WO2022078250A1 - 用于发光器件的有机化合物及其应用、有机电致发光器件 - Google Patents

用于发光器件的有机化合物及其应用、有机电致发光器件 Download PDF

Info

Publication number
WO2022078250A1
WO2022078250A1 PCT/CN2021/122755 CN2021122755W WO2022078250A1 WO 2022078250 A1 WO2022078250 A1 WO 2022078250A1 CN 2021122755 W CN2021122755 W CN 2021122755W WO 2022078250 A1 WO2022078250 A1 WO 2022078250A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
unsubstituted
substituted
compound
organic
Prior art date
Application number
PCT/CN2021/122755
Other languages
English (en)
French (fr)
Inventor
孙恩涛
方仁杰
刘叔尧
Original Assignee
北京鼎材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京鼎材科技有限公司 filed Critical 北京鼎材科技有限公司
Publication of WO2022078250A1 publication Critical patent/WO2022078250A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the technical field of organic electroluminescence, in particular to an organic compound and its application, and also to an organic electroluminescence device.
  • OLED Organic Light Emission Diodes
  • OLED Organic Light Emission Diodes
  • OLED devices have the advantages of high brightness, fast response, wide viewing angle, simple process, flexibility, etc., they have attracted much attention in the field of new display technology and new lighting technology. At present, this technology has been widely used in the display panels of new lighting fixtures, smart phones and tablet computers, and will be further expanded to the application field of large-size display products such as TVs. It is a new type of display with fast development and high technical requirements. technology.
  • Common functionalized organic materials include hole injection materials, hole transport materials, hole blocking materials, electron injection materials, electron transport materials, electron blocking materials, light-emitting host materials and light-emitting guests (dyes), etc.
  • the object of the present invention is to provide an organic electroluminescent material, which uses the above-mentioned organic compound of the present invention as a hole blocking material, and has high luminous efficiency and low startup voltage.
  • Another object of the present invention is to provide an organic compound, which has strong electron injection and migration ability and can effectively improve the injection and transport of electrons from the electron transport layer to the light-emitting layer.
  • the purpose of the present invention is to provide an organic compound, which can effectively reduce the driving voltage of the device and improve the luminous efficiency of the device when used as an organic functional material in an organic electroluminescent device as a hole blocking material and an electron transport material.
  • the inventors have made intensive research and developed the following organic compounds to complete the present invention.
  • the present invention provides a kind of organic compound, it is characterized in that, it is the structure shown in formula (I):
  • X 1 to X 4 are each independently N or CR; different R are independently H, halogen, cyano, nitro, hydroxyl, C1-C12 alkyl, C1-C12 alkoxy, substituted Or unsubstituted C6-C60 aryl, substituted or unsubstituted C3-C60 heteroaryl; different Rs can be connected to form an aliphatic ring or an aromatic ring,
  • L 1 is a single bond, an m+1-valent substituted or unsubstituted C6-C60 aryl residue, an m+1-valent substituted or unsubstituted C3-C60 heteroaryl residue;
  • L 2 is a single bond , n+1-valent substituted or unsubstituted C6-C60 aryl residues, n+1-valent substituted or unsubstituted C3-C60 heteroaryl residues;
  • n and n are integers of 1 to 3; when L 1 is a single bond, m is 1; when L 2 is a single bond, n is 1.
  • Ar 1 and Ar 2 are independently selected from H, C1-C12 alkyl, C1-C12 alkoxy, substituted or unsubstituted C6-C60 aryl, substituted or unsubstituted C3-C60 heteroaryl C5-C30 aryl group, substituted or unsubstituted C3-C60 heteroaryl group or their combination; preferably substituted or unsubstituted C3 ⁇ C30 heteroaryl group or their combination, Ar 1 and Ar 2 are not H at the same time, Ar 1 and Ar 2 are not at the same time a C1-C12 alkyl group, Ar 1 and Ar 2 are not at the same time C1-C12 alkoxy;
  • substitution of the above-mentioned substituted or unsubstituted groups is selected from halogen, nitro, cyano, C6-C60 aryl, C3-C60 heteroaryl, C1-C30 alkyl, C1-C30 Substituted by one of alkoxy group, C6-C60 aryloxy group, amino group, C1-C30 silyl group, C6-C60 arylamino group, C3-C60 heteroarylamino group or a combination of at least two or more groups .
  • the compound of the present invention can effectively reduce the driving voltage of the device and improve the luminous efficiency of the device.
  • the specific reasons for these excellent technical effects are not yet clear, and the following speculations are made by the inventors, but these speculations do not limit the scope of protection of the present invention.
  • the core is an electron-deficient group with strong electron-withdrawing ability and large ⁇ -conjugated plane, which is very helpful to improve the efficiency as an electron transport or hole blocking material.
  • the matching of the above-mentioned parent nucleus with the substituted or unsubstituted aryl and heteroaryl groups in Ar 1 and Ar 2 can achieve better electron deficiency and further improve the injection ability, and the conjugated ⁇ -plane electronic structure of the parent nucleus is similar to
  • the ⁇ -plane system in Ar 1 and Ar 2 can further expand the size of the conjugated ⁇ -plane, which is favorable for the ⁇ - ⁇ plane stacking of molecules, and the transmission efficiency is higher. Therefore, although Ar 1 and Ar 2 may be aliphatic groups, Ar 1 and Ar 2 are not H and aliphatic groups at the same time, that is, Ar 1 and Ar 2 are not H at the same time, and Ar 1 and Ar 2 are not at the same time. Both are C1-C12 alkyl groups, and Ar 1 and Ar 2 are not simultaneously C1-C12 alkoxy groups.
  • the above-mentioned core nucleus is connected to the substituted or unsubstituted aryl and heteroaryl groups in Ar 1 and Ar 2 through the intermediate linking group of L 1 and L 2 , which increases the Device performance is very important.
  • L 1 and L 2 exist, the overall rigidity of the molecule is greatly reduced, which can effectively improve the density of the stack. From the aspect of macroscopic film-forming properties, a denser film can be achieved, which can naturally further improve the efficiency of electron transport. Therefore, it is preferable that L 1 and L 2 are not simultaneously a single bond.
  • L 1 is preferably a single bond, a phenyl residue, a naphthyl residue, an anthracenyl residue, a phenanthryl residue, or a pyrenyl residue;
  • L 2 is preferably a single bond, a phenyl residue, a naphthyl residue , anthracenyl residues, phenanthrenyl residues, or pyreneyl residues.
  • L 1 and L 2 are particularly preferably residues of phenyl.
  • the above-mentioned specific molecular design of the present invention can obtain deeper HOMO electron orbitals and higher triplet energy levels, so that when used as a hole blocking material, it can effectively block the diffusion of holes and excitons, which is conducive to obtaining Excellent effect of high luminous efficiency and low start-up voltage.
  • R is preferably a C5-C30 aryl group, a substituted or unsubstituted C3-C60 heteroaryl group, and more preferably a C3-C30 heteroaryl group.
  • Preferred ranges for m and n are 1 and 2.
  • the expressions of Ca-Cb represent that the number of carbon atoms of the group is a-b, unless otherwise specified, generally the number of carbon atoms does not include the number of carbon atoms of the substituent.
  • C1 to 30 includes but is not limited to C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C22, C24, C26, C28, etc., and other numerical ranges will not be repeated.
  • the expression of chemical elements usually includes the concept of isotopes with the same chemical properties, such as the expression of "hydrogen”, also includes the concepts of "deuterium” and “tritium” with the same chemical properties, carbon ( C) then includes 12 C, 13 C, etc., and will not be repeated here.
  • alkylene refers to a saturated divalent hydrocarbon radical, preferably a saturated divalent hydrocarbon radical having 1, 2, 3, 4, 5 or 6 carbon atoms, such as methylene, ethylene, propylene or butylene.
  • alkyl is defined as a linear or branched saturated aliphatic hydrocarbon. In some embodiments, the alkyl group has 1 to 12, eg, 1 to 6, carbon atoms.
  • C1-6 alkyl refers to a linear or branched group of 1 to 6 carbon atoms (eg, methyl, ethyl, n-propyl, isopropyl, n-butyl , isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl or n-hexyl), which are optionally substituted by 1 or more (such as 1 to 3) suitable substituents such as Halogen substitution (where this group is referred to as "haloalkyl” ) ( eg CH2F , CHF2 , CF3 , CCl3 , C2F5 , C2Cl
  • C1-4 alkyl refers to a linear or branched aliphatic hydrocarbon chain of 1 to 4 carbon atoms (ie methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec- butyl or tert-butyl).
  • alkenyl means a linear or branched monovalent hydrocarbon group containing one double bond and having 2-6 carbon atoms (“C 2-6 alkenyl”).
  • the alkenyl groups are, for example, vinyl, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2- - Hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-methyl-2-propenyl and 4-methyl-3-pentenyl.
  • the compound of the present invention contains an alkenyl group, the compound may exist in pure E (ent ought) form, pure Z (zusammen) form, or any mixture thereof.
  • alkynyl refers to a monovalent hydrocarbon group containing one or more triple bonds, preferably having 2, 3, 4, 5 or 6 carbon atoms, such as ethynyl or propynyl.
  • cycloalkyl refers to a saturated monocyclic or polycyclic (such as bicyclic) hydrocarbon ring (eg, monocyclic such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl) , cyclooctyl, cyclononyl, or bicyclic, including spiro, fused, or bridged systems (such as bicyclo[1.1.1]pentyl, bicyclo[2.2.1]heptyl, bicyclo[3.2.1]octyl or bicyclo[5.2.0]nonyl, decalinyl, etc.)), which are optionally substituted with 1 or more (such as 1 to 3) suitable substituents.
  • monocyclic such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl
  • cyclooctyl cyclonony
  • the cycloalkyl group has 3 to 15 carbon atoms.
  • C 3-6 cycloalkyl refers to a saturated monocyclic or polycyclic (such as bicyclic) hydrocarbon ring (eg, cyclopropyl, cyclobutyl, cyclopentyl or cyclo) of 3 to 6 ring carbon atoms hexyl), which is optionally substituted with 1 or more (such as 1 to 3) suitable substituents, eg methyl substituted cyclopropyl.
  • cyclohydrocarbylene refers to rings having, for example, 3-10 (suitably 3-8, more suitably 3-6) ring carbons Atomically saturated (ie, “cycloalkylene” and “cycloalkyl”) or unsaturated (ie, having one or more double and/or triple bonds in the ring) monocyclic or polycyclic hydrocarbon rings, which Including but not limited to ()cyclopropylidene (ring), ()cyclobutylidene (ring), ()cyclopentylidene (ring), ()cyclohexylene (ring), ()cycloheptidene ( cyclo), () cyclooctyl (ring), () cyclononyl (ring), () cyclohexenyl (ring), and the like.
  • the heteroatom in the present invention is usually selected from N, O, S, P, Si and Se, preferably selected from N, O, S.
  • heterocyclyl and “heterocycle” refer to at least one ring having, for example, 3-10 (suitably 3-8, more suitably 3-6) ring atoms
  • Atoms are heteroatoms selected from N, O, and S and the remaining ring atoms are saturated (ie, heterocycloalkyl) or partially unsaturated (ie, having one or more double and/or triple bonds within the ring) ) cyclic group.
  • a "3-10 membered (sub)heterocycle (radical)" is one having 2-9 (eg, 2, 3, 4, 5, 6, 7, 8, or 9) ring carbon atoms and is independently selected from N A saturated or partially unsaturated (sub)heterocycle (radical) of one or more (eg 1, 2, 3 or 4) heteroatoms of , O and S.
  • heterocyclylenes and heterocycle(radicals) include, but are not limited to: ()oxiranyl, ()aziridinyl, (azetidinyl), ()oxygenide Heterocyclobutyl (oxetanyl), ()tetrahydrofuranyl, ()dioxolinyl (dioxolinyl), ()pyrrolidine, ()pyrrolidone, ()imidazolidinylene, () ) Pyrazolidine, () Pyrrolidene, () Tetrahydropyranyl, () Piperidinyl, () Morpholinyl, () Dithianyl (dithianyl), () Thiomorpholinyl, ()piperazinylidene or (trithianylidene)trithianyl.
  • the groups also encompass bicyclic ring systems, including spiro, fused or bridged systems (such as 8-azaspiro[4.5]decane, 3,9-diazaspiro[5.5]undecane, 2-nitrogen Heterobicyclo[2.2.2]octane, etc.).
  • Heterocyclylene and heterocycle(radicals) may be optionally substituted with one or more (eg, 1, 2, 3, or 4) suitable substituents.
  • the terms "()arylene” and "aromatic ring” refer to an all-carbon monocyclic or fused ring polycyclic aromatic group having a conjugated pi electron system.
  • C 6-10 ()arylene” and “C 6-10 aromatic ring” mean an aromatic group containing 6 to 10 carbon atoms, such as ()phenylene (benzene ring) or ()naphthylene (naphthalene ring).
  • the ()arylene and aromatic rings are optionally substituted with 1 or more (such as 1 to 3) suitable substituents (eg, halogen, -OH, -CN, -NO2 , C1-6 alkyl, etc.) .
  • heteroarylidene and heteroaryl ring refer to monocyclic, bicyclic or tricyclic aromatic ring systems having 5, 6, 8, 9, 10, 11, 12, 13 or 14 ring atoms, in particular 1 or 2 or 3 or 4 or 5 or 6 or 9 or 10 carbon atoms, and which contain at least one heteroatom (such as oxygen, nitrogen, etc.) which may be the same or different or sulfur) and, in addition, can be benzo-fused in each case.
  • heteroatom such as oxygen, nitrogen, etc.
  • "()heteroarylene” or “heteroaromatic ring” is selected from ()thienylene, ()furanyl, ()pyrrolylene, ()oxazolylylene, ()thiazolylylene, ()imidazolylidene, ()pyrazolylidene, ()isoxazolylidene, ()isothiazolylidene, ()oxadiazolylidene, ()triazolylidene, ()thiadiazolylidene etc., and their benzo derivatives; or ()pyridylene, ()pyridazinylene, ()pyrimidinylene, ()pyrazinylene, ()triazinylene, etc., and their benzos derivative.
  • aralkyl preferably refers to an aryl or heteroaryl substituted alkyl group, wherein said aryl, heteroaryl and alkyl groups are as defined herein.
  • the aryl group can have 6-14 carbon atoms
  • the heteroaryl group can have 5-14 ring atoms
  • the alkyl group can have 1-6 carbon atoms.
  • Exemplary aralkyl groups include, but are not limited to, benzyl, phenylethyl, phenylpropyl, phenylbutyl.
  • halo or halogen group is defined to include F, Cl, Br or I.
  • substituted means that one or more (eg, one, two, three, or four) hydrogens on the designated atom are replaced by a selection from the designated group, provided that no more than the designated atom is present in the normal valences in the case and the substitutions form stable compounds. Combinations of substituents and/or variables are permissible only if such combinations form stable compounds.
  • each substituent is selected independently of the other.
  • each substituent may be the same as or different from another (other) substituent.
  • one or more means 1 or more than 1, such as 2, 3, 4, 5 or 10, under reasonable conditions.
  • the point of attachment of a substituent can be from any suitable position on the substituent.
  • Nitrogen-containing heterocycles are capable of forming N-oxides since nitrogen requires available lone pairs of electrons to oxidize to oxides; Nitrogen-containing heterocycles. Those skilled in the art will also recognize that tertiary amines are capable of forming N-oxides.
  • N-oxides of heterocycles and tertiary amines are well known to those skilled in the art and include the use of peroxyacids such as peracetic acid and m-chloroperoxybenzoic acid (MCPBA), hydrogen peroxide, alkyl Hydrogen peroxides such as t-butyl hydroperoxide, sodium perborate and dioxiranes such as dimethyldioxirane are used to oxidize heterocycles and tertiary amines.
  • MCPBA m-chloroperoxybenzoic acid
  • hydrogen peroxide alkyl Hydrogen peroxides such as t-butyl hydroperoxide
  • sodium perborate and dioxiranes such as dimethyldioxirane
  • the present invention also encompasses compounds of the present invention that contain protecting groups.
  • protecting groups In any process for preparing the compounds of the present invention, it may be necessary and/or desirable to protect sensitive or reactive groups on any relevant molecule, thereby forming chemically protected forms of the compounds of the present invention. This can be accomplished by conventional protecting groups, such as those described in T.W. Greene & P.G.M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991, which references are incorporated herein by reference. Protecting groups can be removed at an appropriate subsequent stage using methods known in the art.
  • the expression of the ring structure delineated by "—" indicates that the connection site is at any position on the ring structure that can form a bond.
  • the aryl group and the heteroaryl group both include the case of a single ring and a condensed ring.
  • the so-called monocyclic aryl group means that the molecule contains at least one phenyl group.
  • the phenyl groups are independent of each other and are connected through a single bond, such as phenyl and biphenyl for example.
  • fused-ring aryl group means that the molecule contains at least two benzene rings, but the benzene rings are not independent of each other, but the shared ring edges are fused with each other, such as naphthyl, anthracenyl exemplarily etc.
  • a monocyclic heteroaryl group means that the molecule contains at least one heteroaryl group, when the molecule contains a heteroaryl group and other groups (such as aryl, heteroaryl, alkyl, etc.), the heteroaryl and other The groups are independent from each other and are connected by a single bond, such as pyridine, furan, thiophene, etc.; fused ring heteroaryl refers to the condensed group of at least one phenyl group and at least one heteroaryl group, or, by At least two heteroaromatic rings are fused, such as quinoline, isoquinoline, benzofuran, dibenzofuran, benzothiophene, dibenz
  • the substituted or unsubstituted C6-C60 aryl group is preferably a C6-C30 aryl group, more preferably a phenyl group, a naphthyl group, an anthracenyl group, a benzanthracene group, a phenanthryl group, a triphenanthryl group, a pyrene group base, cave base, perylene group, fluoranthenyl, tetraphenyl, pentacyl, benzopyrenyl, biphenyl, biphenyl, terphenyl, triphenyl, tetraphenyl, fluorene base, spirobifluorenyl, dihydrophenanthrenyl, dihydropyrenyl, tetrahydropyrenyl, cis- or trans-indenofluorenyl, trimerindenyl, heterotrimerindenyl, spirotrimerindenyl, spir
  • biphenyl is selected from 2-biphenyl, 3-biphenyl and 4-biphenyl; terphenyl includes p-terphenyl-4-yl, p-terphenyl-3-yl, p-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl; the naphthyl group includes 1-naphthyl or 2-naphthyl; anthracenyl selected from 1-anthracenyl, 2-anthracenyl and 9-anthracenyl; said fluorenyl selected from 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl and 9-fluorenyl; the pyrenyl group is selected from 1-pyrenyl, 2-pyrenyl and 4-pyrenyl; naphthacyl is selected from 1-naphthacy
  • aryl group in the present invention include phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, phenanthryl, indenyl, fluorenyl and derivatives thereof, fluoranthenyl, triphenylene Phenyl, pyrene, perylene, A group in the group consisting of radical and naphthacyl.
  • the biphenyl is selected from 2-biphenyl, 3-biphenyl and 4-biphenyl;
  • the terphenyl includes p-terphenyl-4-yl, p-terphenyl-3-yl , p-terphenyl-2-yl, m-terphenyl-4-yl, m-terphenyl-3-yl and m-terphenyl-2-yl;
  • the naphthyl includes 1-naphthyl or 2-naphthyl;
  • the anthracenyl group is selected from the group consisting of 1-anthracenyl, 2-anthracenyl and 9-anthracenyl;
  • the fluorenyl group is selected from 1-fluorenyl, 2-fluorenyl, 3- In the group consisting of fluorenyl, 4-fluorenyl and 9-fluorenyl;
  • the fluorenyl derivative is selected from the group consisting of 9,9
  • m+1-valent and n+1-valent aryl residues in the present invention include divalent groups obtained by removing one hydrogen atom from the above-mentioned examples of the aryl group.
  • substituted or unsubstituted C3-C60 heteroaryl groups are preferably C3-C30 heteroaryl groups, more preferably nitrogen-containing heteroaryl groups, oxygen-containing heteroaryl groups, sulfur-containing heteroaryl groups, etc.
  • Examples include: furanyl, thienyl, pyrrolyl, pyridyl, benzofuranyl, benzothienyl, isobenzofuranyl, isobenzothienyl, indolyl, isoindolyl, dibenzoyl Furanyl, dibenzothienyl, carbazolyl and its derivatives, quinolinyl, isoquinolinyl, acridine, phenanthridine, benzo-5,6-quinolinyl, benzo-6, 7-quinolinyl, benzo-7,8-quinolinyl, phenothiazinyl, phenazinyl, pyrazolyl, indazolyl, imidazolyl, benzimidazolyl, naphthimidazolyl, phenanthroimidazole base, pyridoimidazolyl, pyrazinimidazolyl, quinoxalineimidazolyl, oxazoly
  • heteroaryl group in the present invention examples include furanyl, thienyl, pyrrolyl, benzofuranyl, benzothienyl, isobenzofuranyl, indolyl, dibenzofuranyl, dibenzofuranyl, Benzothienyl, carbazolyl and derivatives thereof, wherein the carbazolyl derivative is preferably 9-phenylcarbazole, 9-naphthylcarbazole, benzocarbazole, dibenzocarbazole or indole and carbazole.
  • the C3-C60 heteroaryl group of the present invention may also be a group formed by connecting the above groups by single bond or/and condensing.
  • m+1-valent and n+1-valent heteroaryl residues in the present invention include divalent groups obtained by removing one hydrogen atom from the above examples of the heteroaryl group.
  • the alkyl group includes the concept of a cycloalkyl group.
  • C1-C30 alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 2-methylbutyl, n-pentyl base, sec-pentyl, cyclopentyl, neopentyl, n-hexyl, cyclohexyl, adamantyl, neohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, 2-ethylhexyl, tri- Fluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, etc.
  • cycloalkyl includes monocycloalkyl and polycycloalkyl, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. may be mentioned.
  • examples of C1-C30 alkoxy groups include: methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, isobutoxy group , tert-butoxy, pentyloxy, isopentyloxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, etc., among which preferred Methoxy, ethoxy, n-propoxy, isopropoxy, tert-butoxy, sec-butoxy, isobutoxy, isopentyloxy, more preferably methoxy.
  • examples of the C1-C30 silyl group may be silyl groups substituted with groups exemplified in the above-mentioned C1-C30 alkyl groups, and specific examples thereof include methylsilyl groups and dimethylsilyl groups. Silyl, trimethylsilyl, ethylsilyl, diethylsilyl, triethylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl etc. groups.
  • R 3 to R 6 hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 2-methylbutyl, n-pentyl, sec-pentyl, cyclopentyl, neopentyl, n-hexyl, cyclohexyl, neohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl base, 2-ethylhexyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, phenyl, naphthyl, anthracenyl, benzanthrenyl, phenanthryl, triphenylene , pyrenyl, cave-based, perylene
  • Ar 1 and Ar 2 are independently selected from C1-C12 alkyl, C1-C12 alkoxy, substituted or unsubstituted C6-C60 aryl, substituted or unsubstituted C3-C60 heteroaryl,
  • the combination between cyano groups refers to the groups obtained by connecting the various groups exemplified above through single bond or condensing connection. For example, the corresponding group in the compound number C6 described later in the present invention.
  • the "substituted or unsubstituted” group may be substituted with one substituent or with multiple substituents. When there are multiple substituents, they may be selected from different substituents. When the same expressions are involved in the invention, they all have the same meaning, and the selection ranges of the substituents are all as shown above and will not be repeated one by one.
  • the above compounds of the present invention basically have a good effect of reducing the excitation voltage compared with the prior art. Furthermore, the inventors of the present invention found that when the organic compound of the present invention has a structure represented by formula (II), a better effect can be obtained.
  • R 3 to R 6 are each independently H, halogen, cyano, nitro, hydroxyl, C1-C12 alkyl, C1-C12 alkoxy, substituted or unsubstituted C6-C60 aryl, substituted or Unsubstituted C3-C60 heteroaryl, preferably C5-C30 aryl, substituted or unsubstituted C3-C30 heteroaryl, preferably C3-C30 heteroaryl;
  • R 3 -R 6 may be Linked to form an aliphatic ring or an aromatic ring, L 1 is a single bond, an m+1-valent substituted or unsubstituted C6-C30 aryl residue, an m+1-valent substituted or unsubstituted C3-C30 heterocyclic residue Aryl residue;
  • L 2 is a single bond, an n+1-valent substituted or unsubstituted C6-C30 aryl residue, an n+1-valent substituted or unsubsti
  • the electrical properties of the nucleus of [1,2,4]triazoloquinazoline are more suitable for the empty space than [1,2,4]triazoloquinazoline.
  • the parent nucleus of a hole-blocking or electron-transporting compound is more suitable for the empty space than [1,2,4]triazoloquinazoline.
  • the inventors of the present invention also found that when Ar 1 and Ar 2 are the following groups, the present invention can better achieve the effects of reducing the startup voltage of the device and increasing the luminous efficiency.
  • the above-mentioned groups can be selected from halogen, nitro, cyano, C6-C60 aryl, C3-C60 heteroaryl, C1-C30 alkyl, C1-C30 alkoxy, C6-C60 aryl Oxygen group, amino group, C1-C30 silyl group, C6-C60 arylamino group, C3-C60 heteroarylamino group, or a combination of at least two or more groups are substituted.
