region, wherein, before forming the color filter layer pattern, the manufacturing method further includes: The step of forming a plurality of W grooves on the base substrate, and the position of each of the transmission regions in the sub-pixel region respectively corresponds to the position of one groove.
  • the step of forming the color filter layer pattern includes:
  • the depth of the groove is 0.4-0.6 times the thickness of the color filter layer overlying the groove.
  • the depth of the groove is the thickness of the color filter layer overlying the groove
  • the color filter layer includes at least a red filter layer, a green filter layer, and a blue filter layer; the black matrix pattern is a grid shape; a cross section of each of the transmission regions in the sub-pixel region The cross-sectional shape is the same as the cross-sectional shape of its corresponding groove.
  • the fabricating method further includes the step of forming a planar protective layer on a side of the black matrix pattern and the color filter layer pattern away from the substrate substrate.
  • the manufacturing method further includes: forming a common electrode pattern and a spacer pattern on a side of the flat protective layer away from the substrate substrate;
  • the manufacturing method further includes: forming a back shield electrode pattern on a side of the substrate substrate on which the black matrix pattern and the color filter layer pattern are not formed, and moving the flat protective layer away from the village A step of forming a spacer pattern on one side of the base substrate.
  • the invention also provides a color film substrate, comprising: a village substrate, a black matrix and a color filter layer disposed on the substrate of the village, wherein the pattern composed of the black matrix is separated on the substrate of the village substrate a plurality of sub-pixel regions, the color filter layer is disposed on the plurality of sub-pixel regions, and the sub-pixel region includes a transmissive region and/or a reflective region, wherein the substrate substrate is provided with a plurality of slots. And the position of each of the transmissive regions in the sub-pixel region corresponds to the position of one slot, respectively.
  • the depth of the groove is the thickness of the color filter layer overlying the groove
  • the depth of the groove is 0.5 times the thickness of the color filter layer overlying the groove.
  • the color filter layer includes at least a red filter layer, a green filter layer, and a blue filter layer; the black matrix comprises a grid pattern; each of the transmissive regions in the sub-pixel region
  • the cross-sectional shape is the same as the cross-sectional shape of its corresponding groove.
  • the color filter substrate further includes a flat protective layer disposed on a side of the black matrix and the color filter layer away from the substrate substrate.
  • the color filter substrate further includes a common electrode and a spacer
  • the common electrode is disposed on a side of the flat protective layer away from the substrate substrate, and the spacer is disposed on a side of the common electrode away from the substrate substrate;
  • the spacer is disposed on a side of the flat protective layer away from the substrate, and the common electrode is disposed on a side of the spacer away from the substrate.
  • the color filter substrate further includes a back shield electrode and a spacer.
  • the back surface shielding electrode is disposed on a side of the substrate substrate on which the black matrix and the color filter layer are not disposed, and the spacer is disposed on a side of the flat protection layer away from the substrate substrate.
  • the present invention also provides a display device including the color film substrate.
  • the method for fabricating the color filter substrate provided by the present invention has a plurality of grooves formed on the substrate of the substrate in advance, and the positions of each of the transmissive regions in the sub-pixel region respectively correspond to the positions of one groove, for the same color.
  • the color filter layer is such that the thickness of the color filter layer corresponding to the transmissive region (ie, covering the transmissive region) is thicker than the thickness of the color filter layer corresponding to the reflective region (ie, covering the reflective region), and Adjusting the depth of the groove to adjust the difference between the thickness of the color filter layer corresponding to the reflection area and the reflection area, thereby achieving the effect of color coordination, reducing the number and time of the process, and reducing the manufacturing cost;
  • the color filter layer is formed by coating (for example, spin coating), although the thickness of the color filter layer corresponding to the transmissive area is different from the thickness of the color filter layer corresponding to the reflective area, the transmissive area and the reflective area are respectively
  • the surface of the corresponding color filter layer has a certain degree of flatness, that is, the surface has no step or the step is small, so the flat protective layer formed on the color filter layer and the black matrix is larger than that of the existing transflective display.
  • the thickness of the flat protective layer is thin (similar to the thickness of the flat protective layer in the conventional transmissive display or reflective display), thus saving material.
  • the method for fabricating the color film substrate of the invention also has the advantages of single process, practicality and high reliability.
  • FIG. 1 is a flow chart of a method for fabricating a color filter substrate according to Embodiment 1 of the present invention
  • FIG. 2 is a flow chart of a method for fabricating a color filter substrate according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural view of a color filter substrate after step s201 is completed in FIG. 2;
  • FIG. 4 is a schematic structural view of a color filter substrate after the step s202 is completed in FIG. 2;
  • FIG. 5 is a schematic structural view of a color filter substrate after step s203 is completed in FIG. 2;
  • FIG. 6 is a schematic structural view of the color filter substrate after the step s204 is completed in FIG.
  • the color filter layer in a transflective display is generally fabricated in the following manner.
  • Method 1 forming a color photoresist layer on the substrate substrate on which the black matrix is formed, exposing and developing the mask layer to form a color filter layer corresponding to the transmissive region, and forming a color in the reflection region.
  • the filter layer is provided with a light-transmissive hole that allows light to pass directly to coordinate the color.
  • the shape and area of the reflective regions are different in this method, so the mask cannot be shared. If the color filter layer includes a red filter layer, a green filter layer, and a blue filter layer, three masks and three exposures and development processes are required for fabricating the color filter layer by using the method, and the number of masks used is larger. More, higher cost.
  • Method 2 forming a color photoresist layer on the substrate substrate on which the black matrix is formed, exposing and developing the film using a halftone or gray tone mask, the mask comprising the mask being non-transmissive The region, the reticle portion transmission region, and the reticle transmission region.
  • the non-transmissive region of the mask correspondingly forms a color photoresist retention region on the color photoresist, that is, a color filter layer corresponding to the transmissive region is formed, and the mask portion is partially transmissive.
  • a resist portion is formed on the color photoresist, that is, a color filter layer corresponding to the reflective region is formed, and the mask plate transmission region correspondingly forms a photoresist completely removed region on the color photoresist.
  • the thickness of the color filter layer corresponding to the transmissive area is larger than the thickness of the color filter layer corresponding to the reflective area to coordinate the color.
  • the color filter layer includes a red filter layer, a green filter layer, and a blue filter layer, a halftone or gray tone mask is required to make the color filter layer by this method (because the red filter layer, green The filter layer and the blue filter layer have the same pattern, so that one mask can be shared, and the three exposure and development processes can be used.
  • the number of masks required is greatly reduced as compared with the first method.
  • the color photoresist layer is exposed by using a halftone or gray tone mask, the exposure degree of the partial transmission region is not easily controlled accurately, and the thickness of the color filter layer corresponding to the reflection region is not easily controlled accurately, so the color coordination is performed. The effect is not very good.
  • Method 3 First, a color photoresist layer is formed on the substrate substrate on which the black matrix is formed, and is exposed and developed by using a mask to form a first color filter layer corresponding to the transmissive region; A color photoresist layer is further formed on the base substrate, and is exposed and developed by using another mask plate to form a second color filter layer corresponding to the transmissive region and a color filter layer corresponding to the reflective region, wherein the transmissive region corresponds to a second color filter layer is formed directly above the first color filter layer, whereby a thickness of the first color filter layer and the second color filter layer corresponding to the transmissive region is greater than a color filter layer corresponding to the reflective region Thickness, and the transmission area and the opposite can be adjusted by adjusting the thickness of the color photoresist layer formed twice The difference between the thickness of the color filter layer corresponding to the shot area to achieve the color coordination effect.
  • the color filter layer is formed by this method, the number of masks is increased, and the number of exposure and development processes is increased as compared with the second method.
