WO2024012365A1 - 一种有机化合物及其应用 - Google Patents

一种有机化合物及其应用 Download PDF

Info

Publication number
WO2024012365A1
WO2024012365A1 PCT/CN2023/106297 CN2023106297W WO2024012365A1 WO 2024012365 A1 WO2024012365 A1 WO 2024012365A1 CN 2023106297 W CN2023106297 W CN 2023106297W WO 2024012365 A1 WO2024012365 A1 WO 2024012365A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
results
group
mmol
maldi
Prior art date
Application number
PCT/CN2023/106297
Other languages
English (en)
French (fr)
Inventor
段炼
张东东
王翔
周健平
范天骄
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210832120.2A external-priority patent/CN115197251A/zh
Priority claimed from CN202210832655.XA external-priority patent/CN115197252A/zh
Priority claimed from CN202310703917.7A external-priority patent/CN116836193A/zh
Priority claimed from CN202310803161.3A external-priority patent/CN117024459A/zh
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2024012365A1 publication Critical patent/WO2024012365A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to an organic compound, in particular to a compound that can be used in an organic electroluminescent device, and also relates to an organic electroluminescent device using the organic compound.
  • OLED Organic Light Emitting Diodes
  • OLED Organic Light Emitting Diodes
  • OLED devices are a type of device with a sandwich-like structure, including positive and negative electrode film layers and organic functional material layers sandwiched between the electrode film layers. Apply voltage to the electrode of the OLED device, positive charges are injected from the positive electrode, and negative charges are injected from the negative electrode. Under the action of the electric field, the positive and negative charges migrate in the organic layer, meet and recombine to emit light.
  • OLED devices have the advantages of high brightness, fast response, wide viewing angle, simple process, and flexibility, they have attracted much attention in the fields of new display technology and new lighting technology. At present, this technology has been widely used in display panels of new lighting fixtures, smartphones, tablets and other products. It will further expand to the application fields of large-size display products such as TVs. It is a new type of display that is developing rapidly and has high technical requirements. technology.
  • OLED As OLED continues to advance in the fields of lighting and display, people are paying more attention to the research on its core materials, because an OLED device with good efficiency and long life is usually the result of the optimized combination of device structure and various organic materials.
  • OLED light-emitting devices with lower driving voltage, better luminous efficiency, and longer device service life, and to continuously improve the performance of OLED devices, it is not only necessary to innovate the structure and manufacturing process of OLED devices, but also to improve the optoelectronics in OLED devices.
  • Functional materials are constantly researched and innovated to prepare functional materials with higher performance. Based on this, the OLED material community has been committed to developing new organic electroluminescent materials to achieve low startup voltage, high luminous efficiency and better service life of the device.
  • MR-TADF Multiple Resonance Induced Thermal Activated Delayed Fluorescence
  • the light color of BN-type MR molecules is mostly in the sky blue-green region, with half-peak width.
  • the width is mostly around 30nm, which cannot meet the requirements of the new generation of ultra-high-definition video standard BT.2020.
  • the invention provides an organic compound having a structure shown in formulas (1-1) and (1-2):
  • Ring Ar 1 , Ring Ar 2 , Ring Ar 3 , and Ring Ar 4 are each independently selected from a C6 to C60 aromatic ring or a C3 to C60 heteroaromatic ring;
  • Z is selected from N or C
  • W 1 , W 2 , and W 3 are independently selected from CC single bonds, O, S, Se, CR 7 R 8 , SiR 9 R 10 or NR 11 ; m1, m2, and m3 are independently selected from 0 or 1;
  • X is selected from BAr 5 (R 5 ) n5 , CC single bond, O, S, Se, CR 12 R 13 , SiR 14 R 15 , NR 16 or PR 17 ;
  • V is selected from C, CH or CR 6 ;
  • Y is selected from CC single bond, O, S, Se, CR 12 R 13 , SiR 14 R 15 or NR 16 ;
  • V is selected from CH or CR 6
  • X is selected from BAr 5 (R 5 ) n5 , CC single bond, O, S, Se, CR 12 R 13 , SiR 14 R 15 , NR 16 or PR 17
  • V is C and X is BAr 5 (R 5 ) n5 ;
  • Ring Ar 5 is selected from a C6 to C60 aromatic ring or a C3 to C60 heteroaromatic ring;
  • R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and R 17 are each independently selected from one of the following substituted or unsubstituted groups. : C1 ⁇ C36 chain alkyl group, C3 ⁇ C36 cycloalkyl group, C6 ⁇ C30 arylamino group, C6 ⁇ C60 aryl group, C6 ⁇ C60 aryloxy group, C5 ⁇ C60 heteroaryl group;
  • R 7 and R 8 are not connected or connected to form a ring, and R 9 and R 10 are not connected or connected to form a ring;
  • R 12 and R 13 are not connected or connected to form a ring through any of CC single bond, O, S, Se, CR 7 R 8 , SiR 9 R 10 or NR 11 , and R 14 and R 15 are not connected. Connected or connected to form a ring through any of CC single bonds, O, S, Se, CR 7 R 8 , SiR 9 R 10 or NR 11 ;
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently selected from hydrogen, deuterium, halogen, cyano, substituted or unsubstituted C1 to C30 chain alkyl, substituted or unsubstituted C3 ⁇ C20 cycloalkyl group, substituted or unsubstituted C7 ⁇ C30 aralkyl group, substituted or unsubstituted C1 ⁇ C30 alkoxy group, substituted or unsubstituted C2 ⁇ C30 aliphatic chain hydrocarbon amine group, substituted or Unsubstituted C4 ⁇ C30 cyclic aliphatic chain hydrocarbon amine group, substituted or unsubstituted C6 ⁇ C30 arylamine group, substituted or unsubstituted C3 ⁇ C30 heteroarylamino group, substituted or unsubstituted C6 ⁇ C30 aromatic amine group
  • R 1 , R 2 , R 3 and R 4 are each independently connected to the connected ring structure through a single bond, or R 1 , R 2 , R 3 and R 4 are each independently connected to the connected ring structure through O and S , Se, CR 1 R 2 or NR 5 are fused to form a ring structure connection;
  • n1, n2, n3, n4 and n5 are each independently selected from an integer from 0 to 10;
  • n1, n2, n3, and n4 are each independently an integer greater than 1, the corresponding multiple R 1s , multiple R 2s , multiple R 3s , and multiple R 4s are each the same or Different, and multiple R 1 are not connected or connected to form a ring, multiple R 2 are not connected or connected to form a ring, multiple R 3 are not connected or connected to form a ring, multiple R 4 are not connected to each other or connected to form a ring;
  • the substituents are each independently selected from halogen, cyano group, C1-C20 chain alkyl group, C3-C20 cycloalkyl group, C1-C10 alkoxy group, C6 ⁇ C30 arylamino group, C3 ⁇ C30 heteroarylamino group, C6 ⁇ C30 aryloxy group, C6 ⁇ C30 aryl group, substituted or unsubstituted C6-C60 arylboryl group, C3 ⁇ C30 heteroaryl group One or a combination of two.
  • ring Ar 1 , ring Ar 2 , and ring Ar 3 are each independently a structure represented by formula (a) or formula (b), and the dotted double bond represents the fused position of the group:
  • Z 1 , Z 2 , Z 3 and Z 4 are each independently selected from C, CH or N;
  • Z5 is selected from O, S, NR1 or CR2R3, wherein R1, R2 and R3 are each independently selected from substituted or unsubstituted C1-C20 chain alkyl, substituted or unsubstituted C3-C20 One of cycloalkyl, substituted or unsubstituted C6-C60 aryl, substituted or unsubstituted C3-C60 heteroaryl, when substituents independently exist on R1, R2, and R3, the substituents are each independent is selected from halogen, cyano group, C1 ⁇ C10 chain alkyl group, C3 ⁇ C10 cycloalkyl group, C1 ⁇ C10 alkoxy group, C6 ⁇ C30 arylamino group, C3 ⁇ C30 heteroarylamino group, C6 ⁇ One of C30 aryloxy group, C6 ⁇ C30 aryl group, C3 ⁇ C30 heteroaryl group;
  • Ring H is selected from one of C6-C30 aromatic ring and C3-C30 heteroaromatic ring; preferably, H is a benzene ring; Z is selected from S, NR1 or CR2R3.
  • one of the ring Ar 1 , ring Ar 2 , and ring Ar 3 is a structure represented by formula (b), and the other ring structures are each independently a structure represented by formula (a).
  • the r 1 , ring Ar 2 , and ring Ar 3 are each independently selected from a C6 to C30 aromatic ring or a C3 to C30 heteroaromatic ring; preferably, ring Ar 1 , ring Ar 2 , and ring Ar 3 are each independently selected from Independently selected from benzene ring, naphthalene ring, anthracene ring, fluorene ring, furan, benzofuran, dibenzofuran, indole, benzindole, carbazole, indolocarbazole, benzothiophene, diphenyl Any one of thiophene and thiophene; more preferably, the ring Ar 1 , ring Ar 2 and ring Ar 3 are each independently selected from benzene ring, naphthalene ring, anthracene ring, fluorene ring, furan or thiophene. kind.
  • n1, n2, n3 and n4 are each independently selected from an integer of 1-5;
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently selected from deuterium, halogen, cyano, C1-C12 chain alkyl, substituted or unsubstituted C6-C60 aryl , one of the substituted or unsubstituted C3 ⁇ C60 heteroaryl groups;
  • the R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and R 17 are each independently selected from the following substituted or unsubstituted groups.
  • One: C1 ⁇ C10 chain alkyl group, C3 ⁇ C10 cycloalkyl group, C6 ⁇ C30 arylamino group, C6 ⁇ C30 aryl group, C6 ⁇ C30 aryloxy group, C5 ⁇ C30 heteroaryl group; preferred Ground, said R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and R 17 are each independently selected from C1 to C10 chain alkyl, Any one of substituted or unsubstituted benzene ring, naphthalene ring and anthracene ring.
  • the X is BAr 5 (R 5 ) n5 , O, S, Se, CR 12 R 13 , SiR 14 R 15 , and the Y is O, S, Se, CR 12 R 13 , SiR 14 R 15 ; more preferably, the X is BAr 5 (R 5 ) n5 , O, S, CR 12 R 13 , SiR 14 R 15 , the Y is O, S, CR 12 R 13 , SiR 14 R 15 ; most preferably, the X is BAr 5 (R 5 ) n5 , S, CR 12 R 13 , and the Y is S, CR 12 R 13 .
  • organic compound of the present invention is preferably a structure represented by any one of the following structural formulas (2-1), (2-2) or (2-3):
  • the ring Ar 1 , ring Ar 2 , ring Ar 3 , ring Ar 4 and ring Ar 5 are each independently selected from a C6 to C60 aromatic ring or a C3 to C30 heteroaromatic ring;
  • Ring Ar 1 , Ring Ar 2 , Ring Ar 3 , Ring Ar 4 and Ring Ar 5 are each independently selected from the group consisting of benzene ring, naphthalene ring, anthracene ring, fluorene ring, furan, benzofuran and dibenzofuran. , any one of indole, benzindole, carbazole, indolocarbazole, benzothiophene, dibenzothiophene, or thiophene;
  • the ring Ar 1 , ring Ar 2 , ring Ar 3 , ring Ar 4 and ring Ar 5 are each independently a benzene ring, a naphthalene ring, a dibenzofuran, a carbazole, or a dibenzothiophene. any kind;
  • the rings Ar 1 , Ar 2 , Ar 3 , Ar 4 and Ar 5 are each independently a benzene ring.
  • the Y is O, S, Se, CR 12 R 13 , SiR 14 R 15 ; more preferably, when the X is BAr 5 (R 5 ) n5 , O, S, CR 12 R 13 , SiR 14 R 15 , the Y is O, S, CR 12 R 13 , SiR 14 R 15 ; most preferably, when the X is BAr 5 (R 5 ) n5 , S, CR 12 R 13 , the Y is S, CR 12 R 13 .
  • the X is BAr 5 (R 5 ) n5 , O, S, Se, CR 12 R 13 , SiR 14 R 15 ; more preferably, the X is selected from BAr 5 (R 5 ) n5 .
  • the X is selected from BAr 5 (R 5 ) n5 , CC single bond, O, S, Se, CR 12 R 13 , SiR 14 R 15 or NR 16 ; more preferably, the X is selected from BAr 5 (R 5 ) n5 or CR 12 R 13 .
  • W 1 and W 3 are independently selected from CC single bonds, S, CR 7 R 8 or NR 11 ; m1 and m3 are 1; m2 is 0.
  • organic compound of the present invention preferably has a structure represented by any one of formulas (2) to (26):
  • R 1 -R 6 , Ar 1 -Ar 5 , n1-n5, W 1 , W 3 , m1, m3 and Z are respectively the same as those of formula (1-1) and formula
  • the definitions in (1-2) are the same; R 12 and R 13 are not connected or connected to form a ring through any one of CC single bond, O, S, Se, CR 7 R 8 , SiR 9 R 10 or NR 11 , R 14 and R 15 are not connected or connected to form a ring through any one of CC single bond, O, S, Se, CR 7 R 8 , SiR 9 R 10 or NR 11 .
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently selected from the following substituent groups: hydrogen, deuterium, methyl, ethyl, n-propyl, isopropyl , n-butyl, isobutyl, sec-butyl, tert-butyl, 2-methylbutyl, n-pentyl, sec-pentyl, cyclopentyl, neopentyl, n-hexyl, cyclohexyl, neohexyl, n-butyl Heptyl, cycloheptyl, n-octyl, cyclooctyl, 2-ethylhexyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, cyano, halogen, phenyl, Naphthyl, an
  • R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and R 17 are each independently selected from the following substituent groups: methyl, ethanol base, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 2-methylbutyl, n-pentyl, sec-pentyl, cyclopentyl, neopentyl, n-hexyl base, cyclohexyl, neohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, 2-ethylhexyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl , cyano, halogen, phenyl, naphthyl,
  • the R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently represented by hydrogen, deuterium, methyl, ethyl, n-propyl, isopropyl, n-butyl , isobutyl, sec-butyl, tert-butyl, trifluoromethyl, pentafluoroethyl, cyano, halogen, phenyl, naphthyl, anthracenyl, fluorenyl, spirodifluorenyl, dihydrophenanthyl, Dihydropyrenyl, tetrahydropyrenyl, cis or trans indenofluorenyl, furyl, benzofuranyl, thienyl, benzothienyl, pyrrolyl, isoindolyl, carbazolyl, indeno Carbazolyl, pyridyl, quinolyl, isoquinolyl,
  • R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and R 17 are each independently selected from the following substituent groups: methyl, ethyl , n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, trifluoromethyl, pentafluoroethyl, cyano, halogen, phenyl, naphthyl, anthracenyl, fluorene base, spirodifluorenyl, dihydrophenanthyl, dihydropyrenyl, tetrahydropyrenyl, cis or trans indenofluorenyl, furyl, benzofuranyl, thienyl, benzothienyl, pyrrolyl , isoindolyl, carbazolyl, indenocarbazolyl,
  • the R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently represented by hydrogen, deuterium, methyl, ethyl, n-propyl, isopropyl, n-butyl, Isobutyl, sec-butyl, tert-butyl, trifluoromethyl, pentafluoroethyl, cyano, halogen, phenyl, naphthyl, anthracenyl, fluorenyl, spirodifluorenyl, carbazolyl, 1, One of 3,5-triazinyl, diphenylboronyl, dimylboronyl, dipentafluorophenylboronyl, and di(2,4,6-triisopropylphenyl)boronyl, Or selected from a combination of the above two groups;
  • R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and R 17 are each independently selected from the following substituent groups: methyl, ethyl , one of n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyano, phenyl, naphthyl, anthracenyl, fluorenyl, spirobifluorenyl, or Selected from a combination of the above two groups.
  • the expression Ca to Cb means that the number of carbon atoms of the group is a to b. Unless otherwise specified, generally speaking, the number of carbon atoms does not include the number of carbon atoms of the substituent.
  • C1 to C30 it includes but is not limited to C1, C2, C3, C4, C3, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C22, C24, C26, C28, etc. Other numerical ranges will not be described again.
  • the expression of chemical elements usually includes the concept of isotopes with the same chemical properties, such as the expression “hydrogen”, and also includes the concepts of "deuterium” and “tritium” with the same chemical properties, carbon ( C) includes 12 C, 13 C, etc., which will not be described again.
  • the heteroatom in the present invention usually refers to being selected from N, O, S, P, Si and Se, and is preferably selected from N, O and S.
  • heterocyclyl and “heterocycle” refer to a saturated ring having at least one ring atom that is a heteroatom selected from N, O, and S and the remaining ring atoms being C (i.e., heterocycloalkyl ) or partially unsaturated (i.e. having one or more double bonds and/or triple bonds within the ring) cyclic groups.
  • (arylene) and “aromatic ring” refer to all-carbon monocyclic or fused-ring polycyclic aromatic radicals having a conjugated pi electron system.
  • (heteroarylene) and “heteroaryl ring” refer to monocyclic, bicyclic or tricyclic aromatic ring systems.
  • aralkyl preferably means an aryl- or heteroaryl-substituted alkyl group, wherein aryl, heteroaryl and alkyl are as defined herein.
  • halo or halogen group is defined to include F, Cl, Br or I.
  • substituted means that one or more (e.g., one, two, three or four) hydrogens on the designated atom are replaced by a selection from the indicated group, provided that no more than the designated atom is present in the case of normal valence and the substitution forms a stable compound. Combinations of substituents and/or variables are permissible only if such combinations form stable compounds.
  • each substituent is selected independently of the other.
  • each substituent may be the same as or different from another (other) substituent.
  • one or more means 1 or more than 1, such as 2, 3, 4, 5 or 10 under reasonable conditions.
  • the point of attachment of a substituent may be from any suitable position on the substituent.
  • the expression of the ring structure crossed by "-" indicates that the connection site is at any position on the ring structure that can form a bond.
  • C6 to C60 aromatic rings and C3 to C60 heteroaromatic rings in the present invention are aromatic groups that satisfy the ⁇ conjugated system, and both include monocyclic residues and condensed ring residues.
  • monocyclic residue means that the molecule contains at least one phenyl group.
  • the phenyl groups are independent of each other and connected through single bonds, such as phenyl and diphenyl groups.
  • fused ring residue refers to a molecule containing at least two benzene rings, but the benzene rings are not independent of each other, but share ring edges and are fused to each other, for example, naphthyl, anthracenyl , phenanthrenyl, etc.; monocyclic heteroaryl means that the molecule contains at least one heteroaryl group.
  • heteroaryl When the molecule contains a heteroaryl group and other groups (such as aryl, heteroaryl, alkyl, etc.), heteroaryl
  • the radicals and other groups are independent of each other and connected through single bonds, such as pyridine, furan, thiophene, etc.; the fused ring heteroaryl group refers to the fusion of at least one phenyl group and at least one heteroaryl group, Or, it is formed by the fusion of at least two heteroaromatic rings, such as quinoline, isoquinoline, benzofuran, dibenzofuran, benzothiophene, dibenzothiophene, etc.
  • the substituted or unsubstituted C6-C60 aromatic ring is preferably a C6-C30 aromatic ring, and more preferably is a phenyl, naphthyl, anthracenyl, benzanthracenyl, phenanthrenyl, benzophenanthyl, pyrene base, pyrenyl, fluoranthene, tetraphenyl, pentacene, benzopyrenyl, biphenyl, aphenyl, terphenyl, tripolyphenyl, tetraphenyl, fluorene base, spirobifluorenyl, dihydrophenanthyl, dihydropyrenyl, tetrahydropyrenyl, cis or trans indenofluorenyl, trimerindenyl, isotrimericindenyl, spirotrimerindenyl, spirotrimeryl An aromatic ring in the group consisting of hetero
  • the biphenyl group is selected from 2-biphenyl, 3-biphenyl and 4-biphenyl;
  • the terphenyl group includes p-terphenyl-4-yl, p-terphenyl-3-yl, p-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl;
  • the naphthyl group includes 1-naphthyl or 2-naphthyl;
  • anthracenyl is selected from 1-anthracenyl, 2-anthracenyl and 9-anthracenyl;
  • the fluorenyl group is selected from 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl;
  • the pyrenyl is selected from 1-pyrenyl, 2-pyrenyl and 4-pyrenyl; the
  • aromatic ring in the present invention examples include phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, phenanthrenyl, indenyl, fluorenyl and derivatives thereof, fluoranthyl, triphenylene, etc.
  • the biphenyl group is selected from 2-biphenyl group, 3-biphenyl group and 4-biphenyl group;
  • the terphenyl group includes p-terphenyl-4-yl, p-terphenyl-3-yl , p-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl;
  • the naphthyl group includes 1-naphthyl Or 2-naphthyl;
  • the anthracenyl group is selected from the group consisting of 1-anthracenyl, 2-anthracenyl and 9-anthracenyl;
  • the fluorenyl group is selected from the group consisting of 1-fluorenyl, 2-fluorenyl, 3- In the group consisting of fluorenyl, 4-fluorenyl and 9-fluorenyl;
  • the substituted or unsubstituted C6-C60 aryl group is preferably a C6-C30 aryl group, and more preferably is a phenyl group, naphthyl group, anthracenyl group, benzanthracenyl group, phenanthrenyl group, benzophenanthrenyl group, or pyrene group.
  • pyrenyl fluoranthene, tetraphenyl, pentacene, benzopyrenyl, biphenyl, aphenyl, terphenyl, tripolyphenyl, tetraphenyl, fluorene base, spirobifluorenyl, dihydrophenanthyl, dihydropyrenyl, tetrahydropyrenyl, cis or trans indenofluorenyl, trimerindenyl, isotrimericindenyl, spirotrimerindenyl, spirotrimeryl A group in the group consisting of heterotrimeric indenyl groups.
  • the biphenyl group is selected from 2-biphenyl, 3-biphenyl and 4-biphenyl;
  • the terphenyl group includes p-terphenyl-4-yl, p-terphenyl-3-yl, p-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl;
  • the naphthyl group includes 1-naphthyl or 2-naphthyl;
  • anthracenyl is selected from 1-anthracenyl, 2-anthracenyl and 9-anthracenyl;
  • the fluorenyl group is selected from 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl;
  • the pyrenyl is selected from 1-pyrenyl, 2-pyrenyl and 4-pyrenyl; the
  • aryl group in the present invention include phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, phenanthrenyl, indenyl, fluorenyl and derivatives thereof, fluoranthyl, triphenylene, etc.
  • the biphenyl group is selected from 2-biphenyl group, 3-biphenyl group and 4-biphenyl group;
  • the terphenyl group includes p-terphenyl-4-yl, p-terphenyl-3-yl , p-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl;
  • the naphthyl group includes 1-naphthyl Or 2-naphthyl;
  • the anthracenyl group is selected from the group consisting of 1-anthracenyl, 2-anthracenyl and 9-anthracenyl;
  • the fluorenyl group is selected from the group consisting of 1-fluorenyl, 2-fluorenyl, 3- In the group consisting of fluorenyl, 4-fluorenyl and 9-fluorenyl;
  • the substituted or unsubstituted C3-C60 heteroaromatic ring is preferably a C3-C30 heteroaromatic ring, which can be a nitrogen-containing heteroaryl group or an oxygen-containing heteroaryl group.
  • heteroaromatic ring in the present invention include furyl, thienyl, pyrrolyl, benzofuryl, benzothienyl, isobenzofuryl, indolyl, dibenzofuryl, di Heteroaromatic rings of benzothienyl, carbazolyl and their derivatives, wherein the carbazolyl derivative is preferably 9-phenylcarbazole, 9-naphthylcarbazole, benzocarbazole, dibenzocarbazole Azole or indolocarbazole.
  • the substituted or unsubstituted C3-C60 heteroaryl group is preferably a C3-C30 heteroaryl group, and more preferably a nitrogen-containing heteroaryl group, an oxygen-containing heteroaryl group, a sulfur-containing heteroaryl group, etc.
  • Examples include furyl, thienyl, pyrrolyl, pyridyl, benzofuryl, benzothienyl, isobenzofuryl, isobenzothienyl, indolyl, isoindolyl, dibenzo Furyl, dibenzothienyl, carbazolyl and its derivatives, quinolyl, isoquinolyl, acridinyl, phenanthridinyl, benzo-5,6-quinolyl, benzo-6, 7-quinolyl, benzo-7,8-quinolyl, phenothiazinyl, phenazinyl, pyrazolyl, indazolyl, imidazolyl, benzimidazolyl, naphthoimidazolyl, phenanthroimidazole 1, 2-thiazolyl, 1,3-thiazolyl, benzothiazolyl, pyridazinyl, benzopyridazinyl, pyrimidiny
  • heteroaryl group in the present invention examples include furyl, thienyl, pyrrolyl, benzofuryl, benzothienyl, isobenzofuranyl, indolyl, dibenzofuryl, di Benzothienyl, carbazolyl and their derivatives, wherein the carbazolyl derivative is preferably 9-phenylcarbazole, 9-naphthylcarbazole, benzocarbazole, dibenzocarbazole or indole and carbazole.
  • the C3-C60 heteroaryl group of the present invention may also be a group in which the above-mentioned groups are connected or/and fused with a single bond.
  • chain alkyl includes both linear and branched alkyl.
  • C1 to C20 chain alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 2-methylbutyl, n-pentyl, sec-pentyl, neopentyl, n-hexylnehexyl, n-heptyl, n-octyl, 2-ethylhexyl, etc.
  • Examples of C1 to C20 chain haloalkyl groups include trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, and the like.
  • C3-C20 cycloalkyl includes monocyclic alkyl and polycyclic alkyl. Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cycloheptyl, Cycloctyl, adamantyl, etc.
  • an alkoxy group refers to a group composed of the above-mentioned chain alkyl group and oxygen, or a group composed of the above-mentioned cycloalkyl group and oxygen.
  • C1 to C20 alkoxy groups include: methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, isobutoxy group, and tert-butoxy group , pentyloxy, isopentoxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, etc., among which methoxy, ethyl is preferred Oxygen, n-propoxy, isopropoxy, tert-butoxy, sec-butoxy, isobutoxy, isopentyloxy, more preferably Methoxy.
  • examples of C1 to C20 silyl groups may be silyl groups substituted by the groups exemplified in the above C1 to C20 alkyl groups, that is, the above chain alkyl or cycloalkyl substituted silyl groups A group formed by one, two or three hydrogen atoms.
  • Specific examples include: methylsilyl, dimethylsilyl, trimethylsilyl, ethylsilyl, diethylsilyl, triethylsilyl, tert-butyldimethyl silyl, tert-butyldiphenylsilyl and other groups.
  • the compounds described in the general formula (1-1) and formula (1-2) of the present invention can preferably include the following specific structural compounds: A1-1 to A1-192, A2-1 to A2-57, A3-1 to A3-57, A4-1 to A4-57, A5-1 to A5-57, A6-1 to A6-57, A7-1 to A7-57, A8-1 to A8-57, B1- 1 to B1-186, B2-1 to B2-57, B3-1 to B3-57, B4-1 to B4-186, B5-1 to B5-57, B6-1 to B6-57, B7-1 to B7-60, B8-1 to B8-60, C1-1 to C1-84, C2-1 to C2-76, C3-1 to C3-68, C4-1 to C4-56, C5-1 to C5- 76, C6-1 to C6-72, C7-1 to C7-76, C8-1 to C8-80, C9-1 to C9-80, D1-1 to D1-954, these compounds are only representative
  • the structural characteristics of this type of compound of the present invention are: in the parent core structure such as formula (1-1) and formula (1-2), the compound of the present invention has a structure of nitrogen, boron, and nitrogen commonly used in the prior art.
  • Specific X and Y groups are introduced into the meta position of the central benzene ring boron atom.
  • the X can be an aryl boron, a single bond, a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, an oxygen atom, a sulfur atom or a selenium atom.
  • Y can be a single bond, a carbon atom, a silicon atom, a nitrogen atom, a phosphorus atom, an oxygen atom, a sulfur atom or a selenium atom.
  • the introduction of X and Y can effectively lock the donor groups on the left or right side of the mother nucleus, thereby effectively eliminating the hydrogen atoms on the central benzene ring and the hydrogen atoms on the surrounding benzene rings in the nitrogen, boron, and nitrogen structure.
  • the repulsion between them makes the central benzene ring and the peripheral aromatic ring almost coplanar, effectively reducing the deformation and vibrational relaxation of the excited state of the molecule, and improving the stability and color purity of the molecule.
  • the X and Y introduced into the core structure of the compound of the present invention do not affect the basic multiple resonance characteristics of the nitrogen, boron, and nitrogen structure, thus maintaining the high quantum efficiency and narrow spectrum characteristics of the multiple resonance dye.
  • X and Y are designed as single bonds, B, C, Si, N, P, O, S, Se and other types of atoms or groups, and their different electronegativities can be used to adjust the light color of the compound of the present invention. From blue light (single bond, B), blue-green light (C, Si), green light (O, S, Se) to red light (N, P), the luminous light color can be widely adjusted to achieve a wider range of Color gamut coverage.
  • X or Y is an aryl boron
  • carbon atom, silicon atom, nitrogen atom, or phosphorus atom its large-volume group and twisted structure can effectively reduce the interaction between molecules and reduce the
  • the interaction force can reduce the problems such as red shift, broadening and efficiency decrease caused by molecular accumulation, significantly inhibit the concentration quenching effect, and reduce the interaction between the host and the dye and the dye in the device, thereby significantly improving the
  • the luminous efficiency and lifetime can be improved, the stability and repeatability of the device can be improved, and the doping concentration can also be increased to reduce the difficulty of device preparation, which is helpful for the commercial application of the material.
  • X or Y has a structure with spiro C and spiro Si
  • the molecule has chirality, and the chiral center perturbs the boron-nitrogen luminescence core, resulting in luminescence.
  • Circular polarization characteristics After chiral separation, a pair of optically pure compounds can be obtained.
  • the device can produce strong circularly polarized luminescence, and its asymmetry factor is on the order of 10 -3 .
  • the target molecule has a significantly narrower half-peak width (14-20nm) and a higher lifetime in organic optoelectronic devices.
  • the preparation process of the compound of the present invention is simple and easy, the raw materials are easily available, and it is suitable for mass production scale-up.
  • the second aspect of the present invention simultaneously protects any one of the above-mentioned general formulas (1-1) to (1-2), general formulas (2-1) to (2-3), and general formulas (2) to (26).
  • the application of the compound shown is as a functional material in organic electronic devices, and the organic electronic devices include: organic electroluminescent devices, optical sensors, solar cells, lighting components, organic thin film transistors, and organic field effect transistors. , organic thin film solar cells, information labels, electronic artificial skin sheets, sheet scanners or electronic paper, preferably organic electroluminescent devices.
  • the present invention also provides an organic electroluminescent device, including a substrate, including a first electrode, a second electrode, and one or more organic layers inserted between the first electrode and the second electrode, wherein, the organic layer contains any one of the above general formulas (1-1) to (1-2), general formulas (2-1) to (2-3), and general formulas (2) to (26). the compounds shown.
  • one embodiment of the present invention provides an organic electroluminescent device, including a substrate, and an anode layer, a plurality of light-emitting functional layers and a cathode layer sequentially formed on the substrate; the light-emitting functional layer It includes a hole injection layer, a hole transport layer, a light-emitting layer, and an electron transport layer.
  • the hole injection layer is formed on the anode layer, and the hole transport layer is formed on the hole injection layer.
  • the cathode layer is formed on the electron transport layer, and between the hole transport layer and the electron transport layer is a luminescent layer; wherein, the luminescent layer contains the above formula (1 ) of the present invention represented by the compound of the general formula.
  • the OLED device prepared by using the compound of the present invention has low starting voltage, high luminous efficiency and better service life, and can meet the current requirements of panel manufacturing enterprises for high-performance materials.
  • Various chemicals used in the present invention such as petroleum ether, ethyl acetate, sodium sulfate, toluene, tetrahydrofuran, methylene chloride, acetic acid, potassium carbonate and other basic chemical raw materials are purchased from Shanghai Titan Technology Co., Ltd. and Xilong Chemical Co., Ltd. Ltd.
  • the mass spectrometer used to determine the following compounds was a ZAB-HS mass spectrometer (manufactured by Micromass, UK).
  • MALDI-TOF-MS results Molecular ion peak: 544.23 Elemental analysis results: Theoretical values: C, 86.07; H, 4.82; B, 3.97; N, 5.15; Experimental values: C, 86.05; H, 4.81; B, 3.98; N,5.17.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction is completed, the temperature is lowered to -30°C, boron tribromide (60mmol) is slowly added, and the temperature is raised to 60°C. Continue stirring for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C, and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • MALDI-TOF-MS results Molecular ion peak: 608.17 Elemental analysis results: Theoretical values: C, 76.99; H, 4.31; B, 3.55; N, 4.60; S, 10.54; Experimental values: C, 76.97; H, 4.30; B,3.56;N,4.58;S,10.58.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • MALDI-TOF-MS results Molecular ion peak: 702.19 Elemental analysis results: Theoretical values: C, 66.71; H, 3.73; B, 3.08; N, 3.99; Se, 22.49; Experimental values: C, 66.74; H, 3.71; B,3.09;N,3.98;Se,22.52.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • MALDI-TOF-MS results Molecular ion peak: 908.34 Elemental analysis results: Theoretical values: C, 83.26; H, 5.10; B, 2.38; N, 3.08; Si, 6.18; Experimental values: C, 83.27; H, 5.11; B, 2.37; N, 3.09; Si, 6.16.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • MALDI-TOF-MS results Molecular ion peak: 724.27 Elemental analysis results: Theoretical values: C, 84.54; H, 4.73; B, 2.98; N, 3.87; Si, 3.88; Experimental values: C, 84.53; H, 4.75; B, 2.97; N, 3.88; Si, 3.89.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • MALDI-TOF-MS results Molecular ion peak: 650.22 Elemental analysis results: Theoretical values: C, 83.10; H, 4.34; B, 3.32; N, 4.31; S, 4.93; Experimental values: C, 83.08; H, 4.35; B,3.30;N,4.321;S,4.95.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction is completed, the temperature is lowered to -30°C, boron tribromide (60mmol) is slowly added, and the temperature is raised to 60°C. Continue stirring for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C, and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C, and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C, and stirring was continued for 2 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, and the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. Add N, N-diisopropylethylamine (120 mmol) at room temperature, and continue the reaction at 130°C for 12 hours before stopping.