  • L 1 is preferably a single bond, an m+1-valent substituted or unsubstituted phenyl residue, an m+1-valent substituted or unsubstituted naphthyl residue, an m+1-valent substituted or unsubstituted naphthyl residue substituted or unsubstituted anthracenyl residues, m+1-valent substituted or unsubstituted phenanthryl residues, m+1-valent substituted or unsubstituted pyrenyl residues;
  • L 2 is preferably a single bond, an n+1-valent substituted or unsubstituted phenyl residue, an n+1-valent substituted or unsubstituted naphthyl residue, and an n+1-valent substituted or unsubstituted anthracenyl residue group, an n+1-valent substituted or unsubstituted phenanthryl residue, and an n+1-valent substituted or unsubstituted pyrene group residue.
  • n 1
  • L 1 and L 2 are not both single bonds.
  • Ar 2 is not substituted or unsubstituted group.
  • Ar 1 and Ar 2 when at least one of Ar 1 and Ar 2 is an electron-deficient group, the technical effect of the present invention is more excellent.
  • the so-called "electron-deficient group” refers to a group whose electron cloud density on the benzene ring is reduced after the group replaces the hydrogen on the benzene ring.
  • the Hammett value of such a group is greater than 0.6.
  • the Hammett number refers to a characterization of the charge affinity for a particular group and is a measure of either electron withdrawing groups (positive Hammett number) or electron donating groups (negative Hammett number). The Hammett equation is described in more detail in Thomas H.
  • Such groups may be enumerated but Not limited to: triazinyl, pyrimidinyl, benzopyrimidinyl, benzopyridyl, diazanaphthyl, phenanthrenyl, pyrazinyl, quinolinyl, isoquinolinyl, quinazolinyl, Quinoxalinyl, pyridazinyl, and alkyl or aryl substituted above-mentioned groups, such groups are preferably triazine, pyrimidine, arylcyano, pyridine, quinazoline and other groups.
  • Y is C, N, O or S
  • X is a single bond, C, N, O or S
  • Z 1 to Z 6 are each independently N or CR, R 3 to R 6 and formula II express the same meaning.
  • R, R 7 -R 10 are selected from halogen, nitro, cyano, C6-C60 aryl, C3-C60 heteroaryl, C1-C30 alkyl, C1-C30 alkoxy, C6- One or a combination of at least two C60 aryloxy groups, amino groups, C1-C30 silyl groups, C6-C60 arylamino groups, and C3-C60 heteroarylamino groups.
  • the compounds of the above formulae (III-1) to (III-8) can further greatly reduce the excitation voltage and improve the luminous efficiency, and can be easily synthesized and industrially realized.
  • organic compounds of the present invention may preferably be compounds with specific structures shown below, and these compounds are only representative and do not limit the scope of the present invention.
  • the above compounds provided by the present invention use [1,2,4]triazole[1,5-c]quinazoline as an electron-deficient group with strong electron-withdrawing ability and large ⁇ -conjugated plane, It is introduced into electron transport or hole blocking materials, and is connected with triazine, pyrimidine, arylcyano , pyridine, quinazoline and other electron - deficient groups or with substituted aryl, When new materials composed of heteroaryl groups are used as electron transport or hole blocking materials, they have strong electron injection ability due to the strong electron deficiency of the molecule.
  • the linking group reduces the molecular rigidity
  • the molecule has a large-conjugated ⁇ -plane electronic structure, which facilitates the ⁇ - ⁇ plane stacking of molecules and molecules, and thus is beneficial to obtain high electron mobility.
  • the molecule of the present invention has a deep HOMO electron orbital and a high triplet energy level, so that when used as a hole blocking material, it can effectively block the diffusion of holes and excitons, which is beneficial to obtain high luminous efficiency and Excellent effect of low starting voltage.
  • the preparation process of the compound of the present invention is simple and feasible, the raw materials are readily available, it is suitable for mass production and scale-up, and is very suitable for industrial application.
  • the above-mentioned compounds of the present invention have high electron affinity, and thus have strong electron-withdrawing ability. Based on their excellent electron transport and electron injection effects, they are suitable for use as electron transport/injection materials, but the present invention
  • the application scenarios of compounds are not limited to electron transport materials, and can also be used as hole blocking materials, host materials, etc. for organic electronic devices.
  • organic electronic devices include, but are not limited to, organic electroluminescent devices, optical sensors, solar cells, lighting elements, organic thin film transistors, organic field effect transistors, organic thin film solar cells, information labels, electronic artificial skin sheets, sheet type Scanners or electronic paper, preferably organic electroluminescent devices.
  • the present invention also provides an organic electroluminescence device comprising a first electrode, a second electrode, and at least one or more light-emitting functions interposed between the first electrode and the second electrode layer, the light-emitting functional layer contains at least one compound of the present invention.
  • the organic electroluminescence device of the present invention has a structure consistent with existing devices, for example, comprising an anode layer, a plurality of light-emitting functional layers and a cathode layer; the plurality of light-emitting functional layers include At least one layer of a transport layer and an electron injection layer, wherein at least one layer selected from an electron transport layer, an electron injection layer or a hole blocking layer contains the above-mentioned organic compound of the present invention.
  • the OLED device prepared by using the compound of the present invention has low startup voltage, high luminous efficiency and better service life, and can meet the requirements of current panel and display manufacturers for high-performance materials.
  • the compound represented by the formula (I) of the present invention can be obtained by a known method, for example, synthesized by a known organic synthesis method. Exemplary synthetic routes are given below, but may also be obtained by other methods known to those skilled in the art.
  • the representative synthetic route of the compound shown in the general formula of the present invention is as follows:
  • intermediate M1 2,4-dichloroquinazoline and hydrazine hydrate undergo substitution reaction to generate intermediate M1; in the second step, intermediate M1 undergoes condensation reaction with aldehyde to generate intermediate M2 of hydrazone; The body M2 is heated and rearranged under the action of iodobenzene acetate to generate the intermediate M3; in the fourth step, the intermediate M3 is used as the raw material and the boronic acid is reacted to generate the intermediate M4 through the Suzuki coupling reaction; the fifth step, the intermediate M4 is converted into Corresponding boronic acid pinacol ester compound M5; in the sixth step, the product is obtained by Suzuki coupling reaction between the intermediate M5 and the halide.
  • the compounds of the present invention can also be obtained by any other known methods.
  • the structure of the organic electroluminescent device of the present invention is a known structure, and is characterized in that the compound of the present invention is used in one or more layers of the light-emitting layer, the hole blocking layer, the electron transport layer, and the electron injection layer. .
  • the organic electroluminescent device will be described in detail below.
  • the OLED includes a first electrode and a second electrode, and an organic material layer between the electrodes.
  • the organic material can in turn be divided into multiple regions.
  • the organic material layer may include a hole transport region, a light emitting layer, and an electron transport region.
  • a substrate may be used under the first electrode or over the second electrode.
  • the substrates are glass or polymer materials with excellent mechanical strength, thermal stability, water resistance and transparency.
  • a thin film transistor (TFT) may be provided on a substrate as a display.
  • the first electrode may be formed by sputtering or depositing a material used as the first electrode on the substrate.
  • oxide transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO 2 ), zinc oxide (ZnO) and any combination thereof can be used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • SnO 2 tin dioxide
  • ZnO zinc oxide
  • magnesium Mg
  • silver (Ag) silver
  • Al aluminum
  • Al-lithium (Al-Li aluminum-lithium
  • Ca calcium
  • ytterbium (Yb) magnesium-indium
  • Mg-In magnesium-silver
  • Mg-Ag magnesium-silver
  • other metals or alloys and any combination between them.
  • the organic material layer can be formed on the electrode by vacuum thermal evaporation, spin coating, printing and other methods.
  • the compound used as the organic material layer may be organic small molecules, organic macromolecules and polymers, and combinations thereof.
  • the hole transport region is located between the anode and the light emitting layer.
  • the hole transport region may be a hole transport layer (HTL) with a single-layer structure, including a single-layer hole-transport layer containing only one compound and a single-layer hole-transport layer containing multiple compounds.
  • the hole transport region can also be a multi-layer structure including at least one of a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL); wherein the HIL is located between the anode and the HTL, and the EBL between the HTL and the light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the material of the hole transport region can be selected from, but not limited to, phthalocyanine derivatives such as CuPc, conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/dodecylbenzenesulfonic acid (Pani /DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA), polyaniline/poly( 4-styrenesulfonate) (Pani/PSS) and aromatic amine derivatives as shown in HT-1 to HT-51 below; or any combination thereof.
  • phthalocyanine derivatives such as CuPc
  • conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/dodecylbenzenesulfonic acid (Pani /DBSA), poly(3,4-
  • the hole injection layer is located between the anode and the hole transport layer.
  • the hole injection layer may be a single compound material or a combination of multiple compounds.
  • the hole injection layer can use one or more compounds of the above-mentioned HT-1 to HT-51, or use one or more compounds of the following HI-1-HI-3; HT-1 can also be used One or more compounds to HT-51 are doped with one or more of the following HI-1-HI-3 compounds.
  • the light-emitting layer includes light-emitting dyes (ie dopant, dopant) that can emit different wavelength spectra, and may also include a host material (Host).
  • the light-emitting layer may be a monochromatic light-emitting layer that emits a single color such as red, green, and blue.
  • the monochromatic light-emitting layers of a plurality of different colors can be arranged in a plane according to a pixel pattern, or can be stacked together to form a colored light-emitting layer. When light-emitting layers of different colors are stacked together, they can be spaced from each other or connected to each other.
  • the light-emitting layer may also be a single-color light-emitting layer capable of simultaneously emitting different colors such as red, green, and blue.
  • different materials such as fluorescent electroluminescent materials, phosphorescent electroluminescent materials, and thermally activated delayed fluorescent light emitting materials can be used as materials for the light emitting layer.
  • a single light-emitting technology can be used, or a combination of multiple different light-emitting technologies can be used.
  • These different luminescent materials, classified by technology, can emit light of the same color, or they can emit light of different colors.
  • the light-emitting layer adopts the technology of fluorescent electroluminescence.
  • the fluorescent host material of the light-emitting layer can be selected from, but not limited to, a combination of one or more of BFH-1 to BFH-17 listed below.
  • the light-emitting layer adopts the technology of fluorescent electroluminescence.
  • the light-emitting layer fluorescent dopant thereof may be selected from, but not limited to, a combination of one or more of BFD-1 to BFD-24 listed below.
  • the light-emitting layer adopts phosphor electroluminescence technology.
  • the host material of the light-emitting layer is selected from, but not limited to, a combination of one or more of PH-1 to PH-85.
  • the light-emitting layer adopts phosphor electroluminescence technology.
  • the phosphorescent dopant of the light-emitting layer thereof may be selected from, but not limited to, a combination of one or more of GPD-1 to GPD-47 listed below.
  • the light-emitting layer adopts phosphor electroluminescence technology.
  • the phosphorescent dopant of the light-emitting layer thereof may be selected from, but not limited to, a combination of one or more of RPD-1 to RPD-28 listed below.
  • the light-emitting layer adopts phosphor electroluminescence technology.
  • the phosphorescent dopant of the light-emitting layer can be selected from, but not limited to, one or more combinations of YPD-1 to YPD-11 listed below.
  • an electron blocking layer is located between the hole transport layer and the light emitting layer.
  • the electron blocking layer can use, but is not limited to, one or more compounds of the above-mentioned HT-1 to HT-51, or use, but not limited to, one or more compounds of the above-mentioned PH-47 to PH-77; can also be used , but not limited to a mixture of one or more compounds of HT-1 to HT-51 and one or more compounds of PH-47 to PH-77.
  • the organic electroluminescent device of the present invention includes an electron transport region between the light-emitting layer and the cathode.
  • the electron transport region may be an electron transport layer (ETL) with a single-layer structure, including a single-layer electron transport layer containing only one compound and a single-layer electron transport layer containing multiple compounds.
  • the electron transport region may also be a multilayer structure including at least one of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the electron transport region can also be formed by applying the compound of the present invention to a multilayer structure including at least one of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL). Materials can also be combined with one or more of ET-1 to ET-65 listed below.
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the device can also include an electron injection layer between the electron transport layer and the cathode, and the material of the electron injection layer includes but is not limited to one or more combinations listed below:
  • the organic compounds of the present invention are typically synthesized and applied together with the corresponding comparative compounds in organic electroluminescent devices, and the device performance under the same conditions is tested.
  • the following synthetic examples of the present invention exemplarily provide specific synthetic methods of representative compounds.
  • the solvents, reagents, intermediates, and chemical reagents such as ethyl acetate, methanol, and ethanol used in the following synthetic examples can be purchased or customized from the domestic chemical product market. .
  • the mass spectrometer used to identify the following compounds was a ZAB-HS mass spectrometer (manufactured by Micromass, UK).
  • iodobenzene acetate (71 g) was added to the above reaction solution in batches. After the addition, the reaction system was heated to 40° C. and continued to stir for 3 hours. TLC showed that the reaction was complete. The precipitated solid was filtered, rinsed with n-hexane, and dried to obtain a khaki solid compound 5-2 (37.7 g).
  • compound C82 adopts the same synthetic method as compound C81, the difference is that phenylboronic acid is replaced by 3-phenylphenylboronic acid, the calculated molecular weight of the obtained compound C82: 629.23, the measured value m/z: 630.3 (M+1) .
  • compound C154 adopts a similar synthetic method to compound C109, except that 2-spirofluoreneboronic acid is replaced by 2,4-diphenyl-6-[3-biphenyl-3-(4,4,5 ,5-tetramethyl-1,3,2-dioxaborolane-2-yl)]-1,3,5-triazine, the obtained compound C154 molecular weight calculated value: 654.23, found m/z : 655.2(M+1).
  • compound C173 adopts a similar synthetic method to compound C81, except that phenylboronic acid is replaced by 2-spirofluoreneboronic acid; 2-chloro-4,6-diphenyl-1.3.5-triazine is replaced by 4 -Bromopyridine, the calculated molecular weight of the obtained compound C173: 637.23, the observed value m/z: 638.3 (M+1).
  • compound C195 adopts a synthetic method similar to that of compound C193, except that 2-bromospirobifluorene is replaced by 9-bromophenanthrene; 3-chlorophenylboronic acid is replaced by 3-chloro-3-biphenylboronic acid, and the obtained Calculated molecular weight of compound C195: 599.21, found m/z: 600.3 (M+1).
  • compound C204 adopts the synthetic method similar to that of compound C193, the difference is that 3-chlorobenzeneboronic acid is replaced by 4-chlorobenzeneboronic acid, and the calculated molecular weight of the obtained compound C204: calculated molecular weight: 661.23; measured value m/z: 662.2(M+1).
  • compound C208 adopts the synthetic method similar to that of compound C195, except that 9-bromophenanthrene is replaced by 2-bromospirobifluorene; intermediate 7-2 is replaced by intermediate 1-3, and the molecular weight of compound C208 obtained is calculated. Value: 712.26; found m/z: 713.3 (M+1).
  • compound C223 adopts the synthetic method similar to that of compound C81, the difference is that phenylboronic acid is replaced by 3-isopropylbenzeneboronic acid, the molecular weight of the obtained compound C223 is calculated: 595.25, and the measured value is m/z: 596.3 (M+1 ).
  • compound C259 adopts the same synthetic method as compound C208, the difference is that 2-bromospirobifluorene is replaced by 4-bromodibenzofuran, the calculated molecular weight of the obtained compound C259: 564.20; the measured value m/z: 565.2 (M+1).
  • compound C260 adopts the synthetic method similar to that of compound C208, except that 2-bromospirobifluorene is replaced by 2-bromo-11,11-dimethyl-11H-benzo[B]fluorene, the obtained compound C260 Calculated molecular weight: 640.26; found m/z: 641.3 (M+1).
  • compound C277 is similar to that of compound C208, except that 2-bromospirobifluorene is replaced by 2-bromo-9,9-dimethylfluorene.
  • the calculated molecular weight of compound C277 is 590.25; the measured value m/z: 591.3 (M+1).
  • ET-61, ET-46 and ET-17 were synthesized.
  • the specific synthesis methods refer to CN110256439A, CN107833974A and CN105074950A, which will not be repeated here.
  • the glass plate coated with the ITO transparent conductive layer was ultrasonically treated in a commercial cleaning agent, rinsed in deionized water, ultrasonically degreasing in an acetone:ethanol mixed solvent, baked in a clean environment until the water was completely removed, and UV light was used. Light and ozone cleaning, and bombarding the surface with a beam of low-energy cations;
  • the above-mentioned glass substrate with anode is placed in a vacuum chamber, evacuated to a pressure of less than 10-5 Pa, and 10nm of HI-3 is vacuum-evaporated on the above-mentioned anode layer film as a hole injection layer;
  • a 20nm light-emitting layer is vacuum-evaporated on the second hole transport layer, and the light-emitting layer includes a host material BFH-4 and a dye material BFD-6;
  • a hole blocking layer of 5 nm is vacuum evaporated on the light-emitting layer, and the compound ET-17 in the prior art is selected as the material of the hole blocking layer;
  • the compound C9 and ET-57 (the ratio of C9 and ET-57 evaporation rate is 1:1) of 23 nm are evaporated by the method of multi-source co-evaporation as the electron transport layer;
  • LiF with a thickness of 1 nm was vacuum-deposited as the electron injection layer, and an aluminum layer with a thickness of 80 nm was used as the cathode of the device.
  • the evaporation rate of all organic layers and LiF was 0.1 nm/s, and the evaporation rate of metallic aluminum was 1 nm/s.
  • An organic electroluminescent device was obtained in the same manner as in the example, except that compound C9 was replaced with the compound in Table 1.
  • the test system was used to measure the driving voltage and current efficiency of the organic electroluminescent devices prepared in the examples and comparative examples. Specifically, increase the voltage at a rate of 0.1V per second , measure the voltage when the brightness of the organic electroluminescent device reaches 1000cd/m2, that is, the driving voltage, and measure the current density at this time; the ratio of brightness to current density is the current efficiency.
  • the device examples and comparative examples of the present invention were completed according to the above-mentioned preparation steps and test methods.
  • the performance comparison of the specific compounds selected and the prepared devices is shown in Table 1 below, wherein Table 1 lists the The performance comparison of the devices prepared when the compounds of the present invention and the comparative compounds are used as electron transport materials at the same time.
  • the glass plate coated with the ITO transparent conductive layer was ultrasonically treated in a commercial cleaning agent, rinsed in deionized water, ultrasonically degreasing in an acetone:ethanol mixed solvent, baked in a clean environment until the water was completely removed, and UV light was used. Light and ozone cleaning, and bombarding the surface with a beam of low-energy cations;
  • the above-mentioned glass substrate with anode is placed in a vacuum chamber, evacuated to a pressure of less than 10-5 Pa, and 10nm of HI-3 is vacuum-evaporated on the above-mentioned anode layer film as a hole injection layer;
  • a 20nm light-emitting layer is vacuum-evaporated on the second hole transport layer, and the light-emitting layer includes a host material BFH-4 and a dye material BFD-6;
  • the compound C208 of the present invention is vacuum-evaporated with 5 nm on the light-emitting layer as the hole blocking layer of the device;
  • the compound ET-46:ET-57 (50/50, w/w) mixture of 23 nm was evaporated by the method of multi-source co-evaporation as the electron transport layer material;
  • LiF with a thickness of 1 nm was vacuum-deposited as the electron injection layer, and an aluminum layer with a thickness of 80 nm was used as the cathode of the device.
  • the evaporation rate of all organic layers and LiF was 0.1 nm/s, and the evaporation rate of metallic aluminum was 1 nm/s.
  • An organic electroluminescent device was obtained in the same manner as in Example, except that compound C208 was replaced with the corresponding compound in Table 2.
  • the test system measures the driving voltage and current efficiency of the organic electroluminescent devices prepared in the examples and comparative examples. Specifically, increase the voltage at a rate of 0.1V per second , measure the voltage when the brightness of the organic electroluminescent device reaches 1000cd/m2, that is, the driving voltage, and measure the current density at this time; the ratio of brightness to current density is the current efficiency.
  • the device examples and comparative examples of the present invention were completed according to the above-mentioned preparation steps and testing methods.
  • the performance comparison of the specific compounds selected and the prepared devices is shown in Table 2 below.
  • Table 2 lists the compounds of the present invention and comparative compounds.
  • the compounds involved in the present invention are compared with the compounds used as hole blocking materials in Comparative Examples 4 and 5.
  • the voltage has been reduced, and the efficiency has been significantly improved.
  • the hole blocking material formed by introducing [1,2,4]triazole[1,5-c]quinazoline into the molecular structure of the present invention has a deep HOMO electron orbital and higher triplet energy level, so that when used as a hole blocking material, the diffusion of holes and excitons can be effectively blocked, which is beneficial to obtain higher luminous efficiency.
  • due to its good electron injection ability and relatively matched LUMO energy level its application in the device achieves an excellent effect of relatively low voltage under the same brightness.
  • the present invention illustrates the detailed method of the present invention through the above-mentioned embodiments, but the present invention is not limited to the above-mentioned detailed method, that is, it does not mean that the present invention must rely on the above-mentioned detailed method to be implemented.
  • Those skilled in the art should understand that any improvement to the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种有机化合物,其为式(I)所示的结构:其中,X 1~X 4各自独立的为N或CR;L 1为单键、芳香基残基;L 2为单键、芳香基残基;L 1和L 2不同时为单键;m、n为1~3的整数;L 1为单键时,m为1,;L 2为单键时,n为1,Ar 1、Ar 2各自独立地为H、C1~C12的烷基、C1~C12的烷氧基、取代或未取代的C6~C60的芳基、取代或未取代的C3~C60的杂芳基、氰基,Ar 1、Ar 2不同时为H,Ar 1、Ar 2不同时为C1~C12的烷基,Ar 1、Ar 2不同时为C1~C12的烷氧基。本发明还提供有机电致发光材料和有机电致发光器件。

