JP2022034774A - 多環芳香族化合物 - Google Patents

多環芳香族化合物 Download PDF

Info

Publication number
JP2022034774A
JP2022034774A JP2020138632A JP2020138632A JP2022034774A JP 2022034774 A JP2022034774 A JP 2022034774A JP 2020138632 A JP2020138632 A JP 2020138632A JP 2020138632 A JP2020138632 A JP 2020138632A JP 2022034774 A JP2022034774 A JP 2022034774A
Authority
JP
Japan
Prior art keywords
ring
carbon atoms
substituted
aryl
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020138632A
Other languages
English (en)
Inventor
琢次 畠山
Takuji Hatakeyama
靖宏 近藤
Yasuhiro Kondo
真依子 松隈
Maiko MATSUKUMA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kwansei Gakuin Educational Foundation
SK Materials JNC Co Ltd
Original Assignee
Kwansei Gakuin Educational Foundation
SK Materials JNC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kwansei Gakuin Educational Foundation, SK Materials JNC Co Ltd filed Critical Kwansei Gakuin Educational Foundation
Priority to JP2020138632A priority Critical patent/JP2022034774A/ja
Publication of JP2022034774A publication Critical patent/JP2022034774A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】有機電界発光素子などの有機デバイスの材料としての新規化合物を提供する。【解決手段】式(1)で表される構造単位の1つまたは2つ以上からなる構造を有する多環芳香族化合物。TIFF2022034774000217.tif53170(A環、B環、C環及びD環は、置換/非置換のアリール環又はヘテロアリール環;Y1はB等;X1及びX2は>N-R、>C(-R)2等;前記Rは置換/非置換のアリール又はアルキル等;X3は単結合、>O、>S等である。)【選択図】なし