  • n-butyllithium in pentane 60 mmol was slowly added to a solution of Br-generation precursor (15 mmol) in tert-butylbenzene (150 mL) at 0°C, and then the temperature was raised to 25°C for 1 hour. After the reaction, the temperature was lowered to -30°C, boron tribromide (60 mmol) was slowly added, the temperature was raised to 60°C and stirring was continued for 2 hours. N,N-diisopropylethylamine (120 mmol) was added at room temperature, and the reaction was continued at 130°C for 12 hours.
  • the specific experimental method is similar to that of Synthesis Example C-1, except that the corresponding Br-generation precursor only needs to be replaced.
  • the target compound C2-63 (31% yield, HPLC analysis purity 99%) is an orange-yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 613.1420 elemental analysis results: theoretical value: C, 80.27; H, 3.29; B, 1.76; N, 6.85; O, 2.61; S, 5.23; experimental value: C, 80.22; H ,3.21;B,1.73;N,6.84;O,2.65;S,5.21.
  • Dissolve compound I-1-4 (1 mmol) in 20 mL of tert-butylbenzene in a sealed tube, cool to -78°C, add pentane solution of tert-butyllithium (1M, 2.5 mL), and then raise the temperature to 30 °C reaction for 1 hour. Cool to -78°C again, add boron tribromide (3 mmol) slowly, and then raise the temperature to 30°C and continue stirring for 1 hour. After cooling to 0°C, diisopropylethylamine (5 mmol) was added, and then the temperature was raised to 160°C and the reaction was carried out for 12 hours.
  • Example D-1 The synthesis methods of the following synthetic examples are similar to Example D-1, except that the carbazole in the first step is replaced by the corresponding carbazole derivative and I-1-3 is replaced by the aromatic fragment corresponding to the example. Keto raw materials are enough.
  • Target compound D1-2 (HPLC analysis purity 99.50%), yellow solid.
  • Target compound D1-3 (HPLC analysis purity 99.10%), yellow solid.
  • Target compound D1-10 (HPLC analysis purity 99.73%), yellow solid.
  • Target compound D1-23 (HPLC analysis purity 99.68%), yellow solid.
  • Target compound D1-29 (HPLC analysis purity 99.65%), yellow solid.
  • Target compound D1-41 (HPLC analysis purity 99.72%), yellow solid.
  • Target compound D1-50 (HPLC analysis purity 99.88%), yellow solid.
  • Target compound D1-53 (HPLC analysis purity 99.90%), yellow solid.
  • Target compound D1-54 (HPLC analysis purity 99.66%), yellow solid.
  • Target compound D1-59 (HPLC analysis purity 99.80%), yellow solid.
  • Target compound D1-60 (HPLC analysis purity 99.34%), yellow solid.
  • Target compound D1-61 (HPLC analysis purity 99.54%), yellow solid.
  • Target compound D1-65 (HPLC analysis purity 99.18%), yellow solid.
  • Target compound D1-75 (HPLC analysis purity 99.78%), yellow solid.
  • Target compound D1-77 (HPLC analysis purity 99.41%), yellow solid.
  • Target compound D1-78 (HPLC analysis purity 99.62%), yellow solid.
  • Target compound D1-85 (HPLC analysis purity 99.86%), yellow solid.
  • Target compound D1-86 (HPLC analysis purity 99.40%), yellow solid.
  • Target compound D1-167 (HPLC analysis purity 99.16%), yellow solid.
  • Target compound D1-170 (HPLC analysis purity 99.25%), yellow solid.
  • Target compound D1-181 (HPLC analysis purity 99.59%), yellow solid.
  • Target compound D1-183 (HPLC analysis purity 99.45%), yellow solid.
  • Target compound D1-184 (HPLC analysis purity 99.17%), yellow solid.
  • Target compound D1-189 (HPLC analysis purity 99.75%), yellow solid.
  • Target compound D1-194 (HPLC analysis purity 99.86%), yellow solid.
  • Target compound D1-197 (HPLC analysis purity 99.16%), yellow solid.
  • Target compound D1-201 (HPLC analysis purity 99.29%), yellow solid.
  • Target compound D1-203 (HPLC analysis purity 99.52%), yellow solid.
  • Target compound D1-205 (HPLC analysis purity 99.04%), yellow solid.
  • Target compound D1-207 (HPLC analysis purity 99.14%), yellow solid.
  • Target compound D1-209 (HPLC analysis purity 99.23%), yellow solid.
  • Target compound D1-210 (HPLC analysis purity 99.11%), yellow solid.
  • Target compound D1-217 (HPLC analysis purity 99.56%), yellow solid.
  • Target compound D1-218 (HPLC analysis purity 99.33%), yellow solid.
  • Target compound D1-221 (HPLC analysis purity 99.40%), yellow solid.
  • Target compound D1-224 (HPLC analysis purity 99.77%), yellow solid.
  • Target compound D1-225 (HPLC analysis purity 99.81%), yellow solid.
  • Target compound D1-230 (HPLC analysis purity 99.00%), yellow solid.
  • Target compound D1-239 (HPLC analysis purity 99.33%), yellow solid.
  • Target compound D1-241 (HPLC analysis purity 99.35%), yellow solid.
  • Target compound D1-242 (HPLC analysis purity 99.68%), yellow solid.
  • Target compound D1-243 (HPLC analysis purity 99.68%), yellow solid.
  • Target compound D1-246 (HPLC analysis purity 99.49%), yellow solid.
  • Target compound D1-247 (HPLC analysis purity 99.08%), yellow solid.
  • Target compound D1-249 (HPLC analysis purity 99.12%), yellow solid.
  • Target compound D1-257 (HPLC analysis purity 99.60%), yellow solid.
  • Target compound D1-263 (HPLC analysis purity 99.21%), yellow solid.
  • Target compound D1-265 (HPLC analysis purity 99.06%), yellow solid.
  • Target compound D1-269 (HPLC analysis purity 99.13%), yellow solid.
  • Target compound D1-273 (HPLC analysis purity 99.83%), yellow solid.
  • Target compound D1-275 (HPLC analysis purity 99.34%), yellow solid.
  • Target compound D1-281 (HPLC analysis purity 99.06%), yellow solid.
  • Target compound D1-282 (HPLC analysis purity 99.50%), yellow solid.
  • Target compound D1-285 (HPLC analysis purity 99.38%), yellow solid.
  • Target compound D1-289 (HPLC analysis purity 99.30%), yellow solid.
  • Target compound D1-291 (HPLC analysis purity 99.03%), yellow solid.
  • Target compound D1-293 (HPLC analysis purity 99.72%), yellow solid.
  • Target compound D1-303 (HPLC analysis purity 99.61%), yellow solid.
  • Target compound D1-304 (HPLC analysis purity 99.09%), yellow solid.
  • Target compound D1-305 (HPLC analysis purity 99.63%), yellow solid.
  • Target compound D1-308 (HPLC analysis purity 99.59%), yellow solid.
  • Target compound D1-313 (HPLC analysis purity 99.22%), yellow solid.
  • Target compound D1-315 (HPLC analysis purity 99.90%), yellow solid.
  • Target compound D1-316 (HPLC analysis purity 99.73%), yellow solid.
  • Target compound D1-317 (HPLC analysis purity 99.50%), yellow solid.
  • Target compound D1-318 (HPLC analysis purity 99.71%), yellow solid.
  • Target compound D1-320 (HPLC analysis purity 99.50%), yellow solid.
  • Target compound D1-324 (HPLC analysis purity 99.34%), yellow solid.
  • Target compound D1-326 (HPLC analysis purity 99.12%), yellow solid.
  • Target compound D1-327 (HPLC analysis purity 99.50%), yellow solid.
  • Target compound D1-331 (HPLC analysis purity 99.48%), yellow solid.
  • Target compound D1-334 (HPLC analysis purity 99.14%), yellow solid.
  • Target compound D1-341 (HPLC analysis purity 99.59%), yellow solid.
  • Target compound D1-365 (HPLC analysis purity 99.79%), yellow solid.
  • Target compound D1-374 (HPLC analysis purity 99.72%), yellow solid.
  • Target compound D1-377 (HPLC analysis purity 99.82%), yellow solid.
  • Target compound D1-378 (HPLC analysis purity 99.64%), yellow solid.
  • Target compound D1-385 (HPLC analysis purity 99.68%), yellow solid.
  • Target compound D1-404 (HPLC analysis purity 99.61%), yellow solid.
  • Target compound D1-405 (HPLC analysis purity 99.67%), yellow solid.
  • Target compound D1-408 (HPLC analysis purity 99.32%), yellow solid.
  • Target compound D1-409 (HPLC analysis purity 99.52%), yellow solid.
  • Target compound D1-416 (HPLC analysis purity 99.66%), yellow solid.
  • Target compound D1-427 (HPLC analysis purity 99.16%), yellow solid.
  • Target compound D1-433 (HPLC analysis purity 99.68%), yellow solid.
  • Target compound D1-435 (HPLC analysis purity 99.01%), yellow solid.
  • Target compound D1-436 (HPLC analysis purity 99.76%), yellow solid.
  • Target compound D1-439 (HPLC analysis purity 99.51%), yellow solid.
  • Target compound D1-444 (HPLC analysis purity 99.11%), yellow solid.
  • Target compound D1-449 (HPLC analysis purity 99.79%), yellow solid.
  • Target compound D1-451 (HPLC analysis purity 99.29%), yellow solid.
  • Target compound D1-456 (HPLC analysis purity 99.52%), yellow solid.
  • Target compound D1-461 (HPLC analysis purity 99.06%), yellow solid.
  • Target compound D1-462 (HPLC analysis purity 99.73%), yellow solid.
  • Target compound D1-465 (HPLC analysis purity 99.36%), yellow solid.
  • Target compound D1-472 (HPLC analysis purity 99.76%), yellow solid.
  • Target compound D1-487 (HPLC analysis purity 99.80%), yellow solid.
  • Target compound D1-503 (HPLC analysis purity 99.49%), yellow solid.
  • Target compound D1-512 (HPLC analysis purity 99.03%), yellow solid.
  • Target compound D1-515 (HPLC analysis purity 99.27%), yellow solid.
  • Target compound D1-520 (HPLC analysis purity 99.21%), yellow solid.
  • Target compound D1-523 (HPLC analysis purity 99.01%), yellow solid.
  • Target compound D1-537 (HPLC analysis purity 99.55%), yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 943.3635; elemental analysis results: theoretical values: C, 82.688; H, 5.343; B, 1.151; N, 4.449; S, 3.401; Si, 2.974 (%); experimental values: C, 82.700; H, 5.378; B, 1.111; N, 4.412; S, 3.352; Si, 3.010 (%).
  • Target compound D1-539 (HPLC analysis purity 99.61%), yellow solid.
  • Target compound D1-548 (HPLC analysis purity 99.23%), yellow solid.
  • Target compound D1-556 (HPLC analysis purity 99.66%), yellow solid.
  • Target compound D1-563 (HPLC analysis purity 99.24%), yellow solid.
  • Target compound D1-568 (HPLC analysis purity 99.18%), yellow solid.
  • Target compound D1-569 (HPLC analysis purity 99.44%), yellow solid.
  • Target compound D1-572 (HPLC analysis purity 99.52%), yellow solid.
  • Target compound D1-574 (HPLC analysis purity 99.27%), yellow solid.
  • Target compound D1-577 (HPLC analysis purity 99.47%), yellow solid.
  • Target compound D1-603 (HPLC analysis purity 99.54%), yellow solid.
  • Target compound D1-614 (HPLC analysis purity 99.71%), yellow solid.
  • Target compound D1-625 (HPLC analysis purity 99.59%), yellow solid.
  • Target compound D1-630 (HPLC analysis purity 99.30%), yellow solid.
  • Target compound D1-661 (HPLC analysis purity 99.41%), yellow solid.
  • Target compound D1-671 (HPLC analysis purity 99.62%), yellow solid.
  • Target compound D1-682 (HPLC analysis purity 99.77%), yellow solid.
  • Target compound D1-685 (HPLC analysis purity 99.13%), yellow solid.
  • Target compound D1-715 (HPLC analysis purity 99.39%), yellow solid.
  • Target compound D1-722 (HPLC analysis purity 99.34%), yellow solid.
  • Target compound D1-740 (HPLC analysis purity 99.80%), yellow solid.
  • Target compound D1-771 (HPLC analysis purity 99.45%), yellow solid.
  • Target compound D1-782 (HPLC analysis purity 99.56%), yellow solid.
  • Target compound D1-783 (HPLC analysis purity 99.10%), yellow solid.
  • Target compound D1-793 (HPLC analysis purity 99.74%), yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 816.2435; elemental analysis results: theoretical values: C, 85.288; H, 4.065; B, 1.323; N, 3.428; O, 1.961; S, 3.934 (%); experimental values: C, 85.290; H, 4.010; B, 1.317; N, 3.369; O, 2.018; S, 4.010 (%).
  • Target compound D1-796 (HPLC analysis purity 99.78%), yellow solid.
  • Target compound D1-827 (HPLC analysis purity 99.25%), yellow solid.
  • Target compound D1-838 (HPLC analysis purity 99.44%), yellow solid.
  • Target compound D1-849 (HPLC analysis purity 99.77%), yellow solid.
  • Target compound D1-884 (HPLC analysis purity 99.37%), yellow solid.
  • Target compound D1-895 (HPLC analysis purity 99.31%), yellow solid.
  • Target compound D1-904 (HPLC analysis purity 99.51%), yellow solid.
  • Target compound D1-909 (HPLC analysis purity 99.88%), yellow solid.
  • Dissolve compound I-93-4 (1 mmol) in 20 mL of tert-butylbenzene in a sealed tube. After cooling to -78°C, add pentane solution of tert-butyllithium (1M, 2.5 mL), and then raise the temperature to 30 °C reaction for 1 hour. Cool to -78°C again, add boron tribromide (3 mmol) slowly, and then raise the temperature to 30°C and continue stirring for 1 hour. After cooling to 0°C, diisopropylethylamine (5 mmol) was added, and then the temperature was raised to 160°C and the reaction was carried out for 12 hours.
  • Example D-2 The synthesis methods of the following synthetic examples are similar to Example D-2, except that the carbazole in the first step is replaced with the corresponding carbazole derivative and the secondary amine in the second step is replaced with the corresponding secondary amine and fluorene.
  • the ketone can be replaced by the aromatic ketone raw material corresponding to the fragment in the example.
  • Target compound D1-95 (HPLC analysis purity 99.10%), yellow solid.
  • Target compound D1-97 (HPLC analysis purity 99.25%), yellow solid.
  • Target compound D1-98 (HPLC analysis purity 99.65%), yellow solid.
  • Target compound D1-105 (HPLC analysis purity 99.57%), yellow solid.
  • Target compound D1-107 (HPLC analysis purity 99.68%), yellow solid.
  • Target compound D1-109 (HPLC analysis purity 99.82%), yellow solid.
  • Target compound D1-110 (HPLC analysis purity 99.14%), yellow solid.
  • Target compound D1-114 (HPLC analysis purity 99.85%), yellow solid.
  • Target compound D1-125 (HPLC analysis purity 99.13%), yellow solid.
  • Target compound D1-127 (HPLC analysis purity 99.90%), yellow solid.
  • Target compound D1-130 (HPLC analysis purity 99.05%), yellow solid.
  • Target compound D1-140 (HPLC analysis purity 99.25%), yellow solid.
  • Target compound D1-583 (HPLC analysis purity 99.66%), yellow solid.
  • Target compound D1-586 (HPLC analysis purity 99.09%), yellow solid.
  • Target compound D1-589 (HPLC analysis purity 99.26%), yellow solid.
  • Target compound D1-599 (HPLC analysis purity 99.35%), yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 899.3557; elemental analysis results: theoretical values: C, 89.418; H, 4.701; B, 1.195; N, 4.671 (%); experimental values: C, 89.420; H, 4.617; B, 1.144; N, 4.619 (%).
  • Target compound D1-636 (HPLC analysis purity 99.88%), yellow solid.
  • Target compound D1-643 (HPLC analysis purity 99.44%), yellow solid.
  • Target compound D1-654 (HPLC analysis purity 99.79%), yellow solid.
  • Target compound D1-690 (HPLC analysis purity 99.33%), yellow solid.
  • Target compound D1-691 (HPLC analysis purity 99.50%), yellow solid.
  • Target compound D1-695 (HPLC analysis purity 99.27%), yellow solid.
  • Target compound D1-704 (HPLC analysis purity 99.11%), yellow solid.
  • Target compound D1-714 (HPLC analysis purity 99.70%), yellow solid.
  • Target compound D1-745 (HPLC analysis purity 99.31%), yellow solid.
  • Target compound D1-748 (HPLC analysis purity 99.45%), yellow solid.
  • Target compound D1-752 (HPLC analysis purity 99.65%), yellow solid.
  • Target compound D1-763 (HPLC analysis purity 99.26%), yellow solid.
  • Target compound D1-766 (HPLC analysis purity 99.54%), yellow solid.
  • Target compound D1-800 (HPLC analysis purity 99.39%), yellow solid.
  • Target compound D1-804 (HPLC analysis purity 99.67%), yellow solid.
  • Target compound D1-808 (HPLC analysis purity 99.10%), yellow solid.
  • Target compound D1-810 (HPLC analysis purity 99.53%), yellow solid.
  • Target compound D1-823 (HPLC analysis purity 99.18%), yellow solid.
  • Target compound D1-861 (HPLC analysis purity 99.72%), yellow solid.
  • Target compound D1-864 (HPLC analysis purity 99.72%), yellow solid.
  • Target compound D1-868 (HPLC analysis purity 99.58%), yellow solid.
  • Target compound D1-875 (HPLC analysis purity 99.54%), yellow solid.
  • Target compound D1-912 (HPLC analysis purity 99.51%), yellow solid.
  • Target compound D1-916 (HPLC analysis purity 99.20%), yellow solid.
  • Dissolve compound I-145-4 (1 mmol) in 20 mL of tert-butylbenzene in a sealed tube. After cooling to -78°C, add pentane solution of tert-butyllithium (1M, 2.5 mL), and then raise the temperature to 30 °C reaction for 1 hour. Cool to -78°C again, add boron tribromide (3 mmol) slowly, and then raise the temperature to 30°C and continue stirring for 1 hour. After cooling to 0°C, diisopropylethylamine (5 mmol) was added, and then the temperature was raised to 160°C and the reaction was carried out for 12 hours.
  • Example D-3 The synthesis methods of the following synthetic examples are similar to Example D-3, except that the carbazole in the first step is replaced by the corresponding carbazole derivative and the secondary amine in the second step is replaced by the corresponding secondary amine and fluorene.
  • the ketone can be replaced by the aromatic ketone raw material corresponding to the fragment in the example.
  • Target compound D1-147 (HPLC analysis purity 99.21%), yellow solid.
  • Target compound D1-151 (HPLC analysis purity 99.05%), yellow solid.
  • Target compound D1-154 (HPLC analysis purity 99.79%), yellow solid.
  • Target compound D1-157 (HPLC analysis purity 99.87%), yellow solid.
  • Target compound D1-159 (HPLC analysis purity 99.52%), yellow solid.
  • Target compound D1-160 (HPLC analysis purity 99.42%), yellow solid.
  • Target compound D1-162 (HPLC analysis purity 99.86%), yellow solid.
  • Target compound D1-164 (HPLC analysis purity 99.57%), yellow solid.
  • Example D-4 The synthesis methods of the following synthetic examples are similar to Example D-4, except that the secondary amine in the first step is replaced with the corresponding secondary amine and the fluorenone is replaced with the aromatic ketone raw material of the corresponding fragment in the example.
  • Target compound D1-119 (HPLC analysis purity 99.01%), yellow solid.
  • Target compound D1-120 (HPLC analysis purity 99.58%), yellow solid.
  • Target compound D1-121 (HPLC analysis purity 99.41%), yellow solid.
  • Target compound D1-124 (HPLC analysis purity 99.83%), yellow solid.
  • Target compound D1-580 (HPLC analysis purity 99.10%), yellow solid.
  • Target compound D1-581 (HPLC analysis purity 99.49%), yellow solid.
  • Target compound D1-920 (HPLC analysis purity 99.69%), yellow solid.
  • Target compound D1-925 (HPLC analysis purity 99.63%), yellow solid.
  • Target compound D1-928 (HPLC analysis purity 99.65%), yellow solid.
  • Target compound D1-931 (HPLC analysis purity 99.52%), yellow solid.
  • Target compound D1-936 (HPLC analysis purity 99.68%), yellow solid.
  • Target compound D1-938 (HPLC analysis purity 99.36%), yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 800.3468; elemental analysis results: theoretical value: C, 85.487; H, 5.662; B, 1.348; N, 3.499; S, 3.995 (%); experimental value: C, 85.480; H, 5.631; B, 1.336; N, 3.432; S, 4.099 (%).
  • Target compound D1-941 (HPLC analysis purity 99.05%), yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 855.3535; elemental analysis results: theoretical values: C, 82.796; H, 5.421; B, 1.257; N, 4.905; O, 1.869; S, 3.745 (%); experimental values: C, 82.810; H, 5.470; B, 1.216; N, 4.947; O, 1.939; S, 3.700 (%).
  • Target compound D1-944 (HPLC analysis purity 99.29%), yellow solid.
  • Target compound D1-948 (HPLC analysis purity 99.43%), yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 879.2532; elemental analysis results: theoretical values: C, 72.357; H, 3.212; B, 1.231; F, 12.955; N, 4.779; O, 1.823; S, 3.643 (%) ; Experimental values: C, 72.360; H, 3.159; B, 1.258; F, 12.898; N, 4.761; O, 1.886; S, 3.665 (%).
  • Target compound D1-951 (HPLC analysis purity 99.78%), yellow solid.
  • I-166-2 can be obtained by a method similar to that in Embodiment 1. Dissolve I-166-2 (5mmol), 2-bromo-3,6-dimethylcarbazole (6mmol), and cesium carbonate (10mmol) in DMF in a flask, raise the temperature to 150°C, and react for 12 hours. After the reaction was completed and cooled, pour into cold water, filter, wash twice with 100 mL of water, once with 10 mL of methanol, and dry to obtain the target compound I-166-3 as a light yellow solid.
  • Dissolve I-166-3 (3mmol) in 20ml of ultra-dry THF in a double-necked flask, cool to -78°C, add n-butyllithium pentane solution (2.5M, 1.2ml), and react at this temperature 2 hours.
  • Dissolve I-166-1 (5 mmol) in 10 ml of ultra-dry THF solution and cool to -78°C. Drop the solution of I-166-3 into the solution of I-166-1, slowly warm to room temperature, and stir overnight. The solvent was removed under vacuum and passed through a silica gel column (petroleum ether: dichloromethane 10:1) to obtain I-166-4 as a light yellow solid.
  • Target compound D1-214 (HPLC analysis purity 99.49%), yellow solid.
  • Target compound D1-250 (HPLC analysis purity 99.69%), yellow solid.
  • Target compound D1-314 (HPLC analysis purity 99.63%), yellow solid.
  • Target compound D1-367 (HPLC analysis purity 99.65%), yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 914.3379; elemental analysis results: theoretical values: C, 73.522; H, 4.961; B, 1.178; F, 12.460; N, 3.064; O, 1.749 (%); experimental values: C, 73.530; H, 4.955; B, 1.255; F, 12.474; N, 3.126; O, 1.838 (%).
  • Target compound D1-407 (HPLC analysis purity 99.52%), yellow solid.
  • Target compound D1-455 (HPLC analysis purity 99.68%), yellow solid.
  • Target compound D1-469 (HPLC analysis purity 99.36%), yellow solid.
  • Target compound D1-549 (HPLC analysis purity 99.05%), yellow solid.
  • Target compound D1-615 (HPLC analysis purity 99.29%), yellow solid.
  • Target compound D1-639 (HPLC analysis purity 99.43%), yellow solid.
  • Target compound D1-667 (HPLC analysis purity 99.78%), yellow solid.
  • Target compound D1-717 (HPLC analysis purity 99.36%), yellow solid.
  • Target compound D1-767 (HPLC analysis purity 99.05%), yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 961.3168; elemental analysis results: theoretical values: C, 83.646; H, 4.608; B, 1.123; N, 4.365; S, 3.332; Si, 2.921 (%); experimental values: C, 83.640; H, 4.646; B, 1.187; N, 4.401; S, 3.373; Si, 2.983 (%).
  • Target compound D1-807 (HPLC analysis purity 99.29%), yellow solid.
  • Target compound D1-855 (HPLC analysis purity 99.43%), yellow solid.
  • Target compound D1-885 (HPLC analysis purity 99.78%), yellow solid.
  • quantum efficiency is the ratio of the average number of photoelectrons produced per unit time at a specific wavelength to the number of incident photons. It is measured by dissolving the compound in toluene at a concentration of 10 -5 mol/L. The sample is measured after being deoxygenated with nitrogen.
  • the instrument is Edinburg FLS1000 (UK); the half-peak width is the peak width at half the peak height of the fluorescence spectrum at room temperature, that is, a straight line parallel to the bottom of the peak is drawn through the midpoint of the peak height, and this straight line intersects both sides of the peak.
  • the organic electroluminescent device includes a first electrode, a second electrode, and an organic material layer located between the two electrodes.
  • the organic material can be divided into multiple regions.
  • the organic material layer can include a hole transport region, a light-emitting layer, and an electron transport region.
  • the material of the anode can be oxide transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO2), zinc oxide (ZnO), and any combination thereof.
  • the material of the cathode can be magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag ) and other metals or alloys and any combination between them.
  • the hole transport region is located between the anode and the light-emitting layer.
  • the hole transport region may be a hole transport layer (HTL) with a single-layer structure, including a single-layer hole transport layer containing only one compound and a single-layer hole transport layer containing multiple compounds.
  • the hole transport region may also be a multi-layer structure including at least one layer of a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the material of the hole transport region can be selected from, but is not limited to, phthalocyanine derivatives such as CuPc, conductive polymers or conductive dopant-containing polymers such as polyphenylene vinylene, polyaniline/dodecyl benzene sulfonic acid (Pani/ DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA), polyaniline/poly(4 -Styrene sulfonate) (Pani/PSS), aromatic amine derivatives, etc.
  • phthalocyanine derivatives such as CuPc
  • conductive polymers or conductive dopant-containing polymers such as polyphenylene vinylene, polyaniline/dodecyl benzene sulfonic acid (Pani/ DBSA), poly(3,4-ethylenedioxythiophen
  • the luminescent layer includes luminescent dyes (ie, dopants) that can emit different wavelength spectra, and may also include a sensitizer (sensitizer) and a host material (Host) at the same time.
  • the light-emitting layer may be a single-color light-emitting layer that emits a single color such as red, green, or blue.
  • a plurality of monochromatic light-emitting layers of different colors can be arranged in a plane according to the pixel pattern, or can be stacked together to form a colored light-emitting layer. When light-emitting layers of different colors are stacked together, they can be spaced apart from each other or connected to each other.
  • the luminescent layer may also be a single color luminescent layer capable of emitting different colors such as red, green, and blue at the same time.
  • the electron transport region may be an electron transport layer (ETL) with a single-layer structure, including a single-layer electron transport layer containing only one compound and a single-layer electron transport layer containing multiple compounds.
  • the electron transport region may also be a multilayer structure including at least one of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the preparation method of the organic electroluminescent device of the present invention includes the following steps:
  • Ultrasonic treat the glass plate coated with the anode material in a commercial cleaning agent rinse it in deionized water, degrease it ultrasonically in an acetone:ethanol mixed solvent, bake it in a clean environment until the water is completely removed, and use UV Light and ozone cleaning and bombarding the surface with low-energy cation beams;
  • the organic light-emitting layer material includes a host material, a sensitizer and a dye.
  • the multi-source co-evaporation method is used to adjust the evaporation rate and sensitivity of the host material.
  • the evaporation rate of the chemical agent material and the evaporation rate of the dye make the dye reach the preset doping ratio;
  • Vacuum evaporate the electron transport material of the device on the organic light-emitting layer to form an electron transport layer, and its evaporation rate is 0.1-0.5nm/s;
  • An embodiment of the present invention also provides a display device, which includes the organic electroluminescent device provided above.
  • the display device may specifically be a display device such as an OLED display, as well as any product or component with a display function such as a television, a digital camera, a mobile phone, a tablet computer, etc. including the display device.
  • This display device has the same advantages as the above-mentioned organic electroluminescent device over the prior art, which will not be described again here.
  • organic electroluminescent device of the present invention will be further introduced below through specific examples.
  • Embodiments A-1 to A-35, B-1 to B-45 and C-1 to C-40 of the present invention are organic electroluminescent devices prepared using the compounds of the present invention.
  • Comparative Examples 1-4 are organic electroluminescent devices prepared using the prior art.
  • Compounds C1, C2, C3, and C4 are parallel comparison devices prepared according to the same preparation method as the compounds of the present invention. The structure schemes of all prepared devices are as follows:
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-1 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-4 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-8 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-10 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-13 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This implementation An example is 30nm; the material of the electron transport layer is ET, and the thickness is generally 5-300nm, in this embodiment it is 30nm; the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-17 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-21 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-24 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-44 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-55 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This implementation An example is 30nm; the material of the electron transport layer is ET, and the thickness is generally 5-300nm, in this embodiment it is 30nm; the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-65 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-70 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-80 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-81 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-82 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This implementation An example is 30nm; the material of the electron transport layer is ET, and the thickness is generally 5-300nm, in this embodiment it is 30nm; the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-85 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-87 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-94 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-155 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-179 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • the thickness of the example is 30nm; the material of the electron transport layer is ET, and the thickness is generally 5-300nm, in this example it is 30nm; the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-180 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-181 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-182 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-183 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-184 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • the thickness of the example is 30nm; the material of the electron transport layer is ET, and the thickness is generally 5-300nm, in this example it is 30nm; the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-185 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A1-186 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A2-4 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A2-57 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A3-4 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This implementation An example is 30nm; the material of the electron transport layer is ET, and the thickness is generally 5-300nm, in this embodiment it is 30nm; the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A4-4 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A5-4 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A6-4 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A7-4 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, A8-4 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This implementation An example is 30nm; the material of the electron transport layer is ET, and the thickness is generally 5-300nm, in this embodiment it is 30nm; the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, B1-1 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, B1-4 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, B1-8 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, B1-10 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, B1-13 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, B1-17 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide bandgap, Sensitizer is the sensitizer and the doping concentration is 20wt%, B1-21 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, B1-24 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).
  • the structure of the organic electroluminescent device prepared in this example is as follows:
  • the anode material is ITO;
  • the hole injection layer material is HI, generally the total thickness is 5-30nm, this embodiment is 5nm;
  • the hole transport layer material is HT, the total thickness is generally 5-500nm, this embodiment is 30nm;
  • Host is the host material of the organic light-emitting layer with a wide band gap, Sensitizer is the sensitizer and the doping concentration is 20wt%, B1-44 is the dye and the doping concentration is 2wt%, the thickness of the organic light-emitting layer is generally 1-200nm.
  • This embodiment is 30nm;
  • the material of the electron transport layer is ET, and the thickness is generally 5-300nm, and this embodiment is 30nm;
  • the electron injection layer and cathode materials are LiF (0.5nm) and metallic aluminum (150nm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