Description

用于发光器件的有机化合物及其应用、有机电致发光器件 技术领域
本发明涉及有机电致发光技术领域,尤其涉及一种有机化合物及其应用,还涉及有机电致发光器件。
背景技术
有机电致发光器件(OLED:Organic Light Emission Diodes)是一类具有类三明治结构的器件,包括正负电极膜层及夹在电极膜层之间的有机功能材料层。对OLED器件的电极施加电压,正电荷从正极注入,负电荷从负极注入,在电场作用下正负电荷在有机层中迁移相遇复合发光。由于OLED器件具有亮度高、响应快、视角宽、工艺简单、可柔性化等优点,在新型显示技术领域和新型照明技术领域备受关注。目前,该技术已被广泛应用于新型照明灯具、智能手机及平板电脑等产品的显示面板,进一步还将向电视等大尺寸显示产品应用领域扩展,是一种发展快、技术要求高的新型显示技术。
随着OLED在照明和显示两大领域的不断推进,人们对于其核心材料的研究也更加关注。这是因为一个效率好、寿命长的OLED器件通常是器件结构以及各种有机材料的优化搭配的结果,这就为化学家们设计开发各种结构的功能化材料提供了极大的机遇和挑战。常见的功能化有机材料有:空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料,电子阻挡材料以及发光主体材料和发光客体(染料)等。
为了制备驱动电压更低、发光效率更好、器件使用寿命更长的OLED发光器件,实现OLED器件的性能不断提升,不仅需要对OLED器件结构和制作工艺进行创新,更需要对OLED器件中的光电功能材料不断研究和创新,以制备出具有更高性能的功能材料。基于此,OLED材料界一直致力于开发新的有机电致发光材料以实现器件低启动电压、高发光效率和更优的使用寿命。
为了满足上述需求,开发新的空穴阻挡材料或者电子传输材料一直是产业界致力的方向。在专利文献CN109906225A中曾公开了以下化合物,其有着比较适合作为空穴阻挡层或者电子传输层的电气特征性能。
Figure PCTCN2021122755-appb-000001
然而,为了进一步满足对OLED器件的光电性能不断提升的需求,以及移动化电子器件对于节能的需求,上述化合物的电子注入能力和迁移率仍无法满足需求。
本发明的目的在于提供一种有机电致发光材料,其使用本发明的上述有机化合物作为空穴阻挡材料,具有高发光效率和低启动电压。
本发明的另一个目的在于提供一种有机化合物,所述有机化合物具有较强的电子注入及迁移能力能有效的改善电子从电子传输层到发光层间的注入与传输。
发明内容
本发明的目的在于提供一种有机化合物,该化合物作为有机功能材料应用于有机电致发光器件作为空穴阻挡材料和电子传输材料时,能够有效降低器件的驱动电压,提升器件发光效率。为达此目的,发明人潜心研究,开发出以下有机化合物从而完成了本发明。
具体而言,本发明提供一种有机化合物,其特征在于,其为式(I)所示的结构:
Figure PCTCN2021122755-appb-000002
其中,X 1~X 4各自独立的为N或CR;不同的R各自独立的为H、卤素、氰基、硝基、羟基、C1~C12的烷基、C1~C12的烷氧基、取代或未取代的C6~C60的芳基、取代或未取代的C3~C60的杂芳基;不同的R之间可以连接形成脂肪族环或芳香族环,
L 1为单键、m+1价的取代或未取代的C6~C60的芳基残基、m+1价的取代或未取代的C3~C60的杂芳基残基;L 2为单键、n+1价的取代或未取代的C6~C60的芳基残基,n+1价的取代或未取代的C3~C60的杂芳基残基;
m、n为1~3的整数;L 1为单键时,m为1;L 2为单键时,n为1。
Ar 1、Ar 2独立地为选自H、C1~C12的烷基、C1~C12的烷氧基、取代或未取代的C6~C60的芳基、取代或未取代的C3~C60的杂芳基、氰基或它们之间的组合;优选取代或未取代的C5~C30的芳基、取代或未取代的C3~C60的杂芳基或它们之间的组合;优选取代或未取代的C3~C30的杂芳基或它们之间的组合,Ar 1、Ar 2不同时为H,Ar 1、Ar 2不同时为C1~C12的烷基,Ar 1、Ar 2不同时为C1~C12的烷氧基;
上述取代或未取代的各基团的取代,为被选自卤素、硝基、氰基、C6~C60的芳基、C3~C60的杂芳基、C1~C30的烷基、C1~C30的烷氧基、C6~C60的芳氧基、氨基、C1~C30硅烷基、C6~C60芳基氨基、C3~C60杂芳基氨基中的一种或者至少两种的组合以上的基团所取代。
本发明化合物能够有效降低器件的驱动电压,提升器件发光效率。这些优异技术效果的具体原因尚不明确,以下是发明人的推测,但这些推测并不限定本发明的保护范围。
本发明中,以[1,2,4]三氮唑并喹唑啉(当X 1~X 4为N时,为氮取代喹唑啉)母核是非常重要的,本发明的发明人发现,该母核为一个具有强吸电子能力同时具有大的π共轭平面的缺电子基团,其作为电子传输或空穴阻挡材料非常有助于提高效率。
上述母核与Ar 1、Ar 2中的取代或未取代的芳基、杂芳基的匹配能够实现更好的缺电子性,进一步提升注入能力,而且母核的共轭的π平面电子结构与Ar 1、Ar 2中的π平面体系能够进一步扩大共轭的π平面大小,有利分子的π-π平面堆积,传输效率更高。因此,Ar 1、Ar 2 中虽然可以为脂肪族基团,但是Ar 1、Ar 2不同时为H和脂肪族基团,即,Ar 1、Ar 2不同时为H,Ar 1、Ar 2不同时为C1~C12的烷基,Ar 1、Ar 2不同时为C1~C12的烷氧基。
另外,本发明中优选的是,需要通过L 1和L 2的中间连接基团,将上述母核与Ar 1、Ar 2中的取代或未取代的芳基、杂芳基相连,这在提升器件性能方面非常重要。当L 1和L 2存在时,分子的整体刚性下降很多,这样能够有效提升堆积的致密度,从宏观的成膜性方面,能实现更致密的成膜,自然能进一步提高电子传输的效率。因此,优选L 1和L 2不同时为单键。
L 1优选为单键、苯基残基、萘基残基、蒽基残基、菲基残基、或芘基的残基;L 2优选为单键、苯基残基、萘基残基、蒽基残基、菲基残基、或芘基的残基。L 1和L 2尤其优选苯基的残基。
此外,本发明的上述特定的分子设计,能够获得较深的HOMO电子轨道和较高的三线态能级,从而作为空穴阻挡材料使用时能够有效阻挡空穴和激子的扩散,有利于获得较高的发光效率和低启动电压的优异效果。
上述的R优选C5~C30的芳基、取代或未取代的C3~C60的杂芳基,进一步优选C3~C30的杂芳基。m和n的优选范围是1和2。
本发明中的定义和术语
除非在下文中另有定义,本文中所用的所有技术术语和科学术语的含义意图与本领域技术人员通常所理解的相同。提及本文中使用的技术意图指在本领域中通常所理解的技术,包括那些对本领域技术人员显而易见的技术的变化或等效技术的替换。虽然相信以下术语对于本领域技术人员很好理解,但仍然阐述以下定义以更好地解释本发明。
在本说明书中,Ca~Cb的表达方式代表该基团具有的碳原子数为a~b,除非特殊说明,一般而言该碳原子数不包括取代基的碳原子数。当描述C1~30时,其包括但不限于C1、C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C22、C24、C26、C28等,其他的数值范围不做赘述。
术语“包括”、“包含”、“具有”、“含有”或“涉及”及其在本文中的其它变体形式为包含性的(inclusive)或开放式的,且不排除其它未列举的元素或方法步骤。
本发明中,对于化学元素的表述,若无特别说明,通常包含化学性质相同的同位素的概念,例如“氢”的表述,也包括化学性质相同的“氘”、“氚”的概念,碳(C)则包括 12C、 13C等,不再赘述。
如本文中所使用,术语“亚烷基”表示饱和二价烃基,优选表示具有1、2、3、4、5或6个碳原子的饱和二价烃基,例如亚甲基、亚乙基、亚丙基或亚丁基。
如本文中所使用,术语“烷基”定义为线性或支化饱和脂肪族烃。在一些实施方案中,烷基具有1至12个,例如1至6个碳原子。例如,如本文中所使用,术语“C1-6烷基”指1至6个碳原子的线性或支化的基团(例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基或正己基),其任选地被1或多个(诸如1至3个)适合的取代基如卤素取代(此时该基团被称作“卤代烷基”)(例如CH 2F、CHF 2、CF 3、CCl 3、C 2F 5、C 2Cl 5、CH 2CF 3、CH 2Cl或-CH 2CH 2CF 3等)。术语“C1-4烷基”指1至4个碳原子的线性或支化的脂肪族烃链(即甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基或叔丁基)。
如本文中所使用,术语“烯基”意指线性的或支化的单价烃基,其包含一个双键,且具有2-6个碳原子(“C 2-6烯基”)。所述烯基为例如乙烯基、1-丙烯基、2-丙烯基、2-丁烯基、3-丁烯基、2-戊烯基、3-戊烯基、4-戊烯基、2-己烯基、3-己烯基、4-己烯基、5-己烯基、2-甲基-2-丙烯基和4-甲基-3-戊烯基。当本发明的化合物含有烯基时,所述化合物可以纯 E(异侧(entgegen))形式、纯Z(同侧(zusammen))形式或其任意混合物形式存在。
如本文中所使用,术语“炔基”表示包含一个或多个三键的单价烃基,其优选具有2、3、4、5或6个碳原子,例如乙炔基或丙炔基。
如本文中所使用,术语“环烷基”指饱和的单环或多环(诸如双环)烃环(例如单环,诸如环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基,或双环,包括螺环、稠合或桥连系统(诸如双环[1.1.1]戊基、双环[2.2.1]庚基、双环[3.2.1]辛基或双环[5.2.0]壬基、十氢化萘基等)),其任选地被1或多个(诸如1至3个)适合的取代基取代。所述环烷基具有3至15个碳原子。例如,术语“C 3-6环烷基”指3至6个成环碳原子的饱和的单环或多环(诸如双环)烃环(例如环丙基、环丁基、环戊基或环己基),其任选地被1或多个(诸如1至3个)适合的取代基取代,例如甲基取代的环丙基。
如本文中所使用,术语“亚环烃基”、“环烃基”和“烃环”是指具有例如3-10个(适合地具有3-8个,更适合地具有3-6个)环碳原子的饱和(即,“亚环烷基”和“环烷基”)或不饱和的(即在环内具有一个或多个双键和/或三键)单环或多环烃环,其包括但不限于(亚)环丙基(环)、(亚)环丁基(环)、(亚)环戊基(环)、(亚)环己基(环)、(亚)环庚基(环)、(亚)环辛基(环)、(亚)环壬基(环)、(亚)环己烯基(环)等。
本发明中的杂原子,通常指选自N、O、S、P、Si和Se,优选选自N、O、S。
如本文中所使用,术语“杂环基”和“杂环”是指具有例如3-10个(适合地具有3-8个,更适合地具有3-6个)环原子、其中至少一个环原子是选自N、O和S的杂原子且其余环原子是C的饱和(即,杂环烷基)或部分不饱和的(即在环内具有一个或多个双键和/或三键)环状基团。例如,“3-10元(亚)杂环(基)”是具有2-9个(如2、3、4、5、6、7、8或9个)环碳原子和独立地选自N、O和S的一个或多个(例如1个、2个、3个或4个)杂原子的饱和或部分不饱和(亚)杂环(基)。亚杂环基和杂环(基)的实例包括但不限于:(亚)环氧乙烷基、(亚)氮丙啶基、(亚)氮杂环丁基(azetidinyl)、(亚)氧杂环丁基(oxetanyl)、(亚)四氢呋喃基、(亚)二氧杂环戊烯基(dioxolinyl)、(亚)吡咯烷基、(亚)吡咯烷酮基、(亚)咪唑烷基、(亚)吡唑烷基、(亚)吡咯啉基、(亚)四氢吡喃基、(亚)哌啶基、(亚)吗啉基、(亚)二噻烷基(dithianyl)、(亚)硫吗啉基、(亚)哌嗪基或(亚)三噻烷基(trithianyl)。所述基团也涵盖双环系统,包括螺环、稠合或桥连系统(诸如8-氮杂螺[4.5]癸烷、3,9-二氮杂螺[5.5]十一烷、2-氮杂双环[2.2.2]辛烷等)。亚杂环基和杂环(基)可任选地被一个或多个(例如1个、2个、3个或4个)适合的取代基取代。
如本文中所使用,术语“(亚)芳基”和“芳环”指具有共轭π电子系统的全碳单环或稠合环多环芳族基团。例如,如本文中所使用,术语“C 6-10(亚)芳基”和“C 6-10芳环”意指含有6至10个碳原子的芳族基团,诸如(亚)苯基(苯环)或(亚)萘基(萘环)。(亚)芳基和芳环任选地被1或多个(诸如1至3个)适合的取代基(例如卤素、-OH、-CN、-NO 2、C 1-6烷基等)取代。
如本文中所使用,术语“(亚)杂芳基”和“杂芳环”指单环、双环或三环芳族环系,其具有5、6、8、9、10、11、12、13或14个环原子,特别是1或2或3或4或5或6或9或10个碳原子,且其包含至少一个可以相同或不同的杂原子(所述杂原子是例如氧、氮或硫),并且,另外在每一种情况下可为苯并稠合的。特别地,“(亚)杂芳基”或“杂芳环”选自(亚)噻吩基、(亚)呋喃基、(亚)吡咯基、(亚)噁唑基、(亚)噻唑基、(亚)咪唑基、(亚)吡唑基、(亚)异噁唑基、(亚)异噻唑基、(亚)噁二唑基、(亚)三唑基、(亚)噻二唑基等,以及它们的苯并衍生物;或(亚)吡啶基、(亚)哒嗪基、(亚)嘧啶基、(亚)吡嗪基、(亚)三嗪基等,以及它们的苯并衍生物。
如本文中所使用,术语“芳烷基”优选表示芳基或杂芳基取代的烷基,其中所述芳基、杂芳基和烷基如本文中所定义。通常,所述芳基可具有6-14个碳原子,所述杂芳基可具有5-14个环原子,并且所述烷基可具有1-6个碳原子。示例性芳烷基包括但不限于苄基、苯 基乙基、苯基丙基、苯基丁基。
如本文中所使用,术语“卤代”或“卤素”基团定义为包括F、Cl、Br或I。
如本文中所使用,术语“含氮杂环”指饱和或不饱和的单环或双环基团,其在环中具有2、3、4、5、6、7、8、9、10、11、12或13个碳原子和至少一个氮原子,其还可任选地包含一个或多个(例如一个、两个、三个或四个)选自N、O、C=O、S、S=O和S(=O) 2的环成员,其通过所述含氮杂环中的氮原子以及任一其余环原子与分子的其余部分连接,所述含氮杂环任选地为苯并稠合的,并且优选通过所述含氮杂环中的氮原子以及所稠合的苯环中的任一碳原子与分子的其余部分连接。
术语“取代”指所指定的原子上的一个或多个(例如一个、两个、三个或四个)氢被从所指出的基团的选择代替,条件是未超过所指定的原子在当前情况下的正常原子价并且所述取代形成稳定的化合物。取代基和/或变量的组合仅仅当这种组合形成稳定的化合物时才是允许的。
如果取代基被描述为“独立地选自”一组,则各取代基独立于另一者被选择。因此,各取代基可与另一(其他)取代基相同或不同。
如本文中所使用,术语“一个或多个”意指在合理条件下的1个或超过1个,例如2个、3个、4个、5个或10个。
除非指明,否则如本文中所使用,取代基的连接点可来自取代基的任意适宜位置。
当取代基的键显示为穿过环中连接两个原子的键时,则这样的取代基可键连至该可取代的环中的任一成环原子。
本领域技术人员会理解,由于氮需要可用的孤对电子来氧化成氧化物,因此并非所有的含氮杂环都能够形成N-氧化物;本领域技术人员会识别能够形成N-氧化物的含氮杂环。本领域技术人员还会认识到叔胺能够形成N-氧化物。用于制备杂环和叔胺的N-氧化物的合成方法是本领域技术人员熟知的,包括用过氧酸如过氧乙酸和间氯过氧苯甲酸(MCPBA)、过氧化氢、烷基过氧化氢如叔丁基过氧化氢、过硼酸钠和双环氧乙烷(dioxirane)如二甲基双环氧乙烷来氧化杂环和叔胺。这些用于制备N-氧化物的方法已在文献中得到广泛描述和综述,参见例如:T.L.Gilchrist,Comprehensive Organic Synthesis,vol.7,pp 748-750;A.R.Katritzky和A.J.Boulton,Eds.,Academic Press;以及G.W.H.Cheeseman和E.S.G.Werstiuk,Advances in Heterocyclic Chemistry,vol.22,pp 390-392,A.R.Katritzky和A.J.Boulton,Eds.,Academic Press。
本发明还涵盖含有保护基的本发明的化合物。在制备本发明的化合物的任何过程中,保护在任何有关分子上的敏感基团或反应基团可能是必需的和/或期望的,由此形成本发明的化合物的化学保护的形式。这可以通过常规的保护基实现,例如,在T.W.Greene&P.G.M.Wuts,Protective Groups in Organic Synthesis,JohnWiley&Sons,1991中所述的那些保护基,这些参考文献通过援引加入本文。使用本领域已知的方法,在适当的后续阶段可以移除保护基。