  • the color filter layer includes a red filter layer, a green filter layer, and a blue filter layer, two masks and six exposure and development processes are required to fabricate the color filter layer by the method, and thus the method Compared with this method, the process steps and time are increased, and the manufacturing cost is increased.
  • the color filter layer corresponding to the transmissive area is larger than the thickness of the color filter layer corresponding to the reflective area, the color filter layer corresponding to the color filter layer is increased.
  • the difference is the segment.
  • the flat protective layer in the color filter substrate corresponding to the color filter layer is thicker than the flat protective layer in the color filter substrate in the conventional transmissive display or the reflective display, so the above method is wasteful. Disadvantages of materials.
  • this embodiment provides a method for fabricating a color filter substrate, which includes the following steps: slOO. Providing a village substrate.
  • the substrate of the village is cleaned and free of dust and impurity ions.
  • the substrate substrate may be a transparent substrate such as a glass substrate, a quartz substrate, or a plastic substrate.
  • a plurality of grooves are formed in the substrate of the village.
  • the method for forming the plurality of grooves is, for example, applying a layer of photoresist on the substrate of the substrate, exposing and developing the photoresist by using a mask to form a photolithography on the substrate. a glue retention area and a photoresist removal area, wherein the photoresist removal area corresponds to the plurality of groove regions, and then the exposed substrate substrate is etched, and finally the remaining light is removed by a photoresist strip process
  • the glue is peeled off to form a plurality of grooves.
  • the black matrix pattern separating a plurality of sub-pixel regions on the substrate substrate, and the sub-pixel region includes a transmissive region and/or a reflective region, and The position of each of the transmissive regions in the pixel region corresponds to the position of one of the slots, respectively.
  • each sub-pixel region including the transmissive region and/or the reflective region refers to: each sub-pixel region includes both a transmissive region and a reflective region; or, some sub-pixel regions include only transmissive regions, and some sub-pixel regions only Includes a reflective area.
  • the substrate substrate is formed with a groove at a position corresponding to the transmissive area.
  • the shape and positional relationship between the transmissive region and the reflective region are not limited, for example, the transmissive region and the reflective region are respectively located on the left and right sides of the sub-pixel region;
  • the transmissive area is located at a center, and the reflective area is located around the transmissive area and Surround it, approximating the word "back".
  • the black matrix may be made of a resin or a metal or the like.
  • a color filter layer pattern is formed on the substrate of the substrate slO1, and the color filter layer covers the plurality of sub-pixel regions.
  • the step of forming the color filter layer pattern may include:
  • the color filter layer includes at least a red filter layer, a green filter layer, and a blue filter layer.
  • the color filter layer is not limited to the case including the red filter layer, the green filter layer, and the blue filter layer, and may further include a yellow filter layer, a transparent color filter layer, and a wine red filter. Layers, purple filter layers, and the like, color filter layers formed by all colors and combinations or variations thereof that can be conceived by those skilled in the art can be used as the color filter layer described in the embodiments of the present invention.
  • a black matrix pattern can be formed on the substrate of the village first, and then a plurality of grooves are formed on the substrate substrate on which the black matrix pattern is formed, and then formed on the substrate substrate on which the black matrix pattern and the plurality of grooves are formed.
  • a color filter layer pattern may be formed on the substrate of the substrate first, and then a color filter layer pattern is formed on the substrate substrate on which the plurality of grooves are formed, and then a plurality of grooves and color filter layers are formed.
  • a black matrix pattern is formed on the patterned substrate of the substrate.
  • the thickness of the color filter layer in the transmissive area on the color filter substrate is thicker than the thickness of the color filter layer in the reflection area.
  • the difference in thickness of the color filter layer corresponding to the transmissive area and the reflective area can be adjusted by adjusting the depth of the plurality of grooves, thereby achieving the effect of color coordination.
  • this embodiment provides a method for fabricating a color filter substrate, which includes the following steps: s200. Providing a village substrate.
  • the substrate of the village should be cleaned and free of dust and impurity ions.
  • the bottom substrate of the village can be made of glass
  • a transparent substrate such as a substrate, a quartz substrate, or a plastic substrate.
  • the black matrix pattern is a grid shape, the black matrix pattern separating a plurality of sub-pixel regions on the substrate substrate, and the sub-pixel region includes a transmissive region And reflection area.
  • the structure of the color filter substrate which completes this step is as shown in FIG.
  • the reflective region II in the sub-pixel region is located around the transmissive region I and is surrounded to achieve a better display effect.
  • the black matrix is formed of a metal material, a black matrix film is deposited on the substrate 1 and then a layer of photoresist is applied thereon, and the photoresist is exposed and developed by using a mask to be used in the village.
  • a photoresist retention area and a photoresist removal area are formed on the base substrate, wherein the photoresist retention area corresponds to the black matrix pattern region, and the exposed black matrix film is etched, and finally the photoresist stripping process is performed.
  • the remaining photoresist is peeled off to form a black matrix 2.
  • the black matrix 2 is also formed of, for example, a photosensitive resin, and the black matrix 2 pattern can be obtained by directly exposing and developing using other photoresist by using the photosensitive property.
  • a photoresist is applied on the substrate of the substrate s201, and the photoresist is exposed and developed by using a mask to form a photoresist retention region and lithography on the substrate.
  • a glue removal area wherein the photoresist removal area corresponds to the area of the plurality of grooves, and then the exposed substrate substrate is etched, and finally the remaining photoresist is stripped by a photoresist stripping process to form a plurality of W slot 3.
  • a red filter layer pattern, a green filter layer pattern, and a blue filter layer pattern ie, a color filter layer pattern to include three colors of red, green, and blue
  • the filter layer pattern is exemplified, but not limited thereto, and the red filter layer pattern, the green filter layer pattern, and the blue filter layer pattern are respectively covered on different sub-pixel regions.
  • the structure of the color filter substrate which completes this step is as shown in FIG.
  • the depth of the groove 3 is 0.4 to 0.6 times the thickness of the red filter layer 4 / the green filter layer 5 / the blue filter layer 6 overlying the groove.
  • the groove 3 has a depth of 0.5 ⁇ m to 1.0 ⁇ m.
  • the depth of the groove 3 is a red filter layer 4/ overlying the groove.
  • the thickness of the green filter layer 5 / blue filter layer 6, that is, the color filter layer (ie, the red filter layer 4, the green filter layer 5 or the blue filter layer 6) covering the groove The thickness is twice the thickness of the color filter layer over the reflective region II in the sub-pixel region corresponding to the trench.
  • the depths of the grooves covered with the different color filter layers may be different, that is, the depths of all the grooves formed on the substrate of the substrate are not necessarily the same,
  • the depth of the groove corresponding to the different color filter layers can be designed according to the actual situation.
  • the order in which the red filter layer pattern, the green filter layer pattern, and the blue filter layer pattern are formed is not limited.
  • step s203 will be described in detail by taking the red filter layer pattern, the green filter layer pattern, and the blue filter layer pattern sequentially formed on the substrate substrate on which the step s202 is completed.
  • the step s203 is specifically:
  • step s202 Forming a red photoresist on the base substrate of step s202 by spin coating, and then exposing and developing the red photoresist by using a mask to form on the red photoresist. a reserved area and a removed area, wherein the reserved area corresponds to a red filter layer pattern, and the red photoresist of the removed area is completely removed.
  • step S203-2 Forming a green photoresist on the substrate substrate of step S203-1 by spin coating, and then exposing and developing the green photoresist by using a mask to be in the green photoresist. A retention region and a removal region are formed thereon, wherein the retention region correspondingly forms a green filter layer pattern, and the green photoresist of the removal region is completely removed.
  • step S203-3 Forming a blue photoresist on the substrate substrate of step S203-2 by spin coating, and then exposing and developing the blue photoresist by using a mask to be in the blue A remaining region and a removed region are formed on the photoresist, wherein the reserved region corresponds to a blue filter layer pattern, and the blue photoresist of the removed region is completely removed.