提供一种有机化合物,该有机化合物可用于有机电致发光器件中。所述有机化合物具有高发光效率、窄光谱发射与高稳定性的特点,采用所述有机化合物的有机电致发光器件的外量子效率更高,器件寿命更长。

Description

一种有机化合物及其应用 技术领域
本发明涉及一种有机化合物,尤其涉及一种可用于有机电致发光器件的化合物,同时涉及采用该有机化合物的有机电致发光器件中。
背景技术
有机电致发光器件(OLED:Organic Light Emitting Diodes)是一类具有类三明治结构的器件,包括正负电极膜层及夹在电极膜层之间的有机功能材料层。对OLED器件的电极施加电压,正电荷从正极注入,负电荷从负极注入,在电场作用下正负电荷在有机层中迁移相遇复合发光。由于OLED器件具有亮度高、响应快、视角宽、工艺简单、可柔性化等优点,在新型显示技术领域和新型照明技术领域备受关注。目前,该技术已被广泛应用于新型照明灯具、智能手机及平板电脑等产品的显示面板,进一步还将向电视等大尺寸显示产品应用领域扩展,是一种发展快、技术要求高的新型显示技术。
随着OLED在照明和显示两大领域的不断推进,人们对于其核心材料的研究也更加关注,因为一个效率好、寿命长的OLED器件通常是器件结构以及各种有机材料的优化搭配的结果。为了制备驱动电压更低、发光效率更好、器件使用寿命更长的OLED发光器件,实现OLED器件的性能不断提升,不仅需要对OLED器件结构和制作工艺进行创新,更需要对OLED器件中的光电功能材料不断研究和创新,以制备出具有更高性能的功能材料。基于此,OLED材料界一直致力于开发新的有机电致发光材料以实现器件低启动电压、高发光效率和更优的使用寿命。
在OLED发光材料的选择上,单线态发光的荧光材料寿命好,价格低廉,但是效率低;三线态发光的磷光材料效率高,但是价格昂贵,而且蓝光材料的寿命问题一直没有解决。日本九州大学的Adachi提出了一类新的有机发光材料,即热活化延迟荧光(TADF)材料。该类材料利用给受体的分离来获得较小的单线态-三线态能隙(ΔEST)(<0.3eV),从而使三线态激子可以通过反向系间窜越(RISC)转变成单线态激子发光,因此器件的内量子效率可以达到100%。
现有技术中有采用“多重共振诱导的热活化延迟荧光(MR-TADF)”策略进行新结构化合物设计,如专利申请CN107851724、CN108431984、CN110407858等设计了由硼原子与氮原子或氧原子将多个芳香族环连接形成的多环芳香族化合物,即构建特殊的含硼(B)原子、氮(N)原子的刚性分子体系。相比于给-受体型的TADF化合物,MR-TADF分子兼具高辐射跃迁速率以及较窄的半峰宽,但目前BN-型MR分子光色大部分处于天蓝-绿光区域,半峰宽大多在30nm左右,无法满足新一代超高清视频标准BT.2020的要求。
发明内容
在一方面,本发明提供了一种具有如式(1-1)和(1-2)所示结构的有机化合物:
其中:
环Ar1、环Ar2、环Ar3、环Ar4各自独立地选自C6~C60的芳环或者C3~C60的杂芳环;
Z选自N或C;
W1、W2、W3分别独立地选自C-C单键、O、S、Se、CR7R8、SiR9R10或NR11;m1、m2、m3分别独立地选自0或1;
X选自BAr5(R5)n5、C-C单键、O、S、Se、CR12R13、SiR14R15、NR16或PR17
V选自C、CH或者CR6
Y选自C-C单键、O、S、Se、CR12R13、SiR14R15或NR16
且当y1为0时,V选自CH或者CR6,X选自BAr5(R5)n5、C-C单键、O、S、Se、CR12R13、SiR14R15、NR16或PR17;当y1为1时,V为C,X为BAr5(R5)n5
环Ar5选自C6~C60的芳环或者C3~C60的杂芳环;
R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自取代或未取代的下述基团中的一种:C1~C36链状烷基、C3~C36环烷基、C6~C30的芳基氨基、C6~C60的芳基、C6~C60的芳氧基、C5~C60的杂芳基;
且R7与R8之间不连接或者连接成环,R9与R10之间不连接或者连接成环;
且R12与R13之间不连接或者通过C-C单键、O、S、Se、CR7R8、SiR9R10或NR11中的任一连接成环,R14与R15之间不连接或者通过C-C单键、O、S、Se、CR7R8、SiR9R10或NR11中的任一连接成环;
R1、R2、R3、R4、R5和R6各自独立地选自氢、氘、卤素、氰基、取代或未取代的C1~C30的链状烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C30的烷氧基、取代或未取代的C2~C30脂肪链烃胺基、取代或未取代的C4~C30环状脂肪链烃胺基、取代或未取代的C6~C30芳基胺基、取代或未取代的C3~C30杂芳基胺基、取代或未取代的C6~C30芳氧基、取代或未取代的C6-C60的芳硼基、取代或未取代的C6~C60芳基、取代或未取代的C3~C60杂芳基中的一种;
R1、R2、R3、R4各自独立地与所连接的环结构通过单键连接,或者R1、R2、R3、R4各自独立地与所连接的环结构通过O、S、Se、CR1R2或NR5稠合形成环结构连接;
n1、n2、n3、n4和n5各自独立地选自0-10的整数;
当n1、n2、n3、n4各自独立地为大于1的整数时,相应的多个R1之间、多个R2之间、多个R3之间、多个R4之间各自相同或不同,且多个R1之间不连接或连接成环,多个R2之间不连接或连接成环,多个R3之间不连接或连接成环,多个R4之间不连接或连接成环;
当上述的R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17上各自独立存在取代基时,所述取代基各自独立地选自卤素、氰基、C1~C20的链状烷基、C3~C20的环烷基、C1~C10的烷氧基、C6~C30芳基氨基、C3~C30杂芳基氨基、C6~C30芳氧基、C6~C30的芳基、取代或未取代的C6-C60的芳硼基、C3~C30的杂芳基中的一种或者两种的组合。
进一步的,所述环Ar1、环Ar2、环Ar3各自独立地为式(a)或式(b)所示的结构,虚线的双键代表基团的稠合位置:
式(a)中,Z1、Z2、Z3、Z4各自独立地选自C、CH或N;
式(b)中,Z5选自O、S、NR1或CR2R3,其中R1、R2、R3各自独立地选自取代或未取代的C1-C20链状烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C60芳基、取代或未取代的C3-C60杂芳基中的一种,R1、R2、R3上各自独立存在取代基时,所述取代基各自独立地选自卤素、氰基、C1~C10的链状烷基、C3~C10的环烷基、C1~C10的烷氧基、C6~C30芳基氨基、C3~C30杂芳基氨基、C6~C30芳氧基、C6~C30的芳基、C3~C30的杂芳基中的一种;
环H选自C6-C30芳环、C3-C30杂芳环中的一种;优选地,H为苯环;Z选自S、NR1或CR2R3。
继续优选地,所述环Ar1、环Ar2、环Ar3中的一个为式(b)所示的结构,其它环结构各自独立地为式(a)所示的结构。
进一步的,所述r1、环Ar2、环Ar3各自独立地选自C6~C30的芳环或者C3~C30的杂芳环;优选地,环Ar1、环Ar2、环Ar3各自独立地选自苯环、萘环、蒽环、芴环、呋喃、苯并呋喃、二苯并呋喃、吲哚、苯并吲哚、咔唑、吲哚并咔唑、苯并噻吩、二苯并噻吩、噻吩中的任意一种;再优选地,所述环Ar1、环Ar2、环Ar3各自独立地选自苯环、萘环、蒽环、芴环、呋喃或噻吩中的一种。
进一步的,所述n1、n2、n3和n4各自独立地选自1-5的整数;
所述R1、R2、R3、R4、R5和R6各自独立地选自氘、卤素、氰基、C1~C12的链状烷基、取代或未取代的C6~C60芳基、取代或未取代的C3~C60杂芳基中的一种;
所述R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自取代或未取代的下述基团中的一种:C1~C10链状烷基、C3~C10环烷基、C6~C30的芳基氨基、C6~C30的芳基、C6~C30的芳氧基、C5~C30的杂芳基;优选地,所述R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自C1~C10的链状烷基、取代或未取代的苯环、萘环、蒽环中的任意一种。
优选地,本发明上述通式中,所述X为BAr5(R5)n5、O、S、Se、CR12R13、SiR14R15,所述Y为O、S、Se、CR12R13、SiR14R15;更优选地,所述X为BAr5(R5)n5、O、S、CR12R13、SiR14R15,所述Y为O、S、CR12R13、SiR14R15;最优选地,所述X为BAr5(R5)n5、S、CR12R13,所述Y为S、CR12R13
进一步的,本发明的有机化合物优选为下述结构式(2-1)、(2-2)或(2-3)中任一种所示的结构:
式(2-1)、(2-2)和(2-3)中,R1-R6、R7-R17、Ar1-Ar5、n1-n5、W1-W2、m1-m2、X、Y和Z的定义均各自与式(1-1)、(1-2)中的定义相同。
进一步优选地,所述环Ar1、环Ar2、环Ar3、环Ar4和环Ar5各自独立地选自C6~C60的芳环或者C3~C30的杂芳环;
再优选地,环Ar1、环Ar2、环Ar3、环Ar4和环Ar5各自独立地选自苯环、萘环、蒽环、芴环、呋喃、苯并呋喃、二苯并呋喃、吲哚、苯并吲哚、咔唑、吲哚并咔唑、苯并噻吩、二苯并噻吩、或噻吩中的任意一种;
更优选地,所述环Ar1、环Ar2、环Ar3、环Ar4和环Ar5各自独立地为苯环、萘环、二苯并呋喃、咔唑、或二苯并噻吩中的任意一种;
最优选地,所述环Ar1、环Ar2、环Ar3、环Ar4和环Ar5各自独立地为苯环。
进一步优选地,当所述X为BAr5(R5)n5、O、S、Se、CR12R13、SiR14R15时,所述Y为O、S、Se、CR12R13、SiR14R15;更优选地,所述X为BAr5(R5)n5、O、S、CR12R13、SiR14R15时,所述Y为O、S、CR12R13、SiR14R15;最优选地,所述X为BAr5(R5)n5、S、CR12R13时,所述Y为S、CR12R13
进一步优选地,所述X为BAr5(R5)n5、O、S、Se、CR12R13、SiR14R15;更优选地,所述X选自BAr5(R5)n5
进一步优选地,所述X选自BAr5(R5)n5、C-C单键、O、S、Se、CR12R13、SiR14R15或NR16;更优选地,所述X选自BAr5(R5)n5或CR12R13
优选地,所述W1、W3分别独立地选自C-C单键、S、CR7R8或NR11;m1和m3为1;m2为0。
更进一步的,本发明的有机化合物优选为式(2)~(26)中任一种所示的结构:


式(2)~(26)中,R1-R6、Ar1-Ar5、n1-n5、W1、W3、m1、m3和Z的定义均各自与式(1-1)和式(1-2)中的定义相同;R12与R13之间不连接或者通过C-C单键、O、S、Se、CR7R8、SiR9R10或NR11中的任一连接成环,R14与R15之间不连接或者通过C-C单键、O、S、Se、CR7R8、SiR9R10或NR11中的任一连接成环。
进一步的,上述的R1、R2、R3、R4、R5和R6各自独立地选自下述取代基团:氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、氰基、卤素、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉 基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5_嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基、二苯基硼基、二米基硼基、二五氟苯基硼基、二(2,4,6-三异丙基苯基)硼基中的一种,或选自以上两种基团的组合。
所述的R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自下述取代基团:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、氰基、卤素、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5-嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基中的一种,或选自以上两种基团的组合;
更进一步优选地,所述R1、R2、R3、R4、R5和R6分别独立地表示为氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、三氟甲基、五氟乙基、氰基、卤素、苯基、萘基、蒽基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、呋喃基、苯并呋喃基、噻吩基、苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、吡唑基、吲唑基、咪唑基、苯并咪唑基1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、1,3,5-三嗪基、二苯基硼基、二米基硼基、二五氟苯基硼基、二(2,4,6-三异丙基苯基)硼基中的一种,或选自以上两种基团的组合;
所述R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自下述取代基团:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、三氟甲基、五氟乙基、氰基、卤素、苯基、萘基、蒽基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、呋喃基、苯并呋喃基、噻吩基、苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、吡唑基、吲唑基、咪唑基、苯并咪唑基1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、1,3,5-三嗪基、二苯基硼基、二米基硼基、二五氟苯基硼基、二(2,4,6-三 异丙基苯基)硼基中的一种,或选自以上两种基团的组合;
最优选地,所述R1、R2、R3、R4、R5和R6分别独立地表示为氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、三氟甲基、五氟乙基、氰基、卤素、苯基、萘基、蒽基、芴基、螺二芴基、咔唑基、1,3,5-三嗪基、二苯基硼基、二米基硼基、二五氟苯基硼基、二(2,4,6-三异丙基苯基)硼基中的一种,或选自以上两种基团的组合;
所述R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自下述取代基团:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、氰基、苯基、萘基、蒽基、芴基、螺二芴基中的一种,或选自以上两种基团的组合。
需要说明的是,除非在下文中另有定义,本文中所用的所有技术术语和科学术语的含义意图与本领域技术人员通常所理解的相同。提及本文中使用的技术意图指在本领域中通常所理解的技术,包括那些对本领域技术人员显而易见的技术的变化或等效技术的替换。虽然相信以下术语对于本领域技术人员很好理解,但仍然阐述以下定义以更好地解释本发明。
在本说明书中,Ca~Cb的表达方式表示该基团具有的碳原子数为a~b,除非特殊说明,一般而言该碳原子数不包括取代基的碳原子数。当描述C1~C30时,其包括但不限于C1、C2、C3、C4、C3、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C22、C24、C26、C28等,其他的数值范围不做赘述。
术语“包括”、“包含”、“具有”、“含有”或“涉及”及其在本文中的其它变体形式为包含性的(inclusive)或开放式的,且不排除其它未列举的元素或方法步骤。
本发明中,对于化学元素的表述,若无特别说明,通常包含化学性质相同的同位素的概念,例如“氢”的表述,也包括化学性质相同的“氘”、“氚”的概念,碳(C)则包括12C、13C等,不再赘述。
本发明中的杂原子,通常指选自N、O、S、P、Si和Se,优选选自N、O、S。
如本文中所使用,术语“杂环基”和“杂环”是指具有至少一个环原子是选自N、O和S的杂原子且其余环原子是C的饱和(即,杂环烷基)或部分不饱和的(即在环内具有一个或多个双键和/或三键)环状基团。
如本文中所使用,术语“(亚)芳基”和“芳环”指具有共轭π电子系统的全碳单环或稠合环多环芳族基团。如本文中所使用,术语“(亚)杂芳基”和“杂芳环”指单环、双环或三环芳族环系。如本文中所使用,术语“芳烷基”优选表示芳基或杂芳基取代的烷基,其中所述芳基、杂芳基和烷基如本文中所定义。
如本文中所使用,术语“卤代”或“卤素”基团定义为包括F、Cl、Br或I。
术语“取代”指所指定的原子上的一个或多个(例如一个、两个、三个或四个)氢被从所指出的基团的选择代替,条件是未超过所指定的原子在当前情况下的正常原子价并且所述取代形成稳定的化合物。取代基和/或变量的组合仅仅当这种组合形成稳定的化合物时才是允许的。
如果取代基被描述为“独立地选自”一组,则各取代基独立于另一者被选择。因此,各取代基可与另一(其他)取代基相同或不同。
如本文中所使用,术语“一个或多个”意指在合理条件下的1个或超过1个,例如2个、3个、4个、5个或10个。
除非指明,否则如本文中所使用,取代基的连接点可来自取代基的任意适宜位置。
当取代基的键显示为穿过环中连接两个原子的键时,则这样的取代基可键连至该可取代的环中的任一成环原子。
术语“约”是指在所述数值的±10%范围内,优选±5%范围内,更优选±2%范围内。
在本说明书公开的结构式中,“—”划过的环结构的表达方式,表示连接位点于该环结构上任意能够成键的位置。
本发明中的上述的C6~C60芳环、C3~C60杂芳环,若无特别说明,是满足π共轭体系的芳香基团,均包括单环残基和稠环残基的情况。所谓单环残基是指分子中含有至少一个苯基,当分子中含有至少两个苯基时,苯基之间相互独立,通过单键进行连接,示例性地如苯基、二联苯基、三联苯基等;稠环残基是指分子中含有至少两个苯环,但苯环之间并不相互独立,而是共用环边彼此稠合起来,示例性地如萘基、蒽基、菲基等;单环杂芳基是指分子中含有至少一个杂芳基,当分子中含有一个杂芳基和其他基团(如芳基、杂芳基、烷基等)时,杂芳基和其他基团之间相互独立,通过单键进行连接,示例性地如吡啶、呋喃、噻吩等;稠环杂芳基是指由至少一个苯基和至少一个杂芳基稠合而成,或,由至少两种杂芳环稠合而成,示例性地如喹啉、异喹啉、苯并呋喃、二苯并呋喃、苯并噻吩、二苯并噻吩等。
在本说明书中,取代或未取代的C6~C60芳环优选为C6~C30芳环,更优选为由苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基所组成的群组中的芳香环。具体地,联苯基选自2-联苯基、3-联苯基和4-联苯基;三联苯基包括对-三联苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基;所述萘基包括1-萘基或2-萘基;蒽基选自由1-蒽基、2-蒽基和9-蒽基;所述芴基选自由1-芴基、2-芴基、3-芴基、4-芴基和9-芴基;所述芘基选自由1-芘基、2-芘基和4-芘基;并四苯基选自由1-并四苯基、2-并四苯基和9-并四苯基。作为本发明中的芳香环的优选例,可举出由苯基、联苯基、三联苯基、萘基、蒽基、菲基、茚基、芴基及其衍生物、荧蒽基、三亚苯基、芘基、苝基、基和并四苯基所组成的组中的基团。所述联苯基选自2-联苯基、3-联苯基和4-联苯基;所述三联苯基包括对-三联苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基;所述萘基包括1-萘基或2-萘基;所述蒽基选自由1-蒽基、2-蒽基和9-蒽基所组成的组中;所述芴基选自由1-芴基、2-芴基、3-芴基、4-芴基和9-芴基所组成的组中;所述芴基衍生物选自由9,9-二甲基芴、9,9-螺二芴和苯并芴所组成的组中;所述芘基选自由1-芘基、2-芘基和4-芘基所组成的组中;所述并四苯基选自由1-并四苯基、2-并四苯基和9-并四苯基所组成的组中。
在本说明书中,取代或未取代的C6~C60芳基优选为C6~C30芳基,更优选为由苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基所组成的群组中的基团。具体地,联苯基选自2-联苯基、3-联苯基和4-联苯基;三联苯基包括对-三联苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基;所述萘基包括1-萘基或2-萘基;蒽基选自由1-蒽基、2-蒽基和9-蒽基;所述芴基选自由1-芴基、2-芴基、3-芴基、4-芴基和9-芴基;所述芘基选自由1-芘基、2-芘基和4-芘基;并四苯基选自由1-并四苯基、2-并四苯基和9-并四苯基。作为本发明中的芳基的优选例,可举出由苯基、联苯基、三联苯基、萘基、蒽基、菲基、茚基、芴基及其衍生物、荧蒽基、三亚苯基、芘基、苝基、基和并四苯基所组成的组中的基团。所述联苯基选自2-联苯基、3-联苯基和4-联苯基;所述三联苯基包括对-三联苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基;所述萘基包括1-萘基或2-萘基;所述蒽基选自由1-蒽基、2-蒽基和9-蒽基所组成的组中;所述芴基选自由1-芴基、2-芴基、3-芴基、4-芴基和9-芴基所组成的组中;所述芴基衍生物选自由9,9-二甲基芴、9,9-螺二芴和苯并芴所组成的组中;所述芘基选自由1-芘基、2-芘基和4-芘基所组成的组中;所述并四苯基选自由1-并四苯基、2-并四苯基和9-并四苯基所组成的组中。本发明的C6~C60芳基还可以是上述基团以单键连接或/和稠合所组合而成的基团。
在本说明书中,取代或未取代的C3~C60杂芳环优选为C3~C30杂芳环,可以为含氮杂芳基、含氧杂芳 基、含硫杂芳基等,具体的例子可举出:由呋喃基、噻吩基、吡咯基、吡啶基、苯并呋喃基、苯并噻吩基、异苯并呋喃基、异苯并噻吩基、吲哚基、异吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基及其衍生物、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吩噻嗪基、吩嗪基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5_嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑等形成的杂芳环。作为本发明中的杂芳环的优选例子,例如为呋喃基、噻吩基、吡咯基、苯并呋喃基、苯并噻吩基、异苯并呋喃基、吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基及其衍生物的杂芳环,其中,所述咔唑基衍生物优选为9-苯基咔唑、9-萘基咔唑苯并咔唑、二苯并咔唑或吲哚并咔唑。
在本说明书中,取代或未取代的C3~C60杂芳基优选为C3~C30杂芳基,更优选为含氮杂芳基、含氧杂芳基、含硫杂芳基等,具体的例子可举出:呋喃基、噻吩基、吡咯基、吡啶基、苯并呋喃基、苯并噻吩基、异苯并呋喃基、异苯并噻吩基、吲哚基、异吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基及其衍生物、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吩噻嗪基、吩嗪基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5_嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑等。作为本发明中的杂芳基的优选例子,例如为呋喃基、噻吩基、吡咯基、苯并呋喃基、苯并噻吩基、异苯并呋喃基、吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基及其衍生物,其中,所述咔唑基衍生物优选为9-苯基咔唑、9-萘基咔唑苯并咔唑、二苯并咔唑或吲哚并咔唑。本发明的C3~C60杂芳基还可以是上述基团以单键连接或/和稠合所组合而成的基团。
在本说明书中,链状烷基也包括直链也包括支链烷基的概念。作为C1~C20链状烷基例如可举出:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、新戊基、正己基新己基、正庚基、正辛基、2-乙基己基等。C1~C20链状卤代烷基例如可举出:三氟甲基、五氟乙基、2,2,2-三氟乙基等。
在本说明书中,C3-C20环烷基包括单环烷基和多环烷基,作为具体例子例如可以是环丙基、环丁基、环戊基、环己基、环己基、环庚基、环辛基、金刚烷基等。
在本说明书中,烷氧基时指上述链状烷基与氧组成的基团,或者上述环烷基与氧组成的基团。
作为C1~C20烷氧基的例子可举出:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、异丁氧基、叔丁氧基、戊氧基、异戊氧基、己氧基、庚氧基、辛氧基、壬氧基、癸氧基、十一烷氧基、十二烷氧基等,其中优选甲氧基、乙氧基、正丙氧基、异丙氧基、叔丁氧基、仲丁氧基、异丁氧基、异戊氧基,更优选 甲氧基。
在本说明书中,作为C1~C20硅烷基的例子可以是被在上述C1~C20烷基中所例举的基团取代的甲硅烷基,即上述链状烷基或环烷基取代甲硅烷基上的一个、两个或三个氢所形成的基团。具体可举出:甲基甲硅烷基、二甲基甲硅烷基、三甲基甲硅烷基、乙基甲硅烷基、二乙基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基等基团。
更进一步的,本发明的通式(1-1)和式(1-2)所述的化合物可以优选出下述具体结构化合物:A1-1至A1-192,A2-1至A2-57,A3-1至A3-57,A4-1至A4-57,A5-1至A5-57,A6-1至A6-57,A7-1至A7-57,A8-1至A8-57,B1-1至B1-186,B2-1至B2-57,B3-1至B3-57,B4-1至B4-186,B5-1至B5-57,B6-1至B6-57,B7-1至B7-60,B8-1至B8-60,C1-1至C1-84,C2-1至C2-76,C3-1至C3-68,C4-1至C4-56,C5-1至C5-76,C6-1至C6-72,C7-1至C7-76,C8-1至C8-80,C9-1至C9-80,D1-1至D1-954,这些化合物仅为代表性的:





























































































