Description

本発明は、多環芳香族化合物に関する。本発明は特に、窒素とホウ素を含む多環芳香族化合物に関する。本発明はまた、上記多環芳香族化合物を含む有機デバイス用材料、有機電界発光素子、並びに、表示装置および照明装置に関する。
従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料から成る有機電界発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色などの発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。
有機電界発光素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。
その中で、特許文献1では、ホウ素を含有する多環芳香族化合物が、有機電界発光素子等の材料として有用であることが開示されている。この多環芳香族化合物を含有する有機電界発光素子は、良好な外部量子効率を有することが報告されている。
特開2018-043984号公報
上述のように、有機EL素子に用いられる材料としては種々の材料が開発されているが、有機EL素子用材料の選択肢を増やすために、従来とは異なる化合物からなる材料の開発が望まれている。
本発明は有機EL素子等の有機デバイス材料として有用な新規化合物を提供することを課題とする。
本発明者らは、上記課題を解決するため鋭意検討し、特許文献1に記載の化合物と類似の構造を有する多環芳香族化合物において、より発光特性に優れる新規多環芳香族化合物の製造に成功した。また、この多環芳香族化合物を含有する層を一対の電極間に配置して有機EL素子を構成することにより、優れた有機EL素子が得られることを見出し、本発明を完成させた。すなわち本発明は、以下のような多環芳香族化合物、さらには以下のような多環芳香族化合物を含む有機デバイス用材料等を提供する。
<1> 下記式(1)で表される構造単位の1つまたは2つ以上からなる構造を有する多環芳香族化合物;
Figure 2022034774000001
式(1)において、
A環、B環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、A環、B環、C環およびD環それぞれにおけるアリール環またはヘテロアリール環の少なくとも1つの水素は置換されてもよく、
は、B、P、P=O、P=S、Al、Ga、As、Si-R、Ge-RまたはSn-Rであり、前記Si-R、Ge-RおよびSn-RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルあるいは置換されていてもよいシクロアルキルであり、
およびXは、>O、>S、>Se、>N-R、>Si(-R)、>C(-R)、または>C=Oであり、前記>N-R、>Si(-R)、および>C(-R)のRはそれぞれ独立して水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、>Si(-R)および>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよく、
は単結合、>O、>S、>Se、>N-R、>Si(-R)、>C(-R)、または>C=Oであり、前記>N-R、>Si(-R)、および>C(-R)のRはそれぞれ独立して水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、>Si(-R)および>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよく、
前記構造におけるアリール環およびヘテロアリール環からなる群より選択される少なくとも1つは、少なくとも1つのシクロアルカンで縮合されてもよく、当該シクロアルカンにおける少なくとも1つの水素は置換されてもよく、当該シクロアルカンにおける少なくとも1つの-CH-は-O-で置換されてもよく、
前記構造における少なくとも1つの水素は重水素、シアノ、またはハロゲンで置換されてもよい。
<2> 式(1)で表される構造単位の1つからなる構造を有する、<1>に記載の多環芳香族化合物。
<3> 下記式(1-1)で表される構造単位の1つ~3つからなる構造を有する、<1>または<2>に記載の多環芳香族化合物;
Figure 2022034774000002
式(1-1)において、
~R12は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合してもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、または置換シリルであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シクロアルキル、または置換シリルで置換されてもよく、R~R12のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、または置換シリルで置換されてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シクロアルキル、または置換シリルで置換されてもよく、
およびXは、>O、>S、>Se、>N-R、>Si(-R)、>C(-R)、または>C=Oであり、前記>N-R、>Si(-R)、および>C(-R)のRはそれぞれ独立して水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、>Si(-R)および>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよく、
は単結合、>O、>S、>Se、>N-R、>Si(-R)、>C(-R)、または>C=Oであり、前記>N-R、>Si(-R)、および>C(-R)のRはそれぞれ独立して水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、>Si(-R)および>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよく、
は、B、P、P=O、P=S、Al、Ga、As、Si-R、Ge-RまたはSn-Rであり、このSi-R、Ge-RおよびSn-Rにおいて、Rはアリールまたはアルキルであり、
式(1-1)で表される構造単位の1つ~3つからなる構造におけるアリール環およびヘテロアリール環からなる群より選択される少なくとも1つは、少なくとも1つの炭素数3から24のシクロアルカンで縮合されていてもよく、当該シクロアルカンにおける少なくとも1つの水素は、炭素数6から30のアリール、炭素数2から30のヘテロアリール、炭素数1から24のアルキル、または炭素数3から24のシクロアルキルで置換されていてもよく、当該シクロアルカンにおける少なくとも1つの-CH-は-O-で置換されてもよく、
式(1-1)で表される構造単位の1つ~3つからなる構造における少なくとも1つの水素は、シアノ、ハロゲン、または重水素で置換されてもよい。
<4> 式(1-1)において、
がBであり、
およびXは、それぞれ独立して、>O、>S、>N-R、または>C(-R)であり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキル、炭素数3~14のシクロアルキルであり、前記>N-RのRにおける炭素数6~12のアリールおよび炭素数2~15のヘテロアリールはいずれも炭素数1~6のアルキル、炭素数3~14のシクロアルキル、または置換シリルで置換されてもよく、前記>C(-R)のRはそれぞれ独立して、水素、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキル、または炭素数3~14のシクロアルキルであり、前記>C(-R)において、Rにおける炭素数6~12のアリールおよび炭素数2~5のヘテロアリールはいずれも炭素数1~6のアルキル、炭素数3~14のシクロアルキル、または置換シリルで置換されてもよく、前記>C(-R)において、2つのRは互いに結合して環を形成してもよく、
は、単結合、>O、>Sまたは>N-R、または>C(-R)であり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキル、炭素数3~14のシクロアルキルであり、前記>N-RのRにおける炭素数6~12のアリールおよび炭素数2~15のヘテロアリールはいずれも炭素数1~6のアルキル、炭素数3~14のシクロアルキル、または置換シリルで置換されてもよく、前記>C(-R)のRはそれぞれ独立して、水素、炭素数6から12のアリール、炭素数2から15のヘテロアリール、炭素数1から6のアルキル、または炭素数3から14のシクロアルキルであり、前記>C(-R)において、Rにおける炭素数6から12のアリールおよび炭素数2から5のヘテロアリールはいずれも炭素数1から6のアルキル、炭素数3から14のシクロアルキル、または置換シリルで置換されてもよく、前記>C(-R)において、2つのRは互いに結合して環を形成してもよい、
<3>に記載の多環芳香族化合物。
<5> XおよびXがいずれも>N-Rであり、前記>N-RのRは炭素数1~6のアルキルで置換されていてもよいアリールまたは炭素数1~6のアルキルで置換されていてもよいヘテロアリールであり、
は単結合または>Sである、
<4>に記載の多環芳香族化合物。
<6> 下記式のいずれかで表される、<5>に記載の多環芳香族化合物;
Figure 2022034774000003
式中、Meはメチル、tBuはt-ブチルである。
<7> XおよびXは>C(-R)であり、前記>C(-R)のRはそれぞれ独立して水素、または炭素数1~6のアルキルであり、>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよく、
は>Oまたは>Sである、<4>に記載の多環芳香族化合物。
<8> 下記式のいずれかで表される、<7>に記載の多環芳香族化合物;
Figure 2022034774000004
式中、Meはメチル、tBuはt-ブチルである。
<9> <1>~<8>のいずれかに記載の多環芳香族化合物に反応性置換基が置換した、反応性化合物。
<10> <9>に記載の反応性化合物をモノマーとして高分子化させた高分子化合物、または、当該高分子化合物をさらに架橋させた高分子架橋体。
<11> 主鎖型高分子に<9>に記載の反応性化合物を置換させたペンダント型高分子化合物、または、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体。
<12> <1>~<8>のいずれかに記載の多環芳香族化合物、<9>に記載の反応性化合物、<10>に記載の高分子化合物もしくは高分子架橋体、または、<11>に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する、有機デバイス用材料。
<13> 前記有機デバイス用材料が、有機電界発光素子用材料、有機電界効果トランジスタ用材料、または有機薄膜太陽電池用材料である、<12>に記載の有機デバイス用材料。
<14> 前記有機電界発光素子用材料が発光層用材料である、<13>に記載の有機デバイス用材料。
<15> <1>~<8>のいずれかに記載の多環芳香族化合物、<9>に記載の反応性化合物、<10>に記載の高分子化合物もしくは高分子架橋体、または、<11>に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体と、有機溶媒とを含む、組成物。
<16> 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、<1>~<8>のいずれかに記載の多環芳香族化合物、<9>に記載の反応性化合物、<10>に記載の高分子化合物もしくは高分子架橋体、または、<11>に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する有機層とを有する、有機電界発光素子。
<17> 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、<1>~<8>のいずれかに記載の多環芳香族化合物、<9>に記載の反応性化合物、<10>に記載の高分子化合物もしくは高分子架橋体、または、<11>に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する発光層とを有する、有機電界発光素子。
<18> 前記発光層が、ホストと、ドーパントとしての前記多環芳香族化合物、反応性化合物、高分子化合物、高分子架橋体、ペンダント型高分子化合物またはペンダント型高分子架橋体とを含む、<17>に記載の有機電界発光素子。
<19> 前記ホストが、アントラセン系化合物、フルオレン系化合物またはジベンゾクリセン系化合物である、<18>に記載の有機電界発光素子。
<20> 前記陰極と前記発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、アリールニトリル誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、キノリノール系金属錯体、チアゾール誘導体、ベンゾチアゾール誘導体、シロール誘導体およびアゾリン誘導体からなる群から選択される少なくとも1つを含有する、<17>~<19>のいずれかに記載の有機電界発光素子。
<21> 前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、<20>に記載の有機電界発光素子。
<22> 正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層のうちの少なくとも1つの層が、各層を形成し得る低分子化合物をモノマーとして高分子化させた高分子化合物、もしくは、当該高分子化合物をさらに架橋させた高分子架橋体、または、各層を形成し得る低分子化合物を主鎖型高分子と反応させたペンダント型高分子化合物、もしくは、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体を含む、<17>~<21>のいずれかに記載の有機電界発光素子。
<23> <16>~<22>のいずれかに記載の有機電界発光素子を備えた表示装置または照明装置。
本発明により、有機電界発光素子等の有機デバイス用材料として有用な新規多環芳香族化合物が提供される。本発明の多環芳香族化合物は有機電界発光素子等の有機デバイスの製造に用いることができる。
有機電界発光素子の一例を示す概略断面図である。 一般的な蛍光ドーパントを用いたTAF素子のホスト、アシスティングドーパントおよびエミッティングドーパントのエネルギー関係を示すエネルギー準位図である。 本発明の一態様の有機電界発光素子における、ホスト、アシスティングドーパントおよびエミッティングドーパントのエネルギー関係の一例を示すエネルギー準位図である。
以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本明細書において構造式の説明における「水素」は「水素原子(H)」を意味する。
本明細書において、有機電界発光素子を有機EL素子ということがある。
本明細書において化学構造や置換基を炭素数で表すことがあるが、化学構造に置換基が置換した場合や、置換基にさらに置換基が置換した場合などにおける炭素数は、化学構造や置換基それぞれの炭素数を意味し、化学構造と置換基の合計の炭素数や、置換基と置換基の合計の炭素数を意味するものではない。例えば、「炭素数Xの置換基Aで置換された炭素数Yの置換基B」とは、「炭素数Yの置換基B」に「炭素数Xの置換基A」が置換することを意味し、炭素数Yは置換基Aおよび置換基Bの合計の炭素数ではない。また例えば、「置換基Aで置換された炭素数Yの置換基B」とは、「炭素数Yの置換基B」に「(炭素数限定がない)置換基A」が置換することを意味し、炭素数Yは置換基Aおよび置換基Bの合計の炭素数ではない。
1.多環芳香族化合物
本発明の多環芳香族化合物は下記式(1)で表される構造単位の1つまたは2つ以上からなる構造を有する。本発明の多環芳香族化合物は発光量子収率(PLQY)が高く、特に、従来公知の多環芳香族化合物に対し、C環とB環との間およびC環とD環との間に架橋(NおよびX))を有することにより、化合物の堅牢性が高く、安定性に優れる。そのため、本発明の多環芳香族化合物は寿命の長い有機EL素子を提供することができる。
Figure 2022034774000005
式(1)中、
A環、B環、C環およびD環はそれぞれ独立して、アリール環またはヘテロアリール環であり、A環、B環、C環およびD環それぞれにおけるアリール環またはヘテロアリール環の少なくとも1つの水素は置換されていてもよい。
式(1)で表される構造単位においては、A環は3価の基として環員原子(環構造を形成している原子)でY、X、およびXと直接結合している環であり、B環は3価の基として環員原子でY、X、およびNと直接結合している環であり、C環は4価の基として環員原子でY、X、X、およびNと直接結合している環であり、D環は2価の基として環員原子でXおよびNと直接結合している環である。したがって、上記のアリール環またはヘテロアリール環の少なくとも1つの水素が置換されているとは、Y、X、X、X、およびNのいずれかと結合している位置以外において少なくとも1つの置換基を有していることを意味する。Y、X、X、X、およびNと直接結合している上記の環員原子は炭素原子であればよい。
式(1)で表される構造単位においては、A環はX、XおよびYと直接結合する5員環または6員環を有していることが好ましく、B環はX、YおよびNと直接結合する5員環または6員環を有していることが好ましく、C環はX、XおよびYおよびNと直接結合する5員環または6員環を有していることが好ましく、D環はXおよびNと直接結合する5員環または6員環を有していることが好ましい。
また、上記のアリール環およびヘテロアリール環は後述のようにそれぞれ少なくとも1つのシクロアルカンで縮合されていてもよい
式(1)のA環、B環、C環およびD環における上記の「アリール環」としては、例えば、炭素数6~30のアリール環があげられ、炭素数6~16のアリール環が好ましく、炭素数6~12のアリール環がより好ましく、炭素数6~10のアリール環が特に好ましい。
具体的な「アリール環」としては、単環系であるベンゼン環、縮合二環系であるナフタレン環、インデン環、縮合三環系である、アントラセン環、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、ベンゾフルオレン環、クリセン環、縮合五環系であるペリレン環、ペンタセン環などがあげられる。また、フルオレン環およびベンゾフルオレン環には、それぞれフルオレン環やベンゾフルオレン環がスピロ結合した構造も含まれる。なお、フルオレン環およびベンゾフルオレン環は、メチレンの2つの水素のうちの2つがそれぞれ後述の第1の置換基としてのメチルに置換して、ジメチルフルオレン環やジメチルベンゾフルオレン環となっていることも好ましい。
式(1)のA環、B環、C環およびD環における上記の「ヘテロアリール環」としては、例えば、炭素数2~30のヘテロアリール環があげられ、炭素数2~25のヘテロアリール環が好ましく、炭素数2~20のヘテロアリール環がより好ましく、炭素数2~15のヘテロアリール環がさらに好ましく、炭素数2~10のヘテロアリール環が特に好ましい。また、「ヘテロアリール環」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1~5個含有する複素環などがあげられる。
具体的な「ヘテロアリール環」としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、テトラジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、イミダゾピリジン環(イミダゾ[1,2-a]ピリジン環など)、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、ナフトベンゾフラン環、ベンゾフロフラン環、ベンゾフロベンゾフラン環(ベンゾフロ[3,2-b]ベンゾフラン環など)、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ナフトベンゾチオフェン環、チエノベンゾチオフェン環、ベンソチエノベンゾチオフェン環([1]-ベンゾチエノ[3,2-b][1]ベンゾチオフェン環など)、チエノピリジン環(チエノ[1,2-a]ピリジン環など)、チエノピリミジン環(チエノ[3,2-d]ピリミジン環など)、チエノベンゾフラン環(チエノ[3,2-b]ベンゾフラン環など)、ベンゾホスホール環、ジベンゾホスホール環、ベンゾホスホールオキシド環、ジベンゾホスホールオキシド環、フラザン環、チアントレン環、セレノフェン環、キサンテン環、チオキサンテン環、インデノチオフェン環などがあげられる。キサンテン環およびチオキサンテン環には、それぞれフルオレン環やベンゾフルオレン環がスピロ結合した構造も含まれる。キサンテン環、チオキサンテン環およびインデノチオフェン環は、メチレンの2つの水素のうちの2つがそれぞれ後述の第1の置換基としてのメチルに置換して、ジメチルフルオレン環、ジメチルベンゾフルオレン環、およびジメチルインデノチオフェン環(ジメチル-4H-インデノ[1,2-b]チオフェン環となっていることも好ましい。
A環、B環、C環およびD環は、置換されていてもよいベンゼン環、置換されていてもよいピリジン環、置換されていてもよいピリミジン環、置換されていてもよいピリダジン環、または置換されていてもよいトリアジン環(1,2,3-トリアジン環)であることが好ましく、置換されていてもよいベンゼン環であることがより好ましい。
式(1)において、A環、B環、C環およびD環それぞれにおけるアリール環またはヘテロアリール環の少なくとも1つの水素は置換されていてもよい。A環、B環、C環およびD環からなる群より選択される少なくとも1つにおけるアリール環またはヘテロアリール環の少なくとも1つの水素が置換されていることが好ましい。A環、B環、およびD環からなる群より選択される少なくとも1つにおけるアリール環またはヘテロアリール環の少なくとも1つの水素が置換されていることがより好ましく、A環またはB環におけるアリール環またはヘテロアリール環の1つの水素が置換されていることがさらに好ましい。
式(1)において、A環、B環、C環およびD環それぞれにおけるアリール環またはヘテロアリール環の少なくとも1つの水素が置換されているときの置換基は、例えば、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のジアリールアミノ(2つのアリールは単結合または連結基を介して結合していてもよい)、置換もしくは無置換のジヘテロアリールアミノ、置換もしくは無置換のアリールヘテロアリールアミノ、置換もしくは無置換のジアルキルアミノ、置換もしくは無置換のジアリールボリル(2つのアリールは単結合もしくは連結基を介して結合していてもよい)、置換もしくは無置換のアルキル、置換もしくは無置換のシクロアルキル、置換もしくは無置換のアルコキシ、置換もしくは無置換のアルケニル、置換もしくは無置換のアルキニル、置換もしくは無置換のアリールオキシ、置換シリル、置換または無置換のアリールスルホニル、置換または無置換のジアリールホスフィン、置換または無置換のジアリールホスフィンオキシド、および置換または無置換のジアリールホスフィンスルフィドからなる群より選択される置換基であればよい。本明細書においては、上記置換基中、アリール環またはヘテロアリール環に直接結合している「アリール」、「ヘテロアリール」、「ジアリールアミノ(2つのアリールは単結合または連結基を介して結合していてもよい)」、「ジヘテロアリールアミノ」、「アリールヘテロアリールアミノ」、「ジアルキルアミノ」、「ジアリールボリル(2つのアリールは単結合もしくは連結基を介して結合していてもよい)」、「アルキル」、「シクロアルキル」、「アルコキシ」、「アリールオキシ」等を第1の置換基と呼ぶ。また、「置換または無置換」と説明されているとおり、第1の置換基に置換している置換基を第2の置換基と呼ぶ。
第1の置換基としての「アリール」としては、上述した「アリール環」の一価の基のほか、ビフェニリル、m-テルフェニリル、o-テルフェニリル、p-テルフェニリルなどがあげられる。第1の置換基としての具体的な「アリール」としては、単環系であるフェニル、二環系であるビフェニリル、縮合二環系であるナフチル(1-ナフチルまたは2-ナフチル)、三環系であるテルフェニリル(m-テルフェニリル、o-テルフェニリルまたはp-テルフェニリル)、縮合三環系である、アセチレニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントレニル、縮合四環系であるトリフェニレニル、ピレニル、ナフタセニル、クリセニル、縮合五環系であるペリレニル、ペンタセニルなどがあげられる。また、フルオレニルにフルオレン環またはベンゾフルオレン環がスピロ結合した基およびベンゾフルオレニルにフルオレン環またはベンゾフルオレン環がスピロ結合した基もあげられる。
また第1の置換基としての「ヘテロアリール」としては、上述した「ヘテロアリール環」の一価の基があげられる。例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。
具体的な「ヘテロアリール」としては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジニル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリニル、イソキノリニル、シンノリニル、キナゾリニル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニル、フラニル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、ナフトベンゾフラニル、チエニル、ベンゾチエニル、イソベンゾチエニル、ジベンゾチエニル、ナフトベンゾチエニル、フラザニル、チアントレニル、キサンテニル、チオキサンテニルなどがあげられる。
第1の置換基としての「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)が特に好ましい。
具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。
また、例えば、1-エチル-1-メチルプロピル、1,1-ジエチルプロピル、1,1-ジメチルブチル、1-エチル-1-メチルブチル、1,1,4-トリメチルペンチル、1,1,2-トリメチルプロピル、1,1-ジメチルオクチル、1,1-ジメチルペンチル、1,1-ジメチルヘプチル、1,1,5-トリメチルヘキシル、1-エチル-1-メチルヘキシル、1-エチル-1,3-ジメチルブチル、1,1,2,2-テトラメチルプロピル、1-ブチル-1-メチルペンチル、1,1-ジエチルブチル、1-エチル-1-メチルペンチル、1,1,3-トリメチルブチル、1-プロピル-1-メチルペンチル、1,1,2-トリメチルプロピル、1-エチル-1,2,2-トリメチルプロピル、1-プロピル-1-メチルブチル、1,1-ジメチルヘキシルなどもあげられる。
また第1の置換基としての「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルがあげられる。好ましいシクロアルキルは、炭素数3~10のシクロアルキルである。より好ましいシクロアルキルは、炭素数3~8のシクロアルキルである。さらに好ましいシクロアルキルは、炭素数3~6のシクロアルキルである。
具体的なシクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、およびこれらの炭素数1~5のアルキル(特にメチル)置換体や、ノルボルネニル、ビシクロ[1.0.1]ブチル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、ジアマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられる。
なお、本発明の多環芳香族化合物にシクロアルキルを導入することによっては、融点や昇華温度の低下が期待できる。このことは、高い純度が要求される有機EL素子などの有機デバイス用の材料の精製法としてほぼ不可欠な昇華精製において、比較的低温で精製することができるため材料の熱分解などが避けられることを意味する。またこれは、有機EL素子などの有機デバイスを作製するのに有力な手段である真空蒸着プロセスについても同様であり、比較的低温でプロセスを実施できるため、材料の熱分解を避けることができ、結果として高性能な有機デバイス用を得ることができる。また、シクロアルキルの導入により有機溶媒への溶解性が向上するため、塗布プロセスを利用した素子作製にも適用することが可能となる。ただし、本発明は特にこれらの原理に限定されるわけではない。
第1の置換基としての「アルコキシ」としては、例えば、炭素数1~24の直鎖または炭素数3~24の分岐鎖のアルコキシがあげられる。炭素数1~18のアルコキシ(炭素数3~18の分岐鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分岐鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分岐鎖のアルコキシ)が特に好ましい。
具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどがあげられる。
第1の置換基としての「アルケニル」としては、例えば、ビニル、アリル、ブタジエニルなどの二重結合を含む不飽和脂肪族炭化水素基があげられる。アルケニルの炭素数は特に限定されないが、通常、2~20の範囲である。
第1の置換基としての「アルキニル」としては、例えば、アセチレニルなどの三重結合を含む不飽和脂肪族炭化水素基があげられる。アルキニルの炭素数は特に限定されないが、通常、2~20の範囲である。
また第1の置換基としての「ジアリールアミノ」、「ジヘテロアリールアミノ」、「アリールヘテロアリールアミノ」、「ジアリールボリル」、「アリールオキシ」、「アリールスルホニル」、「ジアリールホスフィン」、「ジアリールホスフィンオキシド」、および「ジアリールホスフィンスルフィド」における「アリール」や「ヘテロアリール」の詳細は、上述した「アリール」や「ヘテロアリール」の説明を引用することができる。
第1の置換基の「ジアリールアミノ」中の2つのアリールは単結合または連結基(例えば>C(-R)、>O、>Sまたは>N-R)を介して結合していてもよい。また、第1の置換基の「ジアリールボリル」中の2つのアリールは単結合または連結基(例えば>C(-R)、>O、>Sまたは>N-R)を介して結合していてもよい。ここで、>C(-R)および>N-RのRは、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)であり、当該第1置換基にはさらにアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)が置換していてもよく、これらの基の具体例としては、上述した第1置換基としてのアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシの説明を引用できる。
第1の置換基としての「ジアルキルアミノ」のアルキルとしては上述した「アルキル」の説明を引用できる。
また「置換シリル」としては、アルキル、シクロアルキル、およびアリールからなる群より選択される3つの置換基で置換されたシリルがあげられる。具体的には、例えば、トリアルキルシリル、トリシクロアルキルシリル、ジアルキルシクロアルキルシリル、アルキルジシクロアルキルシリル、トリアリールシリル、ジアルキルアリールシリル、およびアルキルジアリールシリルがあげられる。
「トリアルキルシリル」としては、無置換シリルにおける3つの水素がそれぞれ独立してアルキルで置換された基があげられ、このアルキルは上述した第1の置換基における「アルキル」として説明した基を引用することができる。置換するのに好ましいアルキルは、炭素数1~5のアルキルであり、具体的にはメチル、エチル、プロピル、i-プロピル、ブチル、sec-ブチル、t-ブチル、t-アミルなどがあげられる。
具体的なトリアルキルシリルとしては、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリi-プロピルシリル、トリブチルシリル、トリsec-ブチルシリル、トリt-ブチルシリル、トリt-アミルシリル、エチルジメチルシリル、プロピルジメチルシリル、i-プロピルジメチルシリル、ブチルジメチルシリル、sec-ブチルジメチルシリル、t-ブチルジメチルシリル、t-アミルジメチルシリル、メチルジエチルシリル、プロピルジエチルシリル、i-プロピルジエチルシリル、ブチルジエチルシリル、sec-ブチルジエチルシリル、t-ブチルジエチルシリル、t-アミルジエチルシリル、メチルジプロピルシリル、エチルジプロピルシリル、ブチルジプロピルシリル、sec-ブチルジプロピルシリル、t-ブチルジプロピルシリル、t-アミルジプロピルシリル、メチルジi-プロピルシリル、エチルジi-プロピルシリル、ブチルジi-プロピルシリル、sec-ブチルジi-プロピルシリル、t-ブチルジi-プロピルシリル、t-アミルジi-プロピルシリルなどがあげられる。
「トリシクロアルキルシリル」としては、無置換シリルにおける3つの水素がそれぞれ独立してシクロアルキルで置換された基があげられ、このシクロアルキルは上述した第1の置換基における「シクロアルキル」として説明した基を引用することができる。置換するのに好ましいシクロアルキルは、炭素数5~10のシクロアルキルであり、具体的にはシクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられる。
具体的なトリシクロアルキルシリルとしては、トリシクロペンチルシリル、トリシクロヘキシルシリルなどがあげられる。
2つのアルキルと1つのシクロアルキルが置換したジアルキルシクロアルキルシリルと、1つのアルキルと2つのシクロアルキルが置換したアルキルジシクロアルキルシリルの具体例としては、上述した具体的なアルキルおよびシクロアルキルから選択される基が置換したシリルがあげられる。
2つのアルキルと1つのアリールが置換したジアルキルアリールシリル、1つのアルキルと2つのアリールが置換したアルキルジアリールシリル、および3つのアリールが置換したトリアリールシリルの具体例としては、上述した具体的なアルキルおよびアリールから選択される基が置換したシリルがあげられる。トリアリールシリルの具体例としては、特にトリフェニルシリルがあげられる。
第2の置換基としては、例えば、アリール、ヘテロアリール、アルキル、またはシクロアルキルがあげられる。これらの基の具体例としては、上述した第1置換基としてのアリール、ヘテロアリール、アルキル、またはシクロアルキルの説明を引用できる。
第1の置換基によって、発光波長を調整することができる。
第1の置換基(第2の置換基で置換されているものを含む)は好ましくは以下の構造式で表される基であり、より好ましくは、メチル、ターシャリ-アルキル(tR)(t-ブチル、t-アミル、t-オクチルなど)、フェニル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリル、3,6-ジ-t-ブチルカルバゾリルおよびフェノキシであり、さらに好ましくは、メチル、t-ブチル、t-アミル、t-オクチル、フェニル、o-トリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルである。合成の容易さの観点からは、立体障害が大きい方が選択的な合成のために好ましく、具体的には、t-ブチル、t-アミル、t-オクチル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルが好ましい。
下記構造式において、「Me」はメチル、「tBu」はt-ブチル、「tAm」はt-アミル、「tOct」はt-オクチル、*は結合位置を表す。
Figure 2022034774000006
Figure 2022034774000007
Figure 2022034774000008
Figure 2022034774000009
Figure 2022034774000010
Figure 2022034774000011
Figure 2022034774000012
Figure 2022034774000013
Figure 2022034774000014
Figure 2022034774000015
Figure 2022034774000016
Figure 2022034774000017
Figure 2022034774000018
上記で一部の例をあげたターシャリ-アルキル(tR)は置換基として特に好ましい。このような嵩高い置換基により分子同士の凝集による失活を防ぎ、発光量子収率(PLQY)が向上するからである。ターシャリ-アルキルは下記式(tR)で表すことができる。
Figure 2022034774000019
式(tR)中、R、R、およびRはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH-は-O-で置換されていてもよく、式(tR)で表される基は*においてアリール環またはヘテロアリール環の少なくとも1つの水素と置換する。
、R、およびRの「炭素数1~24のアルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキル、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)があげられる。
式(tR)におけるR、R、およびRの炭素数の合計は炭素数3~20が好ましく、炭素数3~10が特に好ましい。
、R、およびRの具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。
式(tR)で表される基としては、例えばt-ブチル、t-アミル、1-エチル-1-メチルプロピル、1,1-ジエチルプロピル、1,1-ジメチルブチル、1-エチル-1-メチルブチル、1,1,3,3-テトラメチルブチル、1,1,4-トリメチルペンチル、1,1,2-トリメチルプロピル、1,1-ジメチルオクチル、1,1-ジメチルペンチル、1,1-ジメチルヘプチル、1,1,5-トリメチルヘキシル、1-エチル-1-メチルヘキシル、1-エチル-1,3-ジメチルブチル、1,1,2,2-テトラメチルプロピル、1-ブチル-1-メチルペンチル、1,1-ジエチルブチル、1-エチル-1-メチルペンチル、1,1,3-トリメチルブチル、1-プロピル-1-メチルペンチル、1,1,2-トリメチルプロピル、1-エチル-1,2,2-トリメチルプロピル、1-プロピル-1-メチルブチル、1,1-ジメチルヘキシル基などがあげられる。これらのうち、t-ブチルおよびt-アミルが好ましい。
そのほか、例えば、式(tR)の基で置換されたジアリールアミノ、式(tR)の基で置換されたカルバゾリルまたは式(tR)の基で置換されたベンゾカルバゾリルも好ましい例としてあげられる。「ジアリールアミノ、カルバゾリルおよびベンゾカルバゾリルへの式(tR)の基の置換形態としては、これらの基におけるアリール環またはベンゼン環の一部または全ての水素が式(tR)の基で置換された例があげられる。
式(1)で表される構造単位の1つまたは2つ以上からなる構造におけるアリール環およびヘテロアリール環からなる群より選択される少なくとも1つは、少なくとも1つのシクロアルカンで縮合されていてもよい。例えば、A環、B環、C環およびD環であるアリール環およびヘテロアリール環(YやXと直接結合している環)、ならびに第1および第2の置換基として含まれるアリール環およびヘテロアリール環のうちの少なくとも1つが、少なくとも1つのシクロアルカンで縮合されていてもよい。
「シクロアルカン」としては、炭素数3~24のシクロアルカン、炭素数3~20のシクロアルカン、炭素数3~16のシクロアルカン、炭素数3~14のシクロアルカン、炭素数5~10のシクロアルカン、炭素数5~8のシクロアルカン、炭素数5~6のシクロアルカン、炭素数5のシクロアルカンなどがあげられる。
具体的なシクロアルカンとしては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、ノルボルネン、ビシクロ[1.0.1]ブタン、ビシクロ[1.1.1]ペンタン、ビシクロ[2.0.1]ペンタン、ビシクロ[1.2.1]ヘキサン、ビシクロ[3.0.1]ヘキサン、ビシクロ[2.1.2]ヘプタン、ビシクロ[2.2.2]オクタン、アダマンタン、ジアマンタン、デカヒドロナフタレンおよびデカヒドロアズレン、ならびに、これらの炭素数1~5のアルキル(特にメチル)置換体、ハロゲン(特にフッ素)置換体および重水素置換体などがあげられる。
これらの中でも、例えばシクロアルカンのα位の炭素(芳香族環または複素芳香族環に縮合するシクロアルキルにおいて、縮合部位の炭素に隣接する位置の炭素)における少なくとも1つの水素が置換された構造が好ましく、α位の炭素における2つの水素が置換された構造がより好ましく、2つのα位の炭素における合計4つの水素が置換された構造がさらに好ましい。この置換基としては、炭素数1~5のアルキル(特にメチル)置換体、ハロゲン(特にフッ素)置換体および重水素置換体などがあげられる。
1つのアリール環またはヘテロアリール環に縮合するシクロアルカンの数は、1~3個が好ましく、1個または2個がより好ましく、1個がさらに好ましい。一価の基となっている環に縮合している例として、1つのベンゼン環(フェニル)に1個または複数のシクロアルカンが縮合した例を以下に示す。*は結合位置を示し、ベンゼン環を構成し、かつシクロアルカンを構成していない炭素原子のいずれの位置であってもよい。式(Cy-1-4)および式(Cy-2-4)のように縮合したシクロアルカン同士が縮合してもよい。縮合される環(基)がベンゼン環(フェニル)以外の他の芳香族環または複素芳香族環の場合であっても、縮合するシクロアルカンがシクロペンタンまたはシクロヘキサン以外の他のシクロアルカンの場合であっても、同様である。
Figure 2022034774000020
シクロアルカンにおける少なくとも1つの-CH-は-O-で置換されていてもよい。例えば1つのベンゼン環(フェニル)に縮合したシクロアルカンにおける1個または複数の-CH-が-O-で置換された例を以下に示す。縮合される環(基)がベンゼン環(フェニル)以外の他の芳香族環または複素芳香族環の場合であっても、縮合するシクロアルカンがシクロペンタンまたはシクロヘキサン以外の他のシクロアルカンの場合であっても、同様である。
Figure 2022034774000021
シクロアルカンにおける少なくとも1つの水素は置換されていてもよく、この置換基としては、例えば、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、置換シリル、重水素、シアノまたはハロゲンがあげられ、これらの詳細は、上述した第1の置換基の説明を引用することができる。これらの置換基の中でも、アルキル(例えば炭素数1~6のアルキル)、シクロアルキル(例えば炭素数3~14のシクロアルキル)、ハロゲン(例えばフッ素)および重水素などが好ましい。また、シクロアルキルが置換する場合はスピロ構造を形成する置換形態でもよく、この例を以下に示す。
Figure 2022034774000022
具体的な例としては、第1の置換基が、シクロアルカンで縮合されたジアリールアミノ(このアリール部分へ縮合)またはシクロアルカンで縮合されたカルバゾリル(このベンゼン環部分へ縮合)である例があげられる。
式(1)中、YはB、P、P=O、P=S、Al、Ga、As、Si-R、Ge-RまたはSn-Rであり、前記Si-R、Ge-RおよびSn-RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルあるいは置換されていてもよいシクロアルキルである。YはB、P、P=O、またはP=Sであることが好ましく、Bであることがより好ましい。
式(1)中、XおよびXは、それぞれ独立して、>O、>S、>Se、>N-R、>Si(-R)、>C(-R)、または>C=Oであり、前記>N-R、>Si(-R)、および>C(-R)のRは、それぞれ独立して水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキルまたはシクロアルキルであり、2つのRは互いに環を形成していてもよい。XおよびXはそれぞれ独立して、>O、>S、>N-R、>C(-R)、または>C=Oであることが好ましく、>O、>S、>N-R、>C(-R)、または>C=Oであることがより好ましく、>Oまたは>Sであることがさらに好ましく、>Sであることが特に好ましい。XおよびXである>N-RのRはそれぞれ独立して、置換されていてもよいアリールであることが好ましく、置換されていてもよいフェニルであることがより好ましい。XおよびXである>C(-R)のRはそれぞれ独立して水素、アルキルまたは置換されていてもよいアリールであることが好ましく、アルキルまたは置換されていてもよいアリールであることがより好ましく、アルキルであることがさらに好ましく、メチルであることが特に好ましい。
合成が容易になるという観点からはXおよびXは同一であることが好ましい。例えば、XおよびXがいずれも>N-(4-t-ブチル-フェニル)であること、いずれも>N-(4-メチル-フェニル)であること、いずれも>C(-Me)であること(Meはメチル)などが好ましい。
式(1)中、Xは、単結合、>O、>S、>Se、>N-R、>Si(-R)、>C(-R)、または>C=Oであり、前記>N-R、>Si(-R)、および>C(-R)のRは、それぞれ独立して水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキルまたはシクロアルキルであり、2つのRは互いに環を形成していてもよい。Xは単結合、>O、>S、>N-R、>C(-R)、または>C=Oであることが好ましく、単結合、>O、>S、>N-R、>C(-R)、または>C=Oであることがより好ましく、単結合、>Oまたは>Sであることがさらに好ましく、>Sであることが特に好ましい。Xである>N-RのRは置換されていてもよいアリールであることが好ましく、置換されていてもよいフェニルであることがより好ましい。Xである>C(-R)のRは独立して水素、アルキルまたは置換されていてもよいアリールであることが好ましく、アルキルまたは置換されていてもよいアリールであることがより好ましく、アルキルであることがさらに好ましく、メチルであることが特に好ましい。
およびXがいずれも>N-RでありかつXが単結合または>Sであることが好ましい。このとき、前記>N-RのRはそれぞれ独立して炭素数1~6のアルキルで置換されていてもよいアリールまたは炭素数1~6のアルキルで置換されていてもよいヘテロアリールであることが好ましい。また、XおよびXがいずれも>C(-R)であり、かつXは>Oまたは>Sであることも同様に好ましい。このとき、前記>C(-R)のRはそれぞれ独立して水素、または炭素数1~6のアルキルであることが好ましく、>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよい。前記>C(-R)のRはいずれもメチルであることが好ましい、
式(1)で表される構造単位の1つまたは2つ以上からなる構造中の水素は、その全てまたは一部がシアノ、ハロゲンまたは重水素であってもよい。例えば、構造中に含まれるアリール環、ヘテロアリール環、またはシクロヘキサン環における全てまたは一部の水素が、シアノ、ハロゲン、または重水素で置換された態様、第1の置換基および第2の置換基における全てまたは一部の水素が、シアノ、ハロゲン、または重水素で置換された態様、アリール環およびヘテロアリール環のうちの少なくとも1つが、少なくとも1つのシクロアルカンで縮合されている場合の当該シクロアルカンにおける全てまたは一部の水素が、シアノ、ハロゲン、または重水素で置換された態様(上述)、などがあげられる。ハロゲンは、フッ素、塩素、臭素、またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素である。