术语“约”是指在所述数值的±10%范围内,优选±5%范围内,更优选±2%范围内。
在本说明书公开的结构式中,“—”划过的环结构的表达方式,表示连接位点于该环结构上任意能够成键的位置。
更具体而言,在本说明书中,若无特别说明,芳基和杂芳基均包括单环和稠环的情况。所谓单环芳基是指分子中含有至少一个苯基,当分子中含有至少两个苯基时,苯基之间相互独立,通过单键进行连接,示例性地如苯基、二联苯基、三联苯基等;稠环芳基是指分子中含有至少两个苯环,但苯环之间并不相互独立,而是共用环边彼此稠合起来,示例性地如萘基、蒽基等;单环杂芳基是指分子中含有至少一个杂芳基,当分子中含有一个杂芳基和其他基团(如芳基、杂芳基、烷基等)时,杂芳基和其他基团之间相互独立,通过单键进行连接, 示例性地如吡啶、呋喃、噻吩等;稠环杂芳基是指由至少一个苯基和至少一个杂芳基稠合而成,或,由至少两种杂芳环稠合而成,示例性地如喹啉、异喹啉、苯并呋喃,二苯并呋喃,苯并噻吩,二苯并噻吩等
在本说明书中,取代或未取代的C6~C60芳基优选为C6~C30芳基,更优选为由苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基所组成的群组中的基团。具体地,联苯基选自2-联苯基、3-联苯基和4-联苯基;三联苯基包括对-三联苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基;所述萘基包括1-萘基或2-萘基;蒽基选自由1-蒽基、2-蒽基和9-蒽基;所述芴基选自由1-芴基、2-芴基、3-芴基、4-芴基和9-芴基;所述芘基选自由1-芘基、2-芘基和4-芘基;并四苯基选自由1-并四苯基、2-并四苯基和9-并四苯基。作为本发明中的芳基的优选例,可举出由苯基、联苯基、三联苯基、萘基、蒽基、菲基、茚基、芴基及其衍生物、荧蒽基、三亚苯基、芘基、苝基、
Figure PCTCN2021122755-appb-000003
基和并四苯基所组成的组中的基团。所述联苯基选自2-联苯基、3-联苯基和4-联苯基;所述三联苯基包括对-三联苯基-4-基、对-三联苯基-3-基、对-三联苯基-2-基、间-三联苯基-4-基、间-三联苯基-3-基和间-三联苯基-2-基;所述萘基包括1-萘基或2-萘基;所述蒽基选自由1-蒽基、2-蒽基和9-蒽基所组成的组中;所述芴基选自由1-芴基、2-芴基、3-芴基、4-芴基和9-芴基所组成的组中;所述芴基衍生物选自由9,9-二甲基芴、9,9-螺二芴和苯并芴所组成的组中;所述芘基选自由1-芘基、2-芘基和4-芘基所组成的组中;所述并四苯基选自由1-并四苯基、2-并四苯基和9-并四苯基所组成的组中。本发明的C6~C60芳基还可以是上述基团以单键连接或/和稠合所组合而成的基团。
本发明中m+1价,n+1价的芳基残基的具体例,可以举出上述芳基的例子中去掉一个氢原子而得到的二价基团。
在本说明书中,取代或未取代的C3~C60杂芳基优选为C3~C30杂芳基,更优选为含氮杂芳基、含氧杂芳基、含硫杂芳基等,具体的例子可举出:呋喃基、噻吩基、吡咯基、吡啶基、苯并呋喃基、苯并噻吩基、异苯并呋喃基、异苯并噻吩基、吲哚基、异吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基及其衍生物、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吩噻嗪基、吩嗪基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5_嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑等。作为本发明中的杂芳基的优选例子,例如为呋喃基、噻吩基、吡咯基、苯并呋喃基、苯并噻吩基、异苯并呋喃基、吲哚基、二苯并呋喃基、二苯并噻吩基、咔唑基及其衍生物,其中,所述咔唑基衍生物优选为9-苯基咔唑、9-萘基咔唑苯并咔唑、二苯并咔唑或吲哚并咔唑。本发明的C3~C60杂芳基还可以是上述基团以单键连接或/和稠合所组合而成的基团。
本发明中m+1价,n+1价的杂芳基残基的具体例,可以举出上述杂芳基的例子中去掉一个氢原子而得到的二价基团。
在本说明书中,烷基包括环烷基的概念。作为C1~C30烷基例如可举出:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、金刚烷基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基等。
在本说明书中,环烷基包括单环烷基和多环烷基,例如可以是环丙基、环丁基、环戊基、环己基等。
在本说明书中,作为C1~C30烷氧基的例子可举出:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、异丁氧基、叔丁氧基、戊氧基、异戊氧基、己氧基、庚氧基、辛氧基、壬氧基、癸氧基、十一烷氧基、十二烷氧基等,其中优选甲氧基、乙氧基、正丙氧基、异丙氧基、叔丁氧基、仲丁氧基、异丁氧基、异戊氧基,更优选甲氧基。
在本说明书中,作为C1~C30硅烷基的例子可以是被在上述C1~C30烷基中所例举的基团取代的甲硅烷基,具体可举出:甲基甲硅烷基、二甲基甲硅烷基、三甲基甲硅烷基、乙基甲硅烷基、二乙基甲硅烷基、三乙基甲硅烷基、叔丁基二甲基甲硅烷基、叔丁基二苯基甲硅烷基等基团。
在本说明书中,作为卤素的例子可举出:氟、氯、溴、碘等。
更具体而言,作为上述的R 3~R 6的基团,优选地可以例举氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5_嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基中的一种,或选自以上两种基团的组合。但是R 3~R 6不限于这些基团。
Ar 1、Ar 2独立地为选自C1~C12的烷基、C1~C12的烷氧基、取代或未取代的C6~C60的芳基、取代或未取代的C3~C60的杂芳基、氰基之间的组合,是指上述例举的各类基团通过单键连接或者稠合连接获得的基团。例如,本发明后述化合物编号C6中的相应基团。
本发明中,所述的“取代或未取代”的基团,可以取代有一个取代基,也可以取代有多个取代基,当取代基为多个时,可以选自不同的取代基,本发明中涉及到相同的表达方式时,均具有同样的意义,且取代基的选择范围均如上所示不再一一赘述。
上述本发明的化合物基本上相比现有技术已经有着不错的降低激发电压的效果。更进一步地,本发明人等发现,本发明的有机化合物,为式(II)所示的结构时能够获得更好的效果。
Figure PCTCN2021122755-appb-000004
R 3~R 6各自独立的为H、卤素、氰基、硝基、羟基、C1~C12的烷基、C1~C12的烷氧基、取代或未取代的C6~C60的芳基、取代或未取代的C3~C60的杂芳基,优选为C5~C30的芳基、取代或未取代的C3~C30的杂芳基,优选C3~C30的杂芳基;R 3~R 6之间可以连接形成脂肪族环或芳香族环,L 1为单键、m+1价的取代或未取代的C6~C30的芳基残基,m+1价的取代或未取代的C3~C30的杂芳基残基;L 2为单键、n+1价的取代或未取代的C6~C30的芳基残基,n+1价的取代或未取代的C3~C30的杂芳基残基,Ar 1、Ar 2与上述表示的意义相同。也就是说[1,2,4]三氮唑并喹唑啉的母核的电性,相比与[1,2,4]三氮唑并氮杂喹唑啉而言,更适合作为空穴阻挡性或电子传输性化合物的母核。
本发明的发明人还发现,Ar 1和Ar 2为下述基团时,本发明能更好地实现降低器件启动电压,增加发光效率的作用。
Figure PCTCN2021122755-appb-000005
Figure PCTCN2021122755-appb-000006
上述基团可以被选自卤素、硝基、氰基、C6~C60的芳基、C3~C60的杂芳基、C1~C30的烷基、C1~C30的烷氧基、C6~C60的芳氧基、氨基、C1~C30硅烷基、C6~C60芳基氨基、C3~C60杂芳基氨基中的一种或者至少两种的组合以上的基团所取代。
在本发明的一个实施方式中,L 1优选为单键、m+1价的取代或未取代的苯基残基、m+1价的取代或未取代的萘基残基、m+1价的取代或未取代的蒽基残基、m+1价的取代或未取代的菲基残基、m+1价的取代或未取代的芘基残基;
L 2优选为单键、n+1价的取代或未取代的苯基残基、n+1价的取代或未取代的萘基残基、n+1价的取代或未取代的蒽基残基、n+1价的取代或未取代的菲基残基、n+1价的取代或未取代的芘基残基。
m为1、n为1;L 1和L 2不同时为单键。
在本发明的一个实施方式中,条件是,当L 2为亚苯基或者亚萘基的情况下,Ar 2不为取代或未取代的
Figure PCTCN2021122755-appb-000007
基团。
更进一步地,Ar 1和Ar 2中至少一个为缺电子基团的时候,本发明的技术效果更加优异。所谓的“缺电子基团”是指该基团取代苯环上的氢后,苯环上的电子云密度降低的基团,通常这样的基团的哈米特值大于0.6。所述哈米特值是指对特定基团电荷亲和力的表征,是吸电子基团(正哈米特值)或给电子基团(负哈米特值)的度量。在Thomas H.Lowry和KatheleenSchueller Richardson,“Mechanism and Theory In Organic Chemistry’,New York,1987,143-151页中更详细描述了哈米特方程,此处引作参考。这样的基团可以列举但不限于:三嗪基、嘧啶基、苯并嘧啶基、苯并吡啶基、二氮杂萘基、二氮杂菲基、吡嗪基、喹啉基、异喹啉基、喹唑啉基、喹喔啉基、哒嗪基,以及烷基或芳基取代的上述基团,这样的基团优选三嗪、嘧啶、芳基氰基、吡啶、喹唑啉等基团。
本发明的化合物,更优选的结构通式可以由下述通式(III-1)-(III-8)表示,
Figure PCTCN2021122755-appb-000008
当为上述式中,Y为C、N、O或者S;X为单键、C、N、O或者S;Z 1~Z 6各自独立的为N或CR,R 3~R 6与式II中表达的意思相同。
R、R 7~R 10为选自卤素、硝基、氰基、C6~C60的芳基、C3~C60的杂芳基、C1~C30的烷基、C1~C30的烷氧基、C6~C60的芳氧基、氨基、C1~C30硅烷基、C6~C60芳基氨基、C3~C60杂芳基氨基中的一种或者至少两种的组合。
上述式(III-1)-(III-8)的化合物,能够进一步极大的发挥降低激发电压、提高发光效率的作用,而且能够容易合成,产业上易于实现。
更进一步的,本发明的有机化合物可以优选出下述所示的具体结构化合物,这些化合物仅为代表性的,并不限定本发明的范围。
Figure PCTCN2021122755-appb-000009
Figure PCTCN2021122755-appb-000010
Figure PCTCN2021122755-appb-000011
Figure PCTCN2021122755-appb-000012
Figure PCTCN2021122755-appb-000013
Figure PCTCN2021122755-appb-000014
Figure PCTCN2021122755-appb-000015
Figure PCTCN2021122755-appb-000016
Figure PCTCN2021122755-appb-000017
Figure PCTCN2021122755-appb-000018
Figure PCTCN2021122755-appb-000019
Figure PCTCN2021122755-appb-000020
Figure PCTCN2021122755-appb-000021
Figure PCTCN2021122755-appb-000022
Figure PCTCN2021122755-appb-000023
总之,上述本发明提供的化合物以[1,2,4]三氮唑[1,5-c]喹唑啉作为一个具有强吸电子能力同时具有大的π共轭平面的缺电子基团,将其引入电子传输或空穴阻挡材料中,通过L 1和L 2等连接基团与三嗪、嘧啶、芳基氰基、吡啶、喹唑啉等缺电子基团或者与取代的芳基、杂芳基组成的新材料作为电子传输或空穴阻挡材料使用时,由于分子具有强的缺电子性从而使其具有较强的电子注入能力。另外,连接基团减小了分子刚性,并且分子具有大共轭的π平面电子结构,有利分子与分子的π-π平面堆积,从而有利于获得高的电子迁移率。此外,本发明的分子具有较深的HOMO电子轨道和较高的三线态能级,从而作为空穴阻挡材料使用时能够有效阻挡空穴和激子的扩散,有利于获得较高的发光效率和低启动电压的优异效果。本发明化合物的制备工艺简单易行,原料易得,适合于量产放大,非常适用于工业应用。
本发明的上述化合物,具有较高的电子亲和势,因而有较强的吸电子的能力,基于其优良的电子传输、电子注入效应,其适于用作电子传输/注入材料,但本发明化合物的应用场景不限于电子传输材料,也可以作为空穴阻挡材料、主体材料等用于有机电子器件。这样的有机电子器件包括但不限于有机电致发光器件、光学传感器、太阳能电池、照明元件、有机薄膜晶体管、有机场效应晶体管、有机薄膜太阳能电池、信息标签、电子人工皮肤片材、片 材型扫描器或电子纸,优选为有机电致发光器件。
本发明的还提供一种有机电致发光器件,所述有机电致发光器件包括第一电极、第二电极和插入所述第一电极和第二电极之间的至少一层或多个发光功能层,所述发光功能层中含有至少一种本发明所述的化合物。
本发明的有机电致发光器件,结构与现有的器件一致,例如包括阳极层、多个发光功能层和阴极层;所述多个发光功能层包括发光层和选自空穴阻挡层、电子传输层、电子注入层中的至少一层,其中选自电子传输层、电子注入层或空穴阻挡层中的至少一层中含有本发明的上述有机化合物。
采用本发明化合物制备的OLED器件具有低启动电压、高发光效率和更优的使用寿命,能够满足当前面板、显示器制造企业对高性能材料的要求。
具体实施方式
下面通过进一步更加具体地说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
本发明的化合物的获得方法
本发明式(I)所示的化合物可以通过公知方法获得,例如通过公知的有机合成方法进行合成。以下给出了实例性的合成路线,但是本领域人员也可以通过公知的其他方法获得。本发明通式所示的化合物的代表合成路线如下:
Figure PCTCN2021122755-appb-000024
第一步,以2,4-二氯喹唑啉与水合肼发生取代反应生成中间体M1;第二步,中间体M1与醛发生缩合反应生成腙的中间体M2;第三步,腙的中间体M2在醋酸碘苯作用下加热重排关环反应生成中间体M3;第四步,以中间体M3为原料与硼酸通过Suzuki偶联反应生成中间体M4;第五步,中间体M4转化成相应的硼酸频那醇酯化合物M5;第六步,中间体M5与卤代物通过Suzuki偶联反应得到产品。本发明的化合物还可以通过其他任何公知的方法获得。
进而,本发明的有机电致发光器件的结构是公知的结构,其特征在于,在发光层、空穴阻挡层、电子传输层、电子注入层中的一个以上层中使用了上述本发明的化合物。以下对有机电致发光器件进行详细说明。
OLED包括位于第一电极和第二电极,以及位于电极之间的有机材料层。该有机材料又可以分为多个区域。比如,该有机材料层可以包括空穴传输区、发光层、电子传输区。
在具体实施例中,在第一电极下方或者第二电极上方可以使用基板。基板均为具有机械强度、热稳定性、防水性、透明度优异的玻璃或聚合物材料。此外,作为显示器用的基板上也可以带有薄膜晶体管(TFT)。
第一电极可以通过在基板上溅射或者沉积用作第一电极的材料的方式来形成。当第一电极作为阳极时,可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO 2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合。第一电极作为阴极时,可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镱(Yb)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
有机材料层可以通过真空热蒸镀、旋转涂敷、打印等方法形成于电极之上。用作有机材料层的化合物可以为有机小分子、有机大分子和聚合物,以及它们的组合。