本发明的这类化合物的结构特点为:在如式(1-1)、式(1-2)的母核结构中,本发明化合物在现有技术常用的氮硼氮的结构中,在其中心苯环硼原子的间位引入特定的X和Y基团,该X可以为芳基硼、单键、碳原子、硅原子、氮原子、磷原子、氧原子、硫原子或硒原子,该Y可以为单键、碳原子、硅原子、氮原子、磷原子、氧原子、硫原子或硒原子。X和Y的引入,一方面能够有效锁住母核左侧或右侧的给体基团,从而有效消除了氮硼氮结构中的中心苯环上的氢原子与周围苯环上的氢原子之间的排斥,使中心苯环与外围的芳环几乎共平面,有效降低了分子激发态的形变与振动弛豫,提高了分子的稳定性与色纯度。同时,本发明化合物母核结构中引入的X和Y并不影响氮硼氮结构的基本的多重共振特性,因此保持了多重共振染料高量子效率和窄光谱的特点。而且,X和Y设计为单键、B、C、Si、N、P、O、S、Se这些多种类型原子或基团,可以利用其不同的电负性以调节本发明化合物发光光色从蓝光(单键、B)、蓝绿光(C,Si)、绿光(O,S,Se)到红光(N,P),从而能够广泛的调节发光光色,实现一个较为宽的色域覆盖。并且当X或Y为芳基硼、碳原子、硅原子、氮原子、磷原子、时,其大体积的基团,扭曲的结构能够有效减小分子间的相互作用,减小了分子间的相互作用力,从而减少因分子堆积而造成的光色红移、展宽,效率下降等问题,显著抑制浓度猝灭效应,在器件中能够减小主体与染料及染料间的相互作用,从而显著提高发光效率与寿命,提升器件的稳定性以及可重复性,还能够提高掺杂浓度从而减少器件的制备难度,有助于材料的商业化应用。此外,如果X或Y为具有螺C和螺Si的结构,由于螺原子两侧具有不对称的结构,使分子具有手性,通过手性中心对硼氮发光母核的微扰,导致发光产生圆偏振特性。通过手性拆分后能够得到一对光学纯的化合物,在器 件中能够产生较强的圆偏振发光,其不对称因子在10-3量级。目标分子与现有的BN染料分子相比有着大幅窄化的半峰宽(14-20nm)以及在有机光电器件中更高的寿命。
另外,本发明化合物的制备工艺简单易行,原料易得,适合于量产放大。
本发明的第二方面,同时保护上述通式(1-1)至(1-2)、通式(2-1)至(2-3)、通式(2)至(26)中任一所示的化合物的应用,所述应用为作为有机电子器件中的功能材料,所述有机电子器件包括:有机电致发光器件、光学传感器、太阳能电池、照明元件、有机薄膜晶体管、有机场效应晶体管、有机薄膜太阳能电池、信息标签、电子人工皮肤片材、片材型扫描器或电子纸,优选为有机电致发光器件。
第三方面,本发明还提供一种有机电致发光器件,包括基板,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的一层或多层有机层,其中,所述有机层中包含上述通式(1-1)至(1-2)、通式(2-1)至(2-3)、通式(2)至(26)中任一所示的化合物。
具体而言,本发明的一个实施方案提供了一种有机电致发光器件,包括基板,以及依次形成在所述基板上的阳极层、多个发光功能层和阴极层;所述的发光功能层包括空穴注入层、空穴传输层、发光层、电子传输层,所述的空穴注入层形成在所述的阳极层上,所述的空穴传输层形成在所述的空穴注入层上,所述的阴极层形成在所述的电子传输层上,所述的空穴传输层与所述的电子传输层之间为发光层;其中,所述的发光层中含有上述式(1)所示的本发明的通式化合物。
采用本发明化合物制备的OLED器件具有低启动电压、高发光效率和更优的使用寿命,能够满足当前面板制造企业对高性能材料的要求。
具体实施方式
下面将以多个合成实施例为例来详述本发明的上述新化合物的具体制备方法,但本发明的制备方法并不限于这些合成实施例。
本发明中所用的各种化学药品如石油醚、乙酸乙酯、硫酸钠、甲苯、四氢呋喃、二氯甲烷、乙酸、碳酸钾等基础化工原料均购自上海泰坦科技股份有限公司和西陇化工股份有限公司。确定下述化合物所用的质谱仪采用的是ZAB-HS型质谱仪测定(英国Micromass公司制造)。
下面对本发明化合物的合成方法进行简要的说明。
合成实施例
代表性合成路径A:
更具体地,以下给出本发明的代表性化合物的合成方法。
合成实施例
合成实施例A-1:
化合物A1-1的合成
氮气气氛下,将正丁基锂的戊烷溶液(24mL,2.50M,60mmol)缓慢加入到0℃的Br代前驱体(8.49g,15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(15.04g,60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(15.52g,120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mL,1.0M,60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-1(2.86g,36%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:544.23元素分析结果:理论值:C,86.07;H,4.82;B,3.97;N,5.15;实验值:C,86.05;H,4.81;B,3.98;N,5.17。
合成实施例A-2:
化合物A1-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-4(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:768.48元素分析结果:理论值:C,85.94;H,7.61;B,2.81;N,3.64;实验值:C,85.92;H,7.62;B,2.82;N,3.64。
合成实施例A-3:
化合物A1-8的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-8(33%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:1072.60元素分析结果:理论值:C,88.42;H,6.95;B,2.01;N,2.61;实验值:C,88.44;H,6.96;B,2.00;N,2.50。
合成实施例A-4:
化合物A1-10的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-10(23%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:1212.52元素分析结果:理论值:C,86.14;H,5.15;B,1.78;N,6.93;实验值:C,86.13;H,5.13;B,1.79;N,6.95。
合成实施例A-5:
化合物A1-13的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-13(34%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:744.29元素分析结果:理论值:C,88.73;H,4.60;B,2.90;N,3.76;实验值:88.72;H,4.61;B,2.92;N,3.74。
合成实施例A-6:
化合物A1-17的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-17(34%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:772.51元素分析结果:理论值:C,85.49;H,8.09;B,2.80;N,3.63;实验值:C,85.46;H,8.11;B,2.79;N,3.63。
合成实施例A-7:
化合物A1-21的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃ 继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-21(20%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:874.34元素分析结果:理论值:C,86.51;H,4.61;B,2.47;N,6.41;实验值:C,86.50;H,4.63;B,2.46;N,6.42。
合成实施例A-8:
化合物A1-24的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-24(22%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:874.34元素分析结果:理论值:C,86.51;H,4.61;B,2.47;N,6.41;实验值:C,86.52;H,4.61;B,2.47;N,6.40。
合成实施例A-9:
化合物A1-44的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-44(25%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:874.34元素分析结果:理论值:C,86.51;H,4.61;B,2.47;N,6.41;实验值:C,86.51;H,4.62;B,2.48;N,6.39。
合成实施例A-10:
化合物A1-55的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-55(40%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:872.35元素分析结果:理论值:C,89.46;H,4.85;B,2.48;N,3.21;实验值:C,89.48;H,4.86;B,2.47;N,3.19。
合成实施例A-11:
化合物A1-65的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-65(36%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:696.29元素分析结果:理论值:C,87.95;H,4.92;B,3.10;N,4.02;实验值:C,87.96;H,4.95;B,3.09;N,4.00。
合成实施例A-12:
化合物A1-70的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石 油醚=1:10),得目标化合物A1-70(33%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:782.49元素分析结果:理论值:C,85.93;H,7.73;B,2.76;N,3.58;实验值:C,85.93;H,7.75;B,2.77;N,3.55。
合成实施例A-13:
化合物A1-80的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-80(33%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:576.22元素分析结果:理论值:C,81.29;H,4.55;B,3.75;N,4.86;实验值:C,81.29;H,4.56;B,3.73;N,4.88。
合成实施例A-14:
化合物A1-81的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-81(26%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:608.17元素分析结果:理论值:C,76.99;H,4.31;B,3.55;N,4.60;S,10.54;实验值:C,76.97;H,4.30;B,3.56;N,4.58;S,10.58。
合成实施例A-15:
化合物A1-82的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-82(22%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:702.19元素分析结果:理论值:C,66.71;H,3.73;B,3.08;N,3.99;Se,22.49;实验值:C,66.74;H,3.71;B,3.09;N,3.98;Se,22.52。
合成实施例A-16:
化合物A1-85的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-85(31%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:908.34元素分析结果:理论值:C,83.26;H,5.10;B,2.38;N,3.08;Si,6.18;实验值:C,83.27;H,5.11;B,2.37;N,3.09;Si,6.16。
合成实施例A-17:
化合物A1-87的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石 油醚=1:10),得目标化合物A1-87(30%收率,HPLC分析纯度99%),为橙色固体。MALDI-TOF-MS结果:分子离子峰:560.22元素分析结果:理论值:C,83.61;H,4.68;B,3.86;N,5.00;实验值:C,83.60;H,4.66;B,3.87;N,5.02。
合成实施例A-18:
化合物A1-94的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-87(30%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:724.27元素分析结果:理论值:C,84.54;H,4.73;B,2.98;N,3.87;Si,3.88;实验值:C,84.53;H,4.75;B,2.97;N,3.88;Si,3.89。
合成实施例A-19:
化合物A1-155的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-155(31%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:650.22元素分析结果:理论值:C,83.10;H,4.34;B,3.32;N,4.31;S,4.93;实验值:C,83.08;H,4.35;B,3.30;N,4.321;S,4.95。
合成实施例A-20:
化合物A1-179的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-179(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:821.41元素分析结果:理论值C,86.24;H,6.01;B,2.63;N,5.11;实验值:C,86.27;H,6.00;B,2.62;N,5.11。
合成实施例A-21:
化合物A1-180的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-180(34%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:821.41元素分析结果:理论值C,86.24;H,6.01;B,2.63;N,5.11;实验值:C,86.26;H,6.05;B,2.59;N,5.10。
合成实施例A-22:
化合物A1-181的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃ 继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-181(30%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:821.41元素分析结果:理论值C,86.24;H,6.01;B,2.63;N,5.11;实验值:C,86.26;H,6.05;B,2.60;N,5.09。
合成实施例A-23:
化合物A1-182的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-182(34%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:821.41元素分析结果:理论值C,86.24;H,6.01;B,2.63;N,5.11;实验值:C,86.26;H,6.02;B,2.61;N,5.11。
合成实施例A-24:
化合物A1-183的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-183(34%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:821.41元素分析结果:理论值C,86.24;H,6.01;B,2.63;N,5.11;实验值:C,86.27;H,6.03;B,2.60;N,5.10。
合成实施例A-25:
化合物A1-184的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-184(33%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:821.41元素分析结果:理论值C,86.24;H,6.01;B,2.63;N,5.11;实验值:C,86.27;H,6.00;B,2.61;N,5.12。
合成实施例A-26:
化合物A1-185的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A1-185(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:821.41元素分析结果:理论值C,86.24;H,6.01;B,2.63;N,5.11;实验值:C,86.27;H,6.00;B,2.60;N,5.13。
合成实施例A-27:
化合物A1-186的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石 油醚=1:10),得目标化合物A1-186(33%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:821.41元素分析结果:理论值C,86.24;H,6.01;B,2.63;N,5.11;实验值:C,86.25;H,6.01;B,2.62;N,5.12。
合成实施例A-28:
化合物A2-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A2-4(36%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:766.46元素分析结果:理论值C,86.16;H,7.36;B,2.82;N,3.65;实验值:C,86.17;H,7.37;B,2.81;N,3.64。
合成实施例A-29:
化合物A2-57的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A2-57(30%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:707.27元素分析结果:理论值C,86.59;H,4.42;B,3.06;N,5.94;实验值:C,86.58;H,4.40;B,3.07;N,5.95。
合成实施例A-30:
化合物A3-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A3-4(36%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:782.46元素分析结果:理论值C,84.40;H,7.21;B,2.76;N,3.58;O,2.04;实验值:C,84.41;H,7.22;B,2.75;N,3.58;O,2.03。
合成实施例A-31:
化合物A4-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A4-4(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:798.44元素分析结果:理论值C,82.71;H,7.07;B,2.71;N,3.51;S,4.01;实验值:C,82.73;H,7.06;B,2.70;N,3.50;S,4.02。
合成实施例A-32:
化合物A5-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入 苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A5-4(33%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:846.38元素分析结果:理论值C,78.12;H,6.68;B,2.56;N,3.31;Se,9.34;实验值:C,78.11;H,6.67;B,2.55;N,3.32;Se,9.36。
合成实施例A-33:
化合物A6-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A6-4(31%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:857.51元素分析结果:理论值C,85.41;H,7.17;B,2.52;N,4.90;实验值:C,85.39;H,7.18;B,2.51;N,4.92。
合成实施例A-34:
化合物A7-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A7-4(37%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:932.54元素分析结果:理论值C,87.55;H,7.13;B,2.32;N,3.00;实验值:C,87.55;H,7.15;B,2.31;N,3.01。
合成实施例A-35:
化合物A8-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物A8-4(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:948.52元素分析结果:理论值C,84.80;H,7.01;B,2.28;N,2.95;Si,2.96;实验值C,84.81;H,7.00;B,2.26;N,2.96;Si,2.97。
代表性合成路径B:
更具体地,以下给出本发明的代表性化合物的合成方法。
合成实施例
合成实施例B-1:
化合物B1-1的合成
氮气气氛下,将正丁基锂的戊烷溶液(24mL,2.50M,60mmol)缓慢加入到0℃的Br代前驱体(8.49g,15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(15.04g,60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(15.52g,120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-1(33%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:430.13元素分析结果:理论值:C,83.74;H,3.51;B,2.51;N,6.51;实验值:C,83.72;H,3.52;B,2.50;N,6.53。
合成实施例B-2:
化合物B1-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-4(35%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:654.38元素分析结果:理论值:84.39;H,7.24;B,1.65;N,4.28;实验值:84.41;H,7.25;B,1.66;N,4.25。
合成实施例B-3:
化合物B1-8的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-8(34%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:958.50元素分析结果:理论值:C,87.66;H,6.62;B,1.13;N,2.92;实验值:C,87.65;H,6.61;B,1.14;N,2.94。
合成实施例B-4:
化合物B1-10的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-10(28%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:1098.42元素分析结果:理论值:C,85.24;H,4.68;B,0.98;N,7.65;实验值:C,85.25;H,4.70;B,0.99;N,7.63。
合成实施例B-5:
化合物B1-13的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-13(31%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:630.19元素分析结果:理论值:C,87.63;H,3.68;B,1.71;N,4.44;实验值:C,87.65;H,3.67;B,1.72;N,4.41。
合成实施例B-6:
化合物B1-17的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-17(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:658.41元素分析结果:理论值:C,83.87;H,7.80;B,1.64;N,4.25;;实验值:C,83.89;H,7.81;B,1.61;N,4.25;。
合成实施例B-7:
化合物B1-21的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-21(31%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:760.24元素分析结果:理论值:C,85.27;H,3.84;B,1.42;N,7.37;实验值:C,85.26;H,3.85;B,1.40;N,7.35。
合成实施例B-8:
化合物B1-24的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-24(22%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:760.24元素分析结果:理论值:C,85.27;H,3.84;B,1.42;N,7.37;实验值:C,85.27;H,3.83;B,1.44;N,7.37。
合成实施例B-9:
化合物B1-44的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-44(35%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:760.24元素分析结果:理论值:C,85.27;H,3.84;B,1.42;N,7.37;实验值:C,85.28;H,3.86;B,1.40;N,7.36。
合成实施例B-10:
化合物B1-55的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。室温下加入苯基溴化镁的四氢呋喃溶液(60mmol)反应6小时后停止真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-55(33%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:758.25元素分析结果:理论值:C,88.66;H,4.12;B,1.42;N,3.69;实验值:C,88.65;H,4.14;B,1.41;N,3.66。
合成实施例B-11:
化合物B1-65的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-65(35%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:582.19元素分析结果:理论值:C,86.61;H,3.98;B,1.86;N,4.81;实验值:C,86.65;H,4.01;B,1.86;N,4.84。
合成实施例B-12:
化合物B1-70的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空 旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-70(33%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:668.39元素分析结果:理论值:84.42;H,7.39;B,1.62;N,4.19;实验值:84.44;H,7.35;B,1.60;N,4.21。
合成实施例B-13:
化合物B1-80的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-80(35%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:462.12元素分析结果:理论值:C,77.95;H,3.27;B,2.34;N,6.06;实验值:C,77.98;H,3.26;B,2.32;N,6.05。
合成实施例B-14:
化合物B1-81的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-81(30%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:494.07元素分析结果:理论值:C,72.88;H,3.06;B,2.19;N,5.67;S,12.97实验值:C,72.87;H,3.08;B,2.21;N,5.66;S,12.99。
合成实施例B-15:
化合物B1-82的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空 旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-82(25%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:589.96元素分析结果:理论值:C,61.26;H,2.57;B,1.84;N,4.76;Se,26.85实验值:C,61.25;H,2.55;B,1.85;N,4.73;Se,26.89。
合成实施例B-16:
化合物B1-85的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-85(31%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:794.24元素分析结果:理论值:C,81.60;H,4.44;B,1.36;N,3.52;Si,7.07;实验值:C,81.55;H,4.46;B,1.37;N,3.50;Si,7.10。
合成实施例B-17:
化合物B1-87的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-87(34%收率,HPLC分析纯度99%),为橙色固体。MALDI-TOF-MS结果:分子离子峰:466.12元素分析结果:理论值:C,80.74;H,3.39;B,2.42;N,6.28;实验值:C,80.77;H,3.38;B,2.40;N,6.29。
合成实施例B-18:
化合物B1-94的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空 旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-94(34%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:610.17元素分析结果:理论值:C,82.62;H,3.80;B,1.77;N,4.59;Si,4.60实验值:C,82.60;H,3.82;B,1.80;N,4.55;Si,4.62。
合成实施例B-19:
化合物B1-155的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-155(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:536.12元素分析结果:理论值:C,80.61;H,3.19;B,2.02;N,5.22;S,5.98实验值:C,80.60;H,3.15;B,2.04;N,5.23;S,6.03。
合成实施例B-20:
化合物B1-179的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-179(28%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:694.30元素分析结果:理论值C,84.72;H,5.37;B,1.56;N,6.05实验值:C,84.74;H,5.38;B,1.52;N,6.06。
合成实施例B-21:
化合物B1-180的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL) 溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-180(34%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:694.30元素分析结果:理论值C,84.72;H,5.37;B,1.56;N,6.05;实验值:C,84.73;H,5.38;B,1.57;N,6.01。
合成实施例B-22:
化合物B1-181的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-181(31%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:694.30元素分析结果:理论值C,84.72;H,5.37;B,1.56;N,6.05;实验值:C,84.70;H,5.35;B,1.58;N,6.07。
合成实施例B-23:
化合物B1-182的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-182(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:694.30元素分析结果:理论值C,84.72;H,5.37;B,1.56;N,6.05;实验值:C,84.74;H,5.38;B,1.53;N,6.04。
合成实施例B-24:
化合物B1-183的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-183(29%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:694.30元素分析结果:理论值C,84.72;H,5.37;B,1.56;N,6.05;实验值:C,84.70;H,5.40;B,1.54;N,6.05。
合成实施例B-25:
化合物B1-184的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-184(37%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:694.30元素分析结果:理论值C,84.72;H,5.37;B,1.56;N,6.05;实验值:C,84.74;H,5.35;B,1.54;N,6.08。
合成实施例B-26:
化合物B1-185的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-185(30%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:694.30元素分析结果:理论值C,84.72;H,5.37;B,1.56;N,6.05;实验值:C,84.71;H,5.40;B,1.59;N,6.03。
合成实施例B-27:
化合物B1-186的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B1-186(33%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:694.30元素分析结果:理论值C,84.72;H,5.37;B,1.56;N,6.05;实验值:C,84.70;H,5.38;B,1.54;N,6.04。
合成实施例B-28:
化合物B2-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B2-4(33%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:638.38元素分析结果:理论值C,86.50;H,7.42;B,1.69;N,4.39;实验值:C,86.52;H,7.45;B,1.68;N,4.34。
合成实施例B-29:
化合物B2-57的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B2-57(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:583.22元素分析结果:理论值C,86.45;H, 4.49;B,1.85;N,7.20实验值:C,86.47;H,4.45;B,1.86;N,7.18。
合成实施例B-30:
化合物B3-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B3-4(30%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:788.44元素分析结果:理论值C,83.74;H,7.41;B,1.37;N,3.55;P,3.93;实验值:C,83.70;H,7.45;B,1.36;N,3.58;P,3.88。
合成实施例B-31:
化合物B4-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B4-4(34%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:670.36元素分析结果:理论值C,82.37;H,7.06;B,1.61;N,4.18;S,4.78;实验值:C,82.32;H,7.05;B,1.63;N,4.14;S,4.81。
合成实施例B-32:
化合物B5-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空 旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B5-4(33%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:718.30元素分析结果:理论值C,76.99;H,6.60;B,1.51;N,3.90;Se,11.00;实验值:C,7.02;H,6.57;B,1.54;N,3.88;Se,11.05。
合成实施例B-33:
化合物B6-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B6-4(37%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:729.43元素分析结果:理论值C,85.58;H,7.18;B,1.48;N,5.76;实验值:C,85.66;H,7.14;B,1.52;N,5.71。
合成实施例B-34:
化合物B7-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B7-4(37%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:804.46元素分析结果:理论值C,88.04;H,7.14;B,1.34;N,3.48;实验值:C,88.05;H,7.16;B,1.36;N,3.44。
合成实施例B-35:
化合物B8-4的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液 中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B8-4(38%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:820.44元素分析结果:理论值C,84.85;H,7.00;B,1.32;N,3.41;Si,3.42;实验值C,84.82;H,7.02;B,1.33;N,3.40;Si,3.44。
合成实施例B-36:
化合物B4-162的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B4-162(35%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:664.22元素分析结果:理论值C,79.51;H,5.00;B,1.63;N,4.21;S,9.65;实验值:C,79.53;H,5.02;B,1.60;N,4.20;S,9.69。
合成实施例B-37:
化合物B4-186的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B4-186(37%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:723.29元素分析结果:理论值C,82.98;H,5.29;B,1.49;N,5.81;S,4.43;实验值:C,82.97;H,5.30;B,1.50;N,5.80;S,4.45。
合成实施例B-38:
化合物B7-45的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B7-45(27%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:798.32元素分析结果:理论值C,85.70;H,5.43;B,1.35;N,3.51;S,4.01;实验值:C,85.67;H,5.40;B,1.32;N,3.54;S,4.07。
合成实施例B-39:
化合物B7-58的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B7-58(30%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:857.39元素分析结果:理论值C,88.20;H,5.64;B,1.26;N,4.90;实验值:C,C,88.20;H,5.65;B,1.25;N,4.88。
合成实施例B-40:
化合物B7-59的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B7-59(33%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:796.31元素分析结果:理论值C,85.92;H,5.19;B,1.36;N,3.52;S,4.02;实验值:C,85.95;H,5.17;B,1.35;N,3.53;S,4.00。
合成实施例B-41:
化合物B7-60的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B7-60(37%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:855.38元素分析结果:理论值C,88.41;H,5.42;B,1.26;N,4.91;实验值:C,88.38;H,5.40;B,1.27;N,4.95。
合成实施例B-42:
化合物B8-45的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B8-45(29%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:814.30元素分析结果:理论值C,82.54;H,5.32;B,1.33;N,3.44;S,3.93;Si,3.45;实验值:C,82.55;H,5.33;B,1.31;N,3.45;S,3.95;Si,3.42。
合成实施例B-43:
化合物B8-58的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B8-58(33%收率,HPLC分析纯度 99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:873.37元素分析结果:理论值C,85.21;H,5.54;B,1.24;N,4.81;Si,3.21;实验值:C,85.20;H,5.57;B,1.23;N,4.82;Si,3.18。
合成实施例B-44:
化合物B8-59的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B8-59(34%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:812.29元素分析结果:理论值C,82.74;H,5.08;B,1.33;N,3.45;S,3.94;Si,3.45;实验值:C,82.75;H,5.09;B,1.37;N,3.41;S,3.95;Si,3.42。
合成实施例B-45:
化合物B8-60的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时后停止,真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物B8-60(35%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:871.36元素分析结果:理论值C,85.40;H,5.32;B,1.24;N,4.82;Si,3.22;实验值:C,85.40;H,5.33;B,1.22;N,4.80;Si,3.25。
代表性合成路径C:
更具体地,以下给出本发明的代表性化合物的合成方法。
合成实施例C-1:
化合物C1-1的合成
氮气气氛下,将正丁基锂的戊烷溶液(60mmol)缓慢加入到0℃的Br代前驱体(15mmol)的叔丁苯(150mL)溶液中,而后升温至25℃反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(60mmol),升温至60℃继续搅拌2小时。室温下加入N,N-二异丙基乙胺(120mmol),并在130℃下继续反应12小时。真空旋干溶剂,过硅胶柱(展开剂:二氯甲烷:石油醚=1:10),得目标化合物C1-1(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:602.2159元素分析结果:理论值C,81.75;H,4.69;B,3.59;N,4.65;S,5.32;实验值C,81.78;H,4.62;B,3.52;N,4.61;S,5.37。
合成实施例C-2:
化合物C1-32的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C1-32(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:711.3017元素分析结果:理论值:C,86.10;H,4.96;B,3.04;N,5.91;实验值:C,86.16;H,4.91;B,3.07;N,5.96。
合成实施例C-3:
化合物C1-47的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C1-47(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:850.3691元素分析结果:理论值:C,88.95;H,5.21;B,2.54;N,3.29;实验值:C,88.91;H,5.26;B,2.52;N,3.27。
合成实施例C-4:
化合物C1-65的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C1-65(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:623.2704元素分析结果:理论值:C,84.78;H,5.01;B,3.47;N,6.74;实验值:C,84.71;H,5.07;B,3.41;N,6.76。
合成实施例C-5:
化合物C1-84的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C1-84(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:767.2738元素分析结果:理论值:C,82.94;H,4.60;B,2.82;N,5.47;S,4.18;实验值:C,82.96;H,4.62;B,2.85;N,5.42;S,4.15。
合成实施例C-6:
化合物C2-1的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C2-1(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:598.2250元素分析结果:理论值:C,80.26;H,5.22;B,1.81;N,4.68;O,2.67;S,5.36;实验值:C,80.26;H,5.22;B,1.81;N,4.68;O,2.67;S,5.36。
合成实施例C-7:
化合物C2-23的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C2-23(29%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:710.2278元素分析结果:理论值C,84.51;H,3.83;B,1.52;N,7.88;O,2.25;实验值:C,84.52;H,3.84;B,1.56;N,7.81;O,2.22。
合成实施例C-8:
化合物C2-40的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C2-40(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:749.2638元素分析结果:理论值C,86.52;H,4.30;B,1.44;N,5.61;O,2.13;实验值:C,86.57;H,4.31;B,1.42;N,5.65;O,2.11。
合成实施例C-9:
化合物C2-63的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C2-63(31%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:613.1420元素分析结果:理论值C,80.27;H,3.29;B,1.76;N,6.85;O,2.61;S,5.23;实验值:C,80.22;H,3.21;B,1.73;N,6.84;O,2.65;S,5.21。
合成实施例C-10:
化合物C2-75的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C2-75(32%收率,HPLC分析纯度99%),为橙黄色固体。MALDI-TOF-MS结果:分子离子峰:604.1781元素分析结果:理论值C,81.46;H,4.17;B,1.79;N,4.63;O,2.65;S,5.30;实验值:C,81.47;H,4.12;B,1.72;N,4.69;O,2.61;S,5.38。
合成实施例C-11:
化合物C3-11的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C3-11(31%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:639.1940元素分析结果:理论值C,82.63;H,4.10;B,1.69;N,6.57;S,5.01;实验值:C,82.61;H,4.14;B,1.67;N,6.52;S,5.03。
合成实施例C-12:
化合物C3-30的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C3-30(35%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:649.2689元素分析结果:理论值C,86.90;H,4.97;B,1.66;N,6.47;实验值:C,86.93;H,4.96;B,1.63;N,6.46。
合成实施例C-13:
化合物C3-40的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C3-40(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:731.2533元素分析结果:理论值C,88.65;H,4.13;B,1.48;N,5.74;实验值:C,88.62;H,4.14;B,1.47;N,5.77。
合成实施例C-14:
化合物C3-52的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C3-52(31%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:763.3159元素分析结果:理论值C,88.07;H,5.02;B,1.42;N,5.50;实验值:C,88.03;H,5.07;B,1.44;N,5.57。
合成实施例C-15:
化合物C3-63的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C3-63(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:647.1627元素分析结果:理论值C,83.47;H,3.42;B,1.67;N,6.49;S,4.95;实验值:C,83.42;H,3.47;B,1.63;N,6.43;S,4.97。
合成实施例C-16:
化合物C4-33的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C4-33(25%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:748.2273元素分析结果:理论值C,81.82;H,4.58;B,1.44;N,3.74;P,4.14;S,4.28;实验值:C,81.87;H,4.53;B,1.44;N,3.77;P,4.12;S,4.26。
合成实施例C-17:
化合物C4-51的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C4-51(26%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:747.2069元素分析结果:理论值C,80.32;H,4.18;B,1.45;N,5.62;P,4.14;S,4.29;实验值:C,80.31;H,4.13;B,1.46;N,5.64;P,4.12;S,4.24。
合成实施例C-18:
化合物C5-11的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C5-11(31%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:671.1661元素分析结果:理论值C,78.69;H,3.90;B,1.61;N,6.26;S,9.55;实验值:C,78.61;H,3.93;B,1.66;N,6.22;S,9.53。
合成实施例C-19:
化合物C5-23的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C5-23(31%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:726.2049元素分析结果:理论值C,82.64;H,3.75;B,1.49;N,7.71;S,4.41;实验值:C,82.61;H,3.78;B,1.42;N,7.76;S,4.48。
合成实施例C-20:
化合物C5-39的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C5-39(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:763.2253元素分析结果:理论值C,84.93;H,3.96;B,1.42;N,5.50;S,4.20;实验值:C,84.94;H,3.96;B,1.47;N,5.53;S,4.26。
合成实施例C-21:
化合物C5-63的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C5-63(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:629.1192元素分析结果:理论值C,78.22;H,3.20;B,1.72;N,6.67;S,10.18;实验值:C,78.26;H,3.21;B,1.73;N,6.66;S,10.13。
合成实施例C-22:
化合物C5-69的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C5-69(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:581.1192元素分析结果:理论值C,76.42;H,3.47;B,1.86;N,7.23;S,11.03;实验值:C,76.46;H,3.42;B,1.84;N,7.28;S,11.06。
合成实施例C-23:
化合物C6-11的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C6-11(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:719.1106元素分析结果:理论值C,73.55;H,3.65;B,1.50;N,5.85;S,4.46;Se,10.99;实验值:C,73.52;H,3.62;B,1.55;N,5.88;S,4.42;Se,10.96。
合成实施例C-24:
化合物C6-27的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C6-27(31%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:729.1855元素分析结果:理论值C,77.48;H,4.43;B,1.48;N,5.77;Se,10.84;实验值:C,77.43;H,4.45;B,1.43;N,5.75;Se,10.87。
合成实施例C-25:
化合物C6-50的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C6-50(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:761.1542元素分析结果:理论值C,78.96;H,3.71;B,1.42;N,5.52;Se,10.38;实验值:C,78.92;H,3.77;B,1.47;N,5.54;Se,10.36。
合成实施例C-26:
化合物C7-6的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C7-6(31%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:667.1348元素分析结果:理论值C,79.16;H,3.32;B,1.62;N,6.29;S,9.60;实验值:C,79.14;H,3.36;B,1.62;N,6.39;S,9.65。
合成实施例C-27:
化合物C7-22的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C7-22(27%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:673.3264元素分析结果:理论值C,83.80;H,5.99;B,1.60;N,6.24;O,2.37;实验值:C,83.85;H,5.93;B,1.61;N,6.25;O,2.33。
合成实施例C-28:
化合物C7-38的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C7-38(27%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:678.2049元素分析结果:理论值C,81.42;H,4.01;B,1.59;N,8.26;S,4.72;实验值:C,81.47;H,4.05;B,1.52;N,8.23;S,4.77。
合成实施例C-29:
化合物C7-48的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C7-48(25%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:822.2955元素分析结果:理论值C,87.59;H,4.29;B,1.31;N,6.81;实验值:C,87.52;H,4.23;B,1.36;N,6.86。
合成实施例C-30:
化合物C7-70的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C7-70(32%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:688.1893元素分析结果:理论值C,81.98;H,3.66;B,1.57;N,8.14;S,4.66;实验值:C,81.92;H,3.66;B,1.53;N,8.11;S,4.65。
合成实施例C-31:
化合物C8-2的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C8-2(35%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:740.1552元素分析结果:理论值C,82.70;H,3.40;B,1.46;N,3.78;S,8.66;实验值:C,82.73;H,3.45;B,1.46;N,3.71;S,8.63。
合成实施例C-32:
化合物C8-23的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C8-23(30%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:695.2376元素分析结果:理论值C,88.31;H,4.07;B,1.56;N,6.06;实验值:C,88.33;H,4.06;B,1.51;N,6.05。
合成实施例C-33:
化合物C8-36的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C8-36(30%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:692.1552元素分析结果:理论值C,81.50;H,3.64;B,1.56;N,4.04;S,9.26;实验值:C,81.52;H,3.67;B,1.51;N,4.07;S,9.23。
合成实施例C-34:
化合物C8-48的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C8-48(34%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:939.3785元素分析结果:理论值C,89.45;H,4.93;B,1.15;N,4.47;实验值:C,89.41;H,4.96;B,1.13;N,4.46。
合成实施例C-35:
化合物C8-60的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C8-60(37%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:824.3363元素分析结果:理论值C,90.28;H,5.01;B,1.31;N,3.40;实验值:C,90.23;H,5.01;B,1.36;N,3.41。
合成实施例C-36:
化合物C8-74的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C8-74(31%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:803.2566元素分析结果:理论值C,85.17;H,4.26;B,1.34;N,5.23;S,3.99;实验值:C,85.16;H,4.24;B,1.32;N,5.21;S,3.93。
合成实施例C-37:
化合物C9-2的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C9-2(29%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:756.1321元素分析结果:理论值C,79.36;H,3.33;B,1.43;N,3.70;S,8.47;Si,3.71;实验值:C,79.34;H,3.36;B,1.47;N,3.71;S,8.43;Si,3.77。
合成实施例C-38:
化合物C9-22的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C9-22(31%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:825.2772元素分析结果:理论值C,85.84;H,4.37;B,1.32;N,5.09;Si,3.40;实验值:C,85.81;H,4.39;B,1.31;N,5.02;Si,3.45。
合成实施例C-39:
化合物C9-39的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C9-39(31%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:788.2455元素分析结果:理论值C,85.27;H,4.22;B,1.37;N,3.55;O,2.03;Si,3.56;实验值:C,85.22;H,4.25;B,1.35;N,3.57;O,2.07;Si,3.52。
合成实施例C-40:
化合物C9-69的合成
具体实验方法与合成实施例C-1类似,仅需替换对应的Br代前驱体。目标化合物C9-69(31%收率,HPLC分析纯度99%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:701.2459元素分析结果:理论值C,83.87;H,4.60;B,1.54;N,5.99;Si,4.00;实验值:C,83.82;H,4.66;B,1.52;N,5.95;Si,4.06。
合成路径D:
实施例D-1化合物D1-1的合成
在双颈烧瓶中,氮气气氛下,将化合物I-1-1(15.7mmol)、咔唑(31.4mmol)、碳酸铯(61mmol)溶于150mL N,N-二甲基甲酰胺(DMF)中,升温至150℃,反应16小时。反应结束冷却后,倒入冷水中,过滤,用100mL水洗涤两次后,用10mL甲醇洗涤一次,烘干得到目标化合物I-1-2,淡黄色固体。
在双颈烧瓶中,氮气气氛下,将化合物I-1-2(5mmol)溶于10ml干燥四氢呋喃中,冷却至-78℃,加入正丁基锂的戊烷溶液(1M,6ml),在该温度下反应1小时。将I-1-3溶于40ml提前冷却至-78℃的干燥四氢呋喃中,然后将该溶液在-78℃下缓慢注入到I-1-2的溶液中,缓慢升至室温,反应12小时。反应结束后,加入少量甲醇猝灭,减压蒸发溶剂,加入100ml冰乙酸和10ml浓盐酸,之后升温至回流。反应2小时后用饱和碳酸钠水溶液中和,用二氯甲烷萃取分液并收集有机相,无水硫酸钠干燥有机相,随后过滤并浓缩有机相,通过硅胶柱以石油醚:二氯甲烷=5:1为展开剂分离化合物,得到化合物I-1-4。
在封管中将化合物I-1-4(1mmol)溶于20mL叔丁基苯中,冷却至-78℃后,加入叔丁基锂的戊烷溶液(1M,2.5mL),之后升温至30℃反应1小时。再次冷却至-78℃,缓慢加入三溴化硼(3mmol),之后升至30℃继续搅拌1小时。冷却至0℃后,加入二异丙基乙基胺(5mmol),之后升温至160℃,反应12小时。真空抽干溶剂,过硅胶柱,以石油醚:二氯甲烷=10:1为展开剂,得到目标化合物D1-1(HPLC分析纯度99.43%),黄色固体。MALDI-TOF-MS结果:分子离子峰:628.2112;元素分析结果:理论值:C,89.812;H,4.014;B,1.722;N,4.464(%);实验值:C,89.820;H,4.099;B,1.622;N,4.368(%)。
以下合成实施例的合成方式均与实施例D-1类似,仅需将第一步中的咔唑替换为对应的咔唑衍生物以及I-1-3替换为与实施例中相应片段的芳香酮原料即可。