式(1)で表される構造単位の好ましい例として、下記式(1-1)で表される構造単位をあげることができる。
Figure 2022034774000023
式(1-1)中、
~R12は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合してもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、または置換シリルであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シクロアルキル、または置換シリルで置換されてもよく、R~R12のうちの隣接する基同士が結合して環a、環b、環cまたは環dと共にアリール環またはヘテロアリール環を形成してもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、または置換シリルで置換されてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シクロアルキル、または置換シリルで置換されてもよい。
式(1-1)中、X~XおよびYは、式(1)におけるX~XおよびYとそれぞれ同義であり好ましい範囲も同一である。
式(1-1)中、R~R12における第1の置換基としての「アリール」、「ヘテロアリール」、「ジアリールアミノ(2つのアリールは単結合または連結基を介して結合していてもよい)」、「ジヘテロアリールアミノ」、「アリールヘテロアリールアミノ」、「ジアルキルアミノ」、「ジアリールボリル(2つのアリールは単結合もしくは連結基を介して結合していてもよい)」、「アルキル」、「シクロアルキル」、「アルコキシ」、および「アリールオキシ」については、それぞれ、上述の「第1置換基」の説明を参照することができる。また、これらへの置換基としてのアリール、ヘテロアリール、アルキル、シクロアルキルについては、それぞれ、上述の「第2置換基」の説明を参照することができる。置換シリルについても上述の式(1)における説明を参照することができる。
式(1-1)において、R~R12のうちの隣接する基同士は結合してa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、または置換シリルで置換されてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シクロアルキル、または置換シリルで置換されていてもよい。このときの置換基としても上述の「第1置換基」および「第1置換基」の記載を参照することができる。R~R12のうちの隣接する基同士としては、RおよびR、RおよびR、RおよびR、RおよびR、RおよびR、RおよびR、R10およびR11ならびにR11およびR12の組み合わせがあげられる。例えば、b環のR10とd環のRは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。
例えば、RおよびR、またはRおよびRが結合してa環と共にa’環としてアリール環またはヘテロアリール環を形成したときの構造は式(1-1-1)のように示される。また、R10およびR11、またはR11およびR12が結合してb環と共にb’環としてアリール環またはヘテロアリール環を形成し、かつRおよびRが結合してc環と共にc’環としてアリール環またはヘテロアリール環を形成したときの構造は式(1-1-2)のように示される。さらに、RおよびR、RおよびR、またはRおよびRが結合してd環と共にd’環としてアリール環またはヘテロアリール環を形成したときの構造は式(1-1-3)のように示される。式(1-1-1)、式(1-1-2)および式(1-1-3)における各符号の定義は式(1-1)における符号の定義と同じである。
Figure 2022034774000024
なお、式では示してはいないが、a環、b環、c環およびd環の全てがa’環、b’環、c’環およびd’環に変化した化合物もある。
式(1-1-1)、式(1-1-2)および式(1-1-3)で表される化合物は、例えばb環(またはa環、またはc環またはd環)であるベンゼン環に対してベンゼン環、インドール環、ピロール環、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、シクロペンタジエン環、インデン環が縮合して形成されるb’環(またはa’環、またはc’環またはd’環)を有する化合物であり、形成されてできた縮合環b’(縮合環a’、または縮合環c’または縮合環d’)はそれぞれナフタレン環、カルバゾール環、インドール環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、インデン環、フルオレン環である。
式(1)で表される構造単位の具体例としては、例えば以下の式(1-a)、式(1-b)、式(1-c)、式(1-d)、式(1-e)、式(1-f)、式(1-g)、式(1-h)、式(1-i)、式(1-j)、または式(1-k)からなる群より選択されるいずれかの式で表される多環芳香族化合物があげられる。
Figure 2022034774000025
上記式中、Xは式(1-1)におけるXと同義である。R21は、それぞれ独立して、水素、炭素数1~10のアルキル、炭素数1~6のアルキルで置換されていてもよい炭素数5~16のアリール、炭素数1~6のアルキルで置換されていてもよい炭素数5~20のヘテロアリール、または炭素数1~6のアルキルで置換されていてもよい炭素数5~20のジアリールアミノであり、R22はそれぞれ独立して、水素、または炭素数1~6のアルキルである。
式(1)で表される構造単位の好ましい具体例としては、以下があげられる。
Figure 2022034774000026
上記式中、R21は、それぞれ独立して、水素、炭素数1~10のアルキル、炭素数1~6のアルキルで置換されていてもよい炭素数5~16のアリール、炭素数1~6のアルキルで置換されていてもよい炭素数5~20のヘテロアリール、または炭素数1~6のアルキルで置換されていてもよい炭素数5~20のジアリールアミノであり、R22はそれぞれ独立して、水素、または炭素数1~6のアルキルであり、R41は、水素または炭素数1~10のアルキルである。
本発明の多環芳香族化合物は式(1)で表される構造単位の1つまたは2つ以上からなる構造を有する多環芳香族化合物である。上記構造単位の1つからなる構造を有する多環芳香族化合物としては、式(1)で表される構造単位として上記で説明した式で表される多環芳香族化合物があげられる。式(1)で表される構造単位の2つ以上からなる構造を有する多環芳香族化合物としては、式(1)で表される構造単位として上記で説明した式で表される多環芳香族化合物の多量体に該当する化合物があげられる。多量体は、2~6量体が好ましく、2~3量体がより好ましく、2量体が特に好ましい。多量体は、一つの化合物の中に上記単位構造を複数有する形態であればよく、上記構造単位に含まれる任意の環(A環、B環、C環またはD環、a環、b環、c環またはd環)を複数の単位構造で共有するようにして結合した形態であってもよく、また、上記単位構造に含まれる任意の環(A環、B環、C環またはD環、a環、b環、c環またはd環)同士が縮合するようにして結合した形態であればよい。また、上記単位構造が単結合、炭素数1~3のアルキレン、フェニレン、ナフチレンなどの連結基で複数結合した形態であってもよい。
式(1)で表される構造単位の2つ以上からなる構造の例として、式(1)で表される構造単位が式(1-1)で表される構造単位である態様の例として以下の式(1-1-1)、式(1-1-2)または式(1-1-3)で表される構造があげられる。以下の各式中、a環、b環、c環、d環、Y、X、X、X、R~R12は式(1-1)中のa環、b環、c環、d環、Y、X、X、X、R~R12とそれぞれ同義である。
Figure 2022034774000027
式(1-1-1)で表される多量体化合物は、式(1-1)で説明すれば、a環であるベンゼン環を共有するようにして、複数の式(1-1)で表される単位構造を一つの化合物中に有する多量体化合物(2量体)である。また、式(1-1-2)で表される多量体化合物は、式(1-1)で説明すれば、a環であるベンゼン環を共有するようにして、二つの式(1-1)で表される単位構造を一つの化合物中に有する多量体化合物(2量体)である。また、式(1-1-3)で表される多量体化合物は、式(1-1)で説明すれば、a環であるベンゼン環を共有するようにして、三つの式(1-1)で表される単位構造を一つの化合物中に有する多量体化合物(3量体)である。
本発明の式(1)で表される構造単位の1つまたは2つ以上からなる構造を有する多環芳香族化合物は式(1)で表される構造単位の1つ~3つからなる構造を有する多環芳香族化合物が好ましく、式(1)で表される構造単位の1つまたは2つからなる構造を有する多環芳香族化合物がより好ましく、上記構造単位の1つからなる構造を有する多環芳香族化合物がさらに好ましい。
本発明の式(1)で表される多環芳香族化合物の更なる具体例としては、以下の化合物があげられる。下記構造式において、「Me」はメチル、「tBu」はt-ブチル、「tAm」はt-アミル、「D」は重水素を表す。なお、下記構造は一例である。
Figure 2022034774000028
Figure 2022034774000029
Figure 2022034774000030
Figure 2022034774000031
Figure 2022034774000032
Figure 2022034774000033
Figure 2022034774000034
Figure 2022034774000035
Figure 2022034774000036
Figure 2022034774000037
Figure 2022034774000038
Figure 2022034774000039
Figure 2022034774000040
Figure 2022034774000041
Figure 2022034774000042
Figure 2022034774000043
Figure 2022034774000044
Figure 2022034774000045
Figure 2022034774000046
式(1)で表される構造単位の1つまたは2つ以上からなる構造を有する多環芳香族化合物は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物(この高分子化合物を得るための前記モノマーは重合性置換基を有する)、もしくは当該高分子化合物をさらに架橋させた高分子架橋体(この高分子架橋体を得るための前記高分子化合物は架橋性置換基を有する)、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物(このペンダント型高分子化合物を得るための前記反応性化合物は反応性置換基を有する)、もしくは当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体(このペンダント型高分子架橋体を得るための前記ペンダント型高分子化合物は架橋性置換基を有する)としても、有機デバイス用材料、例えば、有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料に用いることができる。
上述した反応性置換基(前記重合性置換基、前記架橋性置換基、および、ペンダント型高分子を得るための反応性置換基を含み、以下、単に「反応性置換基」とも言う)としては、上記多環芳香族化合物を高分子量化できる置換基、そのようにして得られた高分子化合物をさらに架橋化できる置換基、また、主鎖型高分子にペンダント反応し得る置換基であれば特に限定されないが、アルケニル、アルキニル、シクロアルキルの不飽和体(例えばシクロブテニル)、シクロアルキルにおける少なくとも1つの-CH-が-O-で置換された基(例えばエポキシ)、縮合したシクロアルカンの不飽和体(例えば縮合したシクロブテン)などがあげられ、以下の構造の置換基が好ましい。各構造式中の*は結合位置を示す。
Figure 2022034774000047
Lは、それぞれ独立して、単結合、-O-、-S-、>C=O、-O-C(=O)-、炭素数1~12のアルキレン、炭素数1~12のオキシアルキレンおよび炭素数1~12のポリオキシアルキレンである。上記置換基の中でも、式(XLS-1)、式(XLS-2)、式(XLS-3)、式(XLS-9)、式(XLS-10)または式(XLS-17)で表される基が好ましく、式(XLS-1)、式(XLS-3)または式(XLS-17)で表される基がより好ましい。
このような高分子化合物、高分子架橋体、ペンダント型高分子化合物およびペンダント型高分子架橋体(以下、単に「高分子化合物および高分子架橋体」とも言う)の用途の詳細については後述する。
式(1)で表される構造単位の1つまたは2つ以上からなる構造を有する多環芳香族化合物は、国際公開第2015/102118号などの先行文献に記載の方法を参照して製造することができる。
2.有機デバイス
本発明の多環芳香族化合物は、有機デバイス用材料として用いることができる。有機デバイスとしては、例えば、有機電界発光素子、有機電界効果トランジスタまたは有機薄膜太陽電池などがあげられる。
2-1.有機電界発光素子
2-1-1.有機電界発光素子の構造
図1は、有機EL素子の一例を示す概略断面図である。
図1に示された有機EL素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
なお、有機EL素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。
上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106、電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。
有機EL素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。
2-1-2.有機電界発光素子における発光層
本発明の多環芳香族化合物は、有機電界発光素子における、いずれか1つ以上の有機層を形成する材料として用いられることが好ましく、発光層を形成する材料として用いられることがより好ましい。
発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光する層である。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光)効率を示す化合物であることが好ましい。
本発明の多環芳香族化合物は、発光層用の材料として用いることができ、ドーパント材料として用いてもよく、ホスト材料とを用いてもよい。
なお、ドーパントとしては、アシスティングドーパントとエミッティングドーパントとを併用して用いる例があるが、本明細書において、単に、「ドーパント」と記載した場合には、単独で用いる発光ドーパントのことを指す。
発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光層用材料(ホスト材料、ドーパント材料)により形成される。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
ホスト材料の使用量はホスト材料の種類によって異なり、そのホスト材料の特性に合わせて決めればよい。ホスト材料の使用量の目安は、好ましくは発光層用材料全体の50~99.999質量%であり、より好ましくは80~99.95質量%であり、さらに好ましくは90~99.9質量%である。
ドーパント材料の使用量はドーパント材料の種類によって異なり、そのドーパント材料の特性に合わせて決めればよい。ドーパントの使用量の目安は、好ましくは発光層用材料全体の0.001~50質量%であり、より好ましくは0.05~20質量%であり、さらに好ましくは0.1~10質量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。
ホスト材料
ホスト材料としては、以前から発光体として知られていたアントラセン、ピレン、ジベンゾクリセンまたはフルオレンなどの縮合環誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、フルオレン誘導体、ベンゾフルオレン誘導体、ジベンゾクリセン系化合物などがあげられる。
また、ホスト材料としては、例えば、下記式(H1)、(H2)および(H3)のいずれかで表される化合物を用いることができる。
Figure 2022034774000048
式(H1)、(H2)および(H3)中、Lは炭素数6~24のアリーレン、炭素数2~24のヘテロアリーレン、炭素数6~24のヘテロアリーレンアリーレンおよび炭素数6~24のアリーレンヘテロアリーレンアリーレンであり、炭素数6~16のアリーレンが好ましく、炭素数6~12のアリーレンがより好ましく、炭素数6~10のアリーレンが特に好ましく、具体的には、ベンゼン環、ビフェニル環、テルフェニル環およびフルオレン環などの二価の基があげられる。ヘテロアリーレンとしては、炭素数2~24のヘテロアリーレンが好ましく、炭素数2~20のヘテロアリーレンがより好ましく、炭素数2~15のヘテロアリーレンがさらに好ましく、炭素数2~10のヘテロアリーレンが特に好ましく、具体的には、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、オキサジアゾール環およびチアントレン環などの二価の基があげられる。
上記各式で表される化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよい。
好ましい具体例としては、以下に列挙したいずれかの構造式で表される化合物があげられる。なお、以下に列挙した構造式においては、少なくとも1つの水素が、ハロゲン、シアノ、炭素数1~4のアルキル(例えばメチルやt-ブチル)、フェニルまたはナフチルなどで置換されていてもよい。
Figure 2022034774000049
Figure 2022034774000050
Figure 2022034774000051
Figure 2022034774000052
<アントラセン系化合物>
ホストとしてのアントラセン系化合物としては、例えば、式(3-H)で表される化合物および式(3-H2)で表される化合物があげられる。
Figure 2022034774000053
式(3-H)中、
XおよびArは、それぞれ独立して、水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいジアリールアミノ、置換されていてもよいジヘテロアリールアミノ、置換されていてもよいアリールヘテロアリールアミノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアルケニル、置換されていてもよいアルコキシ、置換されていてもよいアリールオキシ、置換されていてもよいアリールチオまたは置換されていてもよいシリルであり、全てのXおよびArは同時に水素になることはなく、
式(3-H)で表される化合物における少なくとも1つの水素はハロゲン、シアノ、重水素または置換されていてもよいヘテロアリールで置換されていてもよい。
また、式(3-H)で表される構造を単位構造として多量体(好ましくは二量体)を形成してもよい。この場合、例えば式(3-H)で表される単位構造同士がXを介して結合する形態があげられ、このXとしては単結合、アリーレン(フェニレン、ビフェニレンおよびナフチレン等)およびヘテロアリーレン(ピリジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ベンゾカルバゾール環およびフェニル置換カルバゾール環などが二価の結合価を有する基)等があげられる。
式(3-H)で表される化合物における各基の詳細は、上記の式(1)における説明を引用することができ、さらに以下の好ましい態様の欄で説明する。
上記アントラセン系化合物の好ましい態様を以下に説明する。下記構造における符号の定義は上述する定義と同じである。
Figure 2022034774000054
式(3-H)では、Xはそれぞれ独立して式(3-X1)、式(3-X2)または式(3-X3)で表される基であり、式(3-X1)、式(3-X2)または式(3-X3)で表される基は*において式(3-H)のアントラセン環と結合する。好ましくは、2つのXが同時に式(3-X3)で表される基になることはない。より好ましくは2つのXが同時に式(3-X2)で表される基になることもない。
また、式(3-H)で表される構造を単位構造として多量体(好ましくは二量体)を形成してもよい。この場合、例えば式(3-H)で表される単位構造同士がXを介して結合する形態があげられ、このXとしては単結合、アリーレン(フェニレン、ビフェニレンおよびナフチレン等)およびヘテロアリーレン(ピリジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ベンゾカルバゾール環およびフェニル置換カルバゾール環などが二価の結合価を有する基)等があげられる。
式(3-X1)および式(3-X2)におけるナフチレン部位は1つのベンゼン環で縮合されていてもよい。このようにして縮合した構造は以下のとおりである。
Figure 2022034774000055
ArおよびArは、それぞれ独立して、水素、フェニル、ビフェニリル、テルフェニリル、クアテルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニリル、または、後述の式(A)で表される基(カルバゾリル、ベンゾカルバゾリルおよびフェニル置換カルバゾリルも含む)である。なお、ArまたはArが式(A)で表される基である場合は、式(A)で表される基はその*において式(3-X1)または式(3-X2)中のナフタレン環と結合する。
Arは、フェニル、ビフェニリル、テルフェニリル、クアテルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニリル、または、式(A)で表される基(カルバゾリル、ベンゾカルバゾリルおよびフェニル置換カルバゾリルも含む)である。なお、Arが式(A)で表される基である場合は、式(A)で表される基はその*において式(3-X3)中の直線で表される単結合と結合する。すなわち、式(3-H)のアントラセン環と式(A)で表される基が直接結合する。
また、Arは置換基を有していてもよく、Arにおける少なくとも1つの水素はさらに炭素数1~4のアルキル、炭素数5~10のシクロアルキル、フェニル、ビフェニリル、テルフェニリル、ナフチル、フェナントリル、フルオレニル、クリセニル、トリフェニレニル、ピレニリル、または、式(A)で表される基(カルバゾリルおよびフェニル置換カルバゾリルも含む)で置換されていてもよい。なお、Arが有する置換基が式(A)で表される基である場合は、式(A)で表される基はその*において式(3-X3)中のArと結合する。
Arは、それぞれ独立して、水素、フェニル、ビフェニリル、ターフェニリル、ナフチル、または炭素数1~4のアルキル(メチル、エチル、t-ブチルなど)および/もしくは炭素数5~10のシクロアルキルで置換されているシリルである。
シリルに置換する炭素数1~4のアルキルは、メチル、エチル、プロピル、i-プロピル、ブチル、sec-ブチル、t-ブチル、シクロブチルなどがあげられ、シリルにおける3つの水素が、それぞれ独立して、これらのアルキルで置換されている。
具体的な「炭素数1~4のアルキルで置換されているシリル」としては、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリi-プロピルシリル、トリブチルシリル、トリsec-ブチルシリル、トリt-ブチルシリル、エチルジメチルシリル、プロピルジメチルシリル、i-プロピルジメチルシリル、ブチルジメチルシリル、sec-ブチルジメチルシリル、t-ブチルジメチルシリル、メチルジエチルシリル、プロピルジエチルシリル、i-プロピルジエチルシリル、ブチルジエチルシリル、sec-ブチルジエチルシリル、t-ブチルジエチルシリル、メチルジプロピルシリル、エチルジプロピルシリル、ブチルジプロピルシリル、sec-ブチルジプロピルシリル、t-ブチルジプロピルシリル、メチルジi-プロピルシリル、エチルジi-プロピルシリル、ブチルジi-プロピルシリル、sec-ブチルジi-プロピルシリル、t-ブチルジi-プロピルシリルなどがあげられる。
シリルに置換する炭素数5~10のシクロアルキルは、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ノルボルネニル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられ、シリルにおける3つの水素が、それぞれ独立して、これらのシクロアルキルで置換されている。
具体的な「炭素数5~10のシクロアルキルで置換されているシリル」としては、トリシクロペンチルシリル、トリシクロヘキシルシリルなどがあげられる。
置換されているシリルとしては、2つのアルキルと1つのシクロアルキルが置換したジアルキルシクロアルキルシリルと、1つのアルキルと2つのシクロアルキルが置換したアルキルジシクロアルキルシリルもあり、置換するアルキルおよびシクロアルキルの具体例としては上述した基があげられる。
また、式(3-H)で表されるアントラセン系化合物の化学構造中の水素は式(A)で表される基で置換されていてもよい。式(A)で表される基で置換される場合は、式(A)で表される基はその*において式(3-H)で表される化合物における少なくとも1つの水素と置換する。
式(A)で表される基は、式(3-H)で表されるアントラセン系化合物が有しうる置換基の1つである。
Figure 2022034774000056
式(A)中、Yは-O-、-S-または>N-R29であり、R21~R28はそれぞれ独立して水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルコキシ、置換されていてもよいアリールオキシ、置換されていてもよいアリールチオ、トリアルキルシリル、トリシクロアルキルシリル、ジアルキルシクロアルキルシリル、アルキルジシクロアルキルシリル、置換されていてもよいアミノ、ハロゲン、ヒドロキシまたはシアノであり、R21~R28のうち隣接する基は互いに結合して炭化水素環、アリール環またはヘテロアリール環を形成していてもよく、R29は水素または置換されていてもよいアリールである。
式(A)中のYは-O-であることが好ましい。
21~R28における「置換されていてもよいアルキル」の「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)が特に好ましい。
具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。
21~R28における「置換されていてもよいシクロアルキル」の「シクロアルキル」としては、炭素数3~24のシクロアルキル、炭素数3~20のシクロアルキル、炭素数3~16のシクロアルキル、炭素数3~14のシクロアルキル、炭素数5~10のシクロアルキル、炭素数5~8のシクロアルキル、炭素数5~6のシクロアルキル、炭素数5のシクロアルキルなどがあげられる。
具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、およびこれらの炭素数1~4のアルキル(特にメチル)置換体や、ノルボルネニル、ビシクロ[1.0.1]ブチル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、ジアマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられる。
21~R28における「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールがあげられ、炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。
具体的な「アリール」としては、単環系であるフェニル、二環系であるビフェニリル、縮合二環系であるナフチル、三環系であるテルフェニリル(m-テルフェニリル、o-テルフェニリル、p-テルフェニリル)、縮合三環系である、アセナフチレニル、フルオレニル、フェナレニル、フェナントレニル、縮合四環系であるトリフェニレニル、ピレニル、ナフタセニル、縮合五環系であるペリレニル、ペンタセニルなどがあげられる。
21~R28における「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1~5個含有する複素環などがあげられる。
具体的な「ヘテロアリール」としては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニル、フリル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、チエニル、ベンゾ[b]チエニル、ジベンゾチエニル、フラザニル、オキサジアゾリル、チアントレニル、ナフトベンゾフラニル、ナフトベンゾチエニルなどがあげられる。
21~R28における「置換されていてもよいアルコキシ」の「アルコキシ」としては、例えば、炭素数1~24の直鎖または炭素数3~24の分岐鎖のアルコキシがあげられる。炭素数1~18のアルコキシ(炭素数3~18の分岐鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分岐鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分岐鎖のアルコキシ)が特に好ましい。
具体的な「アルコキシ」としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどがあげられる。
21~R28における「置換されていてもよいアリールオキシ」の「アリールオキシ」としては、-OH基の水素がアリールで置換された基であり、このアリールは上述したR21~R28における「アリール」として説明した基を引用することができる。
21~R28における「置換されていてもよいアリールチオ」の「アリールチオ」としては、-SH基の水素がアリールで置換された基であり、このアリールは上述したR21~R28における「アリール」として説明した基を引用することができる。
21~R28における「トリアルキルシリル」としては、シリル基における3つの水素がそれぞれ独立してアルキルで置換された基があげられ、このアルキルは上述したR21~R28における「アルキル」として説明した基を引用することができる。置換するのに好ましいアルキルは、炭素数1~4のアルキルであり、具体的にはメチル、エチル、プロピル、i-プロピル、ブチル、sec-ブチル、t-ブチル、シクロブチルなどがあげられる。
具体的な「トリアルキルシリル」としては、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリi-プロピルシリル、トリブチルシリル、トリsec-ブチルシリル、トリt-ブチルシリル、エチルジメチルシリル、プロピルジメチルシリル、i-プロピルジメチルシリル、ブチルジメチルシリル、sec-ブチルジメチルシリル、t-ブチルジメチルシリル、メチルジエチルシリル、プロピルジエチルシリル、i-プロピルジエチルシリル、ブチルジエチルシリル、sec-ブチルジエチルシリル、t-ブチルジエチルシリル、メチルジプロピルシリル、エチルジプロピルシリル、ブチルジプロピルシリル、sec-ブチルジプロピルシリル、t-ブチルジプロピルシリル、メチルジi-プロピルシリル、エチルジi-プロピルシリル、ブチルジi-プロピルシリル、sec-ブチルジi-プロピルシリル、t-ブチルジi-プロピルシリルなどがあげられる。
21~R28における「トリシクロアルキルシリル」としては、シリル基における3つの水素がそれぞれ独立してシクロアルキルで置換された基があげられ、このシクロアルキルは上述したR21~R28における「シクロアルキル」として説明した基を引用することができる。置換するのに好ましいシクロアルキルは、炭素数5~10のシクロアルキルであり、具体的にはシクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられる。
具体的な「トリシクロアルキルシリル」としては、トリシクロペンチルシリル、トリシクロヘキシルシリルなどがあげられる。
2つのアルキルと1つのシクロアルキルが置換したジアルキルシクロアルキルシリルと、1つのアルキルと2つのシクロアルキルが置換したアルキルジシクロアルキルシリルの具体例としては、上述した具体的なアルキルおよびシクロアルキルから選択される基が置換したシリルがあげられる。
21~R28における「置換されていてもよいアミノ」の「置換されたアミノ」としては、例えば2つの水素がアリールやヘテロアリールで置換されたアミノがあげられる。2つの水素がアリールで置換されたアミノがジアリール置換アミノであり、2つの水素がヘテロアリールで置換されたアミノがジヘテロアリール置換アミノであり、2つの水素がアリールとヘテロアリールで置換されたアミノがアリールヘテロアリール置換アミノである。このアリールやヘテロアリールは上述したR21~R28における「アリール」や「ヘテロアリール」として説明した基を引用することができる。
具体的な「置換されたアミノ」としては、ジフェニルアミノ、ジナフチルアミノ、フェニルナフチルアミノ、ジピリジルアミノ、フェニルピリジルアミノ、ナフチルピリジルアミノなどがあげられる。
21~R28における「ハロゲン」としては、フッ素、塩素、臭素、ヨウ素があげられる。
21~R28として説明した基のうち、いくつかは上述するように置換されてもよく、この場合の置換基としてはアルキル、シクロアルキル、アリールまたはヘテロアリールがあげられる。このアルキル、シクロアルキル、アリールまたはヘテロアリールは上述したR21~R28における「アルキル」、「シクロアルキル」、「アリール」または「ヘテロアリール」として説明した基を引用することができる。
Yとしての「>N-R29」におけるR29は水素または置換されていてもよいアリールであり、このアリールとしては上述したR21~R28における「アリール」として説明した基を引用することができ、またその置換基としてはR21~R28に対する置換基として説明した基を引用することができる。
21~R28のうち隣接する基は互いに結合して炭化水素環、アリール環またはヘテロアリール環を形成していてもよい。環を形成しない場合が下記式(A-1)で表される基であり、環を形成した場合としては例えば下記式(A-2)~式(A-14)で表される基があげられる。なお、式(A-1)~式(A-14)のいずれかで表される基における少なくとも1つの水素はアルキル、シクロアルキル、アリール、ヘテロアリール、アルコキシ、アリールオキシ、アリールチオ、トリアルキルシリル、トリシクロアルキルシリル、ジアルキルシクロアルキルシリル、アルキルジシクロアルキルシリル、ジアリール置換アミノ、ジヘテロアリール置換アミノ、アリールヘテロアリール置換アミノ、ハロゲン、ヒドロキシまたはシアノで置換されていてもよい。
Figure 2022034774000057
隣接する基が互いに結合してできた環としては、炭化水素環であれば例えばシクロヘキサン環があげられ、アリール環やヘテロアリール環としては上述したR21~R28における「アリール」や「ヘテロアリール」で説明した環構造があげられ、これらの環は式(A-1)における1つまたは2つのベンゼン環と縮合するように形成される。
式(A)で表される基は、式(A)のいずれかの位置の1つの水素を除いて得られる基であり、*が該位置を示す。すなわち、式(A)で表される基はいずれの位置を結合位置としていてもよい。例えば、式(A)の構造中の2つのベンゼン環上のいずれかの炭素原子、式(A)の構造中のR21~R28のうち隣接する基が互いに結合して形成されたいずれかの環上の原子、または式(A)の構造中のYとしての「>N-R29」におけるR29中のいずれかの位置、または「>N-R29」におけるN(R29が結合手となる)と直接結合する基となることができる。式(A-1)~式(A-14)のいずれかで表される基においても同様である。
式(A)で表される基としては、例えば式(A-1)~式(A-14)のいずれかで表される基があげられ、式(A-1)~式(A-5)および式(A-12)~式(A-14)のいずれかで表される基が好ましく、式(A-1)~式(A-4)のいずれかで表される基がより好ましく、式(A-1)、式(A-3)および式(A-4)のいずれかで表される基がさらに好ましく、式(A-1)で表される基が特に好ましい。
式(A)で表される基としては、例えば以下の基があげられる。式中のYおよび*は上記と同じ定義である。
Figure 2022034774000058
Figure 2022034774000059
式(3-H)で表される化合物においては、式(A)で表される基は、式(3-X1)または式(3-X2)中のナフタレン環、式(3-X3)中の単結合および/または式(3-X3)中のArと結合した形態が好ましい。
また、式(3-H)で表されるアントラセン系化合物の化学構造中の水素は、その全てまたは一部が重水素であってもよい。
ホストとしてのアントラセン系化合物は、例えば下記式(3-H2)で表される化合物であってもよい。
Figure 2022034774000060
式(3-H2)中、Arは、置換されていてもよいアリールまたは置換されていてもよいヘテロアリールであり、Rは、水素、アルキル、またはシクロアルキルであり、Ar11、Ar12、Ar13、Ar14、Ar15、Ar16、Ar17、およびAr18は、それぞれ独立して、水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいジアリールアミノ、置換されていてもよいジヘテロアリールアミノ、置換されていてもよいアリールヘテロアリールアミノ、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアルケニル、置換されていてもよいアルコキシ、置換されていてもよいアリールオキシ、置換されていてもよいアリールチオ、または置換されていてもよいシリルであり、式(3-H2)で表される化合物における少なくとも1つの水素はハロゲン、シアノ、または重水素で置換されていてもよい。
式(3-H2)中の、「置換されていてもよいアリール」、「置換されていてもよいヘテロアリール」、「置換されていてもよいジアリールアミノ」、「置換されていてもよいジヘテロアリールアミノ」、「置換されていてもよいアリールヘテロアリールアミノ」、「置換されていてもよいアルキル」、「置換されていてもよいシクロアルキル」、「置換されていてもよいアルケニル」、「置換されていてもよいアルコキシ」、「置換されていてもよいアリールオキシ」、「置換されていてもよいアリールチオ」、または「置換されていてもよいシリル」の定義は上記式(3-H)でされたものと同様であり、式(1)における説明を引用することができる。
「置換されていてもよいアリール」としては、下記式(3-H2-X1)~式(3-H2-X7)のいずれかで表される基であることも好ましい。
Figure 2022034774000061
式(3-H2-X1)~式(3-H2-X7)において、*は結合位置を示す。
式(3-H2-X1)~式(3-H2-X3)において、Ar21、Ar22、およびAr23は、それぞれ独立して、水素、フェニル、ビフェニリル、テルフェニリル、クアテルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニル、アントラセニル、または式(A)で表される基である。なお、式(3-H2)の説明において、式(A)で表される基は、式(3-H)で表されるアントラセン系化合物において説明したものと同じである。
式(3-H2-X4)~式(3-H2-X7)において、Ar24、Ar25、Ar26、Ar27およびAr28は、それぞれ独立して、水素、フェニル、ビフェニリル、テルフェニリル、ナフチル、フェナントリル、フルオレニル、クリセニル、トリフェニレニル、ピレニル、または式(A)で表される基である。
また、式(3-H2-X1)~式(3-H2-X7)で表される基のそれぞれにおけるいずれか1つまたは2つ以上の水素は、炭素数1~6のアルキル(好ましくはメチルまたはt-ブチル)で置換されていてもよい。
さらに、「置換されていてもよいアリール」の好ましい例としては、フェニル、ビフェニリル、テルフェニリル、ナフチル、フェナントリル、フルオレニル、クリセニル、トリフェニレニル、ピレニル、および式(A)で表される基からなる群より選択される1つ以上の置換基で置換されていてもよい、テルフェニリル(特に、m-テルフェニル-5’-イル)があげられる。
「置換されていてもよいヘテロアリール」としては、式(A)で表される基もあげられる。
そのほか、「置換されていてもよいアリール」および「置換されていてもよいヘテロアリール」の具体例としては、ジベンゾフリル、ナフトベンゾフリル、フェニル置換ジベンゾフリル等があげられる。
式(3-H2)で表される化合物における少なくとも1つの水素はハロゲン、シアノ、または重水素で置換されていてもよい。この場合の「ハロゲン」としては、フッ素、塩素、臭素、およびヨウ素があげられる。特に、式(3-H2)で表される化合物における全ての水素が重水素で置換された化合物が好ましい。
式(3-H2)中、Rは水素、アルキル、またはシクロアルキルであり、水素、メチル、またはt-ブチルであることが好ましく、水素であることがより好ましい。
式(3-H2)中、Ar11~Ar18の少なくとも2つが置換されていてもよいアリールまたは置換されていてもよいヘテロアリールであることが好ましい。すなわち、式(3-H2)で表されるアントラセン系化合物は、アントラセン環に、置換されていてもよいアリールおよび置換されていてもよいヘテロアリールからなる群より選択される置換基が少なくとも3つ結合した構造を有することが好ましい。
式(3-H2)で表されるアントラセン系化合物は、Ar11~Ar18の2つが置換されていてもよいアリールまたは置換されていてもよいヘテロアリールであり、他の6つが水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアルケニル、または置換されていてもよいアルコキシであることがより好ましい。すなわち、式(3-H2)で表されるアントラセン系化合物は、置換されていてもよいアリールおよび置換されていてもよいヘテロアリールからなる群より選択される置換基が、アントラセン環に3つ結合した構造を有することがより好ましい。
式(3-H2)で表されるアントラセン系化合物は、Ar11~Ar18のいずれか2つが置換されていてもよいアリールまたは置換されていてもよいヘテロアリールであり、他の6つが水素、メチル、またはt-ブチルであることがより好ましい。
さらに、式(3-H2)中、Rが水素であり、かつAr11~Ar18のいずれか6つが水素であることが好ましい。
式(3-H2)で表されるアントラセン系化合物は下記式(3-H2-A)、(3-H2-B)、(3-H2-C)、(3-H2-D)、または(3-H2-E)で表されるアントラセン系化合物であることが好ましい。
Figure 2022034774000062
式(3-H2-A)、(3-H2-B)、(3-H2-C)、(3-H2-D)または(3-H2-E)中、Ar’、Ar11’、Ar12’、Ar13’、Ar14’、Ar15’、Ar17’、およびAr18’はそれぞれ独立してフェニル、ビフェニリル、テルフェニリル、クアテルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニル、または、式(A)で表される基であり、これらの基における少なくとも1つの水素は、フェニル、ビフェニリル、テルフェニリル、クアテルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニル、または、式(A)で表される基で置換されていてもよい。ここで、フルオレニルおよびベンゾフルオレニルにおけるメチレンの水素がいずれもフェニルで置換されているときは、これらのフェニルは互いに単結合で結合していてもよい。Ar’、Ar11’、Ar12’、Ar13’、Ar14’、Ar15’、Ar17’、およびAr18’が結合していないアントラセン環の炭素原子には水素の代わりにメチルまたはt-ブチルが結合していてもよい。
Ar’、Ar11’、Ar12’、Ar13’、Ar14’、Ar15’、Ar17’、およびAr18’が、それぞれ置換もしくは無置換のフェニルまたは置換もしくは無置換のナフチルであるときは、上記の式(3-H2-X1)~式(3-H2-X7)のいずれかで表される基であることが好ましい。
Ar’、Ar11’、Ar12’、Ar13’、Ar14’、Ar15’、Ar17’、およびAr18’はそれぞれ独立してフェニル、ビフェニリル(特に、ビフェニル-2-イルまたはビフェニル-4-イル)、テルフェニリル(特に、m-テルフェニル-5’-イル)、ナフチル、フェナントリル、フルオレニル、または、上記の式(A-1)~式(A-4)のいずれかで表される基であることがより好ましく、このとき、これらの基における少なくとも1つの水素は、フェニル、ビフェニリル、ナフチル、フェナントリル、フルオレニル、または、上記の式(A-1)~式(A-4)のいずれかで表される基で置換されていてもよい。
また、式(3-H2-A)、(3-H2-B)、(3-H2-C)、(3-H2-D)、または(3-H2-E)で表される化合物における少なくとも1つの水素はハロゲン、シアノ、または重水素置換されていてもよい。
特に好ましい式(3-H2)で表されるアントラセン系化合物として、下記式(3-H2-Aa)で表されるアントラセン系化合物をあげることができる。
Figure 2022034774000063
式(3-H2-Aa)中、Ar’、Ar14’、およびAr15’はそれぞれ独立して、フェニル、ビフェニリル、テルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニル、または上記式(A-1)~式(A-14)のいずれかで表される基であり、これらの基における少なくとも1つの水素は、フェニル、ビフェニリル、テルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニル、または式(A-1)~式(A-14)のいずれかで表される基で置換されていてもよい。ここで、フルオレニルおよびベンゾフルオレニルにおけるメチレンの水素がいずれもフェニルで置換されているときは、これらのフェニルは互いに単結合で結合していてもよい。また、Ar’、Ar14’、およびAr15’が結合していないアントラセン環上の炭素原子には水素の代わりにメチルまたはt-ブチルが置換していてもよい。式(3-H2-Aa)で表される化合物における少なくとも1つの水素はハロゲンまたはシアノで置換されていてもよく、かつ式(3-H2-Aa)で表される化合物における少なくとも1つの水素は重水素で置換されている。
式(3-H2-Aa)中、Ar’、Ar14’、およびAr15’はそれぞれ独立してフェニル、ビフェニリル、テルフェニリル、ナフチル、フェナントリル、フルオレニル、または上記式(A-1)~式(A-4)のいずれかで表される基であることが好ましく、これらの基における少なくとも1つの水素は、フェニル、ナフチル、フェナントリル、フルオレニル、または式(A-1)~式(A-4)のいずれかで表される基で置換されていてもよい。
式(3-H2-Aa)で表される化合物においては、少なくとも、アントラセン環の10位の炭素(Ar’が結合する炭素を9位とする)に結合する水素が重水素に置換されていることが好ましい。すなわち、式(3-H2-Aa)で表される化合物は、下記式(3-H2-Ab)で表される化合物であることが好ましい。なお、式(3-H2-Ab)中、Dは重水素であり、Ar’、Ar14’、およびAr15’は式(3-H2-Aa)中の定義と同一である。式(3-H2-Ab)におけるDは少なくともこの位置が重水素であることを示し、式(3-H2-Aa)におけるその他のいずれか1つ以上の水素が同時に重水素であってもよく、式(3-H2-Aa)における水素がいずれも重水素であることも好ましい。