空穴传输区位于阳极和发光层之间。空穴传输区可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少一层的多层结构;其中HIL位于阳极和HTL之间,EBL位于HTL与发光层之间。
空穴传输区的材料可以选自、但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)以及如下面HT-1至HT-51所示的芳香胺衍生物;或者其任意组合。
Figure PCTCN2021122755-appb-000025
Figure PCTCN2021122755-appb-000026
Figure PCTCN2021122755-appb-000027
空穴注入层位于阳极和空穴传输层之间。空穴注入层可以是单一化合物材料,也可以是多种化合物的组合。例如,空穴注入层可以采用上述HT-1至HT-51的一种或多种化合物,或者采用下述HI-1-HI-3中的一种或多种化合物;也可以采用HT-1至HT-51的一种或多种化合物掺杂下述HI-1-HI-3中的一种或多种化合物。
Figure PCTCN2021122755-appb-000028
发光层包括可以发射不同波长光谱的的发光染料(即掺杂剂,dopant),还可以同时包括主体材料(Host)。发光层可以是发射红、绿、蓝等单一颜色的单色发光层。多种不同颜色的单色发光层可以按照像素图形进行平面排列,也可以堆叠在一起而形成彩色发光层。当不同颜色的发光层堆叠在一起时,它们可以彼此隔开,也可以彼此相连。发光层也可以是能同时发射红、绿、蓝等不同颜色的单一彩色发光层。
根据不同的技术,发光层材料可以采用荧光电致发光材料、磷光电致发光材料、热活化延迟荧光发光材料等不同的材料。在一个OLED器件中,可以采用单一的发光技术,也可以采用多种不同的发光技术的组合。这些按技术分类的不同发光材料可以发射同种颜色的光,也可以发射不同种颜色的光。
在本发明的一方面,发光层采用荧光电致发光的技术。其发光层荧光主体材料可以选自、但不限于以下所罗列的BFH-1至BFH-17的一种或多种的组合。
Figure PCTCN2021122755-appb-000029
在本发明的一方面,发光层采用荧光电致发光的技术。其发光层荧光掺杂剂可以选自、但不限于以下所罗列的BFD-1至BFD-24的一种或多种的组合。
Figure PCTCN2021122755-appb-000030
Figure PCTCN2021122755-appb-000031
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层主体材料选自、但不限于PH-1至PH-85中的一种或多种的组合。
Figure PCTCN2021122755-appb-000032
Figure PCTCN2021122755-appb-000033
Figure PCTCN2021122755-appb-000034
Figure PCTCN2021122755-appb-000035
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的GPD-1至GPD-47的一种或多种的组合。
Figure PCTCN2021122755-appb-000036
Figure PCTCN2021122755-appb-000037
其中D为氘。
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的RPD-1至RPD-28的一种或多种的组合。
Figure PCTCN2021122755-appb-000038
Figure PCTCN2021122755-appb-000039
在本发明的一方面,发光层采用磷光电致发光的技术。其发光层磷光掺杂剂可以选自、但不限于以下所罗列的YPD-1—YPD-11的一种或多种的组合。
Figure PCTCN2021122755-appb-000040
本发明的一方面,电子阻挡层(EBL)位于空穴传输层与发光层之间。电子阻挡层可以采用、但不限于上述HT-1至HT-51的一种或多种化合物,或者采用、但不限于上述PH-47至PH-77的一种或多种化合物;也可以采用、但不限于HT-1至HT-51的一种或多种化合物和PH-47至PH-77的一种或多种化合物的混合物。
本发明的有机电致发光器件包括发光层与阴极之间的电子传输区。电子传输区可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少一层的多层结构。
电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少一层的多层结构应用本发明的化合物来形成,当然电子传输区的材料还可以与以下所罗列的ET-1至ET-65的一种或多种的组合。
Figure PCTCN2021122755-appb-000041
Figure PCTCN2021122755-appb-000042
Figure PCTCN2021122755-appb-000043
器件中还可以包括位于电子传输层与阴极之间的电子注入层,电子注入层材料包括但不限于以下罗列的一种或多种的组合:
LiQ、LiF、NaCl、CsF、Li 2O、Cs 2CO 3、BaO、Na、Li、Ca、Mg、Yb。
实施例
代表性地合成了本发明的有机化合物,将其与相应的对比化合物一同应用于有机电致发光器件中,测试同等条件下的器件性能。
本发明如下合成例示例性地提供了代表化合物的具体合成方法,如下合成例中所用溶剂和试剂、中间体,乙酸乙酯、甲醇、乙醇等化学试剂,均可以从国内化工产品市场购买或定制。
合成实施例
确定下述化合物所用的质谱仪采用的是ZAB-HS型质谱仪测定(英国Micromass公司制造)。
合成实施例1:
化合物C1的合成
Figure PCTCN2021122755-appb-000044
化合物1-1的制备
在烧瓶中将2,4-二氯喹唑啉(396g)溶于8L乙醇后,搅拌下在5℃滴加水合肼(375g80%水溶液),滴加过程保持温度低于10℃。滴加完毕自然升至室温反应1小时,抽滤析出的固体,用水和乙醇分别洗涤,晾干得到类白色固体化合物1-1(311g)。
化合物1-2及1-3的制备
将化合物1-1(194g)加入含有2L乙醇的烧瓶中,室温搅拌下滴加苯甲醛(117g),滴加完毕继续搅拌反应1小时,TLC显示反应完全,所得腙中间体1-2直接用于下步反应。
室温搅拌下,往上述反应液中分批加入醋酸碘苯(354g),加毕,将反应体系加热至50℃继续搅拌反应3小时,TLC显示反应完全。过滤析出固体,用正己烷淋洗,干燥得淡棕黄色固体化合物1-3(168g).
化合物1-4的制备
将化合物2-溴-9,10-(2-萘基)蒽(15.2g)、硼酸频哪醇酯(11.4g)和醋酸钾(8.8g) 加入含1,4-二氧六环(150mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(dppf)Cl 2(220mg)。添加完毕后,氮气氛下搅拌回流反应8小时,TLC监控反应终点。减压旋蒸除去溶剂,水和乙醇分别洗涤,过滤,干燥得到化合物1-4(13.6g)
化合物C1的制备
将化合物1-4(11.1g)、化合物1-3(5.6g)和碳酸钾(8.3g)加入含有四氢呋喃/水(150mL/30mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(dppf)Cl 2(146mg)。添加完毕后,氮气氛搅拌下加热回流反应12小时,TLC显示反应完全。过滤析出的白色固体。用二氯甲烷溶解,用无水硫酸钠干燥,柱层析(洗脱剂为二氯甲烷)得到白色固体化合物C1(8.8g)。分子量计算值:674.25,实测值m/z:675.3(M+1)。
合成实施例2:
化合物C9的合成
Figure PCTCN2021122755-appb-000045
化合物2-1的制备
将化合物1-1(38.8g)加入含有250mL乙醇的烧瓶中,室温搅拌下加入1-萘甲醛(34.3g),加毕继续搅拌反应1小时,TLC显示反应完全,所得腙中间体2-1直接用于下步反应。
室温搅拌下,往上述反应液中分批加入醋酸碘苯(71g),加毕,将反应体系加热至50℃继续搅拌反应4小时,TLC显示反应完全。过滤析出固体,用正己烷淋洗,干燥得棕黄色固体化合物2-2(42g).
化合物C9的制备
将化合物2-2(6.6g)、化合物2-(3-硼酸频那醇酯基苯基)-4,6-二苯基-1,3,5-三嗪(8.7g)和碳酸钾(8.3g)加入含有四氢呋喃:水(150mL:30mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(dppf)Cl 2(146mg,0.2mmol)。添加完毕后,氮气氛搅拌下加热回流反应15小时,TLC显示反应完全。过滤析出的白色固体。用二氯甲烷溶解,用无水硫酸钠干燥,柱层析干燥后得到白色固体化合物C9(7.5g)。分子量计算值:603.22;实测值m/z:604.3(M+1)。
合成实施例3:
化合物C50的合成
Figure PCTCN2021122755-appb-000046
化合物3-2的制备
将2-(3-溴-5-氯苯基)-4,6二苯基-1,3,5三嗪(20g),吡啶3-硼酸(7.59g),碳酸钾(19.66g)加入含甲苯/乙醇/水200mL/20mL/20mL的三口瓶中,氮气置换三次,加入四三苯基磷钯(1.64g),加热回流反应12小时。TLC检测反应完毕,室温下冷却,DCM萃取,收集有机相,浓缩,再用乙醇煮洗,过滤得到灰白色固体化合物3-2(15g)。
化合物3-3的制备
将化合物3-2(15g)、联硼酸频哪醇酯(13.6g)和醋酸钾(10.5g)加入含1,4-二氧六环(150mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(OAc) 2(157mg),SPhos(574mg)。添加完毕后,氮气氛下搅拌回流反应10小时,TLC监控反应终点。减压旋蒸除去溶剂,二氯甲烷溶解,水洗,干燥后柱层析得化合物3-3(14.8g)。
化合物C50的制备
将化合物3-3(10.2g)、化合物1-3(5.6g)和碳酸钾(8.3g)加入含有四氢呋喃:水(150mL:30mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(dppf)Cl 2(146mg)。添加完毕后,氮气氛搅拌下加热回流反应10小时,TLC显示反应完全。过滤析出的白色固体。用二氯甲烷溶解,用无水硫酸钠干燥,柱层析干燥后得到淡黄色固体化合物C50(7.1g)。分子量计算值:630.23;实测值m/z:631.3(M+1)。
合成实施例4:
化合物C67的合成
Figure PCTCN2021122755-appb-000047
化合物4-1的制备
将化合物1-3(56g)、化合物3-氯苯硼酸(34.3g)和碳酸钾(83g)加入含有四氢呋喃/ 水(500mL/100mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(dppf)Cl 2(1.46g)。添加完毕后,氮气氛搅拌下加热回流反应8小时,TLC显示反应完全。冷却至室温,加乙酸乙酯分液,有机相用乙酸乙酯萃取,合并有机相,无水硫酸钠干燥后柱层析纯化得水过滤析出的白色固体。用二氯甲烷溶解,用无水硫酸钠干燥,柱层析得棕黄色固体化合物4-1(44.1g).
化合物C67的制备
将化合物4-1(7.1g)、化合物2-(3-硼酸频那醇酯基苯基)-4,6-二苯基-1,3,5-三嗪(8.7g)和碳酸钾(8.3g)加入含有1,4-二氧六环/水(150mL/10mL)的烧瓶中,室温搅拌下置换氮气后加入Pd 2(dba) 3(366mg),SPhos(328mg)。添加完毕后,氮气氛搅拌下加热回流反应20小时,TLC显示反应完全。过滤析出的白色固体。用甲苯加热溶解,柱层析干燥后得到白色固体化合物C67(10.7g)。分子量计算值:629.23;实测值m/z:630.3(M+1)。
合成实施例5:
化合物C81的合成
Figure PCTCN2021122755-appb-000048
化合物5-1的制备
将化合物1-1(38.8g)加入含有250mL乙醇的烧瓶中,室温搅拌下加入4-氯苯甲醛(30.8g),加毕继续搅拌反应1小时,TLC显示反应完全,所得腙中间体5-1直接用于下步反应。
室温搅拌下,往上述反应液中分批加入醋酸碘苯(71g),加毕,将反应体系加热至40℃继续搅拌反应3小时,TLC显示反应完全。过滤析出固体,用正己烷淋洗,干燥得土黄色固体化合物5-2(37.7g).
化合物5-3的制备
将化合物5-2(15.7g)、苯硼酸(6.7g)和碳酸钾(21g)加入含有四氢呋喃/水(200mL/40mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(dppf)Cl 2(366mg)。添加完毕后,氮气氛搅拌下加热回流反应7小时,TLC显示反应完全。过滤析出的白色固体。用二氯甲烷溶解,用无水硫酸钠干燥,柱层析干燥后得到白色固体化合物5-3(11.6g)。
化合物5-4的制备
将化合物5-3(11.6g)、联硼酸频哪醇酯(12.4g)和醋酸钾(9.6g)加入含1,4-二氧六环(150mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(OAc) 2(157mg),SPhos(574mg)。添加完毕后,氮气氛下搅拌回流反应15小时,TLC监控反应终点。减压旋蒸除去溶剂,二氯甲烷溶解,水洗,干燥后柱层析得化合物5-4(12.1g)。
化合物C81的制备
将化合物5-4(8.9g)、化合物2-氯-4,6-二苯基1,3,5-三嗪(5.3g)和碳酸钾(8.3g)加入含有四氢呋喃/水(150mL/30mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(dppf)Cl 2(146mg)。添加完毕后,氮气氛搅拌下加热回流反应12小时,TLC显示反应完全。过滤析出的白色固体。用二氯甲烷溶解,用无水硫酸钠干燥,柱层析干燥后得到淡黄色固体化合物C81(6.7g)。分子量计算值:553.20;实测值m/z:554.3(M+1)。
合成实施例6:
化合物C82的合成
Figure PCTCN2021122755-appb-000049
化合物C82的制备采用与化合物C81相似的合成方法,所不同的是将苯硼酸替换为3-苯基苯硼酸,所得化合物C82分子量计算值:629.23,实测值m/z:630.3(M+1)。
合成实施例7:
化合物C109的合成
Figure PCTCN2021122755-appb-000050
化合物7-1的制备
将化合物1-1(38.8g)加入含有250mL乙醇的烧瓶中,室温搅拌下加入4-氰基苯甲醛(28.8g),加毕继续搅拌反应2小时,TLC显示反应完全,所得腙中间体7-1直接用于下步反应。
室温搅拌下,往上述反应液中分批加入醋酸碘苯(71g),加毕,将反应体系加热至60℃继续搅拌反应4小时,TLC显示反应完全。过滤析出固体,用正己烷淋洗,干燥得棕黄色固体化合物7-2(35.4g).
化合物C109的制备
将化合物7-2(6.1g)、化合物2-硼酸-9,9螺二芴(7.9g)和碳酸钾(8.3g)加入含有四氢呋喃/水(150mL/30mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(dppf)Cl 2(146mg)。添加完毕后,氮气氛搅拌下加热回流反应15小时,TLC显示反应完全。过滤析出的白色固体。用二氯甲烷溶解,用无水硫酸钠干燥,柱层析干燥后得到白色固体化合物C109(7.7g)。分子量计算值:585.20;实测值m/z:586.3(M+1)。
合成实施例8:
化合物C154的合成
Figure PCTCN2021122755-appb-000051
化合物C154的制备采用与化合物C109相似的合成方法,所不同的是将2-螺芴硼酸替换为2,4-二苯基-6-[3-联苯基-3-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)]-1,3,5-三嗪,所得化合物C154分子量计算值:654.23,实测值m/z:655.2(M+1)。
合成实施例9:
化合物C173的合成
Figure PCTCN2021122755-appb-000052