  • a flat protective layer is formed on the side of the substrate of the step s203 by deposition, sputtering or coating, on the side of the black matrix pattern and the color filter layer pattern away from the substrate.
  • the flat protective layer may be made of an organic resin material.
  • the manufacturing method further includes:
  • a common electrode pattern is formed on the substrate of the substrate at step s204, that is, a common electrode pattern is formed on a side of the flat protective layer away from the substrate.
  • a spacer pattern is formed on the substrate of the substrate of the step A11-1, that is, a spacer pattern is formed on the side of the common electrode pattern away from the substrate.
  • the manufacturing method further includes:
  • a spacer pattern is formed on the substrate of the substrate at step s204, that is, a spacer pattern is formed on a side of the flat protective layer away from the substrate.
  • a common electrode pattern is formed on the substrate of the substrate of the step A11-2, that is, a common electrode pattern is formed on the side of the spacer pattern away from the substrate.
  • the manufacturing method further includes:
  • a spacer (PS, Post Spacer) pattern is formed on the substrate of the substrate s204, that is, a spacer pattern is formed on a side of the flat protective layer away from the substrate.
  • a side shield electrode pattern is formed on the side of the substrate on which the black matrix pattern and the color filter layer pattern are not formed.
  • the material of the back surface shielding electrode may be a transparent conductive material such as indium tin oxide (ITO, Indium Tin Oxide) or the like. It should be noted that, since the back surface shielding electrode pattern is formed on one side of the substrate, the black matrix, the groove, the red filter layer, the green filter layer, the blue filter layer, and the flat protective layer are all formed on the substrate substrate. On the other side, step A22 can be completed before, during or after steps s201 ⁇ A21.
  • the advanced super-dimensional field conversion technology forms a multi-dimensional electric field by the electric field generated by the edge of the slit electrode in the same plane and the electric field generated between the slit electrode layer and the plate electrode layer, so that the inside of the liquid crystal cell All the aligned liquid crystal molecules between the slit electrodes and directly above the electrodes can be rotated, thereby improving the liquid crystal working efficiency and increasing the light transmission efficiency.
  • Advanced super-dimensional field conversion technology can improve the picture quality of TFT-LCD products, with high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration, push mura, etc. advantage. Improvements to ADS technology for different applications include high-transmittance I-ADS technology, high aperture ratio H-ADS, and high-resolution S-ADS technology.
  • the back shield electrode is generally connected to a grounding point disposed in the color film substrate or the array substrate, and is used for dissipating electrostatic charges from the outside through the grounding point, thereby effectively avoiding static electricity and electromagnetic dryness from the outside.
  • Other aspects in this embodiment are basically the same as those in Embodiment 1, and are not described herein again.
  • Example 3
  • the embodiment provides a color filter substrate, comprising a village substrate, a black matrix and a color filter layer disposed on the substrate substrate, wherein the pattern formed by the black matrix is separated on the substrate substrate a sub-pixel region, the color filter layer covers the plurality of sub-pixel regions, the sub-pixel region includes a transmissive region and/or a reflective region, and the submount substrate is provided with a plurality of slots, and the sub-pixel region The position of each of the transmissive regions corresponds to the position of one of the slots, respectively.
  • the sub-pixel region including the transmissive region and/or the reflective region refers to: each sub-pixel region includes both a transmissive region and a reflective region; or, some sub-pixel regions include only transmissive regions, and some sub-pixel regions only Includes a reflective area.
  • the substrate substrate is formed with a groove at a position corresponding to the transmissive area.
  • the transmissive region and the reflective region are included in each sub-pixel region, the shape and positional relationship between the transmissive region and the reflective region are not limited.
  • the transmissive region and the reflective region are respectively located on the left and right sides of the sub-pixel region.
  • the transmissive area is located at the center
  • the reflective area is located around the transmissive area and surrounds it, that is, approximates a "back" word setting.
  • the substrate substrate may be a transparent substrate such as a glass substrate, a quartz substrate or a plastic substrate; and the black matrix may be made of resin, metal or the like.
  • the color filter layer includes at least a red filter layer, a green filter layer, and a blue filter layer.
  • the color filter layer is not limited to the case including the red filter layer, the green filter layer, and the blue filter layer, and may also include other combinations, such as a yellow filter layer, a wine red filter layer, A purple filter layer or the like, a color filter layer formed by all colors and combinations or variations thereof that can be conceived by those skilled in the art can be used as the color filter layer described in the embodiments of the present invention.
  • the thickness of the color filter layer corresponding to the transmissive area on the color filter substrate ie, covering the transmissive area
  • the reflective area ie, covering the reflective area
  • the color filter layer is thick. The difference in the thickness of the color filter layer corresponding to the transmissive area and the reflective area can be adjusted by adjusting the depth of the plurality of grooves, thereby achieving the effect of color coordination.
  • the embodiment further provides a display device including the above color film substrate, which comprises any one of the above color film substrates.
  • the display device may be: a liquid crystal panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, or any product or component having a display function.
  • Example 4 This embodiment provides a color film substrate. As shown in FIG. 6, the color filter substrate includes a substrate substrate 1, a black matrix 2, a red filter layer 4, a green filter layer 5, and a blue filter layer 6 disposed on the substrate substrate 1, and is disposed at A flat protective layer 7 on the black matrix 2, the red filter layer 4, the green filter layer 5, and the blue filter layer 6.
  • the pattern composed of the black matrix 2 separates a plurality of sub-pixel regions on the substrate substrate 1.
  • the pattern of the black matrix 2 is a grid shape.
  • the red filter layer 4, the green filter layer 5, and the blue filter layer 6 are respectively covered on the plurality of sub-pixel regions.
  • Each sub-pixel region includes a transmissive region and a reflective region.
  • the substrate substrate 1 is provided with a plurality of grooves 3, and the position of each of the transmission regions in the sub-pixel region corresponds to the position of one groove, and the cross-sectional shape of each of the transmission regions in the sub-pixel region They all have the same cross-sectional shape as their corresponding grooves.
  • the cross section is parallel to the surface of the substrate substrate.
  • the depth of the groove 3 is 0.4 to 0.6 times the thickness of the color filter layer overlying the groove.
  • the groove has a depth of 0.5 ⁇ m to 1.0 ⁇ m.
  • the depth of the groove 3 is 0.5 times the thickness of the color filter layer covering the groove, that is, the color filter layer covering the groove (ie, the red filter layer 4, the green filter)
  • the thickness of the light layer 5 or the blue filter layer 6) is twice the thickness of the color filter layer covering the reflective region II in the sub-pixel region corresponding to the groove.
  • the depths of the grooves covered with the different color filter layers may be different, that is, the depths of all the grooves formed on the substrate of the substrate are not necessarily the same,
  • the depth of the groove corresponding to the different color filter layers can be designed according to the actual situation.
  • the color filter substrate of the present embodiment is a color film substrate of a TN (Twisted-Nematic) type TFT-LCD
  • the color film substrate further includes a common electrode and a spacer, and the common electrode is disposed at The flat protective layer is away from a side of the substrate, the spacer is disposed on a side of the common electrode away from the substrate; or the spacer is disposed on the flat protective layer
  • the common electrode is disposed on a side away from the substrate of the substrate, and the common electrode is disposed on a side of the spacer away from the substrate.
  • the color filter substrate of the present embodiment is a color filter substrate of an ADS (ADvanced Super Dimension Switch) type TFT-LCD
  • the color filter substrate further includes a back surface shielding electrode and a spacer.
  • the back shield electrode is disposed on a side of the substrate substrate on which the black matrix and the color filter layer are not disposed, and the spacer is disposed on a side of the flat protective layer away from the substrate substrate.
  • the back shield electrode is generally grounded in a color film substrate or an array substrate, ⁇
  • Ground Dotting is connected to dissipate the electrostatic charge from the outside through the grounding point, which can effectively avoid static electricity and electromagnetic interference from the outside.
  • the embodiment further provides a display device including the above color film substrate, which comprises any of the above color film substrates.
  • the display device may be: a liquid crystal panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, or any product or component having a display function.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