Figure 2022034774000064
アントラセン系化合物の具体的な例としては、例えば、下記の各式で表される化合物があげられる。なお、下記構造式中の「Me」はメチル、「D」は重水素、「tBu」はt-ブチルを示す。
Figure 2022034774000065
Figure 2022034774000066
Figure 2022034774000067
Figure 2022034774000068
Figure 2022034774000069
Figure 2022034774000070
Figure 2022034774000071
Figure 2022034774000072
また、アントラセン系化合物の他の具体的な例としては、例えば、下記式(3-131-Y)~式(3-179-Y)で表される化合物、下記式(3-180-Y)~式(3-182-Y)で表される化合物、下記式(3-183-N)、下記式(3-184-Y)~式(3-254-Y)、式(3-254-Y)~式(3-269-Y)、および下記式(3-500)~式(3-557)で表される化合物があげられる。下記式(3-131-Y)~式(3-179-Y)で表される化合物、下記式(3-180-Y)~式(3-182-Y)で表される化合物、下記式(3-183-N)、下記式(3-184-Y)~式(3-254-Y)、式(3-254-Y)~式(3-269-Y)、および下記式(3-500)~式(3-557)中、水素原子は部分的に、またはすべて重水素で置換されていてもよい。式中のYは-O-、-S-、>N-R29(R29は上記と同じ定義)または>C(-R30(R30は連結していてもよいアリール、またはアルキル)のいずれでもよく、R29は例えばフェニル、R30は例えばメチルである。式番号は、例えばYがOの場合は、式(3-131-Y)は式(3-131-O)とし、Yが-S-または>N-R29の場合はそれぞれ式(3-131-S)または式(3-131-N)とする。
Figure 2022034774000073
Figure 2022034774000074
Figure 2022034774000075
Figure 2022034774000076
Figure 2022034774000077
Figure 2022034774000078
Figure 2022034774000079
Figure 2022034774000080
Figure 2022034774000081
Figure 2022034774000082
Figure 2022034774000083
Figure 2022034774000084
Figure 2022034774000085
Figure 2022034774000086
Figure 2022034774000087
Figure 2022034774000088
Figure 2022034774000089
Figure 2022034774000090
Figure 2022034774000091
これらの化合物の中でも、式(3-131-Y)~式(3-134-Y)、式(3-138-Y)、式(3-140-Y)~式(3-143-Y)、式(3-150-Y)、式(3-153-Y)~式(3-156-Y)、式(3-166-Y)、式(3-168-Y)、式(3-173-Y)、式(3-177-Y)、式(3-180-Y)~式(3-183-N)、式(3-185-Y)、式(3-190-Y)、式(3-223-Y)、式(3-241-Y)、式(3-250-Y)、式(3-252-Y)~式(3-254-Y)、式(3-501)、式(3-507)、式(3-508)、式(3-509)、式(3-513)、式(3-514)、式(3-519)、式(3-521)、式(3-538)~式(3-547)もしくは式(3-600)~(3-620)で表される化合物が好ましい。また、Yは-O-であることが好ましい。
上記のアントラセン系化合物は、アントラセン骨格の所望の位置に反応性基を有する化合物と、式(3-H)で表されるアントラセン系化合物であればX、Arおよび式(A)の構造などの部分構造に反応性基を有する化合物を出発原料として、鈴木カップリング、根岸カップリング、その他の公知のカップリング反応を応用して製造することができる。これらの反応性化合物の反応性基としては、ハロゲンやボロン酸などがあげられる。具体的な製造方法としては、例えば国際公開第2014/141725号の段落[0089]~[0175]における合成法を参考にすることができる。
<フルオレン系化合物>
式(4-H)で表される化合物は基本的にはホストとして機能する。
Figure 2022034774000092
式(4-H)中、
からR10は、それぞれ独立して、水素、アリール、ヘテロアリール(当該ヘテロアリールは連結基を介して式(4-H)におけるフルオレン骨格と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
また、RとR、RとR、RとR、RとR、RとR、RとRまたはRとR10がそれぞれ独立して結合して縮合環またはスピロ環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール(当該ヘテロアリールは連結基を介して当該形成された環と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
式(4-H)で表される化合物における少なくとも1つの水素がハロゲン、シアノまたは重水素で置換されていてもよい。
式(4-H)の定義における各基の詳細は、上述した、式(1)における説明を引用することができる。
からR10におけるアルケニルとしては、例えば、炭素数2~30のアルケニルがあげられ、炭素数2~20のアルケニルが好ましく、炭素数2~10のアルケニルがより好ましく、炭素数2~6のアルケニルがさらに好ましく、炭素数2~4のアルケニルが特に好ましい。好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。
なお、ヘテロアリールの具体例として、下記式(4-Ar1)、式(4-Ar2)、式(4-Ar3)、式(4-Ar4)または式(4-Ar5)の化合物から任意の1つの水素原子を除いて表される1価の基もあげられる。
Figure 2022034774000093
式(4-Ar1)から式(4-Ar5)中、Yは、それぞれ独立して、O、SまたはN-Rであり、Rはフェニル、ビフェニリル、ナフチル、アントラセニルまたは水素であり、
式(4-Ar1)から式(4-Ar5)の構造における少なくとも1つの水素はフェニル、ビフェニリル、ナフチル、アントラセニル、フェナントレニル、メチル、エチル、プロピル、または、ブチルで置換されていてもよい。
これらのヘテロアリールは、連結基を介して、式(4-H)におけるフルオレン骨格と結合していてもよい。すなわち、式(4-H)におけるフルオレン骨格と上記ヘテロアリールとが直接結合するだけでなく、それらの間に連結基を介して結合してもよい。この連結基としては、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、-OCHCH-、-CHCHO-、または、-OCHCHO-などがあげられる。
また、式(4-H)中のRとR、RとR、RとR、RとR、RとRまたはRとRがそれぞれ独立して結合して縮合環を、RとR10が結合してスピロ環を形成していてもよい。RからRにより形成された縮合環は、式(4-H)におけるベンゼン環に縮合する環であり、脂肪族環または芳香族環である。好ましくは芳香族環であり、式(4-H)におけるベンゼン環を含めた構造としてはナフタレン環やフェナントレン環などがあげられる。RとR10により形成されたスピロ環は、式(4-H)における5員環にスピロ結合する環であり、脂肪族環または芳香族環である。好ましくは芳香族環であり、フルオレン環などがあげられる。
式(4-H)で表される化合物は、好ましくは、下記式(4-H-1)、式(4-H-2)または式(4-H-3)で表される化合物であり、それぞれ、式(4-H)においてRとRが結合して形成されたベンゼン環が縮合した化合物、式(4-H)においてRとRが結合して形成されたベンゼン環が縮合した化合物、式(4-H)においてRからRのいずれもが結合していない化合物である。
Figure 2022034774000094
式(4-H-1)、式(4-H-2)および式(4-H-3)におけるRからR10の定義は式(4-H)において対応するRからR10と同じであり、式(4-H-1)および式(4-H-2)におけるR11からR14の定義も式(4-H)におけるRからR10と同じである。
式(4-H)で表される化合物は、さらに好ましくは、下記式(4-H-1A)、式(4-H-2A)または式(4-H-3A)で表される化合物であり、それぞれ、式(4-H-1)、式(4-H-1)または式(4-H-3)においてRとR10が結合してスピロ-フルオレン環が形成された化合物である。
Figure 2022034774000095
式(4-1A)、式(4-2A)および式(4-3A)におけるRからRの定義は式(4-1)、式(4-2)および式(4-3)において対応するRからRと同じであり、式(4-1A)および式(4-2A)におけるR11からR14の定義も式(4-1)および式(4-2)におけるR11からR14と同じである。
また、式(4-H)で表される化合物における水素は、その全てまたは一部がハロゲン、シアノまたは重水素で置換されていてもよい。
本発明のホストとしてのフルオレン系化合物のさらに具体的な例としては、以下の構造式で表される化合物があげられる。なお、「Me」はメチルを示す。
Figure 2022034774000096
<ジベンゾクリセン系化合物>
ホストとしてのジベンゾクリセン系化合物は、例えば下記式(5-H)で表される化合物である。
Figure 2022034774000097
式(5-H)中、
からR16は、それぞれ独立して、水素、アリール、ヘテロアリール(当該ヘテロアリールは連結基を介して式(5-H)におけるジベンゾクリセン骨格と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
また、RからR16のうち隣接する基同士が結合して縮合環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール(当該ヘテロアリールは連結基を介して当該形成された環と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
式(5-H)で表される化合物における少なくとも1つの水素がハロゲン、シアノまたは重水素で置換されていてもよい。
式(5-H)の定義における各基の詳細は、上述した、式(1)における説明を引用することができる。
式(5-H)の定義におけるアルケニルとしては、例えば、炭素数2~30のアルケニルがあげられ、炭素数2~20のアルケニルが好ましく、炭素数2~10のアルケニルがより好ましく、炭素数2~6のアルケニルがさらに好ましく、炭素数2~4のアルケニルが特に好ましい。好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。
なお、ヘテロアリールの具体例として、下記式(5-Ar1)、式(5-Ar2)、式(5-Ar3)、式(5-Ar4)または式(5-Ar5)の化合物から任意の1つの水素原子を除いて表される1価の基もあげられる。
Figure 2022034774000098
式(5-Ar1)から式(5-Ar5)中、Yは、それぞれ独立して、O、SまたはN-Rであり、Rはフェニル、ビフェニリル、ナフチル、アントラセニルまたは水素であり、
式(5-Ar1)から式(5-Ar5)の構造における少なくとも1つの水素はフェニル、ビフェニリル、ナフチル、アントラセニル、フェナントレニル、メチル、エチル、プロピル、または、ブチルで置換されていてもよい。
これらのヘテロアリールは、連結基を介して、式(5-H)におけるジベンゾクリセン骨格と結合していてもよい。すなわち、式(5-H)におけるジベンゾクリセン骨格と上記ヘテロアリールとが直接結合するだけでなく、それらの間に連結基を介して結合してもよい。この連結基としては、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、-OCHCH-、-CHCHO-、または、-OCHCHO-などがあげられる。
式(5-H)で表される化合物は、好ましくは、R、R、R、R、R、R12、R13およびR16は水素である。この場合、式(5-H)中のR、R、R、R、R10、R11、R14およびR15は、それぞれ独立して、水素、フェニル、ビフェニリル、ナフチル、アントラセニル、フェナントレニル、式(5-Ar1)、式(5-Ar2)、式(5-Ar3)、式(5-Ar4)もしくは式(5-Ar5)の構造を有する1価の基(当該構造を有する1価の基は、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、-OCHCH-、-CHCHO-、または、-OCHCHO-を介して、式(5-H)におけるジベンゾクリセン骨格と結合していてもよい)、メチル、エチル、プロピル、または、ブチルであることが好ましい。
式(5-H)で表される化合物は、より好ましくは、R、R、R、R、R、R、R、R10、R12、R13、R15およびR16は水素である。この場合、式(5-H)中のR、R、R11およびR14の少なくとも1つ(好ましくは1つまたは2つ、より好ましくは1つ)は、単結合、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、-OCHCH-、-CHCHO-、または、-OCHCHO-を介した、式(5-Ar1)、式(5-Ar2)、式(5-Ar3)、式(5-Ar4)または式(5-Ar5)の構造を有する1価の基であり、
前記少なくとも1つ以外(すなわち、前記構造を有する1価の基が置換した位置以外)は水素、フェニル、ビフェニリル、ナフチル、アントラセニル、メチル、エチル、プロピル、または、ブチルであり、これらにおける少なくとも1つの水素は、フェニル、ビフェニリル、ナフチル、アントラセニル、メチル、エチル、プロピル、または、ブチルで置換されていてもよい。
また、式(5-H)中のR、R、R、R、R10、R11、R14およびR15として、式(5-Ar1)から式(5-Ar5)で表される構造を有する1価の基が選択された場合には、当該構造における少なくとも1つの水素は式(5-H)中のRからR16のいずれかと結合して単結合を形成していてもよい。
本発明のホストとしてのジベンゾクリセン系化合物のさらに具体的な例としては、以下の構造式で表される化合物があげられる。なお、「tBu」はt-ブチルを示す。
Figure 2022034774000099
Figure 2022034774000100
上述した発光層用材料(ホスト材料およびドーパント材料)は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、発光層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される構造単位を含む多環芳香族化合物についての上記の説明を引用できる。
このような高分子化合物および高分子架橋体の用途の詳細については後述する。
<高分子ホスト材料の一例>
Figure 2022034774000101
式(SPH-1)において、
MUはそれぞれ独立して2価の芳香族基、ECはそれぞれ独立して1価の芳香族基であり、MU中の2つの水素がECまたはMUと置換され、kは2~50000の整数である。
より具体的には、
MUは、それぞれ独立して、アリーレン、ヘテロアリーレン、ジアリーレンアリールアミノ、ジアリーレンアリールボリル、オキサボリン-ジイル、アザボリン-ジイルであり、
ECは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノまたはアリールオキシであり、
MUおよびECにおける少なくとも1つの水素はさらに、アリール、ヘテロアリール、ジアリールアミノ、アルキルおよびシクロアルキルで置換されていてもよく、
kは2~50000の整数である。
kは20~50000の整数であることが好ましく、100~50000の整数であることがより好ましい。
式(SPH-1)中のMUおよびECにおける少なくとも1つの水素は、炭素数1~24のアルキル、炭素数3~24のシクロアルキル、ハロゲンまたは重水素で置換されていてもよく、さらに、前記アルキルにおける任意の-CH-は-O-または-Si(CH-で置換されていてもよく、前記アルキルにおける式(SPH-1)中のECに直結している-CH-を除く任意の-CH-は炭素数6~24のアリーレンで置換されていてもよく、前記アルキルにおける任意の水素はフッ素で置換されていてもよい。
MUとしては、例えば、以下の構造の2価の誘導体(例えば以下の構造のいずれかの化合物から任意の2つの水素原子を除いて表される2価の基、以下の構造のいずれかの化合物から任意の2つの水素原子を除いて表される2価の基の2つ以上の組み合わせから構成される2価の基、それらの基における水素の少なくとも1つがアルキル等で置換された2価の基など)があげられる。
Figure 2022034774000102
より具体的には、以下のいずれかの構造で表される2価の基があげられる。これらにおいて、MUは*において他のMUまたはECと結合する。
Figure 2022034774000103
Figure 2022034774000104
Figure 2022034774000105
Figure 2022034774000106
Figure 2022034774000107
Figure 2022034774000108
Figure 2022034774000109
Figure 2022034774000110
Figure 2022034774000111
また、ECとしては、例えば以下のいずれかの構造で表される1価の基があげられる。これらにおいて、ECは*においてMUと結合する。
Figure 2022034774000112
Figure 2022034774000113
式(SPH-1)で表される化合物は、溶解性および塗布成膜性の観点から、分子中のMU総数(k)の10~100%のMUが炭素数1~24のアルキルを有することが好ましく、分子中のMU総数(k)の30~100%のMUが炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)を有することがより好ましく、分子内のMU総数(k)の50~100%のMUが炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)を有することがさらに好ましい。一方、面内配向性および電荷輸送の観点からは、分子中のMU総数(k)の10~100%のMUが炭素数7~24のアルキルを有することが好ましく、分子中のMU総数(k)の30~100%のMUが炭素数7~24のアルキル(炭素数7~24の分岐鎖アルキル)を有することがより好ましい。
アシスティングドーパントとエミッティングドーパントとを含む発光層
有機電界発光素子における発光層は、第1成分としてのホスト化合物、第2成分としてのアシスティングドーパント(化合物)、および第3成分としてのエミッティングドーパント(化合物)を含むものであってもよい。
本発明の多環芳香族化合物はエミッティングドーパントとして用いることも好ましい。
アシスティングドーパント(化合物)としては熱活性型遅延蛍光体を用いることができる。
以下の説明では、熱活性型遅延蛍光体をアシスティングドーパントとして用いる有機電界発光素子を、「TAF素子」(TADF Assisting Fluorescence素子)ということがある。
TAF素子における「ホスト化合物」とは、蛍光スペクトルのピーク短波長側の肩より求められる励起一重項エネルギー準位が、第2成分としての熱活性型遅延蛍光体、および、第3成分としてのエミッティングドーパントよりも高い化合物のことを意味する。
「熱活性型遅延蛍光体」とは、熱エネルギーを吸収して励起三重項状態から励起一重項状態への逆項間交差を起こし、その励起一重項状態から放射失活して遅延蛍光を放射しうる化合物のことを意味する。ただし、「熱活性型遅延蛍光」とは、励起三重項状態から励起一重項状態への励起過程で高次三重項を経るものも含む。例えば、Durham大学 Monkmanらによる論文(NATURE COMMUNICATIONS,7:13680,DOI: 10.1038/ncomms13680)、産業技術総合研究所 細貝らによる論文(Hosokai et al., Sci. Adv. 2017;3: e1603282)、京都大学 佐藤らによる論文(Scientific Reports,7:4820, DOI:10.1038/s41598-017-05007-7)および、同じく京都大学 佐藤らによる学会発表(日本化学会第98春季年会、発表番号:2I4-15、DABNAを発光分子として用いた有機電界発光における高効率発光の機構、京都大学大学院工学研究科)などがあげられる。本発明では、対象化合物を含むサンプルについて、300Kで蛍光寿命を測定したとき、遅い蛍光成分が観測されたことをもって該対象化合物が「熱活性型遅延蛍光体」であると判定することとする。ここで、遅い蛍光成分とは、蛍光寿命が0.1μsec以上であるもののことを言う。蛍光寿命の測定は、例えば蛍光寿命測定装置(浜松ホトニクス社製、C11367-01)を用いて行うことができる。
本発明の多環芳香族化合物は、エミッティングドーパントとして機能させることができ、「熱活性型遅延蛍光体」は、本発明の多環芳香族化合物の発光をアシストするアシスティングドーパントとして機能させることができる。
図2に一般的な蛍光ドーパントをエミッティングドーパント(ED)に用いたTAF素子の発光層のエネルギー準位図を示す。図中、ホストの基底状態のエネルギー準位をE(1,G)、ホストの蛍光スペクトルの短波長側の肩より求められる励起一重項エネルギー準位をE(1,S,Sh)、ホストのリン光スペクトルの短波長側の肩より求められる励起三重項エネルギー準位をE(1,T,Sh)、第2成分であるアシスティングドーパントの基底状態のエネルギー準位をE(2,G)、第2成分であるアシスティングドーパントの蛍光スペクトルの短波長側の肩より求められる励起一重項エネルギー準位をE(2,S,Sh)、第2成分であるアシスティングドーパントのリン光スペクトルの短波長側の肩より求められる励起三重項エネルギー準位をE(2,T,Sh)、第3成分であるエミッティングドーパントの基底状態のエネルギー準位をE(3,G)、第3成分であるエミッティングドーパントの蛍光スペクトルの短波長側の肩より求められる励起一重項エネルギー準位をE(3,S,Sh)、第3成分であるエミッティングドーパントのリン光スペクトルの短波長側の肩より求められる励起三重項エネルギー準位をE(3,T,Sh)とする。TAF素子において、一般的な蛍光ドーパントをエミッティングドーパント(ED)として用いた場合、アシスティングドーパントでアップコンバージョンされたエネルギーはエミッティングドーパントの励起一重項エネルギー準位E(3,S,Sh)に移り発光する。しかし、アシスティングドーパント上の一部の励起三重項エネルギーE(2,T,Sh)がエミッティングドーパントの励起三重項エネルギー準位E(3,T,Sh)に移動したり、エミッティングドーパント上で励起一重項エネルギー準位E(3,S,Sh)から励起三重項エネルギー準位E(3,T,Sh)への項間交差が起こり、引き続いて基底状態E(3,G)へ熱的に失活する。この経路により一部のエネルギーは発光に利用されず、エネルギーの無駄が生じる。
これに対して、本態様の有機電界発光素子では、アシスティングドーパントからエミッティングドーパントに移動したエネルギーを効率よく発光に利用することができ、これにより高い発光効率を実現することができる。これは、以下の発光メカニズムによるものと推測される。
本態様の有機電界発光素子における好ましいエネルギー関係を図3に示す。本態様の有機電界発光素子においては、エミッティングドーパントとしての、ホウ素原子を有する化合物が高い励起三重項エネルギー準位E(3,T,Sh)を有する。そのため、アシスティングドーパントでアップコンバージョンされた励起一重項エネルギーが、例えば、エミッティングドーパントで励起三重項エネルギー準位E(3,T,Sh)へ項間交差した場合にも、エミッティングドーパント上でアップコンバージョンされるか、アシスティングドーパント(熱活性型遅延蛍光体)上の励起三重項エネルギー準位E(2,T,Sh)へ回収される。したがって、生成した励起エネルギーを無駄なく発光に使用することができる。また、アップコンバージョンおよび発光の機能をそれぞれが得意な2種の分子に分けることで、高いエネルギーの滞留時間が減少し、化合物への負担が減少すると予想される。
本態様において、ホスト化合物としては、公知のものを用いることができ、例えばカルバゾール環およびフラン環の少なくとも一方を有する化合物をあげることができ、中でも、フラニルおよびカルバゾリルの少なくとも一方と、アリーレンおよびヘテロアリーレンの少なくとも一方とが結合した化合物を用いることが好ましい。具体例として、mCPやmCBPなどがあげられる。
ホスト化合物の燐光スペクトルのピーク短波長側の肩より求められる励起三重項エネルギー準位E(1,T,Sh)は、発光層内でのTADFの発生を阻害せず促進させる観点から、発光層内において最も高い励起三重項エネルギー準位を有するエミッティングドーパントまたはアシスティングドーパントの励起三重項エネルギー準位E(2,T,Sh)、E(3,T,Sh)に比べて高い方が好ましく、具体的には、ホスト化合物の励起三重項エネルギー準位E(1,T,Sh)はE(2,T,Sh)、E(3,T,Sh)に比べて、0.01eV以上が好ましく、0.03eV以上がより好ましく、0.1eV以上がさらに好ましい。また、ホスト化合物にTADF活性な化合物を用いてもよい。
ホスト化合物には、例えば、上記式(H1)、(H2)および(H3)のいずれかで表される化合物を用いることができる。
<熱活性型遅延蛍光体(アシスティングドーパント)>
TAF素子で用いる熱活性型遅延蛍光体(TADF化合物)は、ドナーと呼ばれる電子供与性の置換基とアクセプターと呼ばれる電子受容性の置換基を用いて分子内のHOMO(Highest Occupied Molecular Orbital)とLUMO(Lowest Unoccupied Molecular Orbital)を局在化させて、効率的な逆項間交差(reverse intersystem crossing)が起きるようにデザインされた、ドナー-アクセプター型熱活性型遅延蛍光体(D-A型TADF化合物)であることが好ましい。
ここで、本明細書中において「電子供与性の置換基」(ドナー)とは、熱活性型遅延蛍光体分子中でHOMO軌道が局在する置換基および部分構造のことを意味し、「電子受容性の置換基」(アクセプター)とは、熱活性型遅延蛍光体分子中でLUMO軌道が局在する置換基および部分構造のことを意味することとする。
一般的に、ドナーやアクセプターを用いた熱活性型遅延蛍光体は、構造に起因してスピン軌道結合(SOC: Spin Orbit Coupling)が大きく、かつ、HOMOとLUMOの交換相互作用が小さくΔE(ST)が小さいために、非常に速い逆項間交差速度が得られる。一方、ドナーやアクセプターを用いた熱活性型遅延蛍光体は、励起状態での構造緩和が大きくなり(ある分子においては、基底状態と励起状態では安定構造が異なるため、外部刺激により基底状態から励起状態への変換が起きると、その後、励起状態における安定構造へと構造が変化する)、幅広な発光スペクトルを与えるため、発光材料として使うと色純度を低下させる可能性がある。
TAF素子における熱活性型遅延蛍光体として、例えばドナーおよびアクセプターが直接またはスペーサーを介して結合している化合物を用いることができる。本発明の熱活性型遅延蛍光体に用いられるドナー性およびアクセプター性の構造としては、例えば、Chemistry of Materials, 2017, 29, 1946-1963に記載の構造を用いることができる。ドナー性の構造としては、カルバゾール、ジメチルカルバゾール、ジ-tert-ブチルカルバゾール、ジメトキシカルバゾール、テトラメチルカルバゾール、ベンゾフルオロカルバソール、ベンゾチエノカルバゾール、フェニルジヒドロインドロカルバゾール、フェニルビカルバゾール、ビカルバゾール、ターカルバゾール、ジフェニルカルバゾリルアミン、テトラフェニルカルバゾリルジアミン、フェノキサジン、ジヒドロフェナジン、フェノチアジン、ジメチルジヒドロアクリジン、ジフェニルアミン、ビス(tert-ブチル)フェニル)アミン、(ジフェニルアミノ)フェニル)ジフェニルベンゼンジアミン、ジメチルテトラフェニルジヒドロアクリジンジアミン、テトラメチル-ジヒドローインデノアクリジンおよびジフェニルージヒドロジベンゾアザシリンなどがあげられる。アクセプター性の構造としては、スルホニルジベンゼン、ベンゾフェノン、フェニレンビス(フェニルメタノン)、ベンゾニトリル、イソニコチノニトリル、フタロニトリル、イソフタロニトリル、パラフタロニトリル、ベンゼントリカルボニトリル、トリアゾール、オキサゾール、チアジアゾール、ベンゾチアゾール、ベンゾビス(チアゾール)、ベンゾオキサゾール、ベンゾビス(オキサゾール)、キノリン、ベンゾイミダゾール、ジベンゾキノキサリン、ヘプタアザフェナレン、チオキサントンジオキシド、ジメチルアントラセノン、アントラセンジオン、シクロヘプタビピリジン、フルオレンジカルボニトリル、トリエフェニルトリアジン、ピラジンジカルボニトリル、ピリミジン、フェニルピリミジン、メチルピリミジン、ピリジンジカルボニトリル、ジベンゾキノキサリンジカルボニトリル、ビス(フェニルスルホニル)ベンゼン、ジメチルチオキサンテンジオキド、チアンスレンテトラオキシドおよびトリス(ジメチルフェニル)ボランがあげられる。特に、TAF素子における熱活性型遅延蛍光を有する化合物は、部分構造として、カルバゾール、フェノキサジン、アクリジン、トリアジン、ピリミジン、ピラジン、チオキサンテン、ベンゾニトリル、フタロニトリル、イソフタロニトリル、ジフェニルスルホン、トリアゾール、オキサジアゾール、チアジアゾールおよびベンゾフェノンから選択される少なくとも一つを有する化合物であることが好ましい。
TAF素子における発光層の第2成分として用いる化合物は、熱活性型遅延蛍光体であって、その発光スペクトルがエミッティングドーパントの吸収ピークと少なくとも一部重なる化合物であることが好ましい。以下において、TAF素子における発光層の第2成分(熱活性型遅延蛍光体)として用いることができる化合物を例示する。ただしTAF素子において熱活性型遅延蛍光体として用いることができる化合物は、以下の例示化合物によって限定的に解釈されることはない。下記式において、Meはメチルを表し、t-Buはt-ブチルを表し、Phはフェニルを表し、波線は結合位置を表す。
Figure 2022034774000114
Figure 2022034774000115
Figure 2022034774000116
Figure 2022034774000117
Figure 2022034774000118
Figure 2022034774000119
Figure 2022034774000120
Figure 2022034774000121
Figure 2022034774000122
Figure 2022034774000123
Figure 2022034774000124
Figure 2022034774000125
Figure 2022034774000126
Figure 2022034774000127
Figure 2022034774000128
Figure 2022034774000129
Figure 2022034774000130
Figure 2022034774000131
Figure 2022034774000132
さらに、熱活性型遅延蛍光体として、下記式(AD1)、(AD2)および(AD3)のいずれかで表される化合物も用いることができる。
Figure 2022034774000133
上記式(AD1)、(AD2)および(AD3)中、
Mは、それぞれ独立して、単結合、-O-、>N-Arまたは>CArであり、形成する部分構造のHOMOの深さおよび励起一重項エネルギー準位および励起三重項エネルギー準位の高さの観点から、好ましくは、単結合、-O-または>N-Arである。Jはドナー性の部分構造とアクセプター性の部分構造を分けるスペーサー構造として機能する連結基であり、それぞれ独立して、炭素数6~18のアリーレンであり、ドナー性の部分構造とアクセプター性の部分構造から染み出す共役の大きさの観点から、炭素数6~12のアリーレンが好ましい。より具体的には、フェニレン、メチルフェニレンおよびジメチルフェニレンがあげられる。Qは、それぞれ独立して、=C(-H)-または=N-であり、形成する部分構造のLUMOの浅さおよび励起一重項エネルギー準位および励起三重項エネルギー準位の高さの観点から、好ましくは、=N-である。Arは、それぞれ独立して、水素、炭素数6~24のアリール、炭素数2~24のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~18のシクロアルキルであり、形成する部分構造のHOMOの深さおよび励起一重項エネルギー準位および励起三重項エネルギー準位の高さの観点から、好ましくは、水素、炭素数6~12のアリール、炭素数2~14のヘテロアリール、炭素数1~4のアルキルまたは炭素数6~10のシクロアルキルであり、より好ましくは、水素、フェニル、トリル、キシリル、メシチル、ビフェニル、ピリジル、ビピリジル、トリアジル、カルバゾリル、ジメチルカルバゾリル、ジーtert-ブチルカルバゾリル、ベンゾイミダゾールまたはフェニルベンゾイミダゾールであり、さらに好ましくは、水素、フェニルまたはカルバゾリルである。mは、1または2である。nは、~(6-m)の整数であり、立体障害の観点から、好ましくは、4~(6-m)の整数である。さらに、上記各式で表される化合物における少なくとも1つの水素は、ハロゲンまたは重水素で置換されていてもよい。
本態様の第2成分として用いる化合物は、より具体的に言えば、4CzBN、4CzBN-Ph、5CzBN、3Cz2DPhCzBN、4CzIPN、2PXZーTAZ、Cz-TRZ3、BDPCC-TPTA、MA-TA、PA-TA、FA-TA、PXZ-TRZ、DMAC-TRZ、BCzT、DCzTrz、DDCzTRz、spiroAC-TRZ、Ac-HPM、Ac-PPM、Ac-MPM、TCzTrz、TmCzTrzおよびDCzmCzTrzであることが好ましい。
本態様の第2成分として用いる化合物は、1つのドナーDと1つのアクセプターAが直接結合または連結基を介して結合しているD-Aで表されるドナーアクセプター型TADF化合物でもよいが、1つのアクセプターAに複数のドナーDが直接結合または連結基を介して結合している下記式(DAD1)で表される構造を有するものであることが、有機電界発光素子の特性がより優れたものになるため好ましい。
(D-L)n-A (DAD1)
式(DAD1)には、下記式(DAD2)で表される化合物が含まれる。
-L-A-L-D (DAD2)
式(DAD1)および式(DAD2)において、D、DおよびDはそれぞれ独立してドナー性基を表す。ドナー性基としては、上記のドナー性の構造を採用することができる。AおよびAはそれぞれ独立してアクセプター性基を表す、アクセプター性基としては、上記のアクセプター性の構造を採用することができる。L、LおよびLはそれぞれ独立して単結合または共役連結基を表す。共役連結基はドナー性基とアクセプター性基を分けるスペーサー構造であり、炭素数6~18のアリーレンであることが好ましく、炭素数6~12のアリーレンがより好ましい。L、LおよびLは、それぞれ独立してフェニレン、メチルフェニレンまたはジメチルフェニレンであることがさらに好ましい。式(DAD1)におけるnは2以上であって、Aが置換しうる最大数以下の整数を表す。nは例えば2~10の範囲内で選択したり、2~6の範囲内で選択したりしてもよい。nが2であるとき、式(DAD2)で表される化合物になる。n個のDは同一であっても異なっていてもよく、n個のLは同一であっても異なっていてもよい。式(DAD1)および式(DAD2)で表される化合物の好ましい具体例として、2PXZ-TAZや下記の化合物をあげることができるが、本発明で採用することができる第2成分はこれらの化合物に限定されない。
Figure 2022034774000134
本態様において、発光層は単一層でも複数層からなってもどちらでもよい。また、ホスト化合物、熱活性型遅延蛍光体および本発明の多環芳香族化合物は、同一の層内に含まれていてもよく、複数層に少なくとも1成分ずつ含まれていてもよい。発光層が含むホスト化合物、熱活性型遅延蛍光体および本発明の多環芳香族化合物は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。アシスティングドーパントおよびエミッティングドーパントは、マトリックスとしてのホスト化合物中に、全体的に含まれていてもよいし、部分的に含まれていてもよい。アシスティングドーパントおよびエミッティングドーパントがドープされた発光層は、ホスト化合物とアシスティングドーパントとエミッティングドーパントを三元共蒸着法によって成膜する方法、ホスト化合物とアシスティングドーパントとエミッティングドーパントを予め混合してから同時に蒸着する方法、ホスト化合物とアシスティングドーパントとエミッティングドーパントを有機溶媒に溶解して調製した発光層形成用組成物(塗料)を塗布する、湿式成膜法等により形成することができる。
ホスト化合物の使用量はホスト化合物の種類によって異なり、そのホスト化合物の特性に合わせて決めればよい。ホスト化合物の使用量の目安は、好ましくは発光層用材料全体の40~99.999質量%であり、より好ましくは50~99.99質量%であり、さらに好ましくは60~99.9質量%である。上記の範囲であれば、例えば、効率的な電荷の輸送と、ドーパントへの効率的なエネルギーの移動の点で好ましい。
アシスティングドーパント(熱活性型遅延蛍光体)の使用量はアシスティングドーパントの種類によって異なり、そのアシスティングドーパントの特性に合わせて決めればよい。アシスティングドーパントの使用量の目安は、好ましくは発光層用材料全体の1~60質量%であり、より好ましくは2~50質量%であり、さらに好ましくは5~30質量%である。上記の範囲であれば、例えば、効率的にエネルギーをエミッティングドーパントへ移動させられるという点で好ましい。
エミッティングドーパント(ホウ素原子を有する化合物)の使用量はエミッティングドーパントの種類によって異なり、そのエミッティングドーパントの特性に合わせて決めればよい。エミッティングドーパントの使用量の目安は、好ましくは発光層用材料全体の0.001~30質量%であり、より好ましくは0.01~20質量%であり、さらに好ましくは0.1~10質量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。
エミッティングドーパントの使用量は低濃度である方が濃度消光現象を防止できるという点で好ましい。アシスティングドーパントの使用量が高濃度である方が熱活性型遅延蛍光機構の効率の点からは好ましい。さらには、アシスティングドーパントの熱活性型遅延蛍光機構の効率の点からは、アシスティングドーパントの使用量に比べてエミッティングドーパントの使用量が低濃度である方が好ましい。
2-1-3.有機電界発光素子における基板
基板101は、有機EL素子100の支持体であり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
2-1-4.有機電界発光素子における陽極
陽極102は、発光層105へ正孔を注入する役割を果たす。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機EL素子の陽極として用いられている物質の中から適宜選択して用いることができる。
透明電極の抵抗は、発光素子の発光に十分な電流が供給できればよいので限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100~5Ω/□、好ましくは50~5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50~300nmの間で用いられることが多い。
2-1-5.有機電界発光素子における正孔注入層、正孔輸送層
正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たす。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たす。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。
正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機EL素子の正孔注入層および正孔輸送層に使用されている公知の化合物の中から任意の化合物を選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(4,4’,4”-トリス(N-カルバゾリル)トリフェニルアミン、芳香族第3級アミノを主鎖または側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン、N,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、N,N,N4’,N4’-テトラ[1,1’-ビフェニル]-4-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、キノキサリン誘導体(例えば、1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリルなど)、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されない。
また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pfeiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、または、特定の金属フタロシアニン(特に、亜鉛フタロシアニン(ZnPc)など)が知られている(特開2005-167175号公報)。
本発明の多環芳香族化合物は正孔注入層形成用材料または正孔輸送層形成用材料として用いてもよい。
2-1-6.有機電界発光素子における電子阻止層
正孔注入・輸送層と発光層との間には発光層からの電子の拡散を防ぐ電子阻止層を設けてもよい。電子阻止層の形成には、上述の式(H1)、(H2)および(H3)のいずれかで表される化合物を用いることができる。
本発明の多環芳香族化合物は電子阻止層形成用材料として用いてもよい。
2-1-7.有機電界発光素子における電子注入層、電子輸送層
電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たす。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たす。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。
電子輸送層106または電子注入層107を形成する材料(電子輸送材料)としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機EL素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。
電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香族環または複素芳香族環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香族環誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香族環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、アリールニトリル誘導体およびインドール誘導体などがあげられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
また、他の電子伝達化合物の具体例として、ピリジン誘導体、ナフタレン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンゾイミダゾール誘導体(トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼンなど)、ベンゾオキサゾール誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(4’-(2,2’:6’,2”-テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、ピリミジン誘導体、アリールニトリル誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体、シロール誘導体およびアゾリン誘導体などがあげられる。
また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。
上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
上述した材料の中でも、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、アリールニトリル誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、キノリノール系金属錯体、チアゾール誘導体、ベンゾチアゾール誘導体、シロール誘導体およびアゾリン誘導体が好ましい。
本発明の多環芳香族化合物は電子注入層形成用材料または電子輸送層形成用材料として用いてもよい。
<ボラン誘導体>
ボラン誘導体は、例えば下記式(ETM-1)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
Figure 2022034774000135
式(ETM-1)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも1つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換されているボリル、または置換されていてもよいカルバゾリルであり、そして、nはそれぞれ独立して0~3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
式(ETM-1)で表される化合物の中でも、下記式(ETM-1-1)で表される化合物や下記式(ETM-1-2)で表される化合物が好ましい。
Figure 2022034774000136
式(ETM-1-1)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも1つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも1つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0~3の整数であり、そして、mはそれぞれ独立して0~4の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
Figure 2022034774000137
式(ETM-1-2)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも1つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0~3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