化合物C173的制备采用与化合物C81相似的合成方法,所不同的是将苯硼酸替换为2-螺芴硼酸;将2-氯-4,6-二苯基-1.3.5-三嗪替换为4-溴吡啶,所得化合物C173分子量计算值:637.23,实测值m/z:638.3(M+1)。
合成实施例10:
化合物C175的合成
Figure PCTCN2021122755-appb-000053
化合物C175的制备采用与化合物C173相似的合成方法,所不同的是将4-溴吡啶替换为4-溴苯腈,所得化合物C175分子量计算值:661.23,实测值m/z:662.3(M+1)。
合成实施例11:
化合物C179的合成
Figure PCTCN2021122755-appb-000054
化合物C179的制备采用与化合物C109相似的合成方法,所不同的是将4-氰基苯甲醛替换为4-吡啶甲醛,所得化合物C179分子量计算值:561.20,实测值m/z:562.2(M+1)。
合成实施例12:
化合物C190的合成
Figure PCTCN2021122755-appb-000055
化合物12-1的制备
将化合物5-2(15.7g)、化合物4-硼酸-9,9螺二芴(19.8g)和碳酸钾(20.7g)加入含有四氢呋喃/水(250mL/50mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(dppf)Cl 2(366mg)。添加完毕后,氮气氛搅拌下加热回流反应13小时,TLC显示反应完全。过滤析出的白色固体。用二氯甲烷溶解,用无水硫酸钠干燥,柱层析干燥后得到白色固体化合物12-1(19g)。
化合物C190的制备
将化合物12-1(11.9g)、化合物4-氰基苯硼酸(3.2g)和碳酸钾(8.3g)加入含有1,4-二氧六环/水(150mL/10mL)的烧瓶中,室温搅拌下置换氮气后加入Pd 2(dba) 3(366mg),SPhos(328mg)。添加完毕后,氮气氛搅拌下加热回流反应18小时,TLC显示反应完全。过滤析出的白色固体。用甲苯加热溶解,柱层析干燥后得到白色固体化合物C190(10.7g)。分子量计算值:661.23;实测值m/z:662.3(M+1)。
合成实施例13:
化合物C193的合成
Figure PCTCN2021122755-appb-000056
化合物13-1的制备
将2-溴螺二芴(39.4g),3-氯苯硼酸(15.6g),碳酸钾(41.4g)加入含甲苯/乙醇/水 400mL/50mL/50mL的三口瓶中,氮气置换三次,加入四三苯基磷钯(1.15g),加热回流反应5小时。TLC检测反应完毕,室温下冷却,分液,收集有机相,浓缩,再用乙醇煮洗,过滤得到类白色固体化合物13-1(36.2g)。
化合物13-2的制备
将化合物13-1(30g)、联硼酸频哪醇酯(26.8g)和醋酸钾(20.6g)加入含1,4-二氧六环(300mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(OAc) 2(314mg),SPhos(115mg)。添加完毕后,氮气氛下搅拌回流反应8小时,TLC监控反应终点。减压旋蒸除去溶剂,二氯甲烷溶解,水洗,干燥后柱层析得化合物13-2(29.7g)。
化合物C193的制备
将化合物13-2(10.4g)、化合物7-2(5.6g)和碳酸钾(6.1g)加入含有四氢呋喃/水(150mL/30mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(dppf)Cl 2(150mg)。添加完毕后,氮气氛搅拌下加热回流反应12小时,TLC显示反应完全。过滤析出的白色固体。用二氯甲烷溶解,用无水硫酸钠干燥,柱层析干燥后得到淡黄色固体化合物C193(8.1g)。分子量计算值:661.23;实测值m/z:662.3(M+1)。
合成实施例14:
化合物C195的合成
Figure PCTCN2021122755-appb-000057
化合物C195的制备采用与化合物C193相似的合成方法,所不同的是将2-溴螺二芴替换为9-溴菲;将3-氯苯硼酸替换为3-氯-3-联苯硼酸,所得化合物C195分子量计算值:599.21,实测值m/z:600.3(M+1)。
合成实施例15:
化合物C204的合成
Figure PCTCN2021122755-appb-000058
化合物C204的制备采用与化合物C193相似的合成方法,所不同的是将3-氯苯硼酸替换为4-氯苯硼酸,所得化合物C204分子量计算值:分子量计算值:661.23;实测值m/z:662.2(M+1)。
合成实施例16:
化合物C208的合成
Figure PCTCN2021122755-appb-000059
化合物C208的制备采用与化合物C195相似的合成方法,所不同的是将9-溴菲替换为2-溴螺二芴;将中间体7-2替换为中间体1-3,所得化合物C208分子量计算值:712.26;实测值m/z:713.3(M+1)。
合成实施例17:
化合物C223的合成
Figure PCTCN2021122755-appb-000060
化合物C223的制备采用与化合物C81相似的合成方法,所不同的是将苯硼酸替换为3-异丙基苯硼酸,所得化合物C223分子量计算值:595.25,实测值m/z:596.3(M+1)。
合成实施例18:
化合物C231的合成
Figure PCTCN2021122755-appb-000061
化合物18-1的制备
将化合物4-1(17.8g)、联硼酸频哪醇酯(19g)和醋酸钾(14.7g)加入含1,4-二氧六环(250mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(OAc) 2(225mg),SPhos(820mg)。添 加完毕后,氮气氛下搅拌回流反应12小时,TLC监控反应终点。减压旋蒸除去溶剂,二氯甲烷溶解,水洗,干燥后柱层析得化合物18-1(18.1g)。
化合物18-2的制备
将化合物18-1(17.9g)、3-溴碘苯(11.8g)和碳酸钾(16.6g)加入含有甲苯/乙醇/水(250mL/50mL/50mL)的烧瓶中,室温搅拌下置换氮气后加入Pd(PPh 3) 4(461mg)。添加完毕后,氮气氛搅拌下加热回流反应9小时,TLC显示反应完全。降至室温后,分液,水相用甲苯萃取,合并有机相用无水硫酸钠干燥,柱层析得到白色固体化合物18-2(15.8g)。
化合物C231的制备
将化合物18-2(9.5g)、5,7-二氢-7,7-二甲基-茚并[2,1-B]咔唑(3.9g)和叔丁醇钠(5.8g)加入含有甲苯150mL的烧瓶中,室温搅拌下置换氮气后加入Pd 2(dba) 3(183mg),三叔丁基膦(80mgl)。添加完毕后,氮气氛搅拌下加热回流反应12小时,TLC显示反应完全。过滤析出的白色固体,水洗,甲苯回流溶解后柱层析纯化得到白色固体化合物C231(10.6g)。分子量计算值:679.27,实测值m/z:680.3(M+1)。
合成实施例19:
化合物C237的合成
Figure PCTCN2021122755-appb-000062
化合物C237的制备
将化合物4-1(7.1g)、螺芴吖啶(7g)和叔丁醇钠(5.8g)加入含有甲苯150mL的烧瓶中,室温搅拌下置换氮气后加入Pd 2(dba) 3(183mg),三叔丁基膦(80mg)。添加完毕后,氮气氛搅拌下加热回流反应14小时,TLC显示反应完全。过滤析出的白色固体,水洗,甲苯回流溶解后柱层析纯化得到白色固体化合物C237(9.8g)。分子量计算值:651.24,实测值m/z:652.3(M+1)。
合成实施例20:
化合物C247的合成
Figure PCTCN2021122755-appb-000063
化合物C247的制备
将化合物4-1(7.1g)、化合物3-硼酸-9,9-螺二芴(7.9g)和碳酸钾(8.3g)加入含有1,4-二氧六环/水(150mL/10mL)的烧瓶中,室温搅拌下置换氮气后加入Pd 2(dba) 3(366mg),SPhos(328mg)。添加完毕后,氮气氛搅拌下加热回流反应10小时,TLC显示反应完全。过滤析出的白色固体。用甲苯加热溶解,柱层析干燥后得到白色固体化合物C247(10.9g)。分子量计算值:636.23;实测值m/z:637.3(M+1)。
合成实施例21:
化合物C259的合成
Figure PCTCN2021122755-appb-000064
化合物C259的制备采用与化合物C208相似的合成方法,所不同的是将2-溴螺二芴替换为4-溴二苯并呋喃,所得化合物C259分子量计算值:564.20;实测值m/z:565.2(M+1)。
合成实施例22:
化合物C260的合成
Figure PCTCN2021122755-appb-000065
化合物C260的制备采用与化合物C208相似的合成方法,所不同的是将2-溴螺二芴替换为2-溴-11,11-二甲基-11H-苯并[B]芴,所得化合物C260分子量计算值:640.26;实测值m/z:641.3(M+1)。
合成实施例23:
化合物C277的合成
Figure PCTCN2021122755-appb-000066
化合物C277的制备采用与化合物C208相似的合成方法,所不同的是将2-溴螺二芴替换为2-溴-9,9-二甲基芴,所得化合物C277分子量计算值:590.25;实测值m/z:591.3(M+1)。
合成实施例24:
为了方便比较本发明的化合物制备应用到的器件中后的性能,使用下述所示的现有技术中化合物D1和D2作为对比,具体的结构式如下,它们的具体合成方法详见专利文献CN109906225A中的内容,在此不赘述。
Figure PCTCN2021122755-appb-000067
合成实施例25:
为了方便比较本发明的化合物制备应用到的器件中后的性能,合成了ET-61、ET-46、ET-17,具体合成方法参照CN110256439A、CN107833974A和CN105074950A,在此不赘述。
器件实施例
实施例1
本实施例中有机电致发光器件制备过程如下:
将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
把上述带有阳极的玻璃基片置于真空腔内,抽真空至压强小于10 -5Pa,在上述阳极层膜上真空蒸镀10nm的HI-3作为空穴注入层;
在空穴注入层之上真空蒸镀40nm的HT-4作为器件的第一空穴传输层;
在第一空穴传输层之上真空蒸镀10nm的HT-14作为器件的第二空穴传输层;
在第二空穴传输层之上真空蒸镀20nm的发光层,发光层包括主体材料BFH-4和染料材料BFD-6;
在发光层之上真空蒸镀5nm的空穴阻挡层,选用现有技术中的化合物ET-17作为空穴阻挡层材料;
在空穴阻挡层之上利用多源共蒸的方法蒸镀23nm的化合物C9和ET-57(C9和ET-57蒸镀速率之比为1:1)作为电子传输层;
在电子传输层(ETL)上真空蒸镀1nm的LiF作为电子注入层,厚度为80nm的铝层作为器件的阴极。所有有机层和LiF的蒸镀速率均为0.1nm/s,金属铝的蒸镀速率为1nm/s。
实施例2-15以及对比例1、2和3
与实施例同样地获得有机电致发光器件,其不同之处是将化合物C9替换成表1中的化合物。
对由上述过程制备的有机电致发光器件进行如下性能测定:
测试系统测定实施例及对比例中制备得到的有机电致发光器件的驱动电压和电流效率。具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到1000cd/m 2时的电压即驱动电压,同时测出此时的电流密度;亮度与电流密度的比值即为电流效率。
在同样亮度下,按照上述的制备步骤和测试方法完成了本发明的器件实施例和对比例,具体所选用化合物和所制备器件的性能比对情况如下表1所示,其中表1列出了本发明化合物与对比化合物同时作为电子传输材料时所制备的器件性能对比情况。
表1
Figure PCTCN2021122755-appb-000068
由表1可知,在有机电致发光器件结构中其他功能层的材料方案及其制备工艺完全相同的情况下,本发明涉及的化合物与比较例1中作为电子传输材料的化合物相比,光电性能略有改善,具体原因尚不明确,推测可能是本发明化合物中含有的[1,2,4]三氮唑[1,5-c]喹唑啉基团相对于对比例1化合物分子中含有的[1,2,4]三氮唑[4,3-c]喹唑啉基团结构具有更为优异的热稳定性,因而在量产应用时器件的性能及工艺稳定性优势更为明显。
本发明涉及的化合物与比较例2和3中作为电子传输材料的化合物相比电压均有所降低,效率有较明显提升。具体原因尚不明确,推测可能是本发明化合物中以[1,2,4]三氮唑 [1,5-c]喹唑啉作为一个具有强吸电子能力同时具有大的π共轭平面的缺电子基团,通过亚苯基等连接基团与三嗪、嘧啶、芳基氰基、吡啶、喹唑啉等缺电子基团构建成新的电子传输材料使用时,由于分子具有强的缺电子性从而使其具有较强的电子注入能力。大共轭的π平面电子结构,有利与分子与分子的π-π平面堆积,从而有利于获得高的电子迁移率。因此将其应用到器件中表现出较低的电压和较高的电流效率。
实施例16
将涂布了ITO透明导电层的玻璃板在商用清洗剂中超声处理,在去离子水中冲洗,在丙酮:乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击表面;
把上述带有阳极的玻璃基片置于真空腔内,抽真空至压强小于10 -5Pa,在上述阳极层膜上真空蒸镀10nm的HI-3作为空穴注入层;
在空穴注入层之上真空蒸镀40nm的HT-4作为器件的第一空穴传输层;
在第一空穴传输层之上真空蒸镀10nm的HT-14作为器件的第二空穴传输层;
在第二空穴传输层之上真空蒸镀20nm的发光层,发光层包括主体材料BFH-4和染料材料BFD-6;
在发光层之上真空蒸镀5nm的本发明化合物C208作为器件的空穴阻挡层;
在空穴阻挡层之上利用多源共蒸的方法蒸镀23nm的化合物ET-46:ET-57(50/50,w/w)混合物作为电子传输层材料;
在电子传输层(ETL)上真空蒸镀1nm的LiF作为电子注入层,厚度为80nm的铝层作为器件的阴极。所有有机层和LiF的蒸镀速率均为0.1nm/s,金属铝的蒸镀速率为1nm/s。
实施例17-22、比较例4、5
与实施例同样地获得有机电致发光器件,其不同之处是将化合物C208替换成表2中的相应化合物。
对由上述过程制备的有机电致发光器件进行如下性能测定:
在同样亮度下,测试系统测定实施例及对比例中制备得到的有机电致发光器件的驱动电压和电流效率。具体而言,以每秒0.1V的速率提升电压,测定当有机电致发光器件的亮度达到1000cd/m 2时的电压即驱动电压,同时测出此时的电流密度;亮度与电流密度的比值即为电流效率。
按照上述的制备步骤和测试方法完成了本发明的器件实施例和对比例,具体所选用化合物和所制备器件的性能比对情况如下表2所示,表2列出了本发明化合物与对比化合物同时作为空穴阻挡层材料时所制备的器件性能对比情况。
表2
Figure PCTCN2021122755-appb-000069
由表2可知,在有机电致发光器件结构中其他功能层的材料方案及其制备工艺完全相同的情况下,本发明涉及的化合物与比较例4、5中作为空穴阻挡材料的化合物相比电压均有所降低,效率有较明显提升。具体原因尚不明确,推测可能是本发明将[1,2,4]三氮唑[1,5-c]喹唑啉引入分子结构中所形成的空穴阻挡材料具有较深的HOMO电子轨道和较高的三线态能级,从而作为空穴阻挡材料使用时能够有效阻挡空穴和激子的扩散,有利于获得较高的发光效率。此外,由于其良好的电子注入能力和较为匹配的LUMO能级,将其应用到器件中在相同亮度下获得相对低的电压的优异效果。
此处还需要说明的是,表1代表的器件试验,与表2代表的器件试验在结构和各层选材方面差别太大,他们之间性能数据难以直接比对。
以上实验数据表明,本发明的新型有机材料作为有机电致发光器件的空穴阻挡材料,是性能良好的有机发光功能材料,具有广阔的应用前景。
空穴阻挡和电子传输的材料,这两种材料性能要求有相同和相近之处,一般能够通用,作为电子传输层的材料通常具有作为空穴阻挡层的潜质,反之亦然,本发明的化合物实施例中表1中和表2中所选用的化合物为随机选取。作为电子传输层或空穴阻挡层时,满足本发明限定的“[1,2,4]三氮唑[1,5-c]喹唑啉基团”以及“通过L 1和L 2的中间连接基团,将上述母核与Ar 1、Ar 2相连”这些特征,都会明显的提高器件效率。
本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (14)