一种彩膜基板的制作方法,包括:在衬底基板上形成黑矩阵图形和彩色滤光层图形的步骤,且所述黑矩阵图形在所述衬底基板上分隔出多个亚像素区,所述彩色滤光层覆盖在所述多个亚像素区上,所述亚像素区包括透射区和反射区,在形成彩色滤光层图形之前,所述制作方法还包括:在衬底基板上形成多个凹槽的步骤,亚像素区中的每个透射区的位置分别与一个凹槽的位置相对应。相应地,提供一种采用所述制作方法制成的彩膜基板以及包括所述彩膜基板的显示装置。所述彩膜基板的制作方法既能达到色彩协调的效果,又能减少工艺次数和减小平坦保护层厚度。

Description

彩膜基板的制作方法、 彩膜基板及显示装置 技术领域
本发明涉及液晶显示技术领域,具体涉及一种彩膜基板的制作方法、采 用该制作方法制成的彩膜基板以及包括所述彩膜基板的显示装置。 背景技术
由于液晶显示器为非自发光的显示器,因此需要为其中的显示面板配置 光源(如背光源、 前光源或外界光源)才能显示图像。 按照光源的利用方式 不同, 可将液晶显示器分为透射式显示器、 半透半反式显示器和反射式显示 器。 其中, 半透半反式显示器由于能够同时利用外界光源和背光源所发射的 光线, 在户外阳光环境下、 无光或弱光环境下均有良好的显示效果, 因而逐 渐受到瞩目。
半透半反式显示器中的显示面板一般由阵列基板和彩膜 (CF, Color Filter, 又称彩色滤光片)基板进行对盒, 并在阵列基板与彩膜基板之间填充 液晶而成。 所述彩膜基板包括设置在村底基板上的黑矩阵 (BM , Black Matrix ), 彩色 (RGB ) 滤光层和平坦保护层(OC, Over Coat ), 所述黑矩 阵的图形在所述村底基板上分隔出多个亚像素区,所述彩色滤光层覆盖在所 述多个亚像素区上。 每个亚像素区均可分为透射区和反射区, 其中, 反射区 上具有适于将外界光源(如阳光或灯光等)所发射的光线进行反射的反射电 极或反射层。 可以看出, 进入反射区的光线会经过彩色滤光层两次, 进入透 射区的光线只经过彩色滤光层一次, 故对于同一亚像素区, 其透射区与反射 区所显示的图像会产生色彩不协调的现象。
为解决上述问题,一般会将彩膜基板中的彩色滤光层厚度进行调整,使 透射区对应的彩色滤光层厚度增加, 或使反射区对应的彩色滤光层厚度减 少, 从而使透射区和反射区内所呈现的图像色彩均匀一致, 达到色彩协调的 效果。 发明内容
本发明提供一种既能达到色彩协调的效果,又能减少工艺次数和减小平 坦保护层厚度的彩膜基板的制作方法、采用该制作方法制成的彩膜基板以及 包括所述彩膜基板的显示装置。
所述彩膜基板的制作方法包括:在村底基板上形成黑矩阵图形和彩色滤 光层图形的步骤, 且所述黑矩阵图形在所述村底基板上分隔出多个亚像素 区, 所述彩色滤光层覆盖在所述多个亚像素区上, 所述亚像素区包括透射区 和 /或反射区, 其中, 在形成彩色滤光层图形之前, 所述制作方法还包括: 在村底基板上形成多个 W槽的步骤,且亚像素区中的每个透射区的位置分别 与一个 槽的位置相对应。
在一个示例中, 形成所述彩色滤光层图形的步骤包括:
在形成有多个 槽的村底基板上涂覆彩色光刻胶;
采用掩模板对所述彩色光刻胶进行曝光、显影, 以在所述彩色光刻胶上 形成保留区域和去除区域, 其中, 所述保留区域的彩色光刻胶对应形成所述 彩色滤光层图形, 所述去除区域的彩色光刻胶被完全去除。
在一个示例中,所述凹槽的深度是覆盖在该凹槽上的彩色滤光层厚度的 0.4-0.6倍。
在一个示例中,所述凹槽的深度是覆盖在该凹槽上的彩色滤光层厚度的
0.5倍。
在一个示例中,所述彩色滤光层至少包括红色滤光层、绿色滤光层和蓝 色滤光层; 所述黑矩阵图形为网格状; 亚像素区中的每个透射区的横截面形 状均与其对应的 槽的横截面形状相同。
在一个示例中,所述制作方法还包括: 在所述黑矩阵图形和彩色滤光层 图形远离所述村底基板的一侧形成平坦保护层的步骤。
在一个示例中,所述制作方法还包括: 在所述平坦保护层远离所述村底 基板的一侧形成公共电极图形和隔垫物图形的步骤;
或者,所述制作方法还包括: 在所述村底基板上未形成有黑矩阵图形及 彩色滤光层图形的一侧形成背面屏蔽电极图形的步骤,和在所述平坦保护层 远离所述村底基板的一侧形成隔垫物图形的步骤。
本发明同时提供一种彩膜基板, 包括: 村底基板, 设置在所述村底基板 上的黑矩阵和彩色滤光层,所述黑矩阵组成的图形在所述村底基板上分隔出 多个亚像素区, 所述彩色滤光层覆盖在所述多个亚像素区上, 所述亚像素区 包括透射区和 /或反射区, 其中, 所述村底基板上设置有多个 槽, 且亚像 素区中的每个透射区的位置分别与一个 槽的位置相对应。 在一个示例中 ,所述凹槽的深度是覆盖在该凹槽上的彩色滤光层厚度的
0.4-0.6倍。
在一个示例中,所述凹槽的深度是覆盖在该凹槽上的彩色滤光层厚度的 0.5倍。
在一个示例中,所述彩色滤光层至少包括红色滤光层、绿色滤光层和蓝 色滤光层; 所述黑矩阵组成的图形为网格状; 亚像素区中的每个透射区的横 截面形状均与其对应的 槽的横截面形状相同。
在一个示例中,所述彩膜基板还包括平坦保护层,所述平坦保护层设置 在黑矩阵和彩色滤光层远离所述村底基板的一侧。
在一个示例中, 所述彩膜基板还包括公共电极和隔垫物,
所述公共电极设置在所述平坦保护层远离所述村底基板的一侧,所述隔 垫物设置在所述公共电极远离所述村底基板的一侧;
或者,所述隔垫物设置在所述平坦保护层远离所述村底基板的一侧,所 述公共电极设置在所述隔垫物远离所述村底基板的一侧。
在一个示例中, 所述彩膜基板还包括背面屏蔽电极和隔垫物,
所述背面屏蔽电极设置在村底基板上未设置有黑矩阵和彩色滤光层的 一侧, 所述隔垫物设置在平坦保护层远离所述村底基板的一侧。
本发明同时还提供一种包括所述彩膜基板的显示装置。
本发明提供的彩膜基板的制作方法由于预先在村底基板上形成了多个 凹槽, 并使亚像素区中的每个透射区的位置分别与一个凹槽的位置相对应, 对于同一颜色的彩色滤光层来说,使得透射区对应的(即覆盖在透射区上的 ) 彩色滤光层厚度比反射区对应的(即覆盖在反射区上的)彩色滤光层厚度厚, 并可通过调整 槽的深度来调整透射区与反射区对应的彩色滤光层厚度之 差, 从而达到色彩协调的效果, 并且减少了工艺的次数和时间, 降低了制造 成本;
同时, 由于彩色滤光层采用涂覆的方式(例如旋涂的方式)形成, 虽然 透射区对应的彩色滤光层厚度与反射区对应的彩色滤光层厚度不同,但是透 射区和反射区分别对应的彩色滤光层的表面具有一定的平坦度,即表面并无 段差或者段差较小,故形成在彩色滤光层和黑矩阵上的平坦保护层比现有半 透半反式显示器中的平坦保护层的厚度薄(与现有透射式显示器或反射式显 示器中的平坦保护层的厚度近似), 故节省了材料。 本发明所述彩膜基板的制作方法还具有工艺筒单、 实用、可靠性高的优 点。 附图说明
为了更清楚地说明本公开或现有技术中的技术方案,下面将对本公开提 供的技术方案或现有技术描述中所需要使用的附图作筒单地介绍,显而易见 地,下面描述中的附图仅仅是本公开的技术方案的部分具体实施方式图示说 明, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1为本发明实施例 1中所述彩膜基板制作方法的流程图;