の具体的な例としては、下記式(X-1)~式(X-9)のいずれかで表される2価の基があげられる。
Figure 2022034774000138
(各式中、Rは、それぞれ独立してアルキル、シクロアルキルまたは置換されていてもよいフェニルであり、*は結合位置を表す。)
このボラン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure 2022034774000139
このボラン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<ピリジン誘導体>
ピリジン誘導体は、例えば下記式(ETM-2)で表される化合物であり、好ましくは式(ETM-2-1)または式(ETM-2-2)で表される化合物である。
Figure 2022034774000140
φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。
式(ETM-2-1)において、R11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。
式(ETM-2-2)において、R11およびR12は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、R11およびR12は結合して環を形成していてもよい。
各式において、「ピリジン系置換基」は、下記式(Py-1)~式(Py-15)のいずれか(式中の*は、結合位置を表す。)であり、ピリジン系置換基はそれぞれ独立して炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルで置換されていてもよい。具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、またはt-ブチルなどがあげられ、メチルが好ましい。また、ピリジン系置換基はフェニレンやナフチレンを介して各式におけるφ、アントラセン環またはフルオレン環に結合していてもよい。
Figure 2022034774000141
ピリジン系置換基は、式(Py-1)~式(Py-15)のいずれか(式中の*は、結合位置を表す。)であるが、これらの中でも、下記式(Py-21)~式(Py-44)のいずれかであることが好ましい。
Figure 2022034774000142
各ピリジン誘導体における少なくとも1つの水素が重水素で置換されていてもよく、また、式(ETM-2-1)および式(ETM-2-2)における2つの「ピリジン系置換基」のうちの一方はアリールで置き換えられていてもよい。
11~R18における「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。
具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。
ピリジン系置換基に置換する炭素数1~4のアルキルとしては、上記アルキルの説明を引用することができる。
11~R18における「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルがあげられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。
具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
11~R18における「アリール」としては、好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。
具体的な「炭素数6~30のアリール」としては、単環系アリールであるフェニル、縮合二環系アリールである(1-,2-)ナフチル、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。
好ましい「炭素数6~30のアリール」は、フェニル、ナフチル、フェナントリル、クリセニルまたはトリフェニレニルなどがあげられ、さらに好ましくはフェニル、1-ナフチル、2-ナフチルまたはフェナントリルがあげられ、特に好ましくはフェニル、1-ナフチルまたは2-ナフチルがあげられる。
式(ETM-2-2)におけるR11およびR12は結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。
このピリジン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure 2022034774000143
このピリジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<フルオランテン誘導体>
フルオランテン誘導体は、例えば下記式(ETM-3)で表される化合物であり、詳細には国際公開第2010/134352号に開示されている。
Figure 2022034774000144
式(ETM-3)中、X12~X21は水素、ハロゲン、直鎖、分岐もしくは環状のアルキル、直鎖、分岐もしくは環状のアルコキシ、置換もしくは無置換のアリール、または置換もしくは無置換のヘテロアリールを表す。ここで、置換されている場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
このフルオランテン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure 2022034774000145
<BO系誘導体>
BO系誘導体は、例えば下記式(ETM-4)で表される多環芳香族化合物、または下記式(ETM-4)で表される構造を複数有する多環芳香族化合物の多量体である。
Figure 2022034774000146
~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。
また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。
また、式(ETM-4)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。
式(ETM-4)における置換基や環形成の形態の説明については、式(1)等で表される多環芳香族化合物の説明を引用することができる。
このBO系誘導体の具体例としては、例えば以下の化合物があげられる。
Figure 2022034774000147
このBO系誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<アントラセン誘導体>
アントラセン誘導体の1つは、例えば下記式(ETM-5)で表される化合物である。
Figure 2022034774000148
Arは、それぞれ独立して、単結合、2価のベンゼン、ナフタレン、アントラセン、フルオレン、またはフェナレンである。
Arは、それぞれ独立して、炭素数6~20のアリールであり、炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。「炭素数6~20のアリール」の具体例としては、単環系アリールであるフェニル、(o-,m-,p-)トリル、(2,3-,2,4-,2,5-,2,6-,3,4-,3,5-)キシリル、メシチル(2,4,6-トリメチルフェニル)、(o-,m-,p-)クメニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アントラセン-(1-,2-,9-)イル、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、テトラセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イルなどがあげられる。「炭素数6~10のアリール」の具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどがあげられる。
~Rは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3から6のシクロアルキルまたは炭素数6~20のアリールである。
~Rにおける炭素数1~6のアルキルについては直鎖および分岐鎖のいずれでもよい。すなわち、炭素数1~6の直鎖アルキルまたは炭素数3~6の分岐鎖アルキルである。より好ましくは、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、または2-エチルブチルなどがあげられ、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、またはt-ブチルが好ましく、メチル、エチル、またはt-ブチルがより好ましい。
~Rにおける炭素数3~6のシクロアルキルの具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
~Rにおける炭素数6~20のアリールについては、炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。「炭素数6~20のアリール」の具体例としては、Arにおける「炭素数6~20のアリール」の具体例を引用することができる。好ましい「炭素数6~20のアリール」は、フェニル、ビフェニリル、テルフェニリルまたはナフチルであり、より好ましくは、フェニル、ビフェニリル、1-ナフチル、2-ナフチルまたはm-テルフェニル-5’-イルであり、さらに好ましくは、フェニル、ビフェニリル、1-ナフチルまたは2-ナフチルであり、最も好ましくはフェニルである。
これらのアントラセン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure 2022034774000149
これらのアントラセン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<ベンゾフルオレン誘導体>
ベンゾフルオレン誘導体は、例えば下記式(ETM-6)で表される化合物である。
Figure 2022034774000150
Arは、それぞれ独立して、炭素数6~20のアリールであり、式(ETM-5)のArにおける「炭素数6~20のアリール」と同じ説明を引用することができる。炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどがあげられる。
Arは、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、2つのArは結合して環を形成していてもよい。
Arにおける「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)である。具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシルなどがあげられる。
Arにおける「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルがあげられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
Arにおける「アリール」としては、好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。
具体的な「炭素数6~30のアリール」としては、フェニル、ナフチル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、ナフタセニル、ペリレニル、ペンタセニルなどがあげられる。
2つのArは結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。
このベンゾフルオレン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure 2022034774000151
このベンゾフルオレン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<ホスフィンオキサイド誘導体>
ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-1)で表される化合物である。詳細は国際公開第2013/079217号および国際公開第2013/079678号にも記載されている。
Figure 2022034774000152
は、置換または無置換の、炭素数1~20のアルキル、炭素数3~16のシクロアルキル、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
は、CN、置換または無置換の、炭素数1~20のアルキル、炭素数3~16のシクロアルキル、炭素数1~20のヘテロアルキル、炭素数6~20のアリール、炭素数5~20のヘテロアリール、炭素数1~20のアルコキシまたは炭素数6~20のアリールオキシであり、
およびRは、それぞれ独立して、置換または無置換の、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
は酸素または硫黄であり、
jは0または1であり、kは0または1であり、rは0~4の整数であり、qは1~3の整数である。
ここで、置換されている場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-2)で表される化合物でもよい。
Figure 2022034774000153
~Rは、同じでも異なっていてもよく、水素、アルキル、シクロアルキル、アラルキル、アルケニル、シクロアルケニル、アルキニル、アルコキシ、アルキルチオ、シクロアルキルチオ、アリールエーテル(アリールエーテル基)、アリールチオエーテル(アリールチオエーテル基)、アリール、複素環基、ハロゲン、シアノ、ホルミル、カルボニル、カルボキシル、アミノ、ニトロ、シリル、および隣接置換基との間に形成される縮合環の中から選ばれる。
Arは、同じでも異なっていてもよく、アリーレンまたはヘテロアリーレンである。Arは、同じでも異なっていてもよく、アリールまたはヘテロアリールである。ただし、ArおよびArのうち少なくとも一方は置換基を有しているか、または隣接置換基との間に縮合環を形成している。nは0~3の整数であり、nが0のとき不飽和構造部分は存在せず、nが3のときR1は存在しない。
これらの置換基の内、アルキルとは、例えば、メチル、エチル、プロピル、ブチルなどの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。置換されている場合の置換基には特に制限は無く、例えば、アルキル、アリール、複素環基等をあげることができ、この点は、以下の記載にも共通する。また、アルキルの炭素数は特に限定されないが、入手の容易性やコストの点から、通常、1~20の範囲である。
また、シクロアルキルとは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキル部分の炭素数は特に限定されないが、通常、3~20の範囲である。
また、アラルキルとは、例えば、ベンジル、フェニルエチルなどの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。脂肪族部分の炭素数は特に限定されないが、通常、1~20の範囲である。
また、アルケニルとは、例えば、ビニル、アリル、ブタジエニルなどの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルケニルの炭素数は特に限定されないが、通常、2~20の範囲である。
また、シクロアルケニルとは、例えば、シクロペンテニル、シクロペンタジエニル、シクロヘキセニルなどの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。
また、アルキニルとは、例えば、アセチレニルなどの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキニルの炭素数は特に限定されないが、通常、2~20の範囲である。
また、アルコキシとは、例えば、メトキシなどのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。アルコキシの炭素数は特に限定されないが、通常、1~20の範囲である。
また、アルキルチオとは、アルコキシのエーテル結合の酸素原子が硫黄原子に置換された基である。
また、シクロアルキルチオとは、シクロアルコキシのエーテル結合の酸素原子が硫黄原子に置換された基である。
また、アリールエーテルとは、例えば、フェノキシなどのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。アリールエーテルの炭素数は特に限定されないが、通常、6~40の範囲である。
また、アリールチオエーテルとは、アリールエーテルのエーテル結合の酸素原子が硫黄原子に置換された基である。
また、アリールとは、例えば、フェニル、ナフチル、ビフェニリル、フェナントリル、ターフェニリル、ピレニルなどの芳香族炭化水素基を示す。アリールは無置換でも置換されていてもかまわない。アリールの炭素数は特に限定されないが、通常、6~40の範囲である。
また、複素環基とは、例えば、フラニル、チエニル、オキサゾリル、ピリジル、キノリニル、カルバゾリルなどの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。複素環基の炭素数は特に限定されないが、通常、2~30の範囲である。
ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。
ホルミル、カルボニル、アミノには、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換された基も含むことができる。
また、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は無置換でも置換されていてもかまわない。
シリルとは、例えば、トリメチルシリルなどのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。シリルの炭素数は特に限定されないが、通常、3~20の範囲である。また、ケイ素数は、通常、1~6である。
隣接置換基との間に形成される縮合環とは、例えば、ArとR、ArとR、ArとR、ArとR、RとR、ArとAr等の間で形成された共役または非共役の縮合環である。ここで、nが1の場合、2つのR同士で共役または非共役の縮合環を形成してもよい。これら縮合環は、環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。
このホスフィンオキサイド誘導体の具体例としては、例えば以下の化合物があげられる。
Figure 2022034774000154
このホスフィンオキサイド誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<ピリミジン誘導体>
ピリミジン誘導体は、例えば下記式(ETM-8)で表される化合物であり、好ましくは下記式(ETM-8-1)で表される化合物である。詳細は国際公開第2011/021689号にも記載されている。
Figure 2022034774000155
Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~4の整数であり、好ましくは1~3の整数であり、より好ましくは2または3である。
「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールがあげられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。
具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。
「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。
具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられる。
また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
このピリミジン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure 2022034774000156
このピリミジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<アリールニトリル誘導体>
アリールニトリル誘導体は、例えば下記式(ETM-9)で表される化合物、またはそれが単結合などで複数結合した多量体である。詳細は米国出願公開第2014/0197386号明細書に記載されている。
Figure 2022034774000157
Arniは、速い電子輸送性の観点からは炭素数が多いことが好ましく、高いT1の観点からは炭素数が少ないことが好ましい。Arniは、具体的には、発光層に隣接する層に用いるには高いT1であることが好ましく、炭素数6~20のアリールであり、好ましくは炭素数6~14のアリール、より好ましくは炭素数6~10のアリールである。また、ニトリル基の置換個数nは、高いT1の観点からは多いことが好ましく、高いS1の観点からは少ないことが好ましい。ニトリル基の置換個数nは、具体的には、1~4の整数であり、好ましくは1~3の整数であり、より好ましくは1~2の整数であり、さらに好ましくは1である。
Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。高いS1および高いT1の観点からドナー性のヘテロアリールであることが好ましく、電子輸送層として用いるためドナー性のヘテロアリールは少ないことが好ましい。電荷輸送性の観点からは炭素数の多いアリールまたはヘテロアリールが好ましく、置換基を多く有することが好ましい。Arの置換個数mは、具体的には、1~4の整数であり、好ましくは1~3の整数であり、より好ましくは1~2である。
「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールがあげられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。
具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。
「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。
具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられる。
また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
アリールニトリル誘導体は、式(ETM-9)で表される化合物が単結合などで複数結合した多量体であってもよい。この場合、単結合以外に、アリール環(好ましくは多価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)で結合されていてもよい。
このアリールニトリル誘導体の具体例としては、例えば以下の化合物があげられる。
Figure 2022034774000158
このアリールニトリル誘導体は公知の原料と公知の合成方法を用いて製造することができる。
このカルバゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<トリアジン誘導体>
トリアジン誘導体は、例えば下記式(ETM-10)で表される化合物であり、好ましくは下記式(ETM-10-1)で表される化合物である。詳細は米国特許出願公開第2011/0156013号明細書に記載されている。
Figure 2022034774000159
Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~3の整数であり、好ましくは2または3である。
「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールがあげられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。
具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。
「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。
具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられる。
また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
このトリアジン誘導体の具体例としては、例えば以下の化合物があげられる。
Figure 2022034774000160
このトリアジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<ベンゾイミダゾール誘導体>
ベンゾイミダゾール誘導体は、例えば下記式(ETM-11)で表される化合物である。
Figure 2022034774000161
φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数であり、「ベンゾイミダゾール系置換基」は、式(ETM-2)、式(ETM-2-1)および式(ETM-2-2)における「ピリジン系置換基」の中のピリジルがベンゾイミダゾリルに置き換わった置換基であり、ベンゾイミダゾール誘導体における少なくとも1つの水素は重水素で置換されていてもよい。
Figure 2022034774000162
上記ベンゾイミダゾリルにおけるR11は、水素、炭素数1~24のアルキル、炭素数3~12のシクロアルキルまたは炭素数6~30のアリールであり、式(ETM-2-1)および式(ETM-2-2)におけるR11の説明を引用することができる。
φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は式(ETM-2-1)または式(ETM-2-2)での説明を引用することができ、各式中のR11~R18は式(ETM-2-1)または式(ETM-2-2)での説明を引用することができる。また、式(ETM-2-1)または式(ETM-2-2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをベンゾイミダゾール系置換基に置き換えるときには、両方のピリジン系置換基をベンゾイミダゾール系置換基で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をベンゾイミダゾール系置換基で置き換えて他方のピリジン系置換基をR11~R18で置き換えてもよい(すなわちn=1)。さらに、例えば式(ETM-2-1)におけるR11~R18の少なくとも1つをベンゾイミダゾール系置換基で置き換えて「ピリジン系置換基」をR11~R18で置き換えてもよい。
このベンゾイミダゾール誘導体の具体例としては、例えば1-フェニル-2-(4-(10-フェニルアントラセン-9-イル)フェニル)-1H-ベンゾ[d]イミダゾール、2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、5-(10-(ナフタレン-2-イル)アントラセン-9-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾール、1-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、1-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、5-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾールなどがあげられる。
Figure 2022034774000163
このベンゾイミダゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<フェナントロリン誘導体>
フェナントロリン誘導体は、例えば下記式(ETM-12)または式(ETM-12-1)で表される化合物である。詳細は国際公開第2006/021982号に記載されている。
Figure 2022034774000164
φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。
各式のR11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。また、式(ETM-12-1)においてはR11~R18のいずれかがアリール環であるφとの結合手となる。
各フェナントロリン誘導体における少なくとも1つの水素が重水素で置換されていてもよい。
11~R18におけるアルキル、シクロアルキルおよびアリールとしては、式(ETM-2)におけるR11~R18の説明を引用することができる。また、φは上記した例のほかに、例えば、以下の構造式があげられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、ビフェニリルまたはテルフェニリルであり、*は、結合位置を表す。
Figure 2022034774000165
このフェナントロリン誘導体の具体例としては、例えば4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、9,10-ジ(1,10-フェナントロリン-2-イル)アントラセン、2,6-ジ(1,10-フェナントロリン-5-イル)ピリジン、1,3,5-トリ(1,10-フェナントロリン-5-イル)ベンゼン、9,9’-ジフルオロ-ビ(1,10-フェナントロリン-5-イル)、バソクプロイン、1,3-ビス(2-フェニル-1,10-フェナントロリン-9-イル)ベンゼンや下記構造式で表される化合物などがあげられる。
Figure 2022034774000166
このフェナントロリン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<キノリノール系金属錯体>
キノリノール系金属錯体は、例えば下記式(ETM-13)で表される化合物である。
Figure 2022034774000167
式中、R~Rは、それぞれ独立して、水素、フッ素、アルキル、シクロアルキル、アラルキル、アルケニル、シアノ、アルコキシ、またはアリールであり、MはLi、Al、Ga、Be、またはZnであり、nは1~3の整数である。
キノリノール系金属錯体の具体例としては、8-キノリノールリチウム、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリン)ベリリウムなどがあげられる。
このキノリノール系金属錯体は公知の原料と公知の合成方法を用いて製造することができる。
<チアゾール誘導体およびベンゾチアゾール誘導体>
チアゾール誘導体は、例えば下記式(ETM-14-1)で表される化合物である。
Figure 2022034774000168
ベンゾチアゾール誘導体は、例えば下記式(ETM-14-2)で表される化合物である。
Figure 2022034774000169
各式のφは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数であり、「チアゾール系置換基」や「ベンゾチアゾール系置換基」は、式(ETM-2)、式(ETM-2-1)および式(ETM-2-2)における「ピリジン系置換基」の中のピリジルが下記のチアゾリルやベンゾチアゾリルに置き換わった置換基であり、チアゾール誘導体およびベンゾチアゾール誘導体における少なくとも1つの水素が重水素で置換されていてもよい。
Figure 2022034774000170
φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は式(ETM-2-1)または式(ETM-2-2)での説明を引用することができ、各式中のR11~R18は式(ETM-2-1)または式(ETM-2-2)での説明を引用することができる。また、式(ETM-2-1)または式(ETM-2-2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをチアゾール系置換基(またはベンゾチアゾール系置換基)に置き換えるときには、両方のピリジン系置換基をチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えて他方のピリジン系置換基をR11~R18で置き換えてもよい(すなわちn=1)。さらに、例えば式(ETM-2-1)におけるR11~R18の少なくとも1つをチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えて「ピリジン系置換基」をR11~R18で置き換えてもよい。
これらのチアゾール誘導体またはベンゾチアゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<シロール誘導体>
シロール誘導体は、例えば下記式(ETM-15)で表される化合物である。詳細は特開平9-194487号公報に記載されている。
Figure 2022034774000171
XおよびYは、それぞれ独立して、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシ、アルケニルオキシ、アルキニルオキシ、アリール、ヘテロアリールであり、これらは置換されていてもよい。これらの基の詳細については、式(1)および式(2)における説明、さらに式(ETM-7-2)における説明を引用できる。また、アルケニルオキシおよびアルキニルオキシは、それぞれアルコキシにおけるアルキル部分がアルケニルまたはアルキニルに置き換わった基であり、これらのアルケニルおよびアルキニルの詳細については式(ETM-7-2)における説明を引用できる。
また、いずれもアルキルであるXとYとが結合して環を形成していてもよい。
~Rは、それぞれ独立して、水素、ハロゲン、アルキル、シクロアルキル、アルコキシ、アリールオキシ、アミノ、アルキルカルボニル、アリールカルボニル、アルコキシカルボニル、アリールオキシカルボニル、アゾ基、アルキルカルボニルオキシ、アリールカルボニルオキシ、アルコキシカルボニルオキシ、アリールオキシカルボニルオキシ、スルフィニル、スルフォニル、スルファニル、シリル、カルバモイル、アリール、ヘテロアリール、アルケニル、アルキニル、ニトロ、ホルミル、ニトロソ、ホルミルオキシ、イソシアノ、シアネート基、イソシアネート基、チオシアネート基、イソチオシアネート基、または、シアノであり、これらはアルキル、シクロアルキル、アリールまたはハロゲンで置換されていてもよく、隣接置換基との間に縮合環を形成していてもよい。
~Rにおける、ハロゲン、アルキル、シクロアルキル、アルコキシ、アリールオキシ、アミノ、アリール、ヘテロアリール、アルケニルおよびアルキニルの詳細については、式(1)および式(2)における説明を引用できる。
~Rにおける、アルキルカルボニル、アリールカルボニル、アルコキシカルボニル、アリールオキシカルボニル、アルキルカルボニルオキシ、アリールカルボニルオキシ、アルコキシカルボニルオキシおよびアリールオキシカルボニルオキシ中の、アルキル、アリールおよびアルコキシの詳細についても、式(1)および式(2)における説明を引用できる。
シリルとしては、シリル基、および、シリル基の3つの水素の少なくとも1つが、それぞれ独立して、アリール、アルキルまたはシクロアルキルで置換された基があげられ、トリ置換シリルが好ましく、トリアリールシリル、トリアルキルシリル、トリシクロアルキルシリル、ジアルキルシクロアルキルシリルおよびアルキルジシクロアルキルシリル等があげられる。これらにおける、アリール、アルキルおよびシクロアルキルの詳細については、式(1)および式(2)における説明を引用できる。
隣接置換基との間に形成される縮合環とは、例えば、RとR、RとR、RとR等の間で形成された共役または非共役の縮合環である。これら縮合環は、環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。
ただし、好ましくは、RおよびRがフェニルの場合、XおよびYは、アルキルまたはフェニルではない。また、好ましくは、RおよびRがチエニルの場合、XおよびYは、アルキルを、RおよびRは、アルキル、アリール、アルケニルまたはRとRが結合して環を形成するシクロアルキルを同時に満たさない構造である。また、好ましくは、RおよびRがシリル基の場合、R、R、XおよびYは、それぞれ独立して、水素または炭素数1から6のアルキルではない。また、好ましくは、RおよびRでベンゼン環が縮合した構造の場合、XおよびYは、アルキルおよびフェニルではない。
これらのシロール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<アゾリン誘導体>
アゾリン誘導体は、例えば下記式(ETM-16)で表される化合物である。詳細は国際公開第2017/014226号に記載されている。
Figure 2022034774000172
式(ETM-16)中、
φは炭素数6~40の芳香族炭化水素に由来するm価の基または炭素数2~40の芳香族複素環に由来するm価の基であり、φの少なくとも1つの水素は炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~18のアリールまたは炭素数2~18のヘテロアリールで置換されていてもよく、
Yは、それぞれ独立して、-O-、-S-または>N-Arであり、Arは炭素数6~12のアリールまたは炭素数2~12のヘテロアリールであり、Arの少なくとも1つの水素は炭素数1~4のアルキル、炭素数5~10のシクロアルキル、炭素数6~12のアリールまたは炭素数2~12のヘテロアリールで置換されていてもよく、R~Rはそれぞれ独立して水素、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、ただし、前記>N-ArにおけるArおよび前記R~Rのうちのいずれか1つはLと結合する部位であり、
Lは、それぞれ独立して、下記式(L-1)で表される2価の基、および下記式(L-2)で表される2価の基からなる群から選ばれ、
Figure 2022034774000173
式(L-1)中、X~Xはそれぞれ独立して=CR-または=N-であり、X~Xのうちの少なくとも2つは=CR-であり、X~Xのうちの2つの=CR-におけるRはφまたはアゾリン環と結合する部位であり、それ以外の=CR-におけるRは水素であり、
式(L-2)中、X~X14はそれぞれ独立して=CR-または=N-であり、X~X14のうちの少なくとも2つは=CR-であり、X~X14のうちの2つの=CR-におけるRはφまたはアゾリン環と結合する部位であり、それ以外の=CR-におけるRは水素であり、
Lの少なくとも1つの水素は炭素数1~4のアルキル、炭素数5~10のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリールで置換されていてもよく、
mは1~4の整数であり、mが2~4であるとき、アゾリン環とLとで形成される基は同一であっても異なっていてもよく、そして、
式(ETM-16)で表される化合物中の少なくとも1つの水素は重水素で置換されていてもよい。
具体的なアゾリン誘導体は、下記式(ETM-16-1)または式(ETM-16-2)で表される化合物である。
Figure 2022034774000174
式(ETM-16-1)および式(ETM-16-2)中、
φは炭素数6~40の芳香族炭化水素に由来するm価の基または炭素数2~40の芳香族複素環に由来するm価の基であり、φの少なくとも1つの水素は炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~18のアリールまたは炭素数2~18のヘテロアリールで置換されていてもよく、
式(ETM-16-1)中、Yは、それぞれ独立して、-O-、-S-または>N-Arであり、Arは炭素数6~12のアリールまたは炭素数2~12のヘテロアリールであり、Arの少なくとも1つの水素は炭素数1~4のアルキル、炭素数5~10のシクロアルキル、炭素数6~12のアリールまたは炭素数2~12のヘテロアリールで置換されていてもよく、
式(ETM-16-1)中、R~Rはそれぞれ独立して水素、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、ただし、RとRは同一であり、またRとRは同一であり、
式(ETM-16-2)中、R~Rはそれぞれ独立して水素、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、ただし、RとRは同一であり、またRとRは同一であり、
式(ETM-16-1)および式(ETM-16-2)中、
Lは、それぞれ独立して、下記式(L-1)で表される2価の基、および下記式(L-2)で表される2価の基からなる群から選ばれ、
Figure 2022034774000175
式(L-1)中、X~Xはそれぞれ独立して=CR-または=N-であり、X~Xのうちの少なくとも2つは=CR-であり、X~Xのうちの2つの=CR-におけるRはφまたはアゾリン環と結合する部位であり、それ以外の=CR-におけるRは水素であり、
式(L-2)中、X~X14はそれぞれ独立して=CR-または=N-であり、X~X14のうちの少なくとも2つは=CR-であり、X~X14のうちの2つの=CR-におけるRはφまたはアゾリン環と結合する部位であり、それ以外の=CR-におけるRは水素であり、
Lの少なくとも1つの水素は炭素数1~4のアルキル、炭素数5~10のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリールで置換されていてもよく、
mは1~4の整数であり、mが2~4であるとき、アゾリン環とLとで形成される基は同一であっても異なっていてもよく、そして、
式(ETM-16-1)または式(ETM-16-2)で表される化合物中の少なくとも1つの水素は重水素で置換されていてもよい。
好ましくは、φは、下記式(φ1-1)~式(φ1-18)で表される1価の基、下記式(φ2-1)~式(φ2-34)で表される2価の基、下記式(φ3-1)~式(φ3-3)で表される3価の基、および下記式(φ4-1)~式(φ4-2)で表される4価の基からなる群から選択され、φの少なくとも1つの水素は炭素数1~6のアルキル、炭素数3~14のシクロアルキル、炭素数6~18のアリールまたは炭素数2~18のヘテロアリールで置換されていてもよい。
Figure 2022034774000176
Figure 2022034774000177
Figure 2022034774000178
式中のZは、>CR、>N-Ar、>N-L、-O-または-S-であり、>CRにおけるRは、それぞれ独立して、炭素数1~4のアルキル、炭素数5~10のシクロアルキル、炭素数6~12のアリールまたは炭素数2~12のヘテロアリールであり、Rは互いに結合して環を形成していてもよく、>N-ArにおけるArは炭素数6~12のアリールまたは炭素数2~12のヘテロアリールであり、>N-LにおけるLは式(ETM-16)、式(ETM-16-1)または式(ETM-16-2)におけるLである。式中の*は、結合位置を表す。
好ましくは、Lは、ベンゼン、ナフタレン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、イソキノリン、ナフチリジン、フタラジン、キノキサリン、キナゾリン、シンノリン、およびプテリジンからなる群から選択される環の2価の基であり、Lの少なくとも1つの水素は炭素数1~4のアルキル、炭素数5~10のシクロアルキル、炭素数6~10のアリールまたは炭素数2~10のヘテロアリールで置換されていてもよい。
好ましくは、YまたはZとしての>N-ArにおけるArは、フェニル、ナフチル、ピリジニル、ピラジニル、ピリミジニル、ピリダジニル、トリアジニル、キノリニル、イソキノリニル、ナフチリジニル、フタラジニル、キノキサリニル、キナゾリニル、シンノリニル、およびプテリジニルからなる群から選択され、Yとしての>N-ArにおけるArの少なくとも1つの水素は炭素数1~4のアルキル、炭素数5~10のシクロアルキルまたは炭素数6~10のアリールで置換されていてもよい。
好ましくは、R~Rはそれぞれ独立して水素、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、ただし、RとRは同一であり、RとRは同一であり、またR~Rの全てが同時に水素になることはなく、そして、mは1または2であり、mが2であるとき、アゾリン環とLとで形成される基は同一である。
アゾリン誘導体の具体例としては、例えば以下の化合物があげられる。なお、構造式中の「Me」はメチルを表す。
Figure 2022034774000179
より好ましくは、φは、下記式(φ2-1)、式(φ2-31)、式(φ2-32)、式(φ2-33)および式(φ2-34)で表される2価の基からなる群から選択され、φの少なくとも1つの水素は炭素数6~18のアリールで置換されていてもよい。
Figure 2022034774000180
Lは、ベンゼン、ピリジン、ピラジン、ピリミジン、ピリダジン、およびトリアジンからなる群から選択される環の2価の基であり、Lの少なくとも1つの水素は炭素数1~4のアルキル、炭素数5~10のシクロアルキル、炭素数6~10のアリールまたは炭素数2~14のヘテロアリールで置換されていてもよく、
Yとしての>N-ArにおけるArは、フェニル、ピリジニル、ピラジニル、ピリミジニル、ピリダジニル、およびトリアジニルからなる群から選択され、当該Arの少なくとも1つの水素は炭素数1~4のアルキル、炭素数5~10のシクロアルキルまたは炭素数6~10のアリールで置換されていてもよく、
~Rはそれぞれ独立して水素、炭素数1~4のアルキルまたは炭素数5~10のシクロアルキルであり、ただし、RとRは同一であり、RとRは同一であり、またR~Rの全てが同時に水素になることはなく、そして、
mは2であり、アゾリン環とLとで形成される基は同一である。
アゾリン誘導体の他の具体例としては、例えば以下の化合物があげられる。なお、構造式中の「Me」はメチルを表す。
Figure 2022034774000181
このアゾリン誘導体を規定する上記各式中の、アルキル、シクロアルキル、アリールまたはヘテロアリールの詳細については、式(1)および式(2)における説明を引用できる。
このアゾリン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<還元性物質>
電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有する物質であれば、様々な物質が用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属があげられ、仕事関数が2.9eV以下の物質が特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
2-1-8.有機電界発光素子における陰極
陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たす。
陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様の材料を用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されない。
さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子線ビーム蒸着、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
2-1-9.各層で用いてもよい結着剤
以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