  1. 一种有机化合物,其特征在于,其为式(I)所示的结构:
    Figure PCTCN2021122755-appb-100001
    其中,X 1~X 4各自独立的为N或CR;不同的R各自独立的为H、卤素、氰基、硝基、羟基、C1~C12的烷基、C1~C12的烷氧基、取代或未取代的C6~C60的芳基、取代或未取代的C3~C60的杂芳基;不同的R之间可以连接形成脂肪族环或芳香族环,
    L 1为单键、m+1价的取代或未取代的C6~C60的芳基残基、m+1价的取代或未取代的C3~C60的杂芳基残基;L 2为单键、n+1价的取代或未取代的C6~C60的芳基残基、n+1价的取代或未取代的C3~C60的杂芳基残基;
    m、n为1~3的整数;L 1为单键时,m为1;L 2为单键时,n为1;
    Ar 1、Ar 2各自独立地为选自H、C1~C12的烷基、C1~C12的烷氧基、取代或未取代的C6~C60的芳基、取代或未取代的C3~C60的杂芳基、氰基或者它们之间的组合;Ar 1、Ar 2不同时为H,Ar 1、Ar 2不同时为C1~C12的烷基,Ar 1、Ar 2不同时为C1~C12的烷氧基;
    上述取代或未取代的各基团的取代,为被选自卤素、硝基、氰基、C6~C60的芳基、C3~C60的杂芳基、C1~C30的烷基、C1~C30的烷氧基、C6~C60的芳氧基、氨基、C1~C30硅烷基、C6~C60芳基氨基、C3~C60杂芳基氨基中的一种或者至少两种的组合以上的基团所取代。
  2. 根据权利要求1所述的有机化合物,其特征在于,其为式(II)所示的结构:
    Figure PCTCN2021122755-appb-100002
    R 3~R 6各自独立的为H、卤素、氰基、硝基、羟基、C1~C12的烷基、C1~C12的烷氧基、取代或未取代的C6~C60的芳基、取代或未取代的C3~C60的杂芳基;R 3~R 6之间可以连接形成脂肪族环或芳香族环,
    L 1为单键、m+1价的取代或未取代的C6~C30的芳基残基,m+1价的取代或未取代的C3~C30的杂芳基残基;L 2为单键、n+1价的取代或未取代的C6~C30的芳基残基,n+1价的取代或未取代的C3~C30的杂芳基残基;
    Ar 1、Ar 2、m、n与权利要求1表示的意义相同,上述取代或未取代的各基团的取代,为被选自卤素、硝基、氰基、C6~C60的芳基、C3~C60的杂芳基、C1~C30的烷基、C1~C30的烷氧基、C6~C60的芳氧基、氨基、C1~C30硅烷基、C6~C60芳基氨基、C3~C60杂芳基氨基中的一种或者至少两种的组合以上的基团所取代。
  3. 根据权利要求1或2所述的有机化合物,其特征在于,Ar 1和Ar 2选自取代或未取代的下述基团中的一个或两个或多个下述基团的组合:
    Figure PCTCN2021122755-appb-100003
    Figure PCTCN2021122755-appb-100004
    其中,波浪线标记处代表基团与L 1或L 2的连接键;
    上述基团可以被选自卤素、硝基、氰基、C6~C60的芳基、C3~C60的杂芳基、C1~C30的烷基、C1~C30的烷氧基、C6~C60的芳氧基、氨基、C1~C30硅烷基、C6~C60芳基氨基、C3~C60杂芳基氨基中的一种或者至少两种的组合以上的基团所取代。
  4. 根据权利要求1~3中任一项所述的有机化合物,其特征在于,Ar 1和Ar 2中至少一个为缺电子基团。
  5. 根据权利要求1~4中任一项所述的有机化合物,其特征在于,其为下述通式(III-1)-(III-8)表示的结构:
    Figure PCTCN2021122755-appb-100005
    式中,Y为C、N、O或者S;X为单键、C、N、O或者S;Z 1~Z 6各自独立的为N或CR,
    R、R 7~R 10为选自卤素、硝基、氰基、C6~C60的芳基、C3~C60的杂芳基、C1~C30的烷基、C1~C30的烷氧基、C6~C60的芳氧基、氨基、C1~C30硅烷基、C6~C60芳基氨基、C3~C60杂芳基氨基中的一种或者至少两种的组合,R 3-R 6与权利要求2中表达的意思相同。
  6. 根据权利要求1~5中任一项所述的有机化合物,其中,L 1和L 2不同时为单键。
  7. 根据权利要求1~6中任一项所述的有机化合物,其特征在于,
    L 1为单键、m+1价的取代或未取代的苯基残基、m+1价的取代或未取代的萘基残基、m+1价的取代或未取代的蒽基残基、m+1价的取代或未取代的菲基残基、m+1价的取代或未取代的芘基残基;
    L 2为单键、n+1价的取代或未取代的苯基残基、n+1价的取代或未取代的萘基残基、n+1价的取代或未取代的蒽基残基、n+1价的取代或未取代的菲基残基、n+1价的取代或未取代的芘基残基。
  8. 根据权利要求1所述的有机化合物,其特征在于,所述有机化合物具有C1-C295所示的结构:
    Figure PCTCN2021122755-appb-100006
    Figure PCTCN2021122755-appb-100007
    Figure PCTCN2021122755-appb-100008
    Figure PCTCN2021122755-appb-100009
    Figure PCTCN2021122755-appb-100010
    Figure PCTCN2021122755-appb-100011
    Figure PCTCN2021122755-appb-100012
    Figure PCTCN2021122755-appb-100013
    Figure PCTCN2021122755-appb-100014
    Figure PCTCN2021122755-appb-100015
    Figure PCTCN2021122755-appb-100016
    Figure PCTCN2021122755-appb-100017
    Figure PCTCN2021122755-appb-100018
    Figure PCTCN2021122755-appb-100019
    Figure PCTCN2021122755-appb-100020
  9. 一种有机电致发光材料,其为权利要求1~8中所述的化合物。
  10. 一种空穴阻挡材料,其为权利要求1~8中所述的化合物。
  11. 一种电子传输/注入材料,其为权利要求1~8中所述的化合物。
  12. 权利要求1~8中任一项所述的化合物作为有机电子器件中的功能材料的应用,所述有机电子器件包括:有机电致发光器件、光学传感器、太阳能电池、照明元件、有机薄膜晶体管、有机场效应晶体管、有机薄膜太阳能电池、信息标签、电子人工皮肤片材、片材型扫描器或电子纸。
  13. 一种有机电致发光器件,包括第一电极、第二电极和插入在所述第一电极和第二电极之间的一层或多个发光功能层,其中所述发光功能层中含有权利要求1~8中任一所述的化合物。
  14. 一种有机电致发光器件,包括阳极层、多个发光功能层和阴极层;所述多个发光功能层包括发光层和选自电子注入层、电子传输层、空穴阻挡层中的至少一层,选自所述电子注入层、电子传输层、空穴阻挡层、发光层中的至少一层中含有权利要求1~8中任一项所述的有机化合物。
PCT/CN2021/122755 2020-10-13 2021-10-09 用于发光器件的有机化合物及其应用、有机电致发光器件 WO2022078250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011092633.1A CN112174968B (zh) 2020-10-13 2020-10-13 用于发光器件的有机化合物及其应用、有机电致发光器件
CN202011092633.1 2020-10-13