图 2为本发明实施例 2中所述彩膜基板制作方法的流程图;
图 3为图 2中完成步骤 s201后的彩膜基板的结构示意图;
图 4为图 2中完成步骤 s202后的彩膜基板的结构示意图;
图 5为图 2中完成步骤 s203后的彩膜基板的结构示意图;
图 6为图 2中完成步骤 s204后的彩膜基板的结构示意图。
图中: 1 -村底基板; 2 -黑矩阵; 3 -凹槽; 4 -红色滤光层; 5 -绿色 滤光层; 6 -蓝色滤光层; 7 -平坦保护层; I -透射区; II -反射区。 具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本公开一部分实施例, 而 不是全部的实施例。基于本公开中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领 域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权 利要求书中使用的 "第一"、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个" 或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "连接" 或者 "相 连"等类似的词语并非限定于物理的或者机械的连接, 而是可以包括电性的 连接, 不管是直接的还是间接的。 "上"、 "下"、 "左"、 "右" 等仅用于表示 相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位置关系也相应 地改变。
一般采用如下方式制作半透半反式显示器中的彩色滤光层。
方法一: 在形成有黑矩阵的村底基板上形成一彩色光刻胶层,采用掩模 板对其进行曝光、 显影, 以形成透射区对应的彩色滤光层, 而形成在反射区 内的彩色滤光层设置有允许光直接通过的透光孔, 以协调色彩。 对于不同颜 色的滤光层来说, 该方法中反射区的形状及面积均不同, 因此无法共用掩模 板。 若彩色滤光层包括红色滤光层、 绿色滤光层和蓝色滤光层, 则采用该方 法制作彩色滤光层时需要三张掩模板及三次曝光、 显影工艺, 采用的掩模板 数量较多, 成本较高。
方法二: 在形成有黑矩阵的村底基板上形成一彩色光刻胶层,使用半色 调或灰色调掩模板对其进行曝光、 显影, 所述半色调或灰色调掩模板包括掩 模板非透射区域、掩模板部分透射区域和掩模板透射区域。 以正性彩色光刻 胶为例,所述掩模板非透射区域在彩色光刻胶上对应形成彩色光刻胶保留区 域, 即形成透射区对应的彩色滤光层, 所述掩模板部分透射区域在彩色光刻 胶上对应形成光刻胶部分保留区域, 即形成反射区对应的彩色滤光层, 所述 掩模板透射区域在彩色光刻胶上对应形成光刻胶完全去除区域。 由此, 透射 区对应的彩色滤光层厚度大于反射区对应的彩色滤光层厚度, 以协调色彩。 若彩色滤光层包括红色滤光层、 绿色滤光层和蓝色滤光层, 则采用该方法制 作彩色滤光层时需要一张半色调或灰色调掩模板(因为红色滤光层、 绿色滤 光层和蓝色滤光层的图形一样, 故可以共用一张掩模板)及三次曝光、 显影 工艺。 故与方法一相比, 所需的掩模板的数量大大减少。 但是, 采用半色调 或灰色调掩模板对彩色光刻胶层进行曝光时,其部分透射区域的曝光程度不 易精确控制, 进而使得反射区对应的彩色滤光层厚度不易精确控制, 故色彩 协调的效果不是很理想。
方法三: 先在形成有黑矩阵的村底基板上形成一彩色光刻胶层,使用一 掩模板对其进行曝光、 显影, 形成透射区对应的第一彩色滤光层; 然后在所 述村底基板上再形成一彩色光刻胶层,使用另一掩模板对其进行曝光、显影, 形成透射区对应的第二彩色滤光层及反射区对应的彩色滤光层, 其中, 透射 区对应的第二彩色滤光层形成于第一彩色滤光层正上方,由此透射区对应的 第一彩色滤光层和第二彩色滤光层的厚度和大于反射区对应的彩色滤光层 的厚度,并且可通过调整两次形成的彩色光刻胶层的厚度来调整透射区与反 射区对应的彩色滤光层厚度之差, 以达到色彩协调的效果。 但是, 采用这种 方法制作彩色滤光层时, 与方法二相比, 既增加了掩模板的数量, 又增加了 曝光、 显影工艺的次数。 例如, 若彩色滤光层包括红色滤光层、 绿色滤光层 和蓝色滤光层, 则采用该方法制作彩色滤光层时需要两张掩模板及六次曝 光、 显影工艺, 故与方法一相比该方法增加了工艺步骤和时间, 提高了制造 成本。
同时,采用上述方法制成的彩色滤光层中, 由于透射区对应的彩色滤光 层厚度大于反射区对应的彩色滤光层厚度,增大了该彩色滤光层对应的彩膜 基板上的段差。 为了消除该段差, 该彩色滤光层对应的彩膜基板中的平坦保 护层比常规透射式显示器或反射式显示器中的彩膜基板中的平坦保护层的 厚度更厚, 故上述方法还存在浪费材料的缺点。
实施例 1:
如图 1所示, 本实施例提供一种彩膜基板的制作方法, 包括如下步骤: slOO. 提供一村底基板。
所述村底基板经过洁净后无尘无杂质离子。所述村底基板可采用玻璃基 板、 石英基板、 塑料基板等透明基板。
slOl. 在村底基板上形成多个凹槽。
所述多个凹槽的形成方法例如为: 在村底基板上涂敷一层光刻胶,采用 掩模板对所述光刻胶进行曝光、 显影, 以在所述村底基板上形成光刻胶保留 区域和光刻胶去除区域, 其中, 光刻胶去除区域对应所述多个凹槽的区域, 然后对暴露出来的村底基板进行刻蚀,最后通过光刻胶剥离工艺将剩余的光 刻胶剥离, 以形成多个凹槽。
sl02. 在完成步骤 slOl的村底基板上形成黑矩阵图形,所述黑矩阵图形 在所述村底基板上分隔出多个亚像素区, 亚像素区包括透射区和 /或反射区, 且亚像素区中的每个透射区的位置分别与一个 槽的位置相对应。
所述亚像素区包括透射区和 /或反射区指的是: 每个亚像素区中包括透 射区和反射区两者; 或者, 某些亚像素区只包括透射区, 某些亚像素区只包 括反射区。 当然, 不论是哪种情况, 所述村底基板上只有透射区对应的位置 处形成有 槽。 当每个亚像素区中包括透射区和反射区两者时, 透射区与反 射区的形状及位置关系不限,例如所述透射区与反射区分别位于该亚像素区 的左右两侧; 或者, 所述透射区位于中心, 所述反射区位于透射区的四周并 将其包围, 近似于 "回" 字。
所述黑矩阵可采用树脂或金属等制成。
sl03. 在完成步骤 slOl的村底基板上形成彩色滤光层图形,所述彩色滤 光层覆盖在所述多个亚像素区上。
在一个示例中, 形成所述彩色滤光层图形的步骤可包括:
在形成有黑矩阵图形和多个 W槽的村底基板上涂覆彩色光刻胶,所述彩 色光刻胶的涂覆方式可采用旋涂的方式;
采用掩模板对所述彩色光刻胶进行曝光、显影, 以在所述彩色光刻胶上 形成保留区域和去除区域, 其中, 所述保留区域的彩色光刻胶对应形成所述 彩色滤光层图形, 所述去除区域的彩色光刻胶被完全去除。