2-1-10.有機電界発光素子の作製方法
有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、インクジェット法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50~+400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
次に、有機EL素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機EL素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
2-1-11.有機電界発光素子の応用例
有機EL素子は表示装置または照明装置などにも応用することができる。
有機EL素子を備えた表示装置または照明装置は、有機EL素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
マトリクスでは、表示のための画素が格子状やモザイク状など二次元的に配置されており、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などがあげられる。
照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式が蛍光灯や導光板からなっているため薄型化が困難であることを考えると、有機EL素子を用いたバックライトは薄型で軽量が特徴になる。
2-2.その他の有機デバイス
本発明に係る多環芳香族化合物は、上述した有機電界発光素子の他に、有機電界効果トランジスタまたは有機薄膜太陽電池などの作製に用いることができる。
有機電界効果トランジスタは、電圧入力によって発生させた電界により電流を制御するトランジスタのことであり、ソース電極とドレイン電極の他にゲート電極が設けられている。ゲート電極に電圧を印加すると電界が生じ、ソース電極とドレイン電極間を流れる電子(あるいはホール)の流れを任意にせき止めて電流を制御することができるトランジスタである。電界効果トランジスタは、単なるトランジスタ(バイポーラトランジスタ)に比べて小型化が容易であり、集積回路などを構成する素子としてよく用いられている。
有機電界効果トランジスタの構造は、通常、本発明に係る多環芳香族化合物を用いて形成される有機半導体活性層に接してソース電極およびドレイン電極が設けられており、さらに有機半導体活性層に接した絶縁層(誘電体層)を挟んでゲート電極が設けられていればよい。その素子構造としては、例えば以下の構造があげられる。
(1)基板/ゲート電極/絶縁体層/ソース電極・ドレイン電極/有機半導体活性層
(2)基板/ゲート電極/絶縁体層/有機半導体活性層/ソース電極・ドレイン電極
(3)基板/有機半導体活性層/ソース電極・ドレイン電極/絶縁体層/ゲート電極
(4)基板/ソース電極・ドレイン電極/有機半導体活性層/絶縁体層/ゲート電極
このように構成された有機電界効果トランジスタは、アクティブマトリックス駆動方式の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイの画素駆動スイッチング素子などとして適用できる。
有機薄膜太陽電池は、ガラスなどの透明基板上にITOなどの陽極、ホール輸送層、光電変換層、電子輸送層、陰極が積層された構造を有する。光電変換層は陽極側にp型半導体層を有し、陰極側にn型半導体層を有している。本発明に係る多環芳香族化合物は、その物性に応じて、ホール輸送層、p型半導体層、n型半導体層、電子輸送層の材料として用いることが可能である。本発明に係る多環芳香族化合物は、有機薄膜太陽電池においてホール輸送材料や電子輸送材料として機能しうる。有機薄膜太陽電池は、上記の他にホールブロック層、電子ブロック層、電子注入層、ホール注入層、平滑化層などを適宜備えていてもよい。有機薄膜太陽電池には、有機薄膜太陽電池に用いられる既知の材料を適宜選択して組み合わせて用いることができる。
3.波長変換材料
本発明の多環芳香族化合物は、波長変換材料として使用することができる。
現在、色変換方式によるマルチカラー化技術を、液晶ディスプレイや有機ELディスプレイ、照明などへ応用することが盛んに検討されている。色変換とは、発光体からの発光をより長波長の光へと波長変換することであり、例えば、紫外光や青色光を緑色光や赤色発光へと変換することを表す。この色変換機能を有する波長変換材料をフィルム化し、例えば青色光源と組み合わせることにより、青色光源から、青、緑、赤色の3原色を取り出すこと、すなわち白色光を取り出すことが可能となる。このような青色光源と色変換機能を有する波長変換フィルムを組み合わせた白色光源を光源ユニットとし、液晶駆動部分と、カラーフィルターと組み合わせることで、フルカラーディスプレイの作製が可能になる。また、液晶駆動部分が無ければ、そのまま白色光源として用いることができ、例えばLED照明などの白色光源として応用できる。また、青色有機EL素子を光源として、青色光を緑色光および赤色光に変換する波長変換フィルムと組み合わせて用いることでメタルマスクを用いないフルカラー有機ELディスプレイの作製が可能になる。さらに、青色マイクロLEDを光源として、青色光を緑色光および赤色光に変換する波長変換フィルムと組み合わせて用いることで低コストのフルカラーマイクロLEDディスプレイの作製が可能になる。
本発明の多環芳香族化合物は、この波長変換材料として使用することができる。本発明の多環芳香族化合物を含む波長変換材料を用いて、紫外光やより短波長の青色を生成する光源や発光素子からの光を、表示装置(有機EL素子を利用した表示装置や液晶表示装置)での利用に適した色純度の高い青色光や緑色光に変換することができる。変換される色の調整は、本発明の多環芳香族化合物の置換基、後述の波長変換用組成物で用いるバインダー樹脂等を適宜選択することにより行うことができる。波長変換材料は本発明の多環芳香族化合物を含む波長変換用組成物として調製することができる。また、この波長変換用組成物を用いて波長変換フィルムを形成してもよい。
波長変換用組成物は、本発明の多環芳香族化合物のほか、バインダー樹脂、その他の添加剤、および溶媒を含んでいてもよい。バインダー樹脂としては、例えば国際効果2016/190283号の段落0173~0176に記載のものを用いることができる。その他の添加剤としては、国際効果2016/190283号の段落0177~0181に記載の化合物を用いることができる。溶媒としては、上記の発光層形成用組成物に含まれる溶媒の記載を参照することができる。
波長変換フィルムは波長変換用組成物の硬化により形成される波長変換層を含む。波長変換用組成物からの波長変換層の作製方法としては公知のフィルム形成方法を参照することができる。波長変換フィルムは本発明の多環芳香族化合物を含む組成物から形成される波長変換層のみからなっていてもよく、他の波長変換層(例えば、青色光を緑色光や赤色光に変換する波長変換層、青色光や緑色光を赤色光に変換する波長変換層)を含んでいてもよい。さらに波長変換フィルムは基材層や、色変換層の酸素、水分、または熱による劣化を防ぐためのバリア層を含んでいてもよい。
以下,実施例により本発明をさらに具体的に説明していくが,本発明はこれらに限定されるものではない。
合成例(1):
2-(tert-ブチル)-4,14-ビス(4-(tert-ブチル)フェニル)-10-メチル-4,14-ジヒドロ-4,7b,14-トリアザ-3a-ボラジベンゾ[fg,jk]インデノ[1,2,3-cd]ピレン(化合物(1-a-2)の合成
Figure 2022034774000182
[第1段(A)]
1-ブロモ-5-(tert-ブチル)-2,3-ジクロロベンゼン(29.0g、100mmol)、ナトリウムt-ブトキシド(28.8g、300mmol)、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル[BINAP](2.5g、4.0mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)[Pd(dba)](1.83g、2.0mmol)およびトルエン(400ml)に窒素雰囲気下、室温で4-(tert-ブチル)アニリン(29.8g、200mmol)を加え、100℃で26時間加熱撹拌を行った。反応液を室温まで冷やし、シリカゲルカラムクロマトグラフィーを用いて濾過し、溶媒を減圧留去して粗生成物を得た。その後、トルエンを用いて洗浄することにより、白色固体として5-(tert-ブチル)-N,N-ビス(4-(tert-ブチル)フェニル)-2-クロロベンゼン-1,3-ジアミン(化合物(t-1)、42.1g、収率91%)を得た。
Figure 2022034774000183
[第1段(B)]
2-ブロモ-6-メチル-9H-カルバゾール(26.0g、100mmol)、1-クロロ-3-フルオロベンゼン(13.1g、100mol)、炭酸カリウム(41.4g、300mmol)をNMP(400mL)に溶解または分散させ、窒素雰囲気下、180℃で8時間加熱撹拌を行った。反応液を室温まで冷やし、シリカゲルカラムクロマトグラフィーを用いて濾過し、溶媒を減圧留去して粗生成物を得た。その後、トルエン/ヘキサン(1:10(容量比))で再結晶を行い、白色固体として、2-ブロモ-9-(3-クロロフェニル)-6-メチル-9H-カルバゾール(化合物(t-2)、34.1g、収率92%)を得た。
Figure 2022034774000184
[第2段]
5-(tert-ブチル)-N,N-ビス(4-(tert-ブチル)フェニル)-2-クロロベンゼン-1,3-ジアミン(化合物(t-1)、11.6g、25mmol)、ナトリウムt-ブトキシド(7.20g、75mmol)、トリt-ブチルホスフィン(0.212g、1.05mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)[Pd(dba)](0.458g、0.50mmol)およびトルエン(100ml)に窒素雰囲気下、0℃で2-ブロモ-9-(3-クロロフェニル)-6-メチル-9H-カルバゾール(化合物(t-2)、9.3g、25mmol)を加え、室温で24時間撹拌した。反応液はシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘキサン=1:1(容量比))を用いて濾過し、溶媒を減圧留去して粗生成物を得た。その後、メタノールを用いて洗浄することにより、白色固体として5-(tert-ブチル)-N,N-ビス(4-(tert-ブチル)フェニル)-2-クロロ-N-(9-(3-クロロフェニル)-6-メチル-9H-カルバゾール-2-イル)ベンゼン-1,3-ジアミン(化合物(t-3)、12.1g、収率64%)を得た。
Figure 2022034774000185
[第4段]
窒素雰囲気下、ナトリウムt-ブトキシド(0.577g、6.0mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(0.123g、0.3mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)(0.147g、0.16mmol)およびo-キシレン(400ml)の溶液を140℃に加熱撹拌し、5-(tert-ブチル)-N,N-ビス(4-(tert-ブチル)フェニル)-2-クロロ-N-(9-(3-クロロフェニル)-6-メチル-9H-カルバゾール-2-イル)ベンゼン-1,3-ジアミン(化合物(t-3)、3.01g、4.0mmol)およびo-キシレン(900ml)の溶液を12時間かけてゆっくりと滴下した。その後、反応液を室温まで冷やし、シリカゲルを用いて濾過し(展開液:トルエン)、溶媒を減圧留去した。粗生成物をシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘキサン=1/4(容量比))で精製することで、白色固体として4-(tert-ブチル)-3,5-ビス(4-(tert-ブチル)フェニル)-4-クロロ-1-メチル-1H-3,5-ジアザ-1(9,2)-カルバゾーラ-2,4(1,3)-ジベンゼナシクロペンタファン(化合物(t-4)、1.55g、収率54%)を得た。
Figure 2022034774000186
[第5段]
-(tert-ブチル)-3,5-ビス(4-(tert-ブチル)フェニル)-4-クロロ-1-メチル-1H-3,5-ジアザ-1(9,2)-カルバゾーラ-2,4(1,3)-ジベンゼナシクロペンタファン(化合物(t-4)、143mg、0.20mmol)のtert-ブチルベンゼン(4.0ml)溶液に、窒素雰囲気下、-40℃で1.6Mのtert-ブチルリチウムヘキサン溶液(0.125ml、0.20mmol)を加えた。50℃で30分間加熱撹拌した後に反応液を-40℃まで冷却し、三臭化ホウ素(37.5μl、0.40mmol)を加え、30分間撹拌した。その後、N,N-ジイソプロピルアミン(70.0μl、0.40mmol)を加え、165℃で24時間加熱撹拌した。反応液を室温まで冷やし、フロリジルを用いて濾過した(展開液:ジクロロメタン)。溶媒を減圧留去した後、ジクロロメタンで洗浄することで、白色固体の 2-(tert-ブチル)-4,14-ビス(4-(tert-ブチル)フェニル)-10-メチル-4,14-ジヒドロ-4,7b,14-トリアザ-3a-ボラジベンゾ[fg,jk]インデノ[1,2,3-cd]ピレン(化合物(1-a-2)(75.1mg、収率52%)を得た。
Figure 2022034774000187
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.33(s,27H)、2.44(s,3H)、6.01(d,5H),7.23(t,2H),7.44(d,5H),7.71(t,6H).
合成例(2):
13-(tert-ブチル)-4,4,9,10,15,15-ヘキサメチル-4,15-ジヒドロ-7-チアー11b-アザ-3a-ボラ「フェナレノ[5,4,3,2,1-pqrst]ペンタフェン(化合物(1-b-9)の合成
Figure 2022034774000188
[第1段]
2,3-ジメチル-10H-フェノチアジン(22.7g、100mmol)、1-tert-ブチル-3-フルオロベンゼン(15.2g、100mol)、炭酸カリウム(41.4g、300mmol)をNMP(400mL)に溶解または分散させ、窒素雰囲気下、180℃で12時間加熱撹拌を行った。反応液を室温まで冷やし、シリカゲルカラムクロマトグラフィーを用いて濾過し、溶媒を減圧留去して粗生成物を得た。その後、トルエン/ヘキサン(1:5(容量比))で再結晶を行い、白色固体として、10-(3-(tert-ブチル)フェニル)-2,3-ジメチル-10H-フェノチアジン(化合物(t-5)、27.6g、収率77%)を得た。
Figure 2022034774000189
[第2~3段]
10-(3-(tert-ブチル)フェニル)-2,3-ジメチル-10H-フェノチアジン(18.0g、50mmol)をクロロベンゼン(100mL)に溶解させ、三臭化ホウ素(37.6g、150mmol)を加えて室温で12時間撹拌した。100℃に昇温および減圧し、揮発性を取り除いた。反応混合物は精製を行わず、次の工程に進んだ。反応混合物に、2、6―ジ(プロペン-2―イル)フェニルリチウム(20.2g、45mmol)およびN-ブチルリチウム(35.6mL、1.14mmol)を溶解したクロロベンゼン(100mL)を加えて100℃で24時間撹拌した。反応液に飽和塩化アンモニウム水溶液を加え撹拌し、トルエンを用いて抽出した。反応液はシリカゲルカラムクロマトグラフィー(溶離液:トルエン)を用いて、目的物を含むフラクションのみを回収し、12-(tert-ブチル)-9-(2,6-ジ(プロピル-1-エン-2-イル)フェニル)-2,3-ジメチル-9H-ベンゾ[5,6][1,4]アザボリニノ[3,2,1-kl]フェノチアジン(化合物(t-6)、11.2g、収率43%)を得た。
Figure 2022034774000190
[第4段]
12-(tert-ブチル)-9-(2,6-ジ(プロピル-1-エン-2-イル)フェニル)-2,3-ジメチル-9H-ベンゾ[5,6][1,4]アザボリニノ[3,2,1-kl]フェノチアジン(化合物(t-6)、1.05g、2.0mmol)およびスカンジウムトリフラート(0.98g、2.0mmol)をクロロベンゼン(50ml)に溶解させ100℃で6時間加熱撹拌を行った。飽和炭酸水素ナトリウムを加え、トルエンを用いて抽出した。減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:トルエン/ヘキサン=1/5(容量比))で精製することで、13-(tert-ブチル)-4,4,9,10,15,15-ヘキサメチル-4,15-ジヒドロ-7-チアー11b-アザ-3a-ボラ「フェナレノ[5,4,3,2,1-pqrst]ペンタフェン(化合物(1-b-9)、0.45g、収率43%)を得た。
Figure 2022034774000191
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.36(s,9H)、1.70(s,12H)、2.26(s,6H)、6.01(s,1H),6.25-6.33(m,2H)、7.01(s,1H)、7.10(s,1H)、7.23-7.33(m,3H)、7.71(t,1H).
原料の化合物を適宜変更することにより、上述した合成例に準じた方法およびYamaguchiらによるOrganic & Biomolecular Chemistry,2019,17,5500-5504を参考に、本発明の他の化合物を合成することができる。
原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明の他の化合物を合成することができる。
合成例(1)の第2段における2-ブロモ-9-(3-クロロフェニル)-6-メチル-9H-カルバゾールを2-ブロモ-9-(3-クロロフェニル)-9H-カルバゾールに変える以外は合成例(1)に準じた方法によって、化合物(1-a-1)を合成した。
Figure 2022034774000192
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.33(s,27H)、6.40(d,1H),7.08-7.10(m,2H)、7.03(s,1H)、7.11(s,1H)、7.23-7.62(m,12H)、8.19(d,1H)、8.40(d,1H).
合成例(1)の第2段における2-ブロモ-9-(3-クロロフェニル)-6-メチル-9H-カルバゾールを2-ブロモ-9-(3-クロロフェニル)-7-メチル-9H-カルバゾールに変える以外は合成例(1)に準じた方法によって、化合物(1-a-3)を合成した。
Figure 2022034774000193
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.32(s,27H)、2.44(s,3H)、6.41(d,1H),7.07-7.10(m,2H)、7.01(s,1H)、7.12(s,1H)、7.23-7.45(m,11H)、8.10(d,1H)、8.41(d,1H).
合成例(1)の第2段における2-ブロモ-9-(3-クロロフェニル)-6-メチル-9H-カルバゾールを7-ブロモ-9-(3-クロロフェニル)-2,3-ジメチル-9H-カルバゾールに変える以外は合成例(1)に準じた方法によって、化合物(1-a-4)を合成した。
Figure 2022034774000194
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.32(s,27H)、2.25(s,3H)、2.47(s,3H)、6.40(d,1H),7.06-7.10(m,2H)、7.01(s,1H)、7.11(s,1H)、7.23-7.46(m,10H)、7.96(d,1H)、8.39(d,1H).
合成例(1)の第1段(b)における1-クロロ-3-フルオロベンゼンを1-クロロ-3-フルオロ-5-メチルベンゼンに変える以外は合成例(1)に準じた方法によって、化合物(1-a-5)を合成した。
Figure 2022034774000195
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.32(s,27H)、2.38(s,3H)、6.39(d,1H),7.07-7.10(m,2H)、7.00(s,1H)、7.11(s,1H)、7.22-7.59(m,11H)、8.20(d,1H)、8.41(d,1H).
合成例(1)の第1段(b)における1-クロロ-3-フルオロベンゼンを1-(tert-ブチル)-3-クロロ-5-フルオロベンゼンに変える以外は合成例(1)に準じた方法によって、化合物(1-a-6)を合成した。
Figure 2022034774000196
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.32(s,27H)、1.35(s,9H)、6.38(d,1H),7.08-7.10(m,2H)、7.01(s,1H)、7.11(s,1H)、7.22-7.58(m,11H)、8.19(d,1H)、8.42(d,1H).
合成例(1)の第2段における2-ブロモ-9-(3-クロロフェニル)-6-メチル-9H-カルバゾールを8-ブロモ-10-(3-クロロフェニル)-2,3-ジメチル-10H-フェノチアジンに変える以外は合成例(1)に準じた方法によって、化合物(1-a-25)を合成した。
Figure 2022034774000197
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.32(s,27H)、2.18(s,3H)、2.32(s,3H)、6.80(s,1H)、6.84(s,1H)、7.08-7.12(m,14H)、7.28(d,1H).
合成例(2)の第1段における2,3-ジメチル-10H-フェノチアジンを10H-フェノキサジンに変える以外は合成例(2)に準じた方法によって、化合物(1-b-4)を合成した。
Figure 2022034774000198
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.41(s,9H)、1.68(s,12H)、6.78-6.96(m,2H)、7.03(d,2H)、7.08(d,2H)、7.14(d,3H)、7.32(s,1H)、7.53(d,1H).
合成例(2)の第1段における2,3-ジメチル-10H-フェノチアジンを10H-フェノチアジンに変え、1-tert-ブチル-3-フルオロベンゼンをN-(3,5-ジメチルフェニル)-N-(4-フルオロフェニル)-3,5-ジメチルアニリンに変える以外は合成例(2)に準じた方法によって、化合物(1-b-7)を合成した。
Figure 2022034774000199
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.65(s,12H)、2.20(s,6H)、2.30(s,6H)、6.80(d,1H),6.93-7.14(m,15H)、7.51(t,1H).
合成例(2)の第1段における2,3-ジメチル-10H-フェノチアジンを10H-フェノチアジンに変え、-tert-ブチル-3-フルオロベンゼンを4’-フルオロ-2,6-ジメチル-1,1’-ビフェニルに変える以外は合成例(2)に準じた方法によって、化合物(1-b-8)を合成した。
Figure 2022034774000200
NMRスペクトルにより得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=1.71(s,9H)、2.59(s,6H)、6.80(d,1H)、6.95-7.17(m,12H)、7.25(d,1H)、7.46(s,1H)、7.50(d,1H)、7.55(t,1H).
<基礎物性の評価方法>
サンプルの準備
評価対象の化合物の吸収特性と発光特性(蛍光と燐光)を評価する場合、評価対象の化合物を溶媒に溶解して溶媒中で評価する場合と薄膜状態で評価する場合がある。さらに、薄膜状態で評価する場合は、評価対象の化合物の有機EL素子における使用の態様に応じて、評価対象の化合物のみを薄膜化し評価する場合と評価対象の化合物を適切なマトリックス材料中に分散して薄膜化して評価する場合がある。ここでは、評価対象化合物のみを蒸着して得た薄膜を「単独膜」といい、評価対象化合物とマトリックス材料を含む塗工液を塗布、乾燥して得た薄膜を「塗膜」という。
マトリックス材料としては、市販のPMMA(ポリメチルメタクリレート)などを用いることができる。本実施例では、PMMAと評価対象の化合物をトルエン中で溶解させた後、スピンコーティング法により石英製の透明支持基板(10mm×10mm)上に薄膜を形成してサンプルを作製する。
また、マトリックス材料がホスト化合物である場合の薄膜サンプルは、以下のようにして作製する。
石英製の透明支持基板(10mm×10mm×1.0mm)を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、ホスト化合物を入れたモリブデン製蒸着用ボート、ドーパント材料を入れたモリブデン製蒸着用ボートを装着した後、真空槽を5×10-4Paまで減圧する。次に、ホスト化合物が入った蒸着用ボートとドーパント材料が入った蒸着用ボートを同時に加熱して、ホスト化合物とドーパント材料を適切な膜厚になるように共蒸着してホスト化合物とドーパント材料の混合薄膜(サンプル)を形成した。ここで、ホスト化合物とドーパント材料の設定質量比に応じて蒸着速度を制御する。
吸収特性と発光特性の評価
サンプルの吸収スペクトルの測定は、紫外可視近赤外分光光度計((株)島津製作所、UV-2600)を用いて行う。また、サンプルの蛍光スペクトルまたは燐光スペクトルの測定は、分光蛍光光度計(日立ハイテク(株)製、F-7000)を用いて行う。
蛍光スペクトルの測定に対しては、室温で適切な励起波長で励起しフォトルミネッセンスを測定する。燐光スペクトルの測定に対しては、付属の冷却ユニットを使用して、前記サンプルを液体窒素に浸した状態(温度77K)で測定する。燐光スペクトルを観測するため、光学チョッパを使用して励起光照射から測定開始までの遅れ時間を調整した。サンプルは適切な励起波長で励起しフォトルミネッセンスを測定する。
また、絶対PL量子収率測定装置(浜松ホトニクス(株)製、C9920-02G)を用いて蛍光量子収率(PLQY)を測定する。
次に、本発明の多環芳香族化合物の基礎物性評価について記載する。
蛍光寿命(遅延蛍光)の評価
蛍光寿命測定装置(浜松ホトニクス(株)製、C11367-01)を用いて300Kで蛍光寿命を測定した。具体的には、適切な励起波長で測定される極大発光波長において蛍光寿命の早い発光成分と遅い発光成分を観測した。蛍光を発光する一般的な有機EL材料の室温における蛍光寿命測定では、熱による3重項成分の失活により、燐光に由来する3重項成分が関与する遅い発光成分が観測されることはほとんどない。評価対象の化合物において遅い発光成分が観測された場合は、励起寿命の長い3重項エネルギーが熱活性化により1重項エネルギーに移動して遅延蛍光として観測されたことを示すことになる。
エネルギーギャップ(Eg)の算出
前述の方法で得られた吸収スペクトルの長波長末端A(nm)からEg=1240/Aで算出する。
イオン化ポテンシャル(Ip)の測定
ITO(インジウム・スズ酸化物)の蒸着された透明支持基板(28mm×26mm×0.7mm)を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、対象化合物を入れたモリブデン製蒸着用ボートを装着した後、真空槽を5×10-4Paまで減圧する。次に、蒸着用ボートを加熱して対象化合物を蒸発させ、対象化合物の単独膜(Neat膜)を形成する。
得られた単独膜をサンプルとし、光電子分光計(住友重機械工業株式会社 PYS-201)を用いて対象化合物のイオン化ポテンシャルを測定する。
電子親和力(Ea)の算出
前述の方法で測定したイオン化ポテンシャルと前述の方法で算出したエネルギーギャップとの差より、電子親和力を見積ることができる。
励起一重項エネルギー準位E(S,Sh)、励起三重項エネルギー準位E(T,Sh)の測定
ガラス基板上に形成した対象化合物の単独膜について、77Kで、吸収スペクトルの蛍光ピークが重ならない程度に長波長側のピークを励起光に蛍光スペクトルを観測し、その蛍光スペクトルのピーク短波長側の肩より励起一重項エネルギー準位E(S,Sh)を求める。
また、ガラス基板上に形成した対象化合物の単独膜に、77Kで、吸収スペクトルの蛍光ピークが重ならない程度に長波長側のピークをnm励起光に燐光スペクトルを観測し、その燐光スペクトルのピーク短波長側の肩より励起三重項エネルギー準位E(T,Sh)を求める。
<有機EL素子の評価>
以上のように、本発明の化合物は、適切なエネルギーギャップ(Eg)、高い三重項励起エネルギー(E)および小さいΔESTを特徴として有しているため、例えば発光層および電荷輸送層への適用が期待でき、特に発光層への適用が期待できる。
評価項目および評価方法
評価項目としては、駆動電圧(V)、発光波長(nm)、CIE色度(x,y)、外部量子効率(%)、発光スペクトルの最大波長(nm)および半値幅(nm)などがある。これらの評価項目は、適切な発光輝度時の値を用いることができる。
発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、内部量子効率は、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示している。一方、外部量子効率は、この光子が発光素子の外部にまで放出された量に基づいて算出され、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりあるいは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。
分光放射輝度(発光スペクトル)と外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、電圧を印加することにより素子を発光させた。TOPCON社製分光放射輝度計SR-3ARを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。また、発光スペクトルの半値幅は、極大発光波長を中心として、その強度が50%になる上下の波長間の幅として求められる。
次に、本発明の多環芳香族化合物を用いた有機EL素子の作製と評価について記載する。
(1)蒸着型有機EL素子の作製と評価
実施例および比較例に係る有機EL素子を作製し、電圧を印加して発光波長および外部量子効率などを測定する。作製した有機EL素子の構成として、以下の構成A(表1)、構成B(表2)および構成C(表3)の3つを選定して評価する。構成AおよびCは熱活性化型遅延蛍光用材料に適合した構成であり、構成BはTTF(Triplet- Triplet-Fusion)を用いた一般的な構成である。ただし、本発明の化合物の適用はこれらの構成に限定されず、各層の膜厚や構成材料は本発明の化合物の基礎物性によって適宜変更することができる。
Figure 2022034774000201
Figure 2022034774000202
表1において、「NPD」はN,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニルであり、「TcTa」は4,4’,4”-トリス(N-カルバゾリル)トリフェニルアミンであり、「mCP」は1,3-ビス(N-カルバゾリル)ベンゼンであり、「mCBP」は3,3’-ビス(N-カルバゾリル)-1,1’-ビフェニルであり、「3,4-2CzBN」は3,4-ビスカルバゾリルベンゾニトリルであり、「BPy-TP2」は2,7-ジ([2,2’-ビピリジン]-5-イル)トリフェニレンである。共に以下に化学構造を示す。
Figure 2022034774000203
また、比較例1~6で用いた化合物の構造を以下に示す。
Figure 2022034774000204
<実施例1>
<構成A:化合物(1-a-1)をドーパントとした素子>
スパッタリングにより200nmの厚さに成膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、NPD、TcTa、mCP、mCBP、化合物(1-a-1)、3,4-2CzBNおよびBPy-TP2をそれぞれ入れたモリブデン製蒸着用ボート、LiFおよびアルミニウムをそれぞれ入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、NPDを加熱して膜厚40nmになるように蒸着して正孔注入層を形成した。次に、TcTaを加熱して膜厚15nmになるように蒸着して正孔輸送層を形成した。次に、mCPを加熱して膜厚15nmになるように蒸着して電子阻止層を形成した。次に、mCBPと化合物(1-a-1)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。mCBPと化合物(1-a-1)の質量比がおよそ99対1になるように蒸着速度を調節した。次に、3,4-2CzBNを加熱して膜厚10nmになるように蒸着した。次いで、BPy-TP2を加熱して膜厚20nmになるように蒸着して2層からなる電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。このとき、アルミニウムの蒸着速度は1~10nm/秒になるように調節した。
<実施例2>
<構成A:化合物(1-a-2)をドーパントとした素子>
化合物(1-a-1)を化合物(1-a-2)に変更した以外は実施例1と同様の手順で素子を作製した。
<実施例3>
<構成A:化合物(1-a-3)をドーパントとした素子>
化合物(1-a-1)を化合物(1-a-3)に変更した以外は実施例1と同様の手順で素子を作製した。
<実施例4>
<構成A:化合物(1-a-4)をドーパントとした素子>
化合物(1-a-1)を化合物(1-a-4)に変更した以外は実施例1と同様の手順で素子を作製した。
<実施例5>
<構成A:化合物(1-a-5)をドーパントとした素子>
化合物(1-a-1)を化合物(1-a-5)に変更した以外は実施例1と同様の手順で素子を作製した。
<実施例6>
<構成A:化合物(1-a-6)をドーパントとした素子>
化合物(1-a-1)を化合物(1-a-6)に変更した以外は実施例1と同様の手順で素子を作製した。
<実施例7>
<構成A:化合物(1-a-7)をドーパントとした素子>
化合物(1-a-1)を化合物(1-a-7)に変更した以外は実施例1と同様の手順で素子を作製した。
<比較例1>
<構成A:化合物(R-BD1)をドーパントとした素子>
化合物(1)を化合物(R-BD1)に変更した以外は実施例1と同様の手順で素子を作製した。
<比較例2>
<構成A:化合物(R-BD2)をドーパントとした素子>
化合物(1)を化合物(R-BD2)に変更した以外は実施例1と同様の手順で素子を作製した。
実施例1~7および比較例1~2において作製した素子を、ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、発光波長、発光半値幅(FWHM)、外部量子効率(EQE)およびLT90(初期輝度1000cd/mにおいて連続駆動し、輝度が900cd/mになるまでの時間)を測定した。1000cd/mにおける測定結果を表1にまとめた。
表2において、「HI-1」はN,N’-ジフェニル-N,N’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミンであり、「HAT-CN」は1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリルであり、「HT-1」はN-([1,1’-ビフェニル]-4-イル)-9,9-ジメチル-N-(4-(9-フェニル-9H-カルバゾール-3-イル)フェニル)-9H-フルオレン-2-アミンであり、「HT-2」はN,N-ビス(4-(ジベンゾ[b,d]フラン-4-イル)フェニル)-[1,1’:4’,1”-テルフェニル]-4-アミンであり、「EMH2」は9-フェニル-10-(4-フェニルナフタレン-1-イル)アントラセンであり、「ET-1」は4,6,8,10-テトラフェニル[1,4]ベンゾキサボリニノ[2,3,4-kl]フェノキサボリニンであり、「ET-2」は3,3’-((2-フェニルアントラセン-9,10-ジイル)ビス(4,1-フェニレン))ビス(4-メチルピリジン)であり、「Liq」と共に以下に化学構造を示す。
Figure 2022034774000205
<実施例8>
<構成B:化合物(1-a-2)をドーパントとした素子>
スパッタリングにより200nmの厚さに成膜したITOを120nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HI-1、HAT-CN、HT-1、HT-2、EMH1、化合物(1-a-2)、ET-1およびLiqをそれぞれ入れたモリブデン製蒸着用ボート、LiFおよびアルミニウムをそれぞれ入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HI-1を加熱して膜厚40nmになるように蒸着し、次いで、HAT-CNを加熱して膜厚5nmになるように蒸着して2層からなる正孔注入層を形成した。次に、HT-1を加熱して膜厚15nmになるように蒸着し、次いで、HT-2を加熱して膜厚10nmになるように蒸着して2層からなる正孔輸送層を形成した。次に、EMH1と化合物(1-a-2)を同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。EMH1と化合物(1-a-2)の質量比がおよそ98対2になるように蒸着速度を調節した。次に、ET-1を加熱して膜厚5nmになるように蒸着し、次いで、ET-2とLiqを加熱して膜厚25nmになるように蒸着して2層からなる電子輸送層を形成した。ET-2とLiqの質量比がおよそ7対3になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。このとき、アルミニウムの蒸着速度は1~10nm/秒になるように調節した。
<実施例9>
<構成B:EMH2をホスト、化合物(1-a-2)をドーパントとした素子>
EMH1をEMH2に変更した以外は実施例8と同様の手順で素子を作製した。
<実施例10>
<構成B:EMH2をホスト、化合物(1-a-3)をドーパントとした素子>
EMH1をEMH2に、化合物(1-a-2)を化合物(1-a-3)に変更した以外は実施例8と同様の手順で素子を作製した。
<実施例11>
<構成B:EMH2をホスト、化合物(1-a-4)をドーパントとした素子>
EMH1をEMH2に、化合物(1-a-2)を化合物(1-a-4)に変更した以外は実施例8と同様の手順で素子を作製した。
<実施例12>
<構成B:EMH2をホスト、化合物(1-a-5)をドーパントとした素子>
EMH1をEMH2に、化合物(1-a-2)を化合物(1-a-5)に変更した以外は実施例8と同様の手順で素子を作製した。
<実施例13>
<構成B:EMH2をホスト、化合物(1-a-6)をドーパントとした素子>
EMH1をEMH2に、化合物(1-a-2)を化合物(1-a-6)に変更した以外は実施例8と同様の手順で素子を作製した。
<実施例14>
<構成B:EMH2をホスト、化合物(1-a-7)をドーパントとした素子>
EMH1をEMH2に、化合物(1-a-2)を化合物(1-a-7)に変更した以外は実施例8と同様の手順で素子を作製した。
<実施例15>
<構成B:EMH2をホスト、化合物(1-b-8)をドーパントとした素子>
EMH1をEMH2に、化合物(1-a-2)を化合物(1-b-8)に変更した以外は実施例8と同様の手順で素子を作製した。
<実施例16>
<構成B:EMH2をホスト、化合物(1-b-4)をドーパントとした素子>
EMH1をEMH2に、化合物(1-a-2)を化合物(1-b-4)に変更した以外は実施例8と同様の手順で素子を作製した。
<実施例17>
<構成B:EMH2をホスト、化合物(1-b-7)をドーパントとした素子>
EMH1をEMH2に、化合物(1-a-2)を化合物(1-b-7)に変更した以外は実施例8と同様の手順で素子を作製した。
<実施例18>
<構成B:EMH2をホスト、化合物(1-b-8)をドーパントとした素子>
EMH1をEMH2に、化合物(1-a-2)を化合物(11)に変更した以外は実施例8と同様の手順で素子を作製した。
<比較例3>
<構成B:化合物(R-BD1)をドーパントとした素子>
化合物(1-a-2)を化合物(R-BD1)に変更した以外は実施例8と同様の手順で素子を作製した。
<比較例4>
<構成B:EMH2をホスト、化合物(R-BD1)をドーパントとした素子>
EHM1をEHM2に、化合物(1-a-2)を化合物(R-BD1)に変更した以外は実施例8と同様の手順で素子を作製した。
<比較例5>
<構成B:EMH2をホスト、化合物(R-BD2)をドーパントとした素子>
EHM1をEHM2に、化合物(1-a-2)を化合物(R-BD2)に変更した以外は実施例8と同様の手順で素子を作製した。
<比較例6>
<構成B:EMH2をホスト、化合物(R-BD3)をドーパントとした素子>
EHM1をEHM2に、化合物(1-a-2)を化合物(R-BD3)に変更した以外は実施例8と同様の手順で素子を作製した。
実施例8~18および比較例3~6において作製した素子を、ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、発光波長、発光半値幅(FWHM)、外部量子効率(EQE)およびLT98(初期輝度1000cd/mにおいて連続駆動し、輝度が980cd/mになるまでの時間)を測定した。1000cd/mにおける測定結果を表2にまとめた。
Figure 2022034774000206
表3において、「3Cz2DPhCzBN」は、2,4,6-トリ(9H-カルバゾール-9-イル)-3,5-ビス(3,6-ジフェニル-9H-カルバゾール-9-イル)ベンゾニトリルである。以下に化学構造を示す。
Figure 2022034774000207
<実施例19>
<構成D:アシスティングドーパントに3Cz2DPhCzBNを、エミッティングドーパントに化合物(1-a-25)を用いた素子>
スパッタリングにより200nmの厚さに成膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とする。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HAT-CN、Tris-PCz、mCBP、3Cz2DPhCzBN、化合物(1-a-25)、T2TおよびBPy-TP2をそれぞれ入れたタンタル製蒸着用ボート、Liq、LiFおよびアルミニウムをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着する。
透明支持基板のITO膜の上に順次、下記各層を形成する。真空槽を5×10-4Paまで減圧し、まず、HAT-CNを加熱して膜厚10nmになるように蒸着し、次に、Tris-PCzを加熱して膜厚30nmになるように蒸着して2層からなる正孔層を形成する。次に、ホストとしてmCBP、アシスティングドーパントとして3Cz2DPhCzBNおよびエミッティングドーパントとして化合物(1-a-25)を同時に加熱して膜厚30nmになるように共蒸着して発光層を形成する。ホスト、アシスティングドーパントおよびエミッティングドーパントの質量比がおよそ80対19対1になるように蒸着速度を調節する。次に、T2Tを加熱して膜厚10nmになるように蒸着し、ついで、BPy-TP2とLiqの質量比がおよそ70対30になるように加熱して膜厚30nmまで蒸着し、電子輸送層1および2を形成する。以上の各層の蒸着速度は0.01~1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得る。このとき、アルミニウムの蒸着速度は1~10nm/秒になるように調節する。
ITO電極を陽極、アルミニウム電極を陰極として直流電圧を印加し、輝度、色度および外部量子効率を測定できる。
(2)発光層形成用組成物の調製と評価
<実施例S-1>
表4に記載のとおり、第1成分のホストを0.98質量%、第2成分のドーパントを0.02質量%および第3成分の溶媒を99質量%混合して、固形分濃度1質量%の発光層形成用組成物をそれぞれ調製できる。
Figure 2022034774000208
上記表4において、「EMH3」は9-(7-([1,1’:3’,1”:3”,1’”-クアトロフェニル]-3-イル)ナフタレン-2-イル)-10-フェニルアントラセンである。以下に化学構造を示す。
Figure 2022034774000209
また、発光層形成用組成物の調製に際して使用した溶媒「3PxT/c6B(7/3)」は、3-フェノキシトルエン/シクロヘキシルベンゼン=7/3(容量比)の混合溶液である。
(3)塗布型有機EL素子の作製と評価
次に、有機層を塗布形成して得られる有機EL素子について説明する。
<高分子正孔輸送化合物:XLP-101の合成>
特開2018-61028号公報に記載の方法に従い、XLP-101を合成した。M4の隣にM5またはM6が結合した共重合体が得られ、仕込み比より各ユニットは40:10:50(モル比)であると推測される。なお、下記式において、Bpinはピナコラートボリルである。
Figure 2022034774000210
<高分子正孔輸送化合物:XLP-101溶液の調製>
特開2018-61028号公報に記載の方法に従い合成したXLP-101を0.7質量%になるように3-フェノキシトルエン/シクロヘキシルベンゼン=7/3(容量比)の混合溶液に溶解させる。
<実施例SD-1の有機EL素子の作製>
有機EL素子における、各層の材料構成を表5に示す。
Figure 2022034774000211
上記表5における、正孔注入層の形成材料である「PEDOT:PSS」としては、市販のPEDOT:PSS溶液(Clevios(TM) P VP AI4083、下記式で表されるPEDOT:PSSの水分散液、Heraeus Holdings社製)を用いる。
Figure 2022034774000212
<実施例SD-1>
ITOが50nmの厚さに蒸着されたガラス基板上に、PEDOT:PSS溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚40nmの正孔注入層を成膜する。次いで、XLP-101溶液をスピンコートし、80℃のホットプレート上で10分間乾燥した後、200℃のホットプレート上で1時間焼成することで、発光層形成用組成物に不溶な膜厚30nmの正孔輸送層を成膜する。次いで、実施例S-1で調製した発光層形成用組成物をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚20nmの発光層を成膜する。
作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、ET-1、ET-2、LiqおよびLiFをそれぞれ入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着する。真空槽を5×10-4Paまで減圧した後、ET-1を加熱して膜厚10nmになるように蒸着して電子輸送層1を形成する。次いで、ET-2およびLiqを加熱して膜厚20nmになるように蒸着して電子輸送層2を形成する。ET-2およびLiqの質量比がおよそ1:1になるように蒸着速度を調節する。電子輸送層を形成する際の蒸着速度は1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着する。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成する。このようにして有機EL素子を得る。
100 有機電界発光素子
101 基板
102 陽極
103 正孔注入層
104 正孔輸送層
105 発光層
106 電子輸送層
107 電子注入層
108 陰極