目标化合物D1-2(HPLC分析纯度99.50%),黄色固体。MALDI-TOF-MS结果:分子离子峰:684.2721;元素分析结果:理论值:C,89.468;H,4.857;B,1.579;N,4.092(%);实验值:C,89.470;H,4.854;B,1.678;N,4.008(%)。
目标化合物D1-3(HPLC分析纯度99.10%),黄色固体。MALDI-TOF-MS结果:分子离子峰:852.4652;元素分析结果:理论值:C,88.707;H,6.735;B,1.272;N,3.278(%);实验值:C,88.700;H,6.686;B,1.218;N,3.263(%)。
目标化合物D1-10(HPLC分析纯度99.73%),黄色固体。MALDI-TOF-MS结果:分子离子峰:728.1951;元素分析结果:理论值:C,84.075;H,2.913;B,1.475;N,11.541(%);实验值:C,84.070;H,2.910;B,1.566;N,11.464(%)。
目标化合物D1-23(HPLC分析纯度99.68%),黄色固体。MALDI-TOF-MS结果:分子离子峰:828.2725;元素分析结果:理论值:C,91.302;H,4.009;B,1.304;N,3.376(%);实验值:C,91.310;H,4.020;B,1.396;N,3.354(%)。
目标化合物D1-29(HPLC分析纯度99.65%),黄色固体。MALDI-TOF-MS结果:分子离子峰:958.3335;元素分析结果:理论值:C,88.934;H,4.101;B,1.133;N,5.836(%);实验值:C,88.940;H,4.140;B,1.068;N,5.788(%)。
目标化合物D1-41(HPLC分析纯度99.72%),黄色固体。MALDI-TOF-MS结果:分子离子峰:768.3735;元素分析结果:理论值:C,89.045;H,5.897;B,1.406;N,3.643(%);实验值:C,89.050;H,5.802;B,1.437;N,3.616(%)。
目标化合物D1-50(HPLC分析纯度99.88%),黄色固体。MALDI-TOF-MS结果:分子离子峰:790.3353;元素分析结果:理论值:C,86.583;H,4.969;B,1.367;N,7.086(%);实验值:C,86.570;H,4.905;B,1.415;N,7.015(%)。
目标化合物D1-53(HPLC分析纯度99.90%),黄色固体。MALDI-TOF-MS结果:分子离子峰:796.3125;元素分析结果:理论值:C,85.923;H,5.193;B,1.358;N,3.518;S,4.015(%);实验值:C,85.930;H,5.109;B,1.395;N,3.608;S,4.033(%)。
目标化合物D1-54(HPLC分析纯度99.66%),黄色固体。MALDI-TOF-MS结果:分子离子峰:780.3353;元素分析结果:理论值:C,87.694;H,5.291;B,1.380;N,3.585;O,2.046(%);实验值:C,87.700;H,5.285;B,1.432;N,3.515;O,1.950(%)。
目标化合物D1-59(HPLC分析纯度99.80%),黄色固体。MALDI-TOF-MS结果:分子离子峰:903.3862;元素分析结果:理论值:C,89.032;H,5.126;B,1.196;N,4.654(%);实验值:C,89.040;H,5.087;B,1.228;N,4.652(%)。
目标化合物D1-60(HPLC分析纯度99.34%),黄色固体。MALDI-TOF-MS结果:分子离子峰:830.3563;元素分析结果:理论值:C,88.184;H,5.219;B,1.297;N,3.371;O,1.933(%);实验值:C,88.180;H,5.222;B,1.237;N,3.426;O,1.977(%)。
目标化合物D1-61(HPLC分析纯度99.54%),黄色固体。MALDI-TOF-MS结果:分子离子峰:846.3236;元素分析结果:理论值:C,86.511;H,5.118;B,1.280;N,3.305;S,3.790(%);实验值:C,86.520;H,5.219;B,1.202;N,3.236;S,3.728(%)。
目标化合物D1-65(HPLC分析纯度99.18%),黄色固体。MALDI-TOF-MS结果:分子离子峰:894.2723;元素分析结果:理论值:C,81.969;H,4.845;B,1.206;N,3.126;Se,8.840(%);实验值:C,81.970;H,4.840;B,1.117;N,3.157;Se,8.742(%)。
目标化合物D1-75(HPLC分析纯度99.78%),黄色固体。MALDI-TOF-MS结果:分子离子峰:846.3263;元素分析结果:理论值:C,86.512;H,5.118;B,1.283;N,3.311;S,3.785(%);实验值:C,86.510;H,5.138;B,1.340;N,3.289;S,3.780(%)。
目标化合物D1-77(HPLC分析纯度99.41%),黄色固体。MALDI-TOF-MS结果:分子离子峰:905.3963;元素分析结果:理论值:C,88.829;H,5.344;B,1.189;N,4.641(%);实验值:C,88.820;H,5.387;B,1.180;N,4.704(%)。
目标化合物D1-78(HPLC分析纯度99.62%),黄色固体。MALDI-TOF-MS结果:分子离子峰:903.3826;元素分析结果:理论值:C,89.032;H,5.125;B,1.199;N,4.649(%);实验值:C,89.040;H,5.206;B,1.185;N,4.666(%)。
目标化合物D1-85(HPLC分析纯度99.86%),黄色固体。MALDI-TOF-MS结果:分子离子峰:894.2772;元素分析结果:理论值:C,81.968;H,4.849;B,1.212;N,3.130;Se,8.836(%);实验值:C,81.980;H,4.794;B,1.309;N,3.033;Se,8.775(%)。
目标化合物D1-86(HPLC分析纯度99.40%),黄色固体。MALDI-TOF-MS结果:分子离子峰:846.3223;元素分析结果:理论值:C,86.508;H,5.123;B,1.280;N,3.306;S,3.786(%);实验值:C,86.500;H,5.085;B,1.258;N,3.284;S,3.817(%)。
目标化合物D1-167(HPLC分析纯度99.16%),黄色固体。MALDI-TOF-MS结果:分子离子峰:852.4623;元素分析结果:理论值:C,88.705;H,6.735;B,1.272;N,3.279(%);实验值:C,88.710;H,6.831;B,1.217;N,3.281(%)。
目标化合物D1-170(HPLC分析纯度99.25%),黄色固体。MALDI-TOF-MS结果:分子离子峰:950.1873;元素分析结果:理论值:C,69.486;H,2.437;B,1.138;F,23.981;N,2.945(%);实验值:C,69.490;H,2.456;B,1.133;F,24.063;N,2.974(%)。
目标化合物D1-181(HPLC分析纯度99.59%),黄色固体。MALDI-TOF-MS结果:分子离子峰:1032.3272;元素分析结果:理论值:C,87.205;H,3.612;B,1.052;N,8.142(%);实验值:C,87.220;H,3.651;B,1.125;N,8.057(%)。
目标化合物D1-183(HPLC分析纯度99.45%),黄色固体。MALDI-TOF-MS结果:分子离子峰:892.255;元素分析结果:理论值:C,84.759;H,3.730;B,1.205;N,3.135;O,7.166(%);实验值:C,84.750;H,3.689;B,1.127;N,3.202;O,7.107(%)。
目标化合物D1-184(HPLC分析纯度99.17%),黄色固体。MALDI-TOF-MS结果:分子离子峰:956.1624;元素分析结果:理论值:C,79.068;H,3.477;B,1.134;N,2.929;S,13.404(%);实验值:C,79.060;H,3.391;B,1.199;N,2.847;S,13.434(%)。
目标化合物D1-189(HPLC分析纯度99.75%),黄色固体。MALDI-TOF-MS结果:分子离子峰:840.1935;元素分析结果:理论值:C,84.282;H,3.475;B,1.287;N,3.328;S,7.628(%);实验值:C,84.290;H,3.430;B,1.381;N,3.260;S,7.697(%)。
目标化合物D1-194(HPLC分析纯度99.86%),黄色固体。MALDI-TOF-MS结果:分子离子峰:958.3357;元素分析结果:理论值:C,88.929;H,4.104;B,1.128;N,5.839(%);实验值:C,88.920;H,4.189;B,1.065;N,5.877(%)。
目标化合物D1-197(HPLC分析纯度99.16%),黄色固体。MALDI-TOF-MS结果:分子离子峰:840.1968;元素分析结果:理论值:C,84.276;H,3.475;B,1.293;N,3.325;S,7.633(%);实验值:C,84.270;H,3.517;B,1.383;N,3.351;S,7.640(%)。
目标化合物D1-201(HPLC分析纯度99.29%),黄色固体。MALDI-TOF-MS结果:分子离子峰:840.1979;元素分析结果:理论值:C,84.275;H,3.475;B,1.286;N,3.333;S,7.632(%);实验值:C,84.270;H,3.446;B,1.352;N,3.417;S,7.675(%)。
目标化合物D1-203(HPLC分析纯度99.52%),黄色固体。MALDI-TOF-MS结果:分子离子峰:840.1953;元素分析结果:理论值:C,84.279;H,3.480;B,1.285;N,3.329;S,7.627(%);实验值:C,84.280;H,3.492;B,1.336;N,3.405;S,7.660(%)。
目标化合物D1-205(HPLC分析纯度99.04%),黄色固体。MALDI-TOF-MS结果:分子离子峰:768.3735;元素分析结果:理论值:C,89.052;H,5.895;B,1.406;N,3.636(%);实验值:C,89.050;H,5.997;B,1.486;N,3.671(%)。
目标化合物D1-207(HPLC分析纯度99.14%),黄色固体。MALDI-TOF-MS结果:分子离子峰:876.3135;元素分析结果:理论值:C,78.089;H,4.484;B,1.232;F,13.003;N,3.201(%);实验值:C,78.090;H,4.385;B,1.220;F,12.928;N,3.284(%)。
目标化合物D1-209(HPLC分析纯度99.23%),黄色固体。MALDI-TOF-MS结果:分子离子峰:800.3623;元素分析结果:理论值:C,85.486;H,5.663;B,1.350;N,3.503;O,3.997(%);实验值:C,85.500;H,5.597;B,1.377;N,3.506;O,3.901(%)。
目标化合物D1-210(HPLC分析纯度99.11%),黄色固体。MALDI-TOF-MS结果:分子离子峰:928.4745;元素分析结果:理论值:C,86.619;H,6.176;B,1.160;N,6.026(%);实验值:C,86.620;H,6.142;B,1.163;N,6.043(%)。
目标化合物D1-217(HPLC分析纯度99.56%),黄色固体。MALDI-TOF-MS结果:分子离子峰:796.3146;元素分析结果:理论值:C,85.919;H,5.190;B,1.362;N,3.518;S,4.021(%);实验值:C,85.930;H,5.107;B,1.276;N,3.591;S,4.098(%)。
目标化合物D1-218(HPLC分析纯度99.33%),黄色固体。MALDI-TOF-MS结果:分子离子峰:780.3374;元素分析结果:理论值:C,87.694;H,5.289;B,1.376;N,3.592;O,2.053(%);实验值:C,87.700;H,5.283;B,1.472;N,3.580;O,2.108(%)。
目标化合物D1-221(HPLC分析纯度99.40%),黄色固体。MALDI-TOF-MS结果:分子离子峰:830.3555;元素分析结果:理论值:C,88.179;H,5.224;B,1.303;N,3.373;O,1.934(%);实验值:C,88.170;H,5.204;B,1.294;N,3.332;O,2.003(%)。
目标化合物D1-224(HPLC分析纯度99.77%),黄色固体。MALDI-TOF-MS结果:分子离子峰:830.3524;元素分析结果:理论值:C,88.184;H,5.223;B,1.302;N,3.365;O,1.927(%);实验值:C,88.180;H,5.302;B,1.385;N,3.321;O,1.863(%)。
目标化合物D1-225(HPLC分析纯度99.81%),黄色固体。MALDI-TOF-MS结果:分子离子峰:846.3212;元素分析结果:理论值:C,86.508;H,5.120;B,1.275;N,3.305;S,3.786(%);实验值:C,86.510;H,5.103;B,1.238;N,3.409;S,3.746(%)。
目标化合物D1-230(HPLC分析纯度99.00%),黄色固体。MALDI-TOF-MS结果:分子离子峰:894.2725;元素分析结果:理论值:C,81.968;H,4.848;B,1.211;N,3.129;Se,8.839(%);实验值:C,81.970;H,4.913;B,1.288;N,3.085;Se,8.747(%)。
目标化合物D1-239(HPLC分析纯度99.33%),黄色固体。MALDI-TOF-MS结果:分子离子峰:922.3652;元素分析结果:理论值:C,87.186;H,5.126;B,1.173;N,3.037;S,3.472(%);实验值:C,87.200;H,5.119;B,1.119;N,2.968;S,3.384(%)。
目标化合物D1-241(HPLC分析纯度99.35%),黄色固体。MALDI-TOF-MS结果:分子离子峰:667.2235;元素分析结果:理论值:C,88.161;H,3.930;B,1.615;N,6.285(%);实验值:C,88.150;H,3.898;B,1.532;N,6.337(%)。
目标化合物D1-242(HPLC分析纯度99.68%),黄色固体。MALDI-TOF-MS结果:分子离子峰:723.2825;元素分析结果:理论值:C,87.964;H,4.743;B,1.490;N,5.813(%);实验值:C,87.960;H,4.672;B,1.531;N,5.794(%)。
目标化合物D1-243(HPLC分析纯度99.68%),黄色固体。MALDI-TOF-MS结果:分子离子峰:891.4763;元素分析结果:理论值:C,87.524;H,6.549;B,1.213;N,4.711(%);实验值:C,87.510;H,6.480;B,1.242;N,4.810(%)。
目标化合物D1-246(HPLC分析纯度99.49%),黄色固体。MALDI-TOF-MS结果:分子离子峰:939.1747;元素分析结果:理论值:C,67.745;H,2.360;B,1.146;F,24.263;N,4.474(%);实验值:C,67.760;H,2.452;B,1.077;F,24.187;N,4.445(%)。
目标化合物D1-247(HPLC分析纯度99.08%),黄色固体。MALDI-TOF-MS结果:分子离子峰:839.39;元素分析结果:理论值:C,81.518;H,5.515;B,1.287;N,11.670(%);实验值:C,81.520;H,5.551;B,1.303;N,11.734(%)。
目标化合物D1-249(HPLC分析纯度99.12%),黄色固体。MALDI-TOF-MS结果:分子离子峰:787.2612;元素分析结果:理论值:C,80.818;H,4.345;B,1.367;N,5.325;O,8.121(%);实验值:C,80.810;H,4.349;B,1.366;N,5.322;O,8.097(%)。
目标化合物D1-257(HPLC分析纯度99.60%),黄色固体。MALDI-TOF-MS结果:分子离子峰:879.2236;元素分析结果:理论值:C,83.269;H,3.437;B,1.233;N,4.783;S,7.290(%);实验值:C,83.270;H,3.535;B,1.258;N,4.877;S,7.387(%)。
目标化合物D1-263(HPLC分析纯度99.21%),黄色固体。MALDI-TOF-MS结果:分子离子峰:899.3564;元素分析结果:理论值:C,89.423;H,4.698;B,1.203;N,4.672(%);实验值:C,89.420;H,4.728;B,1.268;N,4.748(%)。
目标化合物D1-265(HPLC分析纯度99.06%),黄色固体。MALDI-TOF-MS结果:分子离子峰:879.2236;元素分析结果:理论值:C,83.268;H,3.441;B,1.229;N,4.783;S,7.292(%);实验值:C,83.280;H,3.525;B,1.287;N,4.700;S,7.252(%)。
目标化合物D1-269(HPLC分析纯度99.13%),黄色固体。MALDI-TOF-MS结果:分子离子峰:879.2346;元素分析结果:理论值:C,83.268;H,3.441;B,1.227;N,4.784;S,7.291(%);实验值:C,83.270;H,3.526;B,1.178;N,4.811;S,7.336(%)。
目标化合物D1-273(HPLC分析纯度99.83%),黄色固体。MALDI-TOF-MS结果:分子离子峰:807.3823;元素分析结果:理论值:C,85.404;H,4.862;B,1.304;N,8.441(%);实验值:C,85.400;H,4.838;B,1.271;N,8.513(%)。
目标化合物D1-275(HPLC分析纯度99.34%),黄色固体。MALDI-TOF-MS结果:分子离子峰:829.3434;元素分析结果:理论值:C,87.724;H,5.740;B,1.337;N,5.204(%);实验值:C,87.730;H,5.765;B,1.294;N,5.167(%)。
目标化合物D1-281(HPLC分析纯度99.06%),黄色固体。MALDI-TOF-MS结果:分子离子峰:834.3223;元素分析结果:理论值:C,84.782;H,5.064;B,1.294;N,5.032;S,3.839(%);实验值:C,84.790;H,4.994;B,1.261;N,5.062;S,3.827(%)。
目标化合物D1-282(HPLC分析纯度99.50%),黄色固体。MALDI-TOF-MS结果:分子离子峰:818.3525;元素分析结果:理论值:C,86.438;H,5.161;B,1.315;N,5.132;O,1.950(%);实验值:C,86.450;H,5.249;B,1.292;N,5.060;O,1.933(%)。
目标化合物D1-285(HPLC分析纯度99.38%),黄色固体。MALDI-TOF-MS结果:分子离子峰:869.3678;元素分析结果:理论值:C,86.992;H,5.096;B,1.243;N,4.826;O,1.841(%);实验值:C,86.990;H,5.091;B,1.316;N,4.834;O,1.800(%)。
目标化合物D1-289(HPLC分析纯度99.30%),黄色固体。MALDI-TOF-MS结果:分子离子峰:885.3323;元素分析结果:理论值:C,85.405;H,5.007;B,1.222;N,4.742;S,3.617(%);实验值:C,85.410;H,4.921;B,1.146;N,4.710;S,3.692(%)。
目标化合物D1-291(HPLC分析纯度99.03%),黄色固体。MALDI-TOF-MS结果:分子离子峰:944.4136;元素分析结果:理论值:C,87.704;H,5.234;B,1.135;N,5.934(%);实验值:C,87.710;H,5.135;B,1.063;N,5.953(%)。
目标化合物D1-293(HPLC分析纯度99.72%),黄色固体。MALDI-TOF-MS结果:分子离子峰:933.2857;元素分析结果:理论值:C,81.120;H,4.745;B,1.157;N,4.500;Se,8.468(%);实验值:C,81.110;H,4.662;B,1.068;N,4.505;Se,8.492(%)。
目标化合物D1-303(HPLC分析纯度99.61%),黄色固体。MALDI-TOF-MS结果:分子离子峰:885.3386;元素分析结果:理论值:C,85.411;H,5.007;B,1.217;N,4.737;S,3.617(%);实验值:C,85.400;H,5.011;B,1.157;N,4.685;S,3.552(%)。
目标化合物D1-304(HPLC分析纯度99.09%),黄色固体。MALDI-TOF-MS结果:分子离子峰:933.2835;元素分析结果:理论值:C,81.119;H,4.750;B,1.161;N,4.496;Se,8.474(%);实验值:C,81.120;H,4.753;B,1.238;N,4.431;Se,8.538(%)。
目标化合物D1-305(HPLC分析纯度99.63%),黄色固体。MALDI-TOF-MS结果:分子离子峰:944.4112;元素分析结果:理论值:C,87.696;H,5.227;B,1.138;N,5.931(%);实验值:C,87.710;H,5.261;B,1.215;N,5.985(%)。
目标化合物D1-308(HPLC分析纯度99.59%),黄色固体。MALDI-TOF-MS结果:分子离子峰:885.3345;元素分析结果:理论值:C,85.405;H,5.012;B,1.215;N,4.743;S,3.615(%);实验值:C,85.400;H,5.017;B,1.203;N,4.780;S,3.581(%)。
目标化合物D1-313(HPLC分析纯度99.22%),黄色固体。MALDI-TOF-MS结果:分子离子峰:797.3754;元素分析结果:理论值:C,88.828;H,4.549;B,1.358;N,5.265(%);实验值:C,88.840;H,4.494;B,1.271;N,5.304(%)。
目标化合物D1-315(HPLC分析纯度99.90%),黄色固体。MALDI-TOF-MS结果:分子离子峰:847.3275;元素分析结果:理论值:C,89.250;H,4.523;B,1.276;N,4.964(%);实验值:C,89.250;H,4.553;B,1.198;N,4.993(%)。
目标化合物D1-316(HPLC分析纯度99.73%),黄色固体。MALDI-TOF-MS结果:分子离子峰:727.2335;元素分析结果:理论值:C,84.178;H,4.160;B,1.493;N,5.767;S,4.405(%);实验值:C,84.180;H,4.068;B,1.570;N,5.683;S,4.314(%)。
目标化合物D1-317(HPLC分析纯度99.50%),黄色固体。MALDI-TOF-MS结果:分子离子峰:711.2546;元素分析结果:理论值:C,86.083;H,4.252;B,1.521;N,5.896;O,2.245(%);实验值:C,86.070;H,4.187;B,1.526;N,5.901;O,2.318(%)。
目标化合物D1-318(HPLC分析纯度99.71%),黄色固体。MALDI-TOF-MS结果:分子离子峰:711.2574;元素分析结果:理论值:C,86.083;H,4.247;B,1.520;N,5.901;O,2.252(%);实验值:C,86.090;H,4.285;B,1.444;N,5.816;O,2.251(%)。
目标化合物D1-320(HPLC分析纯度99.50%),黄色固体。MALDI-TOF-MS结果:分子离子峰:894.3957;元素分析结果:理论值:C,87.240;H,5.289;B,1.206;N,6.264(%);实验值:C,87.250;H,5.291;B,1.223;N,6.280(%)。
目标化合物D1-324(HPLC分析纯度99.34%),黄色固体。MALDI-TOF-MS结果:分子离子峰:725.2168;元素分析结果:理论值:C,84.413;H,3.888;B,1.493;N,5.791;S,4.420(%);实验值:C,84.410;H,3.803;B,1.464;N,5.808;S,4.418(%)。
目标化合物D1-326(HPLC分析纯度99.12%),黄色固体。MALDI-TOF-MS结果:分子离子峰:691.2379;元素分析结果:理论值:C,83.352;H,4.371;B,1.557;N,6.083;S,4.635(%);实验值:C,83.340;H,4.368;B,1.540;N,6.019;S,4.662(%)。
目标化合物D1-327(HPLC分析纯度99.50%),黄色固体。MALDI-TOF-MS结果:分子离子峰:890.4846;元素分析结果:理论值:C,84.921;H,7.126;B,1.208;N,3.138;S,3.604(%);实验值:C,84.930;H,7.067;B,1.276;N,3.216;S,3.555(%)。
目标化合物D1-331(HPLC分析纯度99.48%),黄色固体。MALDI-TOF-MS结果:分子离子峰:854.3879;元素分析结果:理论值:C,78.738;H,6.125;B,1.287;N,10.016;S,3.823(%);实验值:C,78.740;H,6.129;B,1.376;N,9.969;S,3.904(%)。
目标化合物D1-334(HPLC分析纯度99.14%),黄色固体。MALDI-TOF-MS结果:分子离子峰:724.1635;元素分析结果:理论值:C,79.563;H,2.920;B,1.493;N,11.596;S,4.415(%);实验值:C,79.570;H,2.950;B,1.584;N,11.597;S,4.326(%)。
目标化合物D1-341(HPLC分析纯度99.59%),黄色固体。MALDI-TOF-MS结果:分子离子峰:866.2986;元素分析结果:理论值:C,87.294;H,4.534;B,1.247;N,3.231;S,3.700(%);实验值:C,87.300;H,4.555;B,1.270;N,3.327;S,3.634(%)。
目标化合物D1-365(HPLC分析纯度99.79%),黄色固体。MALDI-TOF-MS结果:分子离子峰:748.3642;元素分析结果:理论值:C,86.618;H,6.057;B,1.439;N,3.744;O,2.135(%);实验值:C,86.630;H,6.119;B,1.480;N,3.804;O,2.096(%)。
目标化合物D1-374(HPLC分析纯度99.72%),黄色固体。MALDI-TOF-MS结果:分子离子峰:797.2857;元素分析结果:理论值:C,82.970;H,4.635;B,1.377;N,8.963;O,2.045(%);实验值:C,82.980;H,4.727;B,1.416;N,8.927;O,2.050(%)。
目标化合物D1-377(HPLC分析纯度99.82%),黄色固体。MALDI-TOF-MS结果:分子离子峰:776.3352;元素分析结果:理论值:C,83.501;H,5.322;B,1.391;N,3.612;O,2.062;S,4.130(%);实验值:C,83.500;H,5.419;B,1.448;N,3.675;O,2.113;S,4.215(%)。
目标化合物D1-378(HPLC分析纯度99.64%),黄色固体。MALDI-TOF-MS结果:分子离子峰:771.3157;元素分析结果:理论值:C,84.036;H,4.959;B,1.395;N,5.454;O,4.148(%);实验值:C,84.050;H,4.993;B,1.478;N,5.371;O,4.224(%)。
目标化合物D1-385(HPLC分析纯度99.68%),黄色固体。MALDI-TOF-MS结果:分子离子峰:826.3235;元素分析结果:理论值:C,84.248;H,5.239;B,1.311;N,3.390;O,1.926;S,3.882(%);实验值:C,84.240;H,5.333;B,1.395;N,3.376;O,1.973;S,3.919(%)。
目标化合物D1-404(HPLC分析纯度99.61%),黄色固体。MALDI-TOF-MS结果:分子离子峰:830.2964;元素分析结果:理论值:C,82.396;H,4.845;B,1.296;F,2.285;N,3.372;O,1.933;S,3.862(%);实验值:C,82.410;H,4.802;B,1.395;F,2.215;N,3.349;O,2.013;S,3.802(%)。
目标化合物D1-405(HPLC分析纯度99.67%),黄色固体。MALDI-TOF-MS结果:分子离子峰:814.3247;元素分析结果:理论值:C,84.032;H,4.952;B,1.328;F,2.328;N,3.438;O,3.441(%);实验值:C,84.040;H,4.983;B,1.410;F,2.354;N,3.383;O,3.833(%)。
目标化合物D1-408(HPLC分析纯度99.32%),黄色固体。MALDI-TOF-MS结果:分子离子峰:651.2358;元素分析结果:理论值:C,86.925;H,4.761;B,1.704;N,6.605(%);实验值:C,86.920;H,4.680;B,1.627;N,6.670(%)。
目标化合物D1-409(HPLC分析纯度99.52%),黄色固体。MALDI-TOF-MS结果:分子离子峰:803.4469;元素分析结果:理论值:C,86.659;H,6.769;B,1.339;N,5.228(%);实验值:C,86.650;H,6.836;B,1.269;N,5.143(%)。
目标化合物D1-416(HPLC分析纯度99.66%),黄色固体。MALDI-TOF-MS结果:分子离子峰:679.1770;元素分析结果:理论值:C,81.307;H,2.670;B,1.591;N,14.432(%);实验值:C,81.310;H,2.751;B,1.568;N,14.520(%)。
目标化合物D1-427(HPLC分析纯度99.16%),黄色固体。MALDI-TOF-MS结果:分子离子峰:791.1780;元素分析结果:理论值:C,81.916;H,3.306;B,1.373;N,5.313;S,8.099(%);实验值:C,81.910;H,3.276;B,1.307;N,5.298;S,8.184(%)。
目标化合物D1-433(HPLC分析纯度99.68%),黄色固体。MALDI-TOF-MS结果:分子离子峰:731.3197;元素分析结果:理论值:C,85.358;H,5.233;B,1.477;N,5.738;O,2.193(%);实验值:C,85.360;H,5.189;B,1.492;N,5.789;O,2.095(%)。
目标化合物D1-435(HPLC分析纯度99.01%),黄色固体。MALDI-TOF-MS结果:分子离子峰:781.3307;元素分析结果:理论值:C,86.036;H,5.164;B,1.381;N,5.377;O,2.050(%);实验值:C,86.030;H,5.063;B,1.352;N,5.443;O,1.952(%)。
目标化合物D1-436(HPLC分析纯度99.76%),黄色固体。MALDI-TOF-MS结果:分子离子峰:872.3557;元素分析结果:理论值:C,86.910;H,5.292;B,1.259;N,6.539(%);实验值:C,86.900;H,5.354;B,1.327;N,6.467(%)。
目标化合物D1-439(HPLC分析纯度99.51%),黄色固体。MALDI-TOF-MS结果:分子离子峰:797.3643;元素分析结果:理论值:C,84.306;H,5.046;B,1.353;N,5.272;S,4.024(%);实验值:C,84.310;H,4.974;B,1.415;N,5.305;S,3.923(%)。
目标化合物D1-444(HPLC分析纯度99.11%),黄色固体。MALDI-TOF-MS结果:分子离子峰:845.2575;元素分析结果:理论值:C,79.621;H,4.765;B,1.282;N,4.971;Se,9.351(%);实验值:C,79.630;H,4.785;B,1.329;N,4.971;Se,9.370(%)。
目标化合物D1-449(HPLC分析纯度99.79%),黄色固体。MALDI-TOF-MS结果:分子离子峰:797.3689;元素分析结果:理论值:C,84.308;H,5.052;B,1.349;N,5.266;S,4.024(%);实验值:C,84.300;H,5.106;B,1.251;N,5.306;S,4.117(%)。
目标化合物D1-451(HPLC分析纯度99.29%),黄色固体。MALDI-TOF-MS结果:分子离子峰:856.3786;元素分析结果:理论值:C,86.912;H,5.286;B,1.262;N,6.536(%);实验值:C,86.920;H,5.372;B,1.185;N,6.571(%)。
目标化合物D1-456(HPLC分析纯度99.52%),黄色固体。MALDI-TOF-MS结果:分子离子峰:759.2864;元素分析结果:理论值:C,88.533;H,4.508;B,1.423;N,5.532(%);实验值:C,88.520;H,4.490;B,1.480;N,5.486(%)。
目标化合物D1-461(HPLC分析纯度99.06%),黄色固体。MALDI-TOF-MS结果:分子离子峰:639.1957;元素分析结果:理论值:C,83.005;H,4.241;B,1.616;N,6.313;S,4.815(%);实验值:C,83.020;H,4.153;B,1.525;N,6.243;S,4.733(%)。
目标化合物D1-462(HPLC分析纯度99.73%),黄色固体。MALDI-TOF-MS结果:分子离子峰:806.3654;元素分析结果:理论值:C,86.338;H,5.368;B,1.344;N,6.941(%);实验值:C,86.350;H,5.323;B,1.371;N,6.876(%)。
目标化合物D1-465(HPLC分析纯度99.36%),黄色固体。MALDI-TOF-MS结果:分子离子峰:982.5123;元素分析结果:理论值:C,86.737;H,6.458;B,1.099;N,5.697(%);实验值:C,86.750;H,6.421;B,1.060;N,5.763(%)。
目标化合物D1-472(HPLC分析纯度99.76%),黄色固体。MALDI-TOF-MS结果:分子离子峰:858.2557;元素分析结果:理论值:C,82.523;H,3.166;B,1.256;N,13.054(%);实验值:C,82.520;H,3.210;B,1.164;N,13.107(%)。
目标化合物D1-487(HPLC分析纯度99.80%),黄色固体。MALDI-TOF-MS结果:分子离子峰:895.1968;元素分析结果:理论值:C,81.783;H,3.380;B,1.208;N,4.693;O,1.794;S,7.159(%);实验值:C,81.770;H,3.338;B,1.142;N,4.654;O,1.800;S,7.108(%)。
目标化合物D1-503(HPLC分析纯度99.49%),黄色固体。MALDI-TOF-MS结果:分子离子峰:839.3579;元素分析结果:理论值:C,84.365;H,5.519;B,1.285;N,5.002;S,3.818(%);实验值:C,84.380;H,5.498;B,1.274;N,4.975;S,3.830(%)。
目标化合物D1-512(HPLC分析纯度99.03%),黄色固体。MALDI-TOF-MS结果:分子离子峰:861.3108;元素分析结果:理论值:C,82.217;H,4.680;B,1.252;N,8.126;S,3.718(%);实验值:C,82.210;H,4.767;B,1.173;N,8.077;S,3.746(%)。
目标化合物D1-515(HPLC分析纯度99.27%),黄色固体。MALDI-TOF-MS结果:分子离子峰:867.2934;元素分析结果:理论值:C,81.646;H,4.879;B,1.253;N,4.842;S,7.392(%);实验值:C,81.650;H,4.973;B,1.327;N,4.898;S,7.448(%)。
目标化合物D1-520(HPLC分析纯度99.21%),黄色固体。MALDI-TOF-MS结果:分子离子峰:992.3557;元素分析结果:理论值:C,84.804;H,4.782;B,1.136;N,5.903;S,3.380(%);实验值:C,84.810;H,4.751;B,1.122;N,5.886;S,3.465(%)。
目标化合物D1-523(HPLC分析纯度99.01%),黄色固体。MALDI-TOF-MS结果:分子离子峰:943.3668;元素分析结果:理论值:C,82.685;H,5.338;B,1.150;N,4.449;S,3.397;Si,2.971(%);实验值:C,82.700;H,5.402;B,1.158;N,4.467;S,3.371;Si,3.035(%)。
目标化合物D1-537(HPLC分析纯度99.55%),黄色固体。MALDI-TOF-MS结果:分子离子峰:943.3635;元素分析结果:理论值:C,82.688;H,5.343;B,1.151;N,4.449;S,3.401;Si,2.974(%);实验值:C,82.700;H,5.378;B,1.111;N,4.412;S,3.352;Si,3.010(%)。
目标化合物D1-539(HPLC分析纯度99.61%),黄色固体。MALDI-TOF-MS结果:分子离子峰:1002.4357;元素分析结果:理论值:C,85.009;H,5.533;B,1.078;N,5.589;Si,2.795(%);实验值:C,85.020;H,5.574;B,1.088;N,5.497;Si,2.812(%)。
目标化合物D1-548(HPLC分析纯度99.23%),黄色固体。MALDI-TOF-MS结果:分子离子峰:684.2768;元素分析结果:理论值:C,89.467;H,4.863;B,1.584;N,4.091(%);实验值:C,89.470;H,4.939;B,1.584;N,4.047(%)。
目标化合物D1-556(HPLC分析纯度99.66%),黄色固体。MALDI-TOF-MS结果:分子离子峰:728.1997;元素分析结果:理论值:C,84.084;H,2.912;B,1.479;N,11.542(%);实验值:C,84.090;H,2.981;B,1.477;N,11.555(%)。
目标化合物D1-563(HPLC分析纯度99.24%),黄色固体。MALDI-TOF-MS结果:分子离子峰:796.3153;元素分析结果:理论值:C,85.917;H,5.185;B,1.361;N,3.518;S,4.018(%);实验值:C,85.910;H,5.244;B,1.427;N,3.484;S,3.989(%)。
目标化合物D1-568(HPLC分析纯度99.18%),黄色固体。MALDI-TOF-MS结果:分子离子峰:921.3746;元素分析结果:理论值:C,88.934;H,5.050;B,1.226;N,4.792(%);实验值:C,88.940;H,4.986;B,1.154;N,4.766(%)。
目标化合物D1-569(HPLC分析纯度99.44%),黄色固体。MALDI-TOF-MS结果:分子离子峰:894.2757;元素分析结果:理论值:C,81.966;H,4.854;B,1.210;N,3.132;Se,8.837(%);实验值:C,81.980;H,4.795;B,1.213;N,3.091;Se,8.780(%)。
目标化合物D1-572(HPLC分析纯度99.52%),黄色固体。MALDI-TOF-MS结果:分子离子峰:905.3923;元素分析结果:理论值:C,88.827;H,5.344;B,1.187;N,4.639(%);实验值:C,88.820;H,5.284;B,1.145;N,4.689(%)。
目标化合物D1-574(HPLC分析纯度99.27%),黄色固体。MALDI-TOF-MS结果:分子离子峰:846.3264;元素分析结果:理论值:C,86.512;H,5.119;B,1.279;N,3.306;S,3.785(%);实验值:C,86.500;H,5.124;B,1.350;N,3.222;S,3.881(%)。
目标化合物D1-577(HPLC分析纯度99.47%),黄色固体。MALDI-TOF-MS结果:分子离子峰:894.2757;元素分析结果:理论值:C,81.974;H,4.848;B,1.214;N,3.131;Se,8.838(%);实验值:C,81.960;H,4.773;B,1.233;N,3.155;Se,8.934(%)。
目标化合物D1-603(HPLC分析纯度99.54%),黄色固体。MALDI-TOF-MS结果:分子离子峰:780.2723;元素分析结果:理论值:C,90.772;H,4.261;B,1.382;N,3.594(%);实验值:C,90.770;H,4.299;B,1.356;N,3.685(%)。
目标化合物D1-614(HPLC分析纯度99.71%),黄色固体。MALDI-TOF-MS结果:分子离子峰:989.3746;元素分析结果:理论值:C,87.350;H,4.476;B,1.086;N,7.071(%);实验值:C,87.360;H,4.403;B,1.148;N,6.972(%)。
目标化合物D1-625(HPLC分析纯度99.59%),黄色固体。MALDI-TOF-MS结果:分子离子峰:836.2523;元素分析结果:理论值:C,87.551;H,3.976;B,1.288;N,3.346;S,3.829(%);实验值:C,87.560;H,3.931;B,1.310;N,3.283;S,3.777(%)。
目标化合物D1-630(HPLC分析纯度99.30%),黄色固体。MALDI-TOF-MS结果:分子离子峰:811.2346;元素分析结果:理论值:C,85.815;H,3.726;B,1.326;N,5.181;S,3.949(%);实验值:C,85.830;H,3.774;B,1.272;N,5.253;S,3.938(%)。
目标化合物D1-661(HPLC分析纯度99.41%),黄色固体。MALDI-TOF-MS结果:分子离子峰:830.2623;元素分析结果:理论值:C,88.194;H,3.764;B,1.295;N,6.742(%);实验值:C,88.190;H,3.793;B,1.399;N,6.725(%)。
目标化合物D1-671(HPLC分析纯度99.62%),黄色固体。MALDI-TOF-MS结果:分子离子峰:897.3346;元素分析结果:理论值:C,89.626;H,4.487;B,1.201;N,4.676(%);实验值:C,89.630;H,4.449;B,1.295;N,4.677(%)。
目标化合物D1-682(HPLC分析纯度99.77%),黄色固体。MALDI-TOF-MS结果:分子离子峰:771.2857;元素分析结果:理论值:C,88.712;H,4.437;B,1.404;N,5.445(%);实验值:C,88.710;H,4.537;B,1.477;N,5.382(%)。
目标化合物D1-685(HPLC分析纯度99.13%),黄色固体。MALDI-TOF-MS结果:分子离子峰:945.3368;元素分析结果:理论值:C,90.149;H,4.261;B,1.136;N,4.441(%);实验值:C,90.140;H,4.214;B,1.178;N,4.386(%)。
目标化合物D1-715(HPLC分析纯度99.39%),黄色固体。MALDI-TOF-MS结果:分子离子峰:731.2523;元素分析结果:理论值:C,88.649;H,4.132;B,1.475;N,5.737(%);实验值:C,88.640;H,4.213;B,1.462;N,5.748(%)。
目标化合物D1-722(HPLC分析纯度99.34%),黄色固体。MALDI-TOF-MS结果:分子离子峰:770.1864;元素分析结果:理论值:C,79.481;H,3.532;B,1.398;N,7.265;S,8.323(%);实验值:C,79.490;H,3.552;B,1.487;N,7.315;S,8.272(%)。
目标化合物D1-740(HPLC分析纯度99.80%),黄色固体。MALDI-TOF-MS结果:分子离子峰:846.3326;元素分析结果:理论值:C,87.935;H,4.171;B,1.283;N,6.623(%);实验值:C,87.940;H,4.128;B,1.253;N,6.556(%)。
目标化合物D1-771(HPLC分析纯度99.45%),黄色固体。MALDI-TOF-MS结果:分子离子峰:724.2723;元素分析结果:理论值:C,87.844;H,4.591;B,1.485;N,3.867;O,2.207(%);实验值:C,87.850;H,4.507;B,1.511;N,3.859;O,2.281(%)。
目标化合物D1-782(HPLC分析纯度99.56%),黄色固体。MALDI-TOF-MS结果:分子离子峰:995.4246;元素分析结果:理论值:C,86.816;H,5.061;B,1.094;N,7.033(%);实验值:C,86.830;H,4.985;B,1.077;N,7.015(%)。
目标化合物D1-783(HPLC分析纯度99.10%),黄色固体。MALDI-TOF-MS结果:分子离子峰:893.3237;元素分析结果:理论值:C,85.989;H,4.513;B,1.211;N,4.696;S,3.586(%);实验值:C,85.980;H,4.502;B,1.199;N,4.785;S,3.642(%)。
目标化合物D1-793(HPLC分析纯度99.74%),黄色固体。MALDI-TOF-MS结果:分子离子峰:816.2435;元素分析结果:理论值:C,85.288;H,4.065;B,1.323;N,3.428;O,1.961;S,3.934(%);实验值:C,85.290;H,4.010;B,1.317;N,3.369;O,2.018;S,4.010(%)。
目标化合物D1-796(HPLC分析纯度99.78%),黄色固体。MALDI-TOF-MS结果:分子离子峰:901.3646;元素分析结果:理论值:C,89.216;H,4.921;B,1.199;N,4.656(%);实验值:C,89.220;H,4.946;B,1.210;N,4.726(%)。
目标化合物D1-827(HPLC分析纯度99.25%),黄色固体。MALDI-TOF-MS结果:分子离子峰:769.2757;元素分析结果:理论值:C,88.953;H,4.189;B,1.400;N,5.461(%);实验值:C,88.950;H,4.240;B,1.372;N,5.501(%)。
目标化合物D1-838(HPLC分析纯度99.44%),黄色固体。MALDI-TOF-MS结果:分子离子峰:1028.3824;元素分析结果:理论值:C,86.366;H,4.408;B,1.045;N,8.174(%);实验值:C,86.380;H,4.504;B,0.996;N,8.146(%)。
目标化合物D1-849(HPLC分析纯度99.77%),黄色固体。MALDI-TOF-MS结果:分子离子峰:800.2246;元素分析结果:理论值:C,84.004;H,3.651;B,1.352;N,7.001;S,4.002(%);实验值:C,84.010;H,3.700;B,1.351;N,6.971;S,3.960(%)。
目标化合物D1-884(HPLC分析纯度99.37%),黄色固体。MALDI-TOF-MS结果:分子离子峰:852.3557;元素分析结果:理论值:C,83.087;H,5.322;B,1.272;N,6.571;S,3.759(%);实验值:C,83.090;H,5.342;B,1.241;N,6.580;S,3.713(%)。
目标化合物D1-895(HPLC分析纯度99.31%),黄色固体。MALDI-TOF-MS结果:分子离子峰:968.3186;元素分析结果:理论值:C,85.530;H,4.267;B,1.121;N,5.782;S,3.305(%);实验值:C,85.530;H,4.345;B,1.140;N,5.867;S,3.382(%)。
目标化合物D1-904(HPLC分析纯度99.51%),黄色固体。MALDI-TOF-MS结果:分子离子峰:816.2232;元素分析结果:理论值:C,82.352;H,3.584;B,1.323;N,6.857;O,1.964;S,3.933(%);实验值:C,82.340;H,3.516;B,1.290;N,6.780;O,1.868;S,3.847(%)。
目标化合物D1-909(HPLC分析纯度99.88%),黄色固体。MALDI-TOF-MS结果:分子离子峰:950.3234;元素分析结果:理论值:C,87.145;H,4.132;B,1.142;N,5.889;O,1.684(%);实验值:C,87.160;H,4.045;B,1.177;N,5.858;O,1.639(%)。
实施例D-2化合物D1-93的合成
在双颈烧瓶中,氮气气氛下,将化合物I-93-1(10.4mmol)、咔唑(10.4mmol)、碳酸铯(40mmol)溶于150mL N,N-二甲基甲酰胺(DMF)中,升温至150℃,反应12小时。反应结束冷却后,倒入冷水中,过滤,用100mL水洗涤两次后,用10mL甲醇洗涤一次,烘干得到目标化合物I-93-2,淡黄色固体。
在双颈烧瓶中,氮气气氛下,依次加入化合物I-93-2(10mmol),化合物4,4'-二叔丁基二苯胺(10mmol),三二亚苄基丙酮二钯(1mmol),三叔丁基磷四氟硼酸盐(2mmol),叔丁醇钠(12mmol),加入100ml干燥甲苯并升温至110℃,反应12小时。冷却后分液分离并收集有机相,无水硫酸钠干燥有机相,随后过滤并浓缩有机相,通过硅胶柱以石油醚:二氯甲烷=10:1为展开剂分离化合物,得到化合物I-93-3。
在双颈烧瓶中,氮气气氛下,将化合物I-93-3(5mmol)溶于10ml干燥四氢呋喃中,冷却至-78℃,加入正丁基锂的戊烷溶液(1M,6ml),在该温度下反应1小时。将苯并[A]芴酮溶于40ml提前冷却至-78℃的干燥四氢呋喃中,然后将该溶液在-78℃下缓慢注入到I-93-3的溶液中,缓慢升至室温,反应12小时。反应结束后,加入少量甲醇猝灭,减压蒸发溶剂,加入100ml冰乙酸和10ml浓盐酸,之后升温至回流。反应2小时后用饱和碳酸钠水溶液中和,用二氯甲烷萃取分液并收集有机相,无水硫酸钠干燥有机相,随后过滤并浓 缩有机相,通过硅胶柱以石油醚:二氯甲烷=5:1为展开剂分离化合物,得到化合物I-93-4。
在封管中将化合物I-93-4(1mmol)溶于20mL叔丁基苯中,冷却至-78℃后,加入叔丁基锂的戊烷溶液(1M,2.5mL),之后升温至30℃反应1小时。再次冷却至-78℃,缓慢加入三溴化硼(3mmol),之后升至30℃继续搅拌1小时。冷却至0℃后,加入二异丙基乙基胺(5mmol),之后升温至160℃,反应12小时。真空抽干溶剂,过硅胶柱,以石油醚:二氯甲烷=10:1为展开剂,得到目标化合物D1-93(HPLC分析纯度99.32%),黄色固体。MALDI-TOF-MS结果:分子离子峰:742.3523;元素分析结果:理论值:C,88.938;H,5.842;B,1.461;N,3.766(%);实验值:C,88.940;H,5.930;B,1.413;N,3.711(%)。
以下合成实施例的合成方式均与实施例D-2类似,仅需将第一步中的咔唑替换为对应的咔唑衍生物和第二步中的仲胺替换为对应的仲胺以及芴酮替换为与实施例中相应片段的芳香酮原料即可。