在一个示例中,所述彩色滤光层至少包括红色滤光层、绿色滤光层和蓝 色滤光层。 需要说明的是, 所述彩色滤光层不限于包括红色滤光层、 绿色滤 光层和蓝色滤光层的情况, 还可以包括黄色滤光层、 透明色滤光层、 酒红色 滤光层、 紫色滤光层等, 对于本领域技术人员能想到的所有颜色及其组合或 变型形成的彩色滤光层都可以作为本发明实施例中所述的彩色滤光层。
需要说明的是, 本实施例中, 步骤 sl01、 sl02和 sl03的顺序并不是固 定的, 还可以有如下顺序: sl02→sl01→sl03或 sl01→sl03→sl02。 也就是 说, 可以先在村底基板上形成黑矩阵图形, 然后在形成有黑矩阵图形的村底 基板上形成多个 槽,再在形成有黑矩阵图形和多个 槽的村底基板上形成 彩色滤光层图形; 也可以先在村底基板上形成多个 槽, 然后在形成有多个 槽的村底基板上形成彩色滤光层图形,再在形成有多个 槽和彩色滤光层 图形的村底基板上形成黑矩阵图形。
对于同一颜色的滤光层来说,由于透射区中的 槽中形成有彩色滤光层 图形, 因此彩膜基板上透射区的彩色滤光层厚度比反射区的彩色滤光层厚度 厚。而且可通过调整所述多个凹槽的深度来调整透射区与反射区对应的彩色 滤光层厚度之差, 从而达到色彩协调的效果。 实施例 2:
如图 2所示, 本实施例提供一种彩膜基板的制作方法, 包括如下步骤: s200. 提供一村底基板。
所述村底基板应经过洁净后无尘无杂质离子。所述村底基板可采用玻璃 基板、 石英基板、 塑料基板等透明基板。
s201. 在村底基板上形成黑矩阵图形, 所述黑矩阵图形为网格状, 所述 黑矩阵图形在所述村底基板上分隔出多个亚像素区,所述亚像素区包括透射 区和反射区。 完成该步骤的彩膜基板的结构如图 3所示。 本实施例中, 所述 亚像素区中的反射区 II位于透射区 I的四周并将其包围,以达到更好的显示 效果。
例如黑矩阵采用金属材料形成,在村底基板 1上沉积黑矩阵薄膜, 然后 在其上涂敷一层光刻胶, 采用掩模板对所述光刻胶进行曝光、 显影, 以在所 述村底基板上形成光刻胶保留区域和光刻胶去除区域, 其中, 光刻胶保留区 域对应黑矩阵图形的区域, 再对暴露出来的黑矩阵薄膜进行刻蚀, 最后通过 光刻胶剥离工艺将剩余的光刻胶剥离, 形成黑矩阵 2。 黑矩阵 2例如也采用 感光性树脂形成,利用其感光性质,可省略使用其他光刻胶,直接进行曝光、 显影即可制得黑矩阵 2图形。
s202. 在完成步骤 s201的村底基板上形成多个凹槽,并使得亚像素区中 的每个透射区的位置分别与一个 槽的位置相对应,且亚像素区中的每个透 射区的横截面形状均与其对应的 槽的横截面形状相同。所述横截面与村底 基板表面平行。 完成该步骤的彩膜基板的结构如图 4所示。
例如, 在完成步骤 s201的村底基板上涂敷一层光刻胶, 采用掩模板对 所述光刻胶进行曝光、 显影, 以在所述村底基板上形成光刻胶保留区域和光 刻胶去除区域, 其中, 光刻胶去除区域对应所述多个 槽的区域, 然后对暴 露出来的村底基板进行刻蚀, 最后通过光刻胶剥离工艺将剩余的光刻胶剥 离, 形成多个 W槽 3。
s203. 在完成步骤 s202的村底基板上分别形成红色滤光层图形、绿色滤 光层图形和蓝色滤光层图形(即彩色滤光层图形, 以包含红色、 绿色和蓝色 三种颜色滤光层图形为例, 但不限于此), 且所述红色滤光层图形、 绿色滤 光层图形和蓝色滤光层图形分别覆盖在不同的亚像素区上。完成该步骤的彩 膜基板的结构如图 5所示。
在一个示例中, 所述凹槽 3 的深度是覆盖在该凹槽上的红色滤光层 4/ 绿色滤光层 5/蓝色滤光层 6厚度的 0.4~0.6倍。 例如, 所述凹槽 3的深度为 0.5 μ ιη~1.0 μ ιη。
在一个示例中, 所述凹槽 3 的深度是覆盖在该凹槽上的红色滤光层 4/ 绿色滤光层 5/蓝色滤光层 6厚度的 0.5倍, 即覆盖在该 槽上的彩色滤光层 (即红色滤光层 4、 绿色滤光层 5或蓝色滤光层 6 ) 的厚度为覆盖在该 槽 所对应的亚像素区中的反射区 II上的彩色滤光层厚度的两倍。
需要说明的是,从色彩协调的角度考虑,覆盖有不同颜色滤光层的凹槽 的深度可以不相同, 也就是说, 形成在村底基板上的所有凹槽的深度并不一 定相同,本领域技术人员可根据实际情况设计不同颜色滤光层对应的凹槽的 深度。
本步骤中,所述红色滤光层图形、绿色滤光层图形和蓝色滤光层图形的 形成顺序不受限制。
下面以在完成步骤 s202的村底基板上依次形成红色滤光层图形、 绿色 滤光层图形和蓝色滤光层图形为例对步骤 s203进行详细说明。
所述步骤 s203具体为:
S203-1. 采用旋涂的方式在完成步骤 s202 的村底基板上形成红色光刻 胶, 然后采用掩模板对所述红色光刻胶进行曝光、 显影, 以在所述红色光刻 胶上形成保留区域和去除区域, 其中, 所述保留区域对应形成红色滤光层图 形, 所述去除区域的红色光刻胶被完全去除。
S203-2. 采用旋涂的方式在完成步骤 S203-1的村底基板上形成绿色光刻 胶, 然后采用掩模板对所述绿色光刻胶进行曝光、 显影, 以在所述绿色光刻 胶上形成保留区域和去除区域, 其中, 所述保留区域对应形成绿色滤光层图 形, 所述去除区域的绿色光刻胶被完全去除。
S203-3. 采用旋涂的方式在完成步骤 S203-2的村底基板上形成蓝色光刻 胶, 然后采用掩模板对所述蓝色光刻胶进行曝光、 显影, 以在所述蓝色光刻 胶上形成保留区域和去除区域, 其中, 所述保留区域对应形成蓝色滤光层图 形, 所述去除区域的蓝色光刻胶被完全去除。
s204. 在完成步骤 s203的村底基板上形成平坦保护层 7, 即在所述黑矩 阵图形和彩色滤光层图形远离所述村底基板的一侧形成平坦保护层。完成该 步骤的彩膜基板的结构如图 6所示。
具体地, 在完成步骤 s203的村底基板上通过沉积、 溅射或者涂覆等方 式在黑矩阵图形和彩色滤光层图形远离所述村底基板的一侧形成平坦保护 层。 所述平坦保护层可以采用有机树脂材料。
若本实施例所述彩膜基板为 TN ( Twisted-Nematic , 扭曲向列) 型 TFT-LCD的彩膜基板, 则所述制作方法还包括:
A11-1. 在完成步骤 s204的村底基板上形成公共电极图形, 即在所述平 坦保护层远离所述村底基板的一侧形成公共电极图形。
A12-1. 在完成步骤 A11-1 的村底基板上形成隔垫物图形, 即在所述公 共电极图形远离所述村底基板的一侧形成隔垫物图形。
或者, 所述制作方法还包括:
A11-2. 在完成步骤 s204的村底基板上形成隔垫物图形, 即在所述平坦 保护层远离所述村底基板的一侧形成隔垫物图形。
A12-2. 在完成步骤 A11-2的村底基板上形成公共电极图形, 即在所述 隔垫物图形远离所述村底基板的一侧形成公共电极图形。
若本实施例所述彩膜基板为 ADS ( ADvanced Super Dimension Switch, 高级超维场转换技术)型 TFT-LCD的彩膜基板, 则所述制作方法还包括:
A21. 在完成步骤 s204的村底基板上形成隔垫物(PS, Post Spacer ) 图 形, 即在所述平坦保护层远离所述村底基板的一侧形成隔垫物图形。
A22. 在村底基板上未形成有黑矩阵图形及彩色滤光层图形的一侧形成 背面屏蔽电极图形。 其中, 背面屏蔽电极的材质可以选用透明导电材料, 例 如氧化铟锡(ITO, Indium Tin Oxide )等。 需要说明的是, 由于背面屏蔽电 极图形形成在村底基板的一侧, 而黑矩阵、 槽、红色滤光层、绿色滤光层、 蓝色滤光层及平坦保护层均形成在村底基板的另一侧, 故步骤 A22 可在步 骤 s201~A21之前、 之中或之后完成。
高级超维场转换技术( ADvanced Super Dimension Switch , 筒称 ADS ) 通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层与板状电极层 间产生的电场形成多维电场, 使液晶盒内狭缝电极间、 电极正上方所有取向 液晶分子都能够产生旋转, 从而提高了液晶工作效率并增大了透光效率。 高 级超维场转换技术可以提高 TFT-LCD产品的画面品质, 具有高分辨率、 高 透过率、 低功耗、 宽视角、 高开口率、 低色差、 无挤压水波纹(push Mura ) 等优点。 针对不同应用, ADS技术的改进技术有高透过率 I-ADS技术、 高 开口率 H-ADS和高分辨率 S-ADS技术等。
所述背面屏蔽电极一般与设置在彩膜基板或阵列基板中的接地点相连, 用于将来自外界的静电电荷通过接地点耗散掉,可有效避免来自外界的静电 和电磁干 4尤。 本实施例中的其他方面都与实施例 1基本相同, 这里不再赘述。 实施例 3:
本实施例提供一种彩膜基板, 包括村底基板、设置在所述村底基板上的 黑矩阵和彩色滤光层,所述黑矩阵组成的图形在所述村底基板上分隔出多个 亚像素区, 所述彩色滤光层覆盖在所述多个亚像素区上, 所述亚像素区包括 透射区和 /或反射区, 所述村底基板上设置有多个 槽, 亚像素区中的每个 透射区的位置分别与一个 槽的位置相对应。
所述亚像素区包括透射区和 /或反射区指的是: 每个亚像素区中既包括 透射区又包括反射区; 或者, 某些亚像素区只包括透射区, 某些亚像素区只 包括反射区。 当然, 不论是哪种情况, 所述村底基板上只有透射区对应的位 置处形成有凹槽。 当每个亚像素区中既包括透射区又包括反射区时, 其中的 透射区与反射区的形状及位置关系不限,例如所述透射区与反射区分别位于 该亚像素区的左右两侧; 或者, 所述透射区位于中心, 所述反射区位于透射 区的四周并将其包围, 即近似于 "回" 字设置。
所述村底基板可采用玻璃基板、石英基板、 塑料基板等透明基板; 所述 黑矩阵可采用树脂或金属等制成。
在一个示例中,所述彩色滤光层至少包括红色滤光层、绿色滤光层和蓝 色滤光层。 需要说明的是, 所述彩色滤光层不限于包括红色滤光层、 绿色滤 光层和蓝色滤光层的情况, 还可以包括其他组合, 例如黄色滤光层、 酒红色 滤光层、 紫色滤光层等, 对于本领域技术人员能想到的所有颜色及其组合或 变型形成的彩色滤光层都可以作为本发明实施例中所述的彩色滤光层。
根据本实施例,对于同一颜色的滤光层来说,彩膜基板上透射区对应的 (即覆盖在透射区上的 )彩色滤光层厚度比反射区对应的(即覆盖在反射区 上的 )彩色滤光层厚度厚。 可通过调整所述多个凹槽的深度来调整透射区与 反射区对应的彩色滤光层厚度之差, 从而达到色彩协调的效果。
本实施例还提供一种包括上述彩膜基板的显示装置,其包括上述任意一 种彩膜基板。 所述显示装置可以为: 液晶面板、 手机、 平板电脑、 电视机、 显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。 实施例 4: 本实施例提供一种彩膜基板。如图 6所示,所述彩膜基板包括村底基板 1 , 设置在村底基板 1上的黑矩阵 2、 红色滤光层 4、 绿色滤光层 5和蓝色滤 光层 6, 设置在黑矩阵 2、 红色滤光层 4、 绿色滤光层 5和蓝色滤光层 6上 的平坦保护层 7。
所述黑矩阵 2组成的图形在所述村底基板 1上分隔出多个亚像素区。所 述黑矩阵 2的图形为网格状。 所述红色滤光层 4、 绿色滤光层 5和蓝色滤光 层 6分别覆盖在所述多个亚像素区上。 每个亚像素区包括透射区和反射区。 并且, 所述村底基板 1上设置有多个凹槽 3, 亚像素区中的每个透射区的位 置均与一个 槽的位置相对应,亚像素区中的每个透射区的横截面形状均与 其对应的凹槽的横截面形状相同。 所述横截面与村底基板表面平行。
在一个示例中,所述凹槽 3的深度是覆盖在该凹槽上的彩色滤光层厚度 的 0.4~0.6倍。 例如, 所述凹槽的深度为 0.5 μ m~1.0 μ m。
进一步在一个示例中,所述 槽 3的深度与覆盖在该 槽上的彩色滤光 层厚度的 0.5倍, 即覆盖在该凹槽上的彩色滤光层(即红色滤光层 4、 绿色 滤光层 5或蓝色滤光层 6 ) 的厚度为覆盖在该 槽所对应的亚像素区中的反 射区 II上的彩色滤光层厚度的两倍。
需要说明的是,从色彩协调的角度考虑,覆盖有不同颜色滤光层的凹槽 的深度可以不相同, 也就是说, 形成在村底基板上的所有凹槽的深度并不一 定相同,本领域技术人员可根据实际情况设计不同颜色滤光层对应的凹槽的 深度。
若本实施例所述彩膜基板为 TN ( Twisted-Nematic , 扭曲向列) 型 TFT-LCD 的彩膜基板, 则所述彩膜基板还包括公共电极和隔垫物, 所述公 共电极设置在所述平坦保护层远离所述村底基板的一侧,所述隔垫物设置在 所述公共电极远离所述村底基板的一侧; 或者, 所述隔垫物设置在所述平坦 保护层远离所述村底基板的一侧,所述公共电极设置在所述隔垫物远离所述 村底基板的一侧。
若本实施例所述彩膜基板为 ADS ( ADvanced Super Dimension Switch, 高级超维场转换技术)型 TFT-LCD的彩膜基板, 则所述彩膜基板还包括背 面屏蔽电极和隔垫物,所述背面屏蔽电极设置在村底基板上未设置有黑矩阵 和彩色滤光层的一侧,所述隔垫物设置在平坦保护层远离所述村底基板的一 侧。 所述背面屏蔽电极一般与设置在彩膜基板或阵列基板中的接地 , ^
( Ground Dotting )相连, 用于将来自外界的静电电荷通过接地点耗散掉, 可有效避免来自外界的静电和电磁干扰。
本实施例还提供一种包括上述彩膜基板的显示装置,其包括上述任意一 种彩膜基板。 所述显示装置可以为: 液晶面板、 手机、 平板电脑、 电视机、 显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本实施例中的其他结构及作用都与实施例 3相同, 这里不再赘述。
以上实施方式仅用于说明本公开, 而并非对本公开的限制,有关技术领 域的普通技术人员, 在不脱离本公开的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本公开的范畴, 本公开的专 利保护范围应由权利要求限定。