Claims (23)

  1. 下記式(1)で表される構造単位の1つまたは2つ以上からなる構造を有する多環芳香族化合物;
    Figure 2022034774000213
    式(1)において、
    A環、B環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、A環、B環、C環およびD環それぞれにおけるアリール環またはヘテロアリール環の少なくとも1つの水素は置換されてもよく、
    は、B、P、P=O、P=S、Al、Ga、As、Si-R、Ge-RまたはSn-Rであり、前記Si-R、Ge-RおよびSn-RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルあるいは置換されていてもよいシクロアルキルであり、
    およびXは、>O、>S、>Se、>N-R、>Si(-R)、>C(-R)、または>C=Oであり、前記>N-R、>Si(-R)、および>C(-R)のRはそれぞれ独立して水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、>Si(-R)および>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよく、
    は単結合、>O、>S、>Se、>N-R、>Si(-R)、>C(-R)、または>C=Oであり、前記>N-R、>Si(-R)、および>C(-R)のRはそれぞれ独立して水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、>Si(-R)および>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよく、
    前記構造におけるアリール環およびヘテロアリール環からなる群より選択される少なくとも1つは、少なくとも1つのシクロアルカンで縮合されてもよく、当該シクロアルカンにおける少なくとも1つの水素は置換されてもよく、当該シクロアルカンにおける少なくとも1つの-CH-は-O-で置換されてもよく、
    前記構造における少なくとも1つの水素は重水素、シアノ、またはハロゲンで置換されてもよい。
  2. 式(1)で表される構造単位の1つからなる構造を有する、請求項1に記載の多環芳香族化合物。
  3. 下記式(1-1)で表される構造単位の1つ~3つからなる構造を有する、請求項1または2に記載の多環芳香族化合物;
    Figure 2022034774000214
    式(1-1)において、
    ~R12は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合してもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、または置換シリルであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シクロアルキル、または置換シリルで置換されてもよく、R~R12のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、または置換シリルで置換されてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シクロアルキル、または置換シリルで置換されてもよく、
    およびXは、>O、>S、>Se、>N-R、>Si(-R)、>C(-R)、または>C=Oであり、前記>N-R、>Si(-R)、および>C(-R)のRはそれぞれ独立して水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、>Si(-R)および>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよく、
    は単結合、>O、>S、>Se、>N-R、>Si(-R)、>C(-R)、または>C=Oであり、前記>N-R、>Si(-R)、および>C(-R)のRはそれぞれ独立して水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、>Si(-R)および>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよく、
    は、B、P、P=O、P=S、Al、Ga、As、Si-R、Ge-RまたはSn-Rであり、このSi-R、Ge-RおよびSn-Rにおいて、Rはアリールまたはアルキルであり、
    式(1-1)で表される構造単位の1つ~3つからなる構造におけるアリール環およびヘテロアリール環からなる群より選択される少なくとも1つは、少なくとも1つの炭素数3から24のシクロアルカンで縮合されていてもよく、当該シクロアルカンにおける少なくとも1つの水素は、炭素数6から30のアリール、炭素数2から30のヘテロアリール、炭素数1から24のアルキル、または炭素数3から24のシクロアルキルで置換されていてもよく、当該シクロアルカンにおける少なくとも1つの-CH-は-O-で置換されてもよく、
    式(1-1)で表される構造単位の1つ~3つからなる構造における少なくとも1つの水素は、シアノ、ハロゲン、または重水素で置換されてもよい。
  4. 式(1-1)において、
    がBであり、
    およびXは、それぞれ独立して、>O、>S、>N-R、または>C(-R)であり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキル、炭素数3~14のシクロアルキルであり、前記>N-RのRにおける炭素数6~12のアリールおよび炭素数2~15のヘテロアリールはいずれも炭素数1~6のアルキル、炭素数3~14のシクロアルキル、または置換シリルで置換されてもよく、前記>C(-R)のRはそれぞれ独立して、水素、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキル、または炭素数3~14のシクロアルキルであり、前記>C(-R)において、Rにおける炭素数6~12のアリールおよび炭素数2~5のヘテロアリールはいずれも炭素数1~6のアルキル、炭素数3~14のシクロアルキル、または置換シリルで置換されてもよく、前記>C(-R)において、2つのRは互いに結合して環を形成してもよく、
    は、単結合、>O、>Sまたは>N-R、または>C(-R)であり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数1~6のアルキル、炭素数3~14のシクロアルキルであり、前記>N-RのRにおける炭素数6~12のアリールおよび炭素数2~15のヘテロアリールはいずれも炭素数1~6のアルキル、炭素数3~14のシクロアルキル、または置換シリルで置換されてもよく、前記>C(-R)のRはそれぞれ独立して、水素、炭素数6から12のアリール、炭素数2から15のヘテロアリール、炭素数1から6のアルキル、または炭素数3から14のシクロアルキルであり、前記>C(-R)において、Rにおける炭素数6から12のアリールおよび炭素数2から5のヘテロアリールはいずれも炭素数1から6のアルキル、炭素数3から14のシクロアルキル、または置換シリルで置換されてもよく、前記>C(-R)において、2つのRは互いに結合して環を形成してもよい、
    請求項3に記載の多環芳香族化合物。
  5. およびXがいずれも>N-Rであり、前記>N-RのRは炭素数1~6のアルキルで置換されていてもよいアリールまたは炭素数1~6のアルキルで置換されていてもよいヘテロアリールであり、
    は単結合または>Sである、
    請求項4に記載の多環芳香族化合物。
  6. 下記式のいずれかで表される、請求項5に記載の多環芳香族化合物;
    Figure 2022034774000215
    式中、Meはメチル、tBuはt-ブチルである。
  7. およびXは>C(-R)であり、前記>C(-R)のRはそれぞれ独立して水素、または炭素数1~6のアルキルであり、>C(-R)のそれぞれにおける2つのRは互いに結合して環を形成していてもよく、
    は>Oまたは>Sである、請求項4に記載の多環芳香族化合物。
  8. 下記式のいずれかで表される、請求項7に記載の多環芳香族化合物;
    Figure 2022034774000216
    式中、Meはメチル、tBuはt-ブチルである。
  9. 請求項1~8のいずれか一項に記載の多環芳香族化合物に反応性置換基が置換した、反応性化合物。
  10. 請求項9に記載の反応性化合物をモノマーとして高分子化させた高分子化合物、または、当該高分子化合物をさらに架橋させた高分子架橋体。
  11. 主鎖型高分子に請求項9に記載の反応性化合物を置換させたペンダント型高分子化合物、または、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体。
  12. 請求項1~8のいずれか一項に記載の多環芳香族化合物、請求項9に記載の反応性化合物、請求項10に記載の高分子化合物もしくは高分子架橋体、または、請求項11に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する、有機デバイス用材料。
  13. 前記有機デバイス用材料が、有機電界発光素子用材料、有機電界効果トランジスタ用材料、または有機薄膜太陽電池用材料である、請求項12に記載の有機デバイス用材料。
  14. 前記有機電界発光素子用材料が発光層用材料である、請求項13に記載の有機デバイス用材料。
  15. 請求項1~8のいずれか一項に記載の多環芳香族化合物、請求項9に記載の反応性化合物、請求項10に記載の高分子化合物もしくは高分子架橋体、または、請求項11に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体と、有機溶媒とを含む、組成物。
  16. 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項1~8のいずれか一項に記載の多環芳香族化合物、請求項9に記載の反応性化合物、請求項10に記載の高分子化合物もしくは高分子架橋体、または、請求項11に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する有機層とを有する、有機電界発光素子。
  17. 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項1~8のいずれか一項に記載の多環芳香族化合物、請求項9に記載の反応性化合物、請求項10に記載の高分子化合物もしくは高分子架橋体、または、請求項11に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する発光層とを有する、有機電界発光素子。
  18. 前記発光層が、ホストと、ドーパントとしての前記多環芳香族化合物、反応性化合物、高分子化合物、高分子架橋体、ペンダント型高分子化合物またはペンダント型高分子架橋体とを含む、請求項17に記載の有機電界発光素子。
  19. 前記ホストが、アントラセン系化合物、フルオレン系化合物またはジベンゾクリセン系化合物である、請求項18に記載の有機電界発光素子。
  20. 前記陰極と前記発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、アリールニトリル誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、キノリノール系金属錯体、チアゾール誘導体、ベンゾチアゾール誘導体、シロール誘導体およびアゾリン誘導体からなる群から選択される少なくとも1つを含有する、請求項17~19のいずれか一項に記載の有機電界発光素子。
  21. 前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項20に記載の有機電界発光素子。
  22. 正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層のうちの少なくとも1つの層が、各層を形成し得る低分子化合物をモノマーとして高分子化させた高分子化合物、もしくは、当該高分子化合物をさらに架橋させた高分子架橋体、または、各層を形成し得る低分子化合物を主鎖型高分子と反応させたペンダント型高分子化合物、もしくは、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体を含む、請求項17~21のいずれか一項に記載の有機電界発光素子。
  23. 請求項16~22のいずれか一項に記載の有機電界発光素子を備えた表示装置または照明装置。
JP2020138632A 2020-08-19 2020-08-19 多環芳香族化合物 Pending JP2022034774A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020138632A JP2022034774A (ja) 2020-08-19 2020-08-19 多環芳香族化合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020138632A JP2022034774A (ja) 2020-08-19 2020-08-19 多環芳香族化合物