目标化合物D1-95(HPLC分析纯度99.10%),黄色固体。MALDI-TOF-MS结果:分子离子峰:907.4175;元素分析结果:理论值:C,88.630;H,5.552;B,1.189;N,4.634(%);实验值:C,88.620;H,5.498;B,1.151;N,4.727(%)。
目标化合物D1-97(HPLC分析纯度99.25%),黄色固体。MALDI-TOF-MS结果:分子离子峰:896.2835;元素分析结果:理论值:C,81.791;H,5.062;B,1.205;N,3.132;Se,8.823(%);实验值:C,81.800;H,5.010;B,1.114;N,3.048;Se,8.920(%)。
目标化合物D1-98(HPLC分析纯度99.65%),黄色固体。MALDI-TOF-MS结果:分子离子峰:896.2824;元素分析结果:理论值:C,81.786;H,5.062;B,1.205;N,3.130;Se,8.823(%);实验值:C,81.780;H,5.093;B,1.224;N,3.049;Se,8.739(%)。
目标化合物D1-105(HPLC分析纯度99.57%),黄色固体。MALDI-TOF-MS结果:分子离子峰:907.4164;元素分析结果:理论值:C,88.632;H,5.548;B,1.186;N,4.630(%);实验值:C,88.620;H,5.510;B,1.097;N,4.568(%)。
目标化合物D1-107(HPLC分析纯度99.68%),黄色固体。MALDI-TOF-MS结果:分子离子峰:848.3442;元素分析结果:理论值:C,86.306;H,5.336;B,1.268;N,3.296;S,3.775(%);实验值:C,86.310;H,5.411;B,1.337;N,3.248;S,3.788(%)。
目标化合物D1-109(HPLC分析纯度99.82%),黄色固体。MALDI-TOF-MS结果:分子离子峰:798.32462;元素分析结果:理论值:C,85.701;H,5.426;B,1.353;N,3.510;S,4.007(%);实验值:C,85.710;H,5.441;B,1.421;N,3.549;S,3.980(%)。
目标化合物D1-110(HPLC分析纯度99.14%),黄色固体。MALDI-TOF-MS结果:分子离子峰:782.354;元素分析结果:理论值:C,87.461;H,5.540;B,1.375;N,3.578;O,2.040(%);实验值:C,87.460;H,5.475;B,1.384;N,3.637;O,1.970(%)。
目标化合物D1-114(HPLC分析纯度99.85%),黄色固体。MALDI-TOF-MS结果:分子离子峰:792.3446;元素分析结果:理论值:C,86.360;H,5.211;B,1.363;N,7.065(%);实验值:C,86.360;H,5.292;B,1.353;N,6.991(%)。
目标化合物D1-125(HPLC分析纯度99.13%),黄色固体。MALDI-TOF-MS结果:分子离子峰:712.1875;元素分析结果:理论值:C,84.266;H,3.543;B,1.515;N,3.934;O,2.252;S,4.497(%);实验值:C,84.270;H,3.587;B,1.497;N,3.870;O,2.214;S,4.550(%)。
目标化合物D1-127(HPLC分析纯度99.90%),黄色固体。MALDI-TOF-MS结果:分子离子峰:792.1846;元素分析结果:理论值:C,75.771;H,2.930;B,1.360;F,14.380;N,3.525;O,2.015(%);实验值:C,75.770;H,2.850;B,1.409;F,14.449;N,3.555;O,1.989(%)。
目标化合物D1-130(HPLC分析纯度99.05%),黄色固体。MALDI-TOF-MS结果:分子离子峰:706.2057;元素分析结果:理论值:C,84.986;H,3.279;B,1.530;N,7.934;O,2.257(%);实验值:C,84.980;H,3.265;B,1.531;N,7.884;O,2.313(%)。
目标化合物D1-140(HPLC分析纯度99.25%),黄色固体。MALDI-TOF-MS结果:分子离子峰:772.2723;元素分析结果:理论值:C,88.596;H,4.301;B,1.400;N,3.634;O,2.065(%);实验值:C,88.610;H,4.371;B,1.496;N,3.591;O,2.090(%)。
目标化合物D1-583(HPLC分析纯度99.66%),黄色固体。MALDI-TOF-MS结果:分子离子峰:782.2975;元素分析结果:理论值:C,90.526;H,4.511;B,1.384;N,3.582(%);实验值:C,90.530;H,4.486;B,1.369;N,3.646(%)。
目标化合物D1-586(HPLC分析纯度99.09%),黄色固体。MALDI-TOF-MS结果:分子离子峰:707.2543;元素分析结果:理论值:C,88.260;H,4.268;B,1.527;N,5.940(%);实验值:C,88.250;H,4.233;B,1.549;N,6.022(%)。
目标化合物D1-589(HPLC分析纯度99.26%),黄色固体。MALDI-TOF-MS结果:分子离子峰:707.2343;元素分析结果:理论值:C,84.873;H,3.698;B,1.526;N,9.897(%);实验值:C,84.880;H,3.633;B,1.610;N,9.888(%)。
目标化合物D1-599(HPLC分析纯度99.35%),黄色固体。MALDI-TOF-MS结果:分子离子峰:899.3557;元素分析结果:理论值:C,89.418;H,4.701;B,1.195;N,4.671(%);实验值:C,89.420;H,4.617;B,1.144;N,4.619(%)。
目标化合物D1-636(HPLC分析纯度99.88%),黄色固体。MALDI-TOF-MS结果:分子离子峰:687.1975;元素分析结果:理论值:C,83.836;H,3.813;B,1.567;N,6.113;S,4.656(%);实验值:C,83.840;H,3.808;B,1.635;N,6.161;S,4.666(%)。
目标化合物D1-643(HPLC分析纯度99.44%),黄色固体。MALDI-TOF-MS结果:分子离子峰:782.2923;元素分析结果:理论值:C,90.530;H,4.507;B,1.379;N,3.583(%);实验值:C,90.520;H,4.567;B,1.296;N,3.558(%)。
目标化合物D1-654(HPLC分析纯度99.79%),黄色固体。MALDI-TOF-MS结果:分子离子峰:991.3886;元素分析结果:理论值:C,87.183;H,4.667;B,1.094;N,7.058(%);实验值:C,87.190;H,4.571;B,1.017;N,7.137(%)。
目标化合物D1-690(HPLC分析纯度99.33%),黄色固体。MALDI-TOF-MS结果:分子离子峰:758.2546;元素分析结果:理论值:C,88.663;H,4.119;B,1.418;N,3.694;O,2.113(%);实验值:C,88.650;H,4.130;B,1.367;N,3.758;O,2.161(%)。
目标化合物D1-691(HPLC分析纯度99.50%),黄色固体。MALDI-TOF-MS结果:分子离子峰:721.2368;元素分析结果:理论值:C,86.545;H,3.906;B,1.497;N,5.822;O,2.221(%);实验值:C,86.560;H,3.868;B,1.579;N,5.769;O,2.270(%)。
目标化合物D1-695(HPLC分析纯度99.27%),黄色固体。MALDI-TOF-MS结果:分子离子峰:733.2723;元素分析结果:理论值:C,88.400;H,4.398;B,1.472;N,5.725(%);实验值:C,88.410;H,4.494;B,1.561;N,5.687(%)。
目标化合物D1-704(HPLC分析纯度99.11%),黄色固体。MALDI-TOF-MS结果:分子离子峰:769.3457;元素分析结果:理论值:C,84.260;H,5.241;B,1.399;N,9.096(%);实验值:C,84.260;H,5.150;B,1.500;N,9.052(%)。
目标化合物D1-714(HPLC分析纯度99.70%),黄色固体。MALDI-TOF-MS结果:分子离子峰:644.2325;元素分析结果:理论值:C,80.138;H,3.601;B,1.677;F,5.902;N,8.693(%);实验值:C,80.130;H,3.656;B,1.581;F,5.984;N,8.598(%)。
目标化合物D1-745(HPLC分析纯度99.31%),黄色固体。MALDI-TOF-MS结果:分子离子峰:787.3257;元素分析结果:理论值:C,88.432;H,4.855;B,1.368;N,5.332(%);实验值:C,88.440;H,4.780;B,1.312;N,5.325(%)。
目标化合物D1-748(HPLC分析纯度99.45%),黄色固体。MALDI-TOF-MS结果:分子离子峰:688.1923;元素分析结果:理论值:C,81.977;H,3.661;B,1.569;N,8.136;S,4.660(%);实验值:C,81.990;H,3.575;B,1.670;N,8.130;S,4.593(%)。
目标化合物D1-752(HPLC分析纯度99.65%),黄色固体。MALDI-TOF-MS结果:分子离子峰:762.2846;元素分析结果:理论值:C,88.190;H,4.634;B,1.416;N,3.669;O,2.103(%);实验值:C,88.190;H,4.548;B,1.348;N,3.612;O,2.186(%)。
目标化合物D1-763(HPLC分析纯度99.26%),黄色固体。MALDI-TOF-MS结果:分子离子峰:890.3857;元素分析结果:理论值:C,90.321;H,5.324;B,1.208;N,3.139(%);实验值:C,90.310;H,5.294;B,1.197;N,3.070(%)。
目标化合物D1-766(HPLC分析纯度99.54%),黄色固体。MALDI-TOF-MS结果:分子离子峰:971.3832;元素分析结果:理论值:C,85.269;H,4.769;B,1.105;N,7.208;O,1.651(%);实验值:C,85.280;H,4.742;B,1.150;N,7.199;O,1.702(%)。
目标化合物D1-800(HPLC分析纯度99.39%),黄色固体。MALDI-TOF-MS结果:分子离子峰:822.2346;元素分析结果:理论值:C,83.199;H,4.286;B,1.307;N,3.398;S,7.788(%);实验值:C,83.200;H,4.209;B,1.258;N,3.457;S,7.857(%)。
目标化合物D1-804(HPLC分析纯度99.67%),黄色固体。MALDI-TOF-MS结果:分子离子峰:683.1757;元素分析结果:理论值:C,79.055;H,3.832;B,1.576;N,6.145;S,9.381(%);实验值:C,79.050;H,3.894;B,1.532;N,6.242;S,9.307(%)。
目标化合物D1-808(HPLC分析纯度99.10%),黄色固体。MALDI-TOF-MS结果:分子离子峰:821.368;元素分析结果:理论值:C,89.163;H,4.421;B,1.316;N,5.113(%);实验值:C,89.170;H,4.429;B,1.390;N,5.017(%)。
目标化合物D1-810(HPLC分析纯度99.53%),黄色固体。MALDI-TOF-MS结果:分子离子峰:746.2635;元素分析结果:理论值:C,86.859;H,4.177;B,1.453;N,7.502(%);实验值:C,86.870;H,4.216;B,1.521;N,7.428(%)。
目标化合物D1-823(HPLC分析纯度99.18%),黄色固体。MALDI-TOF-MS结果:分子离子峰:938.3657;元素分析结果:理论值:C,88.272;H,4.622;B,1.150;N,5.974(%);实验值:C,88.260;H,4.555;B,1.186;N,5.952(%)。
目标化合物D1-861(HPLC分析纯度99.72%),黄色固体。MALDI-TOF-MS结果:分子离子峰:736.2846;元素分析结果:理论值:C,86.409;H,4.522;B,1.465;N,7.611(%);实验值:C,86.410;H,4.511;B,1.423;N,7.568(%)。
目标化合物D1-864(HPLC分析纯度99.72%),黄色固体。MALDI-TOF-MS结果:分子离子峰:867.2968;元素分析结果:理论值:C,85.808;H,4.407;B,1.253;N,4.836;S,3.685(%);实验值:C,85.810;H,4.392;B,1.319;N,4.757;S,3.780(%)。
目标化合物D1-868(HPLC分析纯度99.58%),黄色固体。MALDI-TOF-MS结果:分子离子峰:904.3846;元素分析结果:理论值:C,83.610;H,5.464;B,1.190;N,6.185;S,3.544(%);实验值:C,83.610;H,5.510;B,1.097;N,6.228;S,3.506(%)。
目标化合物D1-875(HPLC分析纯度99.54%),黄色固体。MALDI-TOF-MS结果:分子离子峰:955.3232;元素分析结果:理论值:C,86.696;H,4.435;B,1.134;N,4.46;S,3.354(%);实验值:C,86.79;H,4.33;B,1.23;N,4.3;S,3.45(%)。
目标化合物D1-912(HPLC分析纯度99.51%),黄色固体。MALDI-TOF-MS结果:分子离子峰:833.2164;元素分析结果:理论值:C,82.114;H,3.869;B,1.296;N,5.036;S,7.690(%);实验值:C,82.110;H,3.839;B,1.331;N,5.082;S,7.633(%)。
目标化合物D1-916(HPLC分析纯度99.20%),黄色固体。MALDI-TOF-MS结果:分子离子峰:772.1957;元素分析结果:理论值:C,79.267;H,3.777;B,1.397;N,7.249;S,8.297(%);实验值:C,79.280;H,3.736;B,1.314;N,7.206;S,8.388(%)。
实施例D-3化合物D1-145的合成
在双颈烧瓶中,氮气气氛下,将化合物I-145-1(10.4mmol)、3,6-二叔丁基咔唑(10.4mmol)、碳酸铯(40mmol)溶于150mL N,N-二甲基甲酰胺(DMF)中,升温至150℃,反应12小时。反应结束冷却后,倒入冷水中,过滤,用100mL水洗涤两次后,用10mL甲醇洗涤一次,烘干得到目标化合物I-145-2,淡黄色固体。
在双颈烧瓶中,氮气气氛下,依次加入化合物I-145-2(10mmol),化合物4,4'-二甲基二苯胺(10mmol),三二亚苄基丙酮二钯(1mmol),三叔丁基磷四氟硼酸盐(2mmol),叔丁醇钠(12mmol),加入100ml干燥甲苯并升温至110℃,反应12小时。冷却后分液分离并收集有机相,无水硫酸钠干燥有机相,随后过滤并浓缩有机相,通过硅胶柱以石油醚:二氯甲烷=10:1为展开剂分离化合物,得到化合物I-145-3。
在双颈烧瓶中,氮气气氛下,将化合物I-145-3(5mmol)溶于10ml干燥四氢呋喃中,冷却至-78℃,加入正丁基锂的戊烷溶液(1M,6ml),在该温度下反应1小时。将苯并[A]芴酮溶于40ml提前冷却至-78℃的干燥四氢呋喃中,然后将该溶液在-78℃下缓慢注入到I-145-3的溶液中,缓慢升至室温,反应12小时。反应结束后,加入少量甲醇猝灭,减压蒸发溶剂,加入100ml冰乙酸和10ml浓盐酸,之后升温至回流。反应2小时后用饱和碳酸钠水溶液中和,用二氯甲烷萃取分液并收集有机相,无水硫酸钠干燥有机相,随后过滤并浓缩有机相,通过硅胶柱以石油醚:二氯甲烷=5:1为展开剂分离化合物,得到化合物I-145-4。
在封管中将化合物I-145-4(1mmol)溶于20mL叔丁基苯中,冷却至-78℃后,加入叔丁基锂的戊烷溶液(1M,2.5mL),之后升温至30℃反应1小时。再次冷却至-78℃,缓慢加入三溴化硼(3mmol),之后升至30℃继续搅拌1小时。冷却至0℃后,加入二异丙基乙基胺(5mmol),之后升温至160℃,反应12小时。真空抽干溶剂,过硅胶柱,以石油醚:二氯甲烷=10:1为展开剂,得到目标化合物D1-145(HPLC分析纯度99.16%),黄色固体。MALDI-TOF-MS结果:分子离子峰:770.3868;元素分析结果:理论值:C,88.817;H,6.146;B,1.398;N,3.631(%);实验值:C,88.810;H,6.092;B,1.477;N,3.560(%)。
以下合成实施例的合成方式均与实施例D-3类似,仅需将第一步中的咔唑替换为对应的咔唑衍生物和第二步中的仲胺替换为对应的仲胺以及芴酮替换为与实施例中相应片段的芳香酮原料即可。
目标化合物D1-147(HPLC分析纯度99.21%),黄色固体。MALDI-TOF-MS结果:分子离子峰:878.3323;元素分析结果:理论值:C,77.914;H,4.704;B,1.229;F,12.968;N,3.188(%);实验值:C,77.920;H,4.752;B,1.269;F,13.000;N,3.183(%)。
目标化合物D1-151(HPLC分析纯度99.05%),黄色固体。MALDI-TOF-MS结果:分子离子峰:828.4446;元素分析结果:理论值:C,85.494;H,6.450;B,1.303;N,6.757(%);实验值:C,85.490;H,6.496;B,1.369;N,6.687(%)。
目标化合物D1-154(HPLC分析纯度99.79%),黄色固体。MALDI-TOF-MS结果:分子离子峰:792.3456;元素分析结果:理论值:C,86.363;H,5.206;B,1.364;N,7.068(%);实验值:C,86.360;H,5.205;B,1.386;N,7.039(%)。
目标化合物D1-157(HPLC分析纯度99.87%),黄色固体。MALDI-TOF-MS结果:分子离子峰:782.3835;元素分析结果:理论值:C,88.986;H,6.054;B,1.381;N,3.581(%);实验值:C,88.990;H,6.105;B,1.394;N,3.600(%)。
目标化合物D1-159(HPLC分析纯度99.52%),黄色固体。MALDI-TOF-MS结果:分子离子峰:816.3223;元素分析结果:理论值:C,85.486;H,5.663;B,1.349;N,3.497;S,4.002(%);实验值:C,85.480;H,5.671;B,1.305;N,3.529;S,3.921(%)。
目标化合物D1-160(HPLC分析纯度99.42%),黄色固体。MALDI-TOF-MS结果:分子离子峰:784.3356;元素分析结果:理论值:C,87.234;H,5.776;B,1.382;N,3.574;O,2.042(%);实验值:C,87.230;H,5.699;B,1.375;N,3.578;O,1.965(%)。
目标化合物D1-162(HPLC分析纯度99.86%),黄色固体。MALDI-TOF-MS结果:分子离子峰:796.3657;元素分析结果:理论值:C,87.430;H,5.691;B,1.364;N,3.524;O,2.009(%);实验值:C,87.420;H,5.726;B,1.345;N,3.565;O,2.100(%)。
目标化合物D1-164(HPLC分析纯度99.57%),黄色固体。MALDI-TOF-MS结果:分子离子峰:829.3679;元素分析结果:理论值:C,88.292;H,5.339;B,1.298;N,5.059(%);实验值:C,88.280;H,5.256;B,1.211;N,5.009(%)。
实施例D-4化合物D1-117的合成
在双颈烧瓶中,氮气气氛下,依次加入化合物I-117-1(10mmol),化合物9,9-二甲基-9,10-二氢吖啶(22mmol),三二亚苄基丙酮二钯(1mmol),三叔丁基磷四氟硼酸盐(2mmol),叔丁醇钠(12mmol),加入100ml干燥甲苯并升温至110℃,反应12小时。冷却后分液分离并收集有机相,无水硫酸钠干燥有机相,随后过滤并浓缩有机相,通过硅胶柱以石油醚:二氯甲烷=10:1为展开剂分离化合物,得到化合物I-117-2。
在双颈烧瓶中,氮气气氛下,将化合物I-117-2(5mmol)溶于10ml干燥四氢呋喃中,冷却至-78℃,加入正丁基锂的戊烷溶液(1M,6ml),在该温度下反应1小时。将苯并[A]芴酮溶于40ml提前冷却至-78℃的干燥四氢呋喃中,然后将该溶液在-78℃下缓慢注入到I-117-2的溶液中,缓慢升至室温,反应12小时。反应结束后,加入少量甲醇猝灭,减压蒸发溶剂,加入100ml冰乙酸和10ml浓盐酸,之后升温至回流。反应2小时后用饱和碳酸钠水溶液中和,用二氯甲烷萃取分液并收集有机相,无水硫酸钠干燥有机相,随后过滤并浓缩有机相,通过硅胶柱以石油醚:二氯甲烷=5:1为展开剂分离化合物,得到化合物I-117-3。
在封管中将化合物I-117-3(1mmol)溶于20mL叔丁基苯中,冷却至-78℃后,加入叔丁基锂的戊烷溶液(1M,2.5mL),之后升温至30℃反应1小时。再次冷却至-78℃,缓慢加入三溴化硼(3mmol),之后升至30℃继续搅拌1小时。冷却至0℃后,加入二异丙基乙基胺(5mmol),之后升温至160℃,反应12小时。真空抽干溶剂,过硅胶柱,以石油醚:二氯甲烷=10:1为展开剂,得到目标化合物D1-117(HPLC分析纯度99.80%),黄色固体。MALDI-TOF-MS结果:分子离子峰:712.3657;元素分析结果:理论值:C,89.318;H,5.234;B,1.519;N,3.931(%);实验值:C,89.330;H,5.161;B,1.478;N,3.934(%)。
以下合成实施例的合成方式均与实施例D-4类似,仅需将第一步中的仲胺替换为对应的仲胺以及芴酮替换为与实施例中相应片段的芳香酮原料即可。
目标化合物D1-119(HPLC分析纯度99.01%),黄色固体。MALDI-TOF-MS结果:分子离子峰:692.1635;元素分析结果:理论值:C,81.501;H,3.636;B,1.556;N,4.042;S,9.262(%);实验值:C,81.490;H,3.636;B,1.640;N,4.058;S,9.288(%)。
目标化合物D1-120(HPLC分析纯度99.58%),黄色固体。MALDI-TOF-MS结果:分子离子峰:788.0435;元素分析结果:理论值:C,71.779;H,3.203;B,1.373;N,3.555;Se,20.083(%);实验值:C,71.790;H,3.197;B,1.311;N,3.490;Se,20.153(%)。
目标化合物D1-121(HPLC分析纯度99.41%),黄色固体。MALDI-TOF-MS结果:分子离子峰:684.246;元素分析结果:理论值:C,85.971;H,3.684;B,1.577;N,4.094;O,4.665(%);实验值:C,85.980;H,3.646;B,1.668;N,4.139;O,4.715(%)。
目标化合物D1-124(HPLC分析纯度99.83%),黄色固体。MALDI-TOF-MS结果:分子离子峰:806.2657;元素分析结果:理论值:C,87.843;H,3.869;B,1.339;N,6.952(%);实验值:C,87.850;H,3.962;B,1.276;N,6.935(%)。
目标化合物D1-580(HPLC分析纯度99.10%),黄色固体。MALDI-TOF-MS结果:分子离子峰:732.2232;元素分析结果:理论值:C,83.609;H,3.442;B,1.480;N,11.469(%);实验值:C,83.610;H,3.516;B,1.575;N,11.545(%)。
目标化合物D1-581(HPLC分析纯度99.49%),黄色固体。MALDI-TOF-MS结果:分子离子峰:704.2643;元素分析结果:理论值:C,80.128;H,3.579;B,1.532;F,10.793;N,3.982(%);实验值:C,80.140;H,3.674;B,1.571;F,10.829;N,4.062(%)。
目标化合物D1-920(HPLC分析纯度99.69%),黄色固体。MALDI-TOF-MS结果:分子离子峰:800.3434;元素分析结果:理论值:C,85.488;H,5.662;B,1.345;N,3.495;S,3.997(%);实验值:C,85.480;H,5.730;B,1.417;N,3.455;S,4.016(%)。
目标化合物D1-925(HPLC分析纯度99.63%),黄色固体。MALDI-TOF-MS结果:分子离子峰:736.2446;元素分析结果:理论值:C,84.788;H,3.974;B,1.467;N,7.614;O,2.173(%);实验值:C,84.780;H,3.998;B,1.503;N,7.589;O,2.127(%)。
目标化合物D1-928(HPLC分析纯度99.65%),黄色固体。MALDI-TOF-MS结果:分子离子峰:808.2123;元素分析结果:理论值:C,75.763;H,3.367;B,1.335;F,14.097;N,3.461;O,1.982(%);实验值:C,75.750;H,3.431;B,1.386;F,14.037;N,3.395;O,1.885(%)。
目标化合物D1-931(HPLC分析纯度99.52%),黄色固体。MALDI-TOF-MS结果:分子离子峰:898.4246;元素分析结果:理论值:C,86.845;H,5.720;B,1.197;N,6.226(%);实验值:C,86.860;H,5.702;B,1.231;N,6.281(%)。
目标化合物D1-936(HPLC分析纯度99.68%),黄色固体。MALDI-TOF-MS结果:分子离子峰:853.3757;元素分析结果:理论值:C,84.389;H,5.674;B,1.274;N,4.919;S,3.751(%);实验值:C,84.400;H,5.633;B,1.257;N,4.846;S,3.717(%)。
目标化合物D1-938(HPLC分析纯度99.36%),黄色固体。MALDI-TOF-MS结果:分子离子峰:800.3468;元素分析结果:理论值:C,85.487;H,5.662;B,1.348;N,3.499;S,3.995(%);实验值:C,85.480;H,5.631;B,1.336;N,3.432;S,4.099(%)。
目标化合物D1-941(HPLC分析纯度99.05%),黄色固体。MALDI-TOF-MS结果:分子离子峰:855.3535;元素分析结果:理论值:C,82.796;H,5.421;B,1.257;N,4.905;O,1.869;S,3.745(%);实验值:C,82.810;H,5.470;B,1.216;N,4.947;O,1.939;S,3.700(%)。
目标化合物D1-944(HPLC分析纯度99.29%),黄色固体。MALDI-TOF-MS结果:分子离子峰:734.1846;元素分析结果:理论值:C,76.844;H,3.981;B,1.465;F,5.169;N,3.805;S,8.729(%);实验值:C,76.840;H,3.993;B,1.454;F,5.261;N,3.814;S,8.824(%)。
目标化合物D1-948(HPLC分析纯度99.43%),黄色固体。MALDI-TOF-MS结果:分子离子峰:879.2532;元素分析结果:理论值:C,72.357;H,3.212;B,1.231;F,12.955;N,4.779;O,1.823;S,3.643(%);实验值:C,72.360;H,3.159;B,1.258;F,12.898;N,4.761;O,1.886;S,3.665(%)。
目标化合物D1-951(HPLC分析纯度99.78%),黄色固体。MALDI-TOF-MS结果:分子离子峰:698.2946;元素分析结果:理论值:C,89.385;H,5.050;B,1.552;N,4.012(%);实验值:C,89.390;H,5.009;B,1.484;N,4.018(%)。
实施例D-5化合物D1-166的合成
在双颈烧瓶中将2-溴-1-(2-溴苯基)萘(19.69mmol)溶于50ml超干THF中,冷却至-78℃,加入正丁基锂的戊烷溶液(2.5M,16ml),在该温度下反应2小时。将四氯化硅(11.28ml)溶于30ml超干THF中,冷却至-78℃。将2-溴-1-(2-溴苯基)萘溶液滴加到四氯化硅溶液中,缓慢升温至室温,搅拌过夜。真空减压除去溶剂,得到I-166-1粗品,油状液体。
I-166-2可由实施例一中类似的方法获取。在烧瓶中将I-166-2(5mmol)、2-溴-3,6-二甲基咔唑(6mmol)、碳酸铯(10mmol)溶于DMF中,升温至150℃,反应12小时。反应结束冷却后,倒入冷水中,过滤,用100mL水洗涤两次后,用10mL甲醇洗涤一次,烘干得到目标化合物I-166-3,淡黄色固体。
在双颈烧瓶中将I-166-3(3mmol)溶于20ml超干THF中,冷却至-78℃,加入正丁基锂的戊烷溶液(2.5M,1.2ml),在该温度下反应2小时。将I-166-1(5mmol)溶于10ml超干THF溶液,冷却至-78℃。将I-166-3的溶液滴入I-166-1的溶液中,缓慢升温至室温,搅拌过夜。真空减压除去溶剂,过硅胶柱(石油醚:二氯甲烷10:1),得到I-166-4,淡黄色固体。
I-166-4至化合物D1-166的合成与实施例D-4中最后一步类似,得到化合物D1-166,黄色固体。MALDI-TOF-MS结果:分子离子峰:700.2557;元素分析结果:理论值:C,85.695;H,4.749;B,1.538;N,3.999;Si,4.013(%);实验值:C,85.700;H,4.709;B,1.602;N,4.059;Si,3.911(%)。
以下合成实施例的合成方式均与实施例D-5类似,仅需替换对应的硅烷及原料即可。
目标化合物D1-214(HPLC分析纯度99.49%),黄色固体。MALDI-TOF-MS结果:分子离子峰:722.2135;元素分析结果:理论值:C,83.098;H,3.769;B,1.497;N,7.751;Si,3.893(%);实验值:C,83.100;H,3.679;B,1.534;N,7.743;Si,3.938(%)。
目标化合物D1-250(HPLC分析纯度99.69%),黄色固体。MALDI-TOF-MS结果:分子离子峰:783.1857;元素分析结果:理论值:C,79.697;H,2.826;B,1.377;N,12.511;Si,3.582(%);实验值:C,79.710;H,2.843;B,1.405;N,12.538;Si,3.501(%)。
目标化合物D1-314(HPLC分析纯度99.63%),黄色固体。MALDI-TOF-MS结果:分子离子峰:863.2968;元素分析结果:理论值:C,86.204;H,4.431;B,1.248;N,4.861;Si,3.248(%);实验值:C,86.200;H,4.482;B,1.165;N,4.817;Si,3.190(%)。
目标化合物D1-367(HPLC分析纯度99.65%),黄色固体。MALDI-TOF-MS结果:分子离子峰:914.3379;元素分析结果:理论值:C,73.522;H,4.961;B,1.178;F,12.460;N,3.064;O,1.749(%);实验值:C,73.530;H,4.955;B,1.255;F,12.474;N,3.126;O,1.838(%)。
目标化合物D1-407(HPLC分析纯度99.52%),黄色固体。MALDI-TOF-MS结果:分子离子峰:595.1753;元素分析结果:理论值:C,82.693;H,3.717;B,1.816;N,7.062;Si,4.719(%);实验值:C,82.680;H,3.678;B,1.769;N,6.982;Si,4.658(%)。
目标化合物D1-455(HPLC分析纯度99.68%),黄色固体。MALDI-TOF-MS结果:分子离子峰:725.2568;元素分析结果:理论值:C,84.405;H,4.444;B,1.488;N,5.789;Si,3.869(%);实验值:C,84.410;H,4.374;B,1.453;N,5.723;Si,3.822(%)。
目标化合物D1-469(HPLC分析纯度99.36%),黄色固体。MALDI-TOF-MS结果:分子离子峰:946.41;元素分析结果:理论值:C,78.626;H,5.426;B,1.141;N,11.825;Si,2.967(%);实验值:C,78.630;H,5.498;B,1.071;N,11.833;Si,2.888(%)。
目标化合物D1-549(HPLC分析纯度99.05%),黄色固体。MALDI-TOF-MS结果:分子离子峰:868.4435;元素分析结果:理论值:C,85.687;H,6.608;B,1.237;N,3.224;Si,3.231(%);实验值:C,85.690;H,6.616;B,1.216;N,3.194;Si,3.239(%)。
目标化合物D1-615(HPLC分析纯度99.29%),黄色固体。MALDI-TOF-MS结果:分子离子峰:963.3275;元素分析结果:理论值:C,87.207;H,4.388;B,1.123;N,4.360;Si,2.907(%);实验值:C,87.200;H,4.294;B,1.108;N,4.291;Si,3.000(%)。
目标化合物D1-639(HPLC分析纯度99.43%),黄色固体。MALDI-TOF-MS结果:分子离子峰:798.2797;元素分析结果:理论值:C,87.209;H,4.421;B,1.346;N,3.510;Si,3.521(%);实验值:C,87.200;H,4.346;B,1.328;N,3.436;Si,3.597(%)。
目标化合物D1-667(HPLC分析纯度99.78%),黄色固体。MALDI-TOF-MS结果:分子离子峰:948.3135;元素分析结果:理论值:C,88.587;H,4.349;B,1.142;N,2.949;Si,2.959(%);实验值:C,88.590;H,4.335;B,1.223;N,2.883;Si,3.012(%)。
目标化合物D1-717(HPLC分析纯度99.36%),黄色固体。MALDI-TOF-MS结果:分子离子峰:797.2257;元素分析结果:理论值:C,82.812;H,3.535;B,1.356;N,8.778;Si,3.517(%);实验值:C,82.820;H,3.626;B,1.293;N,8.799;Si,3.614(%)。
目标化合物D1-767(HPLC分析纯度99.05%),黄色固体。MALDI-TOF-MS结果:分子离子峰:961.3168;元素分析结果:理论值:C,83.646;H,4.608;B,1.123;N,4.365;S,3.332;Si,2.921(%);实验值:C,83.640;H,4.646;B,1.187;N,4.401;S,3.373;Si,2.983(%)。
目标化合物D1-807(HPLC分析纯度99.29%),黄色固体。MALDI-TOF-MS结果:分子离子峰:837.2896;元素分析结果:理论值:C,86.006;H,4.326;B,1.287;N,5.017;Si,3.345(%);实验值:C,86.020;H,4.295;B,1.348;N,4.933;Si,3.323(%)。
目标化合物D1-855(HPLC分析纯度99.43%),黄色固体。MALDI-TOF-MS结果:分子离子峰:851.2634;元素分析结果:理论值:C,84.600;H,4.016;B,1.272;N,4.929;O,1.884;Si,3.299(%);实验值:C,84.590;H,4.027;B,1.313;N,5.025;O,1.957;Si,3.293(%)。
目标化合物D1-885(HPLC分析纯度99.78%),黄色固体。MALDI-TOF-MS结果:分子离子峰:851.2357;元素分析结果:理论值:C,81.783;H,3.553;B,1.272;N,8.220;O,1.877;Si,3.302(%);实验值:C,81.780;H,3.582;B,1.277;N,8.293;O,1.952;Si,3.218(%)。
上述本发明合成实施例所制备的代表性的本发明稠环化合物的光物理性质见表1。
表1:





注:表1中,量子效率是在某一特定波长下单位时间内产生的平均光电子数与入射光子数之比,通过将化合物以10-5mol/L的浓度溶解于甲苯中制成被测样本经过氮气除氧后测得。仪器为Edinburg FLS1000(英国);半峰宽为室温下的荧光光谱的谱峰高度一半处的峰宽度,即通过峰高的中点作平行于峰底的直线,此直线与峰两侧相交两点之间的距离,其中荧光光谱是通过将化合物以10-5mol/L的浓度溶解于甲苯中制成被测样本,利用荧光光谱仪(Edinburg FLS1000(英国))测试得到。
从表1可见,本发明提供的实施例中的稠环化合物具有较高的量子效率(>85%),同时本发明提供的发光化合物表现出较窄的半峰宽(<25nm)。
下通过将本发明的化合物具体应用到有机电致发光器件中测试实际使用性能来展示和验证本发明的技术效果和优点。
有机电致发光器件包括第一电极、第二电极,以及位于两个电极之间的有机材料层。该有机材料又可以分为多个区域,比如该有机材料层可以包括空穴传输区、发光层、电子传输区。
阳极的材料可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合。阴极的材料可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
空穴传输区位于阳极和发光层之间。空穴传输区可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少一层的多层结构。
空穴传输区的材料可以选自但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)、芳香胺衍生物等。
发光层包括可以发射不同波长光谱的的发光染料(即掺杂剂,Dopant),还可以同时包括敏化剂(sensitizer)和主体材料(Host)。发光层可以是发射红、绿、蓝等单一颜色的单色发光层。多种不同颜色的单色发光层可以按照像素图形进行平面排列,也可以堆叠在一起而形成彩色发光层。当不同颜色的发光层堆叠在一起时,它们可以彼此隔开,也可以彼此相连。发光层也可以是能同时发射红、绿、蓝等不同颜色的单一彩色发光层。
电子传输区可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少一层的多层结构。
具体地,本发明的有机电致发光器件的制备方法包括以下步骤:
1、将涂布了阳极材料的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
2、把上述带有阳极的玻璃板置于真空腔内,抽真空至1×10-5~8×10-4Pa,在上述阳极层膜上真空蒸镀空穴注入材料形成空穴注入层,蒸镀速率为0.1-0.5nm/s;
3、在空穴注入层之上真空蒸镀空穴传输材料形成空穴传输层,蒸镀速率为0.1-0.5nm/s;
4、在空穴传输层之上真空蒸镀器件的有机发光层,有机发光层材料中包括主体材料、敏化剂和染料,利用多源共蒸的方法,调节主体材料的蒸镀速率、敏化剂材料的蒸镀速度和染料的蒸镀速率使染料达到预设掺杂比例;
5、在有机发光层之上真空蒸镀器件的电子传输材料形成电子传输层,其蒸镀速率为0.1-0.5nm/s;
6、在电子传输层上以0.1-0.5nm/s真空蒸镀LiF作为电子注入层,以0.5-1nm/s真空蒸镀Al层作为器件的阴极。
本发明实施例还提供一种显示装置,所述显示装置包括如上述提供的有机电致发光器件。该显示装置具体可以为OLED显示器等显示器件,以及包括该显示器件的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。该显示装置与上述有机电致发光器件相对于现有技术所具有的优势相同,在此不再赘述。
以下通过具体实施例对本发明的有机电致发光器件进行进一步的介绍。
本发明实施例A-1至A-35,B-1至B-45和C-1至C-40为采用本发明化合物制备的有机电致发光器件,对比例1-4为采用现有技术化合物C1、C2、C3、C4按照与本发明化合物相同的制备方法制备的平行对比器件,所有制备的器件结构方案如下所示:
器件实施A
器件实施例A-1
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-1(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-1为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-2
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-3
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-8(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-8为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-4
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-10(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-10为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-5
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-13(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-13为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施 例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-6
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-17(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-17为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-7
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-21(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-21为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-8
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-24(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-24为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-9
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-44(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-44为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-10
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-55(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-55为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施 例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-11
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-65(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-65为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-12
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-70(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-70为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-13
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-80(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-80为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-14
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-81(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-81为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-15
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-82(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-82为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施 例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-16
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-85(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-85为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-17
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-87(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-87为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-18
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-94(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-94为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-19
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-155(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-155为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-20
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-179(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-179为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实 施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-21
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-180(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-180为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-22
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-181(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-181为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-23
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-182(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-182为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-24
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-183(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-183为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-25
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-184(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-184为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实 施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-26
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-185(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-185为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-27
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A1-186(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A1-186为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-28
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A2-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A2-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-29
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A2-57(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A2-57为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-30
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A3-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A3-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施 例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-31
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A4-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A4-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-32
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A5-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A5-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-33
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A6-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A6-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-34
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A7-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A7-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例A-35
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%A8-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,A8-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施 例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施B
器件实施例B-1
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-1(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-1为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-2
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-3
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-8(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-8为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-4
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-10(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-10为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-5
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-13(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-13为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-6
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-17(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-17为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-7
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-21(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-21为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-8
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-24(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-24为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-9
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-44(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-44为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-10
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-55(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-55为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-11
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-65(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-65为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-12
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-70(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-70为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-13
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-80(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-80为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-14
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-81(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-81为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-15
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-82(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-82为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-16
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-85(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-85为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-17
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-87(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-87为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-18
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-94(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-94为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-19
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-155(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-155为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-20
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-179(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-179为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-21
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-180(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-180为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-22
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-181(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-181为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-23
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-182(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-182为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-24
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-183(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-183为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-25
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-184(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-184为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-26
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-185(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-185为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-27
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B1-186(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B1-186为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-28
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B2-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B2-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-29
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B2-57(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B2-57为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-30
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B3-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B3-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-31
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B4-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B4-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-32
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B5-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B5-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-33
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B6-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B6-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-34
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B7-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B7-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-35
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B8-4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B8-4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-36
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B4-162(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B4-162为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-37
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B4-186(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B4-186为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-38
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B7-45(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B7-45为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-39
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B7-58(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B7-58为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-40
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B7-59(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B7-59为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-41
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B7-60(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B7-60为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-42
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B8-45(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B8-45为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-43
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B8-58(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B8-58为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-44
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B8-59(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B8-59为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例B-45
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%B8-60(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,B8-60为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施C
器件实施例C-1
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C1-1(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,C1-1为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
器件实施例C-2
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C1-32(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C1-32。
器件实施例C-3
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C1-47(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C1-47。
器件实施例C-4
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C1-65(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C1-65。
器件实施例5
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C1-84(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C1-84。
器件实施例6
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C2-1(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C2-1。
器件实施例7
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C2-23(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C2-23。
器件实施例8
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C2-40(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C2-40。
器件实施例9
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C2-63(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C2-63。
器件实施例C-10
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C2-75(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C2-75。
器件实施例C-11
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C3-11(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C3-11。
器件实施例C-12
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C3-30(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C3-30。
器件实施例C-13
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C3-40(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C3-40。
器件实施例C-14
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C3-52(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C3-52。
器件实施例C-15
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C3-63(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C3-63。
器件实施例C-16
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C4-33(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C4-33。
器件实施例C-17
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C4-51(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C4-51。
器件实施例C-18
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C5-11(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C5-11。
器件实施例C-19
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C5-23(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C5-23。
器件实施例C-20
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C5-39(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C5-39。
器件实施例C-21
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C5-63(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C5-63。
器件实施例C-22
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C5-69(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C5-69。
器件实施例C-23
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C6-11(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C6-11。
器件实施例C-24
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C6-27(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C6-27。
器件实施例C-25
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C6-50(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C6-50。
器件实施例C-26
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C7-6(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C7-6。
器件实施例C-27
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C7-22(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C7-22。
器件实施例C-28
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C7-38(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C7-38。
器件实施例C-29
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C7-48(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C7-48。
器件实施例C-30
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C7-70(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C7-70。
器件实施例C-31
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C8-2(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C8-2。
器件实施例C-32
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C8-23(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C8-23。
器件实施例C-33
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C8-36(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C8-36。
器件实施例C-34
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C8-48(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C8-48。
器件实施例C-35
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C8-60(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C8-60。
器件实施例C-36
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C8-74(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C8-74。
器件实施例C-37
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C9-2(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C9-2。
器件实施例C-38
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C9-22(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C9-22。
器件实施例C-39
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C9-39(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C9-39。
器件实施例C-40
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C9-69(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
具体结构与实施例C-1相同,仅需替换染料为化合物C9-69。
对比器件实施例1
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C1(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,C1为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
对比器件实施例2
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C2(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,C2为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
对比器件实施例3
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C3(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,C3为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
对比器件实施例4
本实施例制备的有机电致发光器件结构如下所示:
ITO/HI(5nm)/HT(30nm)/Host:20wt%Sensitizer:2wt%C4(30nm)/ET(30nm)/LiF(0.5nm)/Al(150nm)
其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为5nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host为有机发光层宽带隙的主体材料,Sensitizer为敏化剂且掺杂浓度为20wt%,C4为染料且掺杂浓度为2wt%,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
实施例A-1至A-35,B-1至B-45和C-1至C-40中所采用的各类有机材料的结构式如下:

上述作为对比化合物的C1-C4为现有技术中的化合物,其合成方法可参见专利申请CN107851724、CN108431984、CN110407858、CN110776509等,此处不再赘述。
实施例A-1至A-35,B-1至B-45和C-1至C-40和比较例1-4的有机电致发光器件性能见下表2。
表2:





就实施例A-1至A-35,B-1至B-45和C-1至C-40与比较例1-4而言,在有机电致发光器件结构中其他材料相同的情况下,本发明涉及的化合物具有更窄的电致发光光谱。同时,相比于比较例中有着氮硼氮结构的多重共振TADF染料,本发明提供的化合物制备的器件的外量子效率更高,器件寿命更长。这是因为本发明涉及的化合物通过引入新加的X和Y来锁住两侧的给体,使之与中央的苯环形成平面的刚性骨架结构,能够降低激发态结构弛豫程度,从而使目标分子兼具了高发光效率,窄光谱发射与高稳定性的优点。并且引入不同电负性的基团能够广泛的调节光色,使之从深蓝光红移至橙黄光。并且其中引入的部分较大空间位阻的结构能够降低分子间相互作用,维持其窄光谱特性并使其在器件寿命上有了较大提升。
本发明实施例D-1至D-90为采用本发明化合物制备的有机电致发光器件,对比例5-10为采用现有技术化合物P1、P2、P3、P4按照与本发明化合物相同的制备方法制备的平行对比器件,所有制备的器件结构方案如表3所示:
表3:








其中,阳极材料为ITO;空穴注入层材料为HI,一般总厚度为5-30nm,本实施例为10nm;空穴传输层的材料为HT,总厚度一般为5-500nm,本实施例为30nm;Host有机发光层宽带隙的主体材料,TD为TADF型主体,有机发光层的厚度一般为1-200nm,本实施例为30nm;电子传输层的材料为ET,厚度一般为5-300nm,本实施例为30nm;电子注入层及阴极材料选择LiF(0.5nm)和金属铝(150nm)。
实施例D-1至D-90和比较例5-10中所采用的各类有机材料的结构式如下:

本发明实施例D-1至D-90和比较例5-10制备的器件性能如下表4所示:
表4:



就实施例D-1至D-90与比较例5-10而言,在有机电致发光器件结构中其他材料相同的情况下,本发明中的化合物在经典氮硼氮母核的间位上引入一个螺碳原子或螺硅原子,连接了两侧苯环,消除了原本氢原子之间的排斥,显著增强了分子的刚性,明显地窄化了半峰宽(FWHM在20-30nm),并且提高了发光效率(PLQY>90%)。由于螺原子四面体的空间结构,螺原子的引入使在螺原子处形成了两个正交的平面,显著增加了分子间的距离,减小了分子间的相互作用力,在器件中能够减小主体与染料及染料间的相互作用,从而显著提高发光效率与器件的寿命,能够达到应用的标准。硅原子相较于碳原子的体积更大,电负性更弱,会使光谱进一步的蓝移,并且由于其分子量较大,C-Si键的振动较弱,导致光谱会进一步变窄。并且由于螺原子两侧具有不对称的结构,使分子具有手性, 通过手性中心对硼氮发光母核的微扰,导致发光产生圆偏振特性。通过手性拆分后能够得到一对光学纯的化合物,在器件中能够产生较强的圆偏振发光,其不对称因子在10-3量级。
以上的实验数据表明,本发明提供的新型MR-TADF材料制备应用的有机电致发光器件中后,在实现器件具有高色纯度和高发光效率良好性能的同时,还实现了电致发光器件的低效率滚降,并且具有极长的器件寿命。并且,其中部分不对称螺原子的引入,使分子产生了手性,产生了圆偏振发光。因此,本发明的有机材料作为有机电致发光器件的发光客体,是性能良好的有机发光功能材料,有望推广商业化应用。
尽管结合实施例对本发明进行了说明,但本发明并不局限于上述实施例,应当理解,在本发明构思的引导下,本领域技术人员可进行各种修改和改进,所附权利要求概括了本发明的范围。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (19)

  1. 一种有机化合物,具有如式(1-1)或式(1-2)所示的结构:
    其中:
    环Ar1、环Ar2、环Ar3、环Ar4各自独立地选自C6~C60的芳环或者C3~C60的杂芳环;
    Z选自N或C;
    W1、W2、W3分别独立地选自C-C单键、O、S、Se、CR7R8、SiR9R10或NR11;m1、m2、m3分别独立地选自0或1;
    X选自BAr5(R5)n5、C-C单键、O、S、Se、CR12R13、SiR14R15、NR16或PR17
    V选自C、CH或者CR6
    Y选自C-C单键、O、S、Se、CR12R13、SiR14R15或NR16
    且当y1为0时,V选自CH或者CR6,X选自BAr5(R5)n5、C-C单键、O、S、Se、CR12R13、SiR14R15、NR16或PR17;当y1为1时,V为C,X为BAr5(R5)n5
    环Ar5选自C6~C60的芳环或者C3~C60的杂芳环;
    R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自取代或未取代的下述基团中的一种:C1~C36链状烷基、C3~C36环烷基、C6~C30的芳基氨基、C6~C60的芳基、C6~C60的芳氧基、C5~C60的杂芳基;
    且R7与R8之间不连接或者连接成环,R9与R10之间不连接或者连接成环;
    且R12与R13之间不连接或者通过C-C单键、O、S、Se、CR7R8、SiR9R10或NR11中的任一连接成环,R14与R15之间不连接或者通过C-C单键、O、S、Se、CR7R8、SiR9R10或NR11中的任一连接成环;
    R1、R2、R3、R4、R5和R6各自独立地选自氢、氘、卤素、氰基、取代或未取代的C1~C30的链状烷基、取代或未取代的C3~C20的环烷基、取代或未取代的C7~C30的芳烷基、取代或未取代的C1~C30的烷氧基、取代或未取代的C2~C30脂肪链烃胺基、取代或未取代的C4~C30环状脂肪链烃胺基、取代或未取代的C6~C30芳基胺基、取代或未取代的C3~C30杂芳基胺基、取代或未取代的C6~C30芳氧基、取代或未取代的C6-C60的芳硼基、取代或未取代的C6~C60芳基、取代或未取代的C3~C60杂芳基中的一种;
    R1、R2、R3、R4各自独立地与所连接的环结构通过单键连接,或者R1、R2、R3、R4各自独立地与所连接的环结构通过O、S、Se、CR1R2或NR5稠合形成环结构连接;
    n1、n2、n3、n4和n5各自独立地选自0-10的整数;
    当n1、n2、n3、n4各自独立地为大于1的整数时,相应的多个R1之间、多个R2之间、多个R3之间、多个R4之间各自相同或不同,且多个R1之间不连接或连接成环,多个R2之间不连接或连接成环,多个R3之间不连接或连接成环,多个R4之间不连接或连接成环;
    当上述的R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17上各自独立存在取代基时,所述取代基各自独立地选自卤素、氰基、C1~C20的链状烷基、C3~C20的环烷基、C1~C10的烷氧基、C6~C30芳基氨基、C3~C30杂芳基氨基、C6~C30芳氧基、C6~C30的芳基、取代或未取代的C6-C60的芳硼基、C3~C30的杂芳基中的一种或者两种的组合。
  2. 根据权利要求1所述的有机化合物,所述环Ar1、环Ar2、环Ar3各自独立地为式(a)或式(b)所示的结构,虚线的双键代表基团的稠合位置:
    式(a)中,Z1、Z2、Z3、Z4各自独立地选自C、CH或N;
    式(b)中,Z5选自O、S、NR1或CR2R3,其中R1、R2、R3各自独立地选自取代或未取代的C1-C20链状烷基、取代或未取代的C3-C20环烷基、取代或未取代的C6-C60芳基、取代或未取代的C3-C60杂芳基中的一种,R1、R2、R3上各自独立存在取代基时,所述取代基各自独立地选自卤素、氰基、C1~C10的链状烷基、C3~C10的环烷基、C1~C10的烷氧基、C6~C30芳基氨基、C3~C30杂芳基氨基、C6~C30芳氧基、C6~C30的芳基、C3~C30的杂芳基中的一种;
    环H选自C6-C30芳环、C3-C30杂芳环中的一种。
  3. 根据权利要求2所述的有机化合物,其特征在于,H为苯环;Z选自S、NR1或CR2R3。
  4. 根据权利要求2所述的有机化合物,其特征在于,所述环Ar1、环Ar2、环Ar3中的一个为式(b)所示的结构,其它环结构各自独立地为式(a)所示的结构。
  5. 根据权利要求1所述的有机化合物,所述环r1、环Ar2、环Ar3各自独立地选自C6~C30的芳环或者C3~C30的杂芳环;
    优选地,环Ar1、环Ar2、环Ar3各自独立地选自苯环、萘环、蒽环、芴环、呋喃、苯并呋喃、二苯并呋喃、吲哚、苯并吲哚、咔唑、吲哚并咔唑、苯并噻吩、二苯并噻吩、噻吩中的任意一种;
    再优选地,所述环Ar1、环Ar2、环Ar3各自独立地选自苯环、萘环、蒽环、芴环、呋喃或噻吩中的一种。
  6. 根据权利要求1所述的有机化合物,式(1)中,所述n1、n2、n3和n4各自独立地选自1-5的整数;
    所述R1、R2、R3、R4、R5和R6各自独立地选自氘、卤素、氰基、C1~C12的链状烷基、取代或未取代的C6~C60芳基、取代或未取代的C3~C60杂芳基中的一种;
    所述R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自取代或未取代的下述基团中的一种:C1~C10链状烷基、C3~C10环烷基、C6~C30的芳基氨基、C6~C30的芳基、C6~C30的芳氧基、C5~C30的杂芳基;
    优选地,所述R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自C1~C10的链状烷基、取代或未取代的苯环、萘环、蒽环中的任意一种。
  7. 根据权利要求1所述的有机化合物,当所述X为BAr5(R5)n5、O、S、Se、CR12R13、SiR14R15时,所述Y为O、S、Se、CR12R13、SiR14R15
    优选地,所述X为BAr5(R5)n5、O、S、CR12R13、SiR14R15时,所述Y为O、S、CR12R13、SiR14R15
    更优选地,所述X为BAr5(R5)n5、S、CR12R13时,所述Y为S、CR12R13
  8. 根据权利要求1所述的有机化合物,式(1-1)中,所述X为BAr5(R5)n5、O、S、Se、CR12R13、SiR14R15
    优选地,所述X选自BAr5(R5)n5
  9. 根据权利要求1所述的有机化合物,式(1-2)中,所述X选自BAr5(R5)n5、C-C单键、O、S、Se、CR12R13、SiR14R15或NR16
    优选地,所述X选自BAr5(R5)n5或CR12R13
  10. 根据权利要求1或7所述的有机化合物,所述W1、W3分别独立地选自C-C单键、S、CR7R8或NR11;m1和m3为1;m2为0。
  11. 根据权利要求1所述的有机化合物,具有式(2-1)、(2-2)或(2-3)中任一种所示的结构:
    式(2-1)、(2-2)和(2-3)中,R1-R6、R7-R17、Ar1-Ar5、n1-n5、W1-W2、m1-m2、X、Y和Z的定义均各自与式(1-1)、(1-2)中的定义相同。
  12. 根据权利要求1所述的有机化合物,具有如下述结构式(2)、(3)、(4)、(5)、(6)、(7)或(8)中任一所示的结构:
    其中,R1-R6、n1-n5、Ar1-Ar5、W1、W3m1和m3的定义均各自与式(1-1)中的定义相同。
  13. 根据权利要求1所述的有机化合物,具有如下述结构式(10)、(11)、(12)、(13)、(14)、(15)、(16)或(17)中任一所示的结构:
    其中,R1-R6、R13、R14、R15、R16和R17、n1-n5、Ar1-Ar5、W1、W3m1和m3的定义均各自与式(1-1)中的定义相同;
    R12与R13之间不连接或者通过C-C单键、O、S、Se、CR7R8、SiR9R10或NR11中的任一连接成环,R14与R15之间不连接或者通过C-C单键、O、S、Se、CR7R8、SiR9R10或NR11中的任一连接成环。
  14. 根据权利要求1所述的有机化合物,具有如下述结构式(18)、(19)、(20)、(21)、(22)、(23)、(24)、(25)或(26)中任一所示的结构:
    其中,R1-R6、R13、R14、R15、R16和R17、n1-n5、Ar1-Ar5、W1、W3m1和m3的定义均各自与式(1-1)中的定义相同;
    R12与R13之间不连接或者通过C-C单键、O、S、Se、CR7R8、SiR9R10或NR11中的任一连接成环,R14与R15之间不连接或者通过C-C单键、O、S、Se、CR7R8、SiR9R10或NR11中的任一连接成环。
  15. 根据权利要求12、13或14中任一所述的有机化合物,所述R1、R2、R3、R4、R5和R6各自独立地选自氘、卤素、氰基、C1~C12的链状烷基、取代或未取代的C6~C60芳基、取代或未取代的C3~C60杂芳基中的一种;
    所述n1、n2、n3和n4各自独立地选自1-5的整数;
    所述环Ar1、环Ar2、环Ar3各自独立地选自苯环、萘环、蒽环、芴环、呋喃、苯并呋喃、二苯并呋喃、吲哚、苯并吲哚、咔唑、吲哚并咔唑、苯并噻吩、二苯并噻吩、噻吩中的任意一种;
    优选地,所述环Ar1、环Ar2、环Ar3各自独立地选自苯环、萘环、蒽环、芴环、呋喃或噻吩中的一种。
  16. 根据权利要求1、12、13或14中任一所述的有机化合物所述的有机化合物,所述R1、R2、R3、R4、R5和R6各自独立地选自下述取代基团:氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、氰基、卤素、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5_嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基、二苯基硼基、二米基硼基、二五氟苯基硼基、二(2,4,6-三异丙基苯基)硼基中的一种,或选自以上两种基团的组合。
    所述R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自下述取代基团:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、氰基、卤素、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯 唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5-嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基中的一种,或选自以上两种基团的组合;
    优选地,所述R1、R2、R3、R4、R5和R6分别独立地表示为氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、三氟甲基、五氟乙基、氰基、卤素、苯基、萘基、蒽基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、呋喃基、苯并呋喃基、噻吩基、苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、吡唑基、吲唑基、咪唑基、苯并咪唑基1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、1,3,5-三嗪基、二苯基硼基、二米基硼基、二五氟苯基硼基、二(2,4,6-三异丙基苯基)硼基中的一种,或选自以上两种基团的组合;
    优选地,所述R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自下述取代基团:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、三氟甲基、五氟乙基、氰基、卤素、苯基、萘基、蒽基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、呋喃基、苯并呋喃基、噻吩基、苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、吡唑基、吲唑基、咪唑基、苯并咪唑基1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、1,3,5-三嗪基、二苯基硼基、二米基硼基、二五氟苯基硼基、二(2,4,6-三异丙基苯基)硼基中的一种,或选自以上两种基团的组合;
    最优选地,所述R1、R2、R3、R4、R5和R6分别独立地表示为氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、三氟甲基、五氟乙基、氰基、卤素、苯基、萘基、蒽基、芴基、螺二芴基、咔唑基、1,3,5-三嗪基、二苯基硼基、二米基硼基、二五氟苯基硼基、二(2,4,6-三异丙基苯基)硼基中的一种,或选自以上两种基团的组合;
    最优选地,所述R7、R8、R9、R10、R11、R12、R13、R14、R15、R16和R17各自独立地选自下述取代基团:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、氰基、苯基、萘基、蒽基、芴基、螺二芴基中的一种,或选自以上两种基团的组合。
  17. 根据权利要求1所述的化合物,选自下述具体结构化合物:





























































































































  18. 根据权利要求1-17中任一项所述的化合物的应用,所述应用为在有机电子器件中作为功能材料,所述有机电子器件选自有机电致发光器件、光学传感器、太阳能电池、照明元件、有机薄膜晶体管、有机场效应晶体管、信息标签、电子人工皮肤片材、片材型扫描器或电子纸;
    进一步,所述化合物的应用为在有机电致发光器件中用作发光层材料,具体作为发光层中的发光材料。
  19. 一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的一个或多个发光功能层,其中所述发光功能层中含有权利要求1-17中任一所述的化合物;
    进一步,所述的发光功能层包括空穴传输区、发光层、电子传输区,所述的空穴传输区形成在所述的第一电极层上,所述的第二电极层形成在所述的电子传输区上,所述的空穴传输区与所述的电子传输区之间为发光层;其中,所述发光层中含有权利要求1-17中任一所述的化合物。
PCT/CN2023/106297 2022-07-14 2023-07-07 一种有机化合物及其应用 WO2024012365A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210832655.X 2022-07-14
CN202210832120.2 2022-07-14
CN202210832120.2A CN115197251A (zh) 2022-07-14 2022-07-14 一种有机化合物及其应用
CN202210832655.XA CN115197252A (zh) 2022-07-14 2022-07-14 一种有机化合物及其应用
CN202310703917.7 2023-06-14
CN202310703917.7A CN116836193A (zh) 2023-06-14 2023-06-14 一种有机化合物及其应用以及包含其的有机电致发光器件
CN202310803161.3A CN117024459A (zh) 2023-07-03 2023-07-03 一种有机化合物及其应用
CN202310803161.3 2023-07-03

Publications (1)

Publication Number Publication Date
WO2024012365A1 true WO2024012365A1 (zh) 2024-01-18

Family

ID=89535569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106297 WO2024012365A1 (zh) 2022-07-14 2023-07-07 一种有机化合物及其应用

Country Status (1)

Country Link
WO (1) WO2024012365A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024125652A1 (zh) * 2022-12-15 2024-06-20 华为技术有限公司 一种含硼有机化合物及其制备的有机电致发光器件

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107417715A (zh) * 2017-07-14 2017-12-01 瑞声科技(南京)有限公司 一种有机电致发光材料及其发光器件
CN107793441A (zh) * 2016-09-07 2018-03-13 学校法人关西学院 多环芳香族化合物
CN111560031A (zh) * 2019-02-13 2020-08-21 学校法人关西学院 多环芳香族化合物、反应性化合物、高分子化合物、高分子交联体、及其应用
CN111574543A (zh) * 2019-02-18 2020-08-25 江苏三月科技股份有限公司 一种含硼的有机化合物及其在有机电致发光器件上的应用
CN112028918A (zh) * 2019-12-31 2020-12-04 陕西莱特光电材料股份有限公司 一种有机化合物、其应用以及有机电致发光器件
CN112341482A (zh) * 2019-12-27 2021-02-09 广东聚华印刷显示技术有限公司 有机化合物、高聚物、混合物、组合物及电子器件
CN112397662A (zh) * 2019-08-12 2021-02-23 三星显示有限公司 有机电致发光器件
WO2021075856A1 (ko) * 2019-10-14 2021-04-22 에스에프씨 주식회사 다환 고리 화합물 및 이를 이용한 유기발광소자
US20210184123A1 (en) * 2019-12-13 2021-06-17 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
JP2021091644A (ja) * 2019-12-12 2021-06-17 学校法人関西学院 多量体化合物
KR20210095363A (ko) * 2020-01-23 2021-08-02 에스에프씨 주식회사 신규한 유기 화합물 및 이를 포함하는 유기발광소자
CN114106023A (zh) * 2020-09-01 2022-03-01 江苏三月科技股份有限公司 一种硼氮类有机化合物及包含其的有机发光器件
JP2022034774A (ja) * 2020-08-19 2022-03-04 学校法人関西学院 多環芳香族化合物
CN114133408A (zh) * 2021-11-30 2022-03-04 武汉尚赛光电科技有限公司 一种硼基化合物及其在有机电致发光器件中的应用
CN114276372A (zh) * 2020-09-28 2022-04-05 江苏三月科技股份有限公司 一种用于oled发光层的含硼稠环化合物及其应用
CN114292287A (zh) * 2021-12-17 2022-04-08 武汉尚赛光电科技有限公司 一种多环化合物及其制备方法和有机电致发光器件
CN114315875A (zh) * 2020-09-28 2022-04-12 江苏三月科技股份有限公司 一种作为oled掺杂材料的含硼有机化合物及其应用
CN114315879A (zh) * 2020-09-28 2022-04-12 江苏三月科技股份有限公司 一种双硼稠环化合物及包含其的有机电致发光器件
CN114671872A (zh) * 2022-03-22 2022-06-28 清华大学 一种有机电致发光化合物及其应用
CN114957223A (zh) * 2021-05-19 2022-08-30 江苏精润鸿测控技术有限公司 新型有机化合物和包含此化合物的有机电致发光器件
CN115197251A (zh) * 2022-07-14 2022-10-18 清华大学 一种有机化合物及其应用
CN115197252A (zh) * 2022-07-14 2022-10-18 清华大学 一种有机化合物及其应用
CN115873025A (zh) * 2021-09-27 2023-03-31 浙江虹舞科技有限公司 一种稠合杂环类化合物及其应用以及包含该化合物的有机电致发光器件
US20230217823A1 (en) * 2021-12-31 2023-07-06 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent device

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107793441A (zh) * 2016-09-07 2018-03-13 学校法人关西学院 多环芳香族化合物
CN107417715A (zh) * 2017-07-14 2017-12-01 瑞声科技(南京)有限公司 一种有机电致发光材料及其发光器件
CN111560031A (zh) * 2019-02-13 2020-08-21 学校法人关西学院 多环芳香族化合物、反应性化合物、高分子化合物、高分子交联体、及其应用
CN111574543A (zh) * 2019-02-18 2020-08-25 江苏三月科技股份有限公司 一种含硼的有机化合物及其在有机电致发光器件上的应用
CN112397662A (zh) * 2019-08-12 2021-02-23 三星显示有限公司 有机电致发光器件
WO2021075856A1 (ko) * 2019-10-14 2021-04-22 에스에프씨 주식회사 다환 고리 화합물 및 이를 이용한 유기발광소자
JP2021091644A (ja) * 2019-12-12 2021-06-17 学校法人関西学院 多量体化合物
US20210184123A1 (en) * 2019-12-13 2021-06-17 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
CN112341482A (zh) * 2019-12-27 2021-02-09 广东聚华印刷显示技术有限公司 有机化合物、高聚物、混合物、组合物及电子器件
CN112028918A (zh) * 2019-12-31 2020-12-04 陕西莱特光电材料股份有限公司 一种有机化合物、其应用以及有机电致发光器件
KR20210095363A (ko) * 2020-01-23 2021-08-02 에스에프씨 주식회사 신규한 유기 화합물 및 이를 포함하는 유기발광소자
JP2022034774A (ja) * 2020-08-19 2022-03-04 学校法人関西学院 多環芳香族化合物
CN114106023A (zh) * 2020-09-01 2022-03-01 江苏三月科技股份有限公司 一种硼氮类有机化合物及包含其的有机发光器件
CN114276372A (zh) * 2020-09-28 2022-04-05 江苏三月科技股份有限公司 一种用于oled发光层的含硼稠环化合物及其应用
CN114315875A (zh) * 2020-09-28 2022-04-12 江苏三月科技股份有限公司 一种作为oled掺杂材料的含硼有机化合物及其应用
CN114315879A (zh) * 2020-09-28 2022-04-12 江苏三月科技股份有限公司 一种双硼稠环化合物及包含其的有机电致发光器件
CN114957223A (zh) * 2021-05-19 2022-08-30 江苏精润鸿测控技术有限公司 新型有机化合物和包含此化合物的有机电致发光器件
CN115873025A (zh) * 2021-09-27 2023-03-31 浙江虹舞科技有限公司 一种稠合杂环类化合物及其应用以及包含该化合物的有机电致发光器件
CN114133408A (zh) * 2021-11-30 2022-03-04 武汉尚赛光电科技有限公司 一种硼基化合物及其在有机电致发光器件中的应用
CN114292287A (zh) * 2021-12-17 2022-04-08 武汉尚赛光电科技有限公司 一种多环化合物及其制备方法和有机电致发光器件
US20230217823A1 (en) * 2021-12-31 2023-07-06 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent device
CN114671872A (zh) * 2022-03-22 2022-06-28 清华大学 一种有机电致发光化合物及其应用
CN115197251A (zh) * 2022-07-14 2022-10-18 清华大学 一种有机化合物及其应用
CN115197252A (zh) * 2022-07-14 2022-10-18 清华大学 一种有机化合物及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024125652A1 (zh) * 2022-12-15 2024-06-20 华为技术有限公司 一种含硼有机化合物及其制备的有机电致发光器件

Similar Documents

Publication Publication Date Title
CN110872316B (zh) 一种新型化合物及其应用及采用该化合物的有机电致发光器件
EP2799515B1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, and display device including organic light-emitting diode
WO2021008374A1 (zh) 一种新型化合物及其应用及采用该化合物的有机电致发光器件
CN113788852A (zh) 一种发光材料及其应用以及包含其的有机电致发光器件
CN113024526B (zh) 一种有机电致发光材料及其应用
CN115197252A (zh) 一种有机化合物及其应用
CN113402537A (zh) 一种有机化合物及其应用
CN115197251A (zh) 一种有机化合物及其应用
CN115867558A (zh) 多环芳香族化合物
WO2024012365A1 (zh) 一种有机化合物及其应用
CN116162103A (zh) 一种有机化合物及其应用
CN110041209B (zh) 一种芳胺类化合物、包含该芳胺类化合物的材料和有机电致发光器件
CN112442037B (zh) 一种发光材料及其应用
CN117024459A (zh) 一种有机化合物及其应用
JP6641947B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
CN117126149A (zh) 一种杂环化合物及其有机电致发光器件
JP6641948B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
CN116836193A (zh) 一种有机化合物及其应用以及包含其的有机电致发光器件
WO2022078250A1 (zh) 用于发光器件的有机化合物及其应用、有机电致发光器件
CN115368392A (zh) 多环芳香族化合物、反应性化合物、有机器件用材料、油墨组合物、及有机电致发光元件
CN113461627B (zh) 一种化合物、电致发光器件及其应用
CN115703747A (zh) 用于发光器件的具有螺芴结构的有机化合物、有机电致发光器件
CN114685411A (zh) 有机化合物及其应用、有机电致发光器件
CN114105785A (zh) 用于有机电致发光器件的有机化合物及其应用、有机电致发光器件
WO2024114085A1 (zh) 三芳基胺型有机化合物及其应用、有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838857

Country of ref document: EP

Kind code of ref document: A1