Claims

权利要求书
1. 一种彩膜基板的制作方法, 包括: 在村底基板上形成黑矩阵图形和 彩色滤光层图形的步骤,且所述黑矩阵图形在所述村底基板上分隔出多个亚 像素区, 所述彩色滤光层覆盖在所述多个亚像素区上, 所述亚像素区包括透 射区和 /或反射区, 其特征在于, 在形成彩色滤光层图形之前, 所述制作方 法还包括: 在村底基板上形成多个 槽的步骤, 且亚像素区中的每个透射区 的位置分别与一个 W槽的位置相对应。
2. 根据权利要求 1所述的制作方法, 其特征在于, 形成所述彩色滤光 层图形的步骤包括:
在形成有多个 槽的村底基板上涂覆彩色光刻胶;
采用掩模板对所述彩色光刻胶进行曝光、显影, 以在所述彩色光刻胶上 形成保留区域和去除区域, 其中, 所述保留区域的彩色光刻胶对应形成所述 彩色滤光层图形, 所述去除区域的彩色光刻胶被完全去除。
3. 根据权利要求 1所述的制作方法, 其特征在于, 所述凹槽的深度是 覆盖在该凹槽上的彩色滤光层厚度的 0.4~0.6倍。
4. 根据权利要求 3所述的制作方法, 其特征在于, 所述凹槽的深度是 覆盖在该 槽上的彩色滤光层厚度的 0.5倍。
5. 根据权利要求 1-4中任一项所述的制作方法, 其特征在于, 所述彩 色滤光层至少包括红色滤光层、 绿色滤光层和蓝色滤光层; 所述黑矩阵图形 为网格状;亚像素区中的每个透射区的横截面形状均与其对应的 槽的横截 面形状相同。
6. 根据权利要求 1-4中任一项所述的制作方法, 其特征在于, 所述制 作方法还包括:在所述黑矩阵图形和彩色滤光层图形远离所述村底基板的一 侧形成平坦保护层的步骤。
7. 根据权利要求 6所述的制作方法, 其特征在于,
所述制作方法还包括:在所述平坦保护层远离所述村底基板的一侧形成 公共电极图形和隔垫物图形的步骤; 或者
所述制作方法还包括:在所述村底基板上未形成有黑矩阵图形及彩色滤 光层图形的一侧形成背面屏蔽电极图形的步骤,和在所述平坦保护层远离所 述村底基板的一侧形成隔垫物图形的步骤。
8. 一种彩膜基板, 包括: 村底基板, 设置在所述村底基板上的黑矩阵 和彩色滤光层, 所述黑矩阵在所述村底基板上分隔出多个亚像素区, 所述彩 色滤光层覆盖在所述多个亚像素区上, 所述亚像素区包括透射区和 /或反射 区, 其特征在于, 所述村底基板上设置有多个凹槽, 且亚像素区中的每个透 射区的位置分别与一个 槽的位置相对应。
9. 根据权利要求 8所述的彩膜基板, 其特征在于, 所述凹槽的深度是 覆盖在该凹槽上的彩色滤光层厚度的 0.4~0.6倍。
10. 根据权利要求 9所述的彩膜基板, 其特征在于, 所述凹槽的深度是 覆盖在该凹槽上的彩色滤光层厚度的 0.5倍。
11. 根据权利要求 8-10 中任一项所述的彩膜基板, 其特征在于, 所述 彩色滤光层至少包括红色滤光层、 绿色滤光层和蓝色滤光层; 所述黑矩阵为 网格状;亚像素区中的每个透射区的横截面形状均与其对应的 槽的横截面 形状相同。
12. 根据权利要求 8-10中任一项所述的彩膜基板, 其特征在于, 所述 彩膜基板还包括平坦保护层,所述平坦保护层设置在黑矩阵和彩色滤光层远 离所述村底基板的一侧。
13. 根据权利要求 12所述的彩膜基板, 其特征在于, 所述彩膜基板还 包括公共电极和隔垫物,
所述公共电极设置在所述平坦保护层远离所述村底基板的一侧,所述隔 垫物设置在所述公共电极远离所述村底基板的一侧;
或者,所述隔垫物设置在所述平坦保护层远离所述村底基板的一侧,所 述公共电极设置在所述隔垫物远离所述村底基板的一侧。
14. 根据权利要求 12所述的彩膜基板, 其特征在于, 所述彩膜基板还 包括背面屏蔽电极和隔垫物,
所述背面屏蔽电极设置在村底基板上未设置有黑矩阵和彩色滤光层的 一侧, 所述隔垫物设置在平坦保护层远离所述村底基板的一侧。
15. 一种显示装置, 包括如权利要求 8-14中任一项所述的彩膜基板。
PCT/CN2013/076696 2013-03-11 2013-06-04 彩膜基板的制作方法、彩膜基板及显示装置 WO2014139221A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/348,444 US10254581B2 (en) 2013-03-11 2013-06-04 Fabricating method of color filter substrate, color filter substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310076478.8 2013-03-11
CN2013100764788A CN103149731A (zh) 2013-03-11 2013-03-11 彩膜基板的制作方法、彩膜基板及显示装置

Publications (1)

Publication Number Publication Date
WO2014139221A1 true WO2014139221A1 (zh) 2014-09-18

Family

ID=48547901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076696 WO2014139221A1 (zh) 2013-03-11 2013-06-04 彩膜基板的制作方法、彩膜基板及显示装置

Country Status (3)

Country Link
US (1) US10254581B2 (zh)
CN (1) CN103149731A (zh)
WO (1) WO2014139221A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314451B2 (ja) * 2012-12-27 2018-04-25 大日本印刷株式会社 カラーフィルタ形成基板および有機el表示装置
KR102536344B1 (ko) * 2015-12-31 2023-05-25 엘지디스플레이 주식회사 표시장치
CN105974643B (zh) 2016-07-01 2019-08-30 深圳市华星光电技术有限公司 彩膜基板及其制造方法
CN106773250A (zh) * 2016-12-29 2017-05-31 东旭(昆山)显示材料有限公司 一种彩膜基板及其制备方法以及显示面板和显示器
CN106597734A (zh) * 2017-02-22 2017-04-26 北京京东方光电科技有限公司 显示基板及显示装置
CN108873445A (zh) * 2017-05-12 2018-11-23 京东方科技集团股份有限公司 显示基板、其制作方法及反射型液晶显示面板、显示装置
CN107179638B (zh) * 2017-07-27 2021-01-15 京东方科技集团股份有限公司 一种显示面板及其控制方法、显示装置
CN111488079A (zh) * 2020-04-24 2020-08-04 信利(惠州)智能显示有限公司 一种oncell触控模组
US20240069259A1 (en) * 2021-01-13 2024-02-29 Massachusetts Institute Of Technology Photoluminescent quantum dots colour filters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503011A (zh) * 2002-11-22 2004-06-09 精工爱普生株式会社 滤色器及其制造方法及显示装置以及电子设备
CN1523436A (zh) * 2003-08-08 2004-08-25 友达光电股份有限公司 彩色滤光片的制造方法以及半透射式液晶显示装置
CN101329468B (zh) * 2008-07-29 2010-12-01 友达光电股份有限公司 彩色滤光基板、电子装置及其制作方法
CN102707355A (zh) * 2011-10-24 2012-10-03 京东方科技集团股份有限公司 一种半反半透彩色滤光片及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051128A (zh) * 2006-04-06 2007-10-10 胜华科技股份有限公司 半透射式液晶显示器、其像素单元及像素单元的驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503011A (zh) * 2002-11-22 2004-06-09 精工爱普生株式会社 滤色器及其制造方法及显示装置以及电子设备
CN1523436A (zh) * 2003-08-08 2004-08-25 友达光电股份有限公司 彩色滤光片的制造方法以及半透射式液晶显示装置
CN101329468B (zh) * 2008-07-29 2010-12-01 友达光电股份有限公司 彩色滤光基板、电子装置及其制作方法
CN102707355A (zh) * 2011-10-24 2012-10-03 京东方科技集团股份有限公司 一种半反半透彩色滤光片及其制作方法

Also Published As

Publication number Publication date
US10254581B2 (en) 2019-04-09
CN103149731A (zh) 2013-06-12
US20150153614A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
WO2014139221A1 (zh) 彩膜基板的制作方法、彩膜基板及显示装置
CN107632453B (zh) 显示面板及制造方法和显示装置
CN105607368B (zh) 阵列基板及其制备方法、显示装置
WO2019184769A1 (zh) 液晶显示面板、其制作方法及显示装置
CN103185981B (zh) 彩色滤光阵列基板及其制备方法和显示装置
US8314911B2 (en) Liquid crystal panel and manufacturing method thereof
US9709864B2 (en) Array substrate and its manufacturing method and display device
US10295713B2 (en) Color filter substrate, preparing method thereof, and display device
WO2020224598A1 (zh) 彩膜基板及其制作方法和显示装置
WO2020147341A1 (en) Display substrate, fabricating method thereof, and display apparatus
TW200944843A (en) Touch panel, color filter substrate and fabricating method thereof
WO2018176629A1 (zh) 显示面板及其制造方法
WO2020187108A1 (zh) 显示面板及其制造方法、显示装置
US20190049804A1 (en) Active switch array substrate, manufacturing method therfor, and display panel
WO2016187987A1 (zh) 一种显示面板及其制作方法、显示装置
WO2014134886A1 (zh) 彩膜基板及其制作方法、液晶显示屏
WO2015027594A1 (zh) 彩膜基板及其制备方法、显示装置
US20190265544A1 (en) Mask plate, display substrate and method for manufacturing the same, display panel and display device
WO2019001285A1 (zh) 阵列基板及其制备方法和显示装置
US9116297B2 (en) Color filter substrate, manufacturing method thereof and liquid crystal panel
WO2019237788A1 (zh) 彩膜基板及其制作方法、显示面板、显示装置
JP2012234180A (ja) カラーフィルター基板、及びその製造方法と装置
KR20080110347A (ko) 전기 영동 표시 장치 및 그 제조 방법
CN106990597B (zh) 彩色滤光基板及其制造方法及显示面板及显示装置
WO2014176904A1 (zh) 显示装置、彩膜基板及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14348444

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.02.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13878130

Country of ref document: EP

Kind code of ref document: A1