Publications (1)

Publication Number Publication Date
JP2022034774A true JP2022034774A (ja) 2022-03-04

Family

ID=80443091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020138632A Pending JP2022034774A (ja) 2020-08-19 2020-08-19 多環芳香族化合物

Country Status (1)

Country Link
JP (1) JP2022034774A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024012365A1 (zh) * 2022-07-14 2024-01-18 清华大学 一种有机化合物及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024012365A1 (zh) * 2022-07-14 2024-01-18 清华大学 一种有机化合物及其应用

Similar Documents

Publication Publication Date Title
JP7232448B2 (ja) 有機デバイス用材料およびそれを用いた有機電界発光素子
KR20200099107A (ko) 다환 방향족 화합물 및 그의 다량체
JPWO2020162600A1 (ja) 多環芳香族化合物
JP7398711B2 (ja) フッ素置換多環芳香族化合物
JP2020147563A (ja) 多環芳香族化合物およびその多量体
WO2020218558A1 (ja) 化合物、有機デバイス用材料、発光層形成用組成物、有機電界効果トランジスタ、有機薄膜太陽電池、有機電界発光素子、表示装置、および照明装置
JPWO2019074093A1 (ja) 多環芳香族系二量体化合物
JP2022065644A (ja) 多環芳香族化合物
JP7269602B2 (ja) 多環芳香族化合物およびその多量体
WO2022034916A1 (ja) 多環芳香族化合物
JP2022074041A (ja) 多環芳香族化合物
JP2022040089A (ja) 多環芳香族化合物
JP2021063067A (ja) 多環芳香族化合物、有機デバイス用材料、有機電界発光素子、表示装置および照明装置
JP7018171B2 (ja) アルケニル基を有する多環芳香族化合物およびその多量体
JP2022034774A (ja) 多環芳香族化合物
JP2021172658A (ja) 多環芳香族化合物
JP2022090294A (ja) 多環芳香族化合物
WO2022185896A1 (ja) 多環芳香族化合物および有機電界発光素子
JP7454810B2 (ja) 多環芳香族化合物
WO2022185897A1 (ja) 多環芳香族化合物
JP2022032966A (ja) 多環芳香族化合物
JP2022032442A (ja) 多環芳香族化合物
JP2022032441A (ja) 多環芳香族化合物
JP2022020144A (ja) 多環芳香族化合物
JP2022179317A (ja) 多環芳香族化合物

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230726