Publications (1)

Publication Number Publication Date
WO2022078250A1 true WO2022078250A1 (zh) 2022-04-21

Family

ID=73949611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122755 WO2022078250A1 (zh) 2020-10-13 2021-10-09 用于发光器件的有机化合物及其应用、有机电致发光器件

Country Status (2)

Country Link
CN (1) CN112174968B (zh)
WO (1) WO2022078250A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354661B (zh) * 2021-05-18 2023-04-07 陕西莱特光电材料股份有限公司 一种有机化合物及包含其的电子元件和电子装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491227A (zh) * 2001-02-05 2004-04-21 株式会社大V制药工厂 三唑并喹唑啉和吡唑并三唑并嘧啶衍生物、医药组合物、腺苷 a 3受体亲和剂、降眼压剂、预防和治疗青光眼的制剂及降低眼压的方法
CN109906225A (zh) * 2016-10-27 2019-06-18 株式会社斗山 有机化合物及包含其的有机电致发光元件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491227A (zh) * 2001-02-05 2004-04-21 株式会社大V制药工厂 三唑并喹唑啉和吡唑并三唑并嘧啶衍生物、医药组合物、腺苷 a 3受体亲和剂、降眼压剂、预防和治疗青光眼的制剂及降低眼压的方法
CN109906225A (zh) * 2016-10-27 2019-06-18 株式会社斗山 有机化合物及包含其的有机电致发光元件

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BURBIEL JOACHIM C., GHATTAS WADIH, KÜPPERS PETRA, KÖSE MERYEM, LACHER SVENJA, HERZNER ANNA-MARIA, KOMBU RAJAN SUBRAMANIAN, AKKINEP: "2-Amino[1,2,4]triazolo[1,5 -c ]quinazolines and Derived Novel Heterocycles: Syntheses and Structure-Activity Relationships of Potent Adenosine Receptor Antagonists", CHEMMEDCHEM COMMUNICATIONS, vol. 11, no. 20, 19 October 2016 (2016-10-19), DE , pages 2272 - 2286, XP055881576, ISSN: 1860-7179, DOI: 10.1002/cmdc.201600255 *
DA POZZO ELEONORA, LA PIETRA VALERIA, COSIMELLI BARBARA, DA SETTIMO FEDERICO, GIACOMELLI CHIARA, MARINELLI LUCIANA, MARTINI CLAUDI: "p53 Functional Inhibitors Behaving Like Pifithrin-β Counteract the Alzheimer Peptide Non-β-amyloid Component Effects in Human SH-SY5Y Cells", ACS CHEMICAL NEUROSCIENCE, vol. 5, no. 5, 21 May 2014 (2014-05-21), US , pages 390 - 399, XP055920982, ISSN: 1948-7193, DOI: 10.1021/cn4002208 *
DATABASE REGISTRY 17 December 2007 (2007-12-17), ANONYMOUS: "/1 -(C) FILE REGISTRY RN -958388-86-8 REGISTRY ED -Entered STN: 17 Dec 2007 CN -[1,2,4]Triazolo[1,5-c]quinazoline, 5-(3,5-dimethyl-1H-pyrazol-1-yl)-8,9-dimethoxy-2-phenyl- (CA INDEX NAME)", XP055920993, retrieved from STN Database accession no. 958388-86-8 *
DATABASE REGISTRY 2 August 2006 (2006-08-02), ANONYMOUS: "/1 -(C) FILE REGISTRY RN -898127-85-0 REGISTRY ED -Entered STN: 02 Aug 2006 CN -[1,2,4]Triazolo[1,5-c]quinazoline, 2-(2-phenyl-4-quinolinyl)- (CA INDEX NAME)", XP055920984, retrieved from STN Database accession no. 898127-85-0 *
EL-SERWY, WALAA S.; MOHAMED, NEAMA A.; KASSEM, EMAD M. M.; MAHMOUD, KHALED; MOUNIER: "Synthesis, biological evaluation and docking analysis of some novel quinazolin derivatives as antitumor agents", IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH, vol. 15, no. 1, 1 January 2016 (2016-01-01), IR , pages 179 - 196, XP009532866, ISSN: 1735-0328 *
EL-SHERIEF H A ET AL: "Quinazoline derivatives from 2-phenyl-4-quinazolinylhydrazine", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 57., no. 04., 1 January 1984 (1984-01-01), JP , pages 1138 - 1142., XP002078985, ISSN: 0009-2673 *
KHOLODNYAK S V, SCHABELNYK K P, YU O, VOSKOBOYNIK G G, BEREST S I, KOVALENKO: "5,6-DihyDro-[1,2,4]triazolo[1,5-с]quinazolines. Message 1. Features oF interactions between [2-(3-aryl-1H-1,2,4-triazole-5-yl)phenyl]aMines, aliphatic anD aroMatic alDehyDes", JOURNAL OF ORGANIC AND PHARMACEUTICAL CHEMISTRY, vol. 13, no. 4, 1 January 2015 (2015-01-01), pages 50 - 56, XP055920978 *
KHOLODNYAK S V, SCHABELNYK K P, YU O, VOSKOBOYNIK O M, ANTYPENKO G G, BEREST S I, KOVALENKO: "5,6-DIHYDRO-[1,2,4]TRIAZOLO[1,5-с]QUINAZOLINES. MESSAGE 2. [5+1]-CYCLOCONDENSATION OF [2-(3-ARYL-1H-1,2,4-TRIAZOL- 5-YL)PHENYL]AMINES WITH ALIPHATIC AND AROMATIC KETONES", JOURNAL OF ORGANIC AND PHARMACEUTICAL CHEMISTRY, vol. 14, no. 1, 1 January 2016 (2016-01-01), pages 24 - 29, XP055920989 *
KORSHAK V V, ET AL.: "A GENERAL METHOD OF THE SYNTHESIS OF "STEP-LADDER" POLYMERS", MAKROMOL. CHEM AND PHYSICS, vol. 176, no. 05, 1 January 1975 (1975-01-01), pages 1233 - 1271, XP000952391, ISSN: 0025-116X, DOI: 10.1002/macp.1975.021760504 *
M. A. LIKHATE ET AL.: "Triazoloquinazolines. Part 3. Synthesis and biological activity of some 2-aryl-3-acetyl-2, 3-dihydrotriazoloquinazolines", 《JOURNAL OF THE INDIAN CHEMICAL SOCIETY》, vol. 69, no. 10, 31 October 1992 (1992-10-31) *
OKAMURA TAKASHI; KUROGI YASUHISA; HASHIMOTO KINJI; SATO SEIJI; NISHIKAWA HIROSHI; KIRYU KIMIO; NAGAO YOSHIMITSU: "Structure–activity relationships of adenosine A3receptor ligands: new potential therapy for the treatment of glaucoma", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 14, no. 14, 1 January 1900 (1900-01-01), AMSTERDAM, NL , pages 3775 - 3779, XP029594784, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2004.04.099 *
SERGIY I. KOVALENKO: "Synthesis and Anticancer Activity of 2-(Alkyl-, Alkaryl-, Aryl-, Hetaryl-)[1,2,4]triazolo[1,5-c]quinazolines", SCIENTIA PHARMACEUTICA, vol. 81, no. 2, 1 January 2013 (2013-01-01), Austria , pages 359 - 391, XP055658898, ISSN: 0036-8709, DOI: 10.3797/scipharm.1211-08 *

Also Published As

Publication number Publication date
CN112174968B (zh) 2024-05-14
CN112174968A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
EP2799515B1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, and display device including organic light-emitting diode
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
CN113788852A (zh) 一种发光材料及其应用以及包含其的有机电致发光器件
WO2021082504A1 (zh) 含氮化合物、电子元件和电子装置
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
EP3023425B1 (en) Compound, organic optoelectronic element comprising same, and display device
CN115867558A (zh) 多环芳香族化合物
CN112442037B (zh) 一种发光材料及其应用
WO2023185078A1 (zh) 有机化合物和电子元件及电子装置
WO2022078250A1 (zh) 用于发光器件的有机化合物及其应用、有机电致发光器件
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
CN113421980B (zh) 有机电致发光器件及包含其的电子装置
CN115197251A (zh) 一种有机化合物及其应用
CN112745301B (zh) 有机化合物及含有其的有机电致发光器件
CN115703747A (zh) 用于发光器件的具有螺芴结构的有机化合物、有机电致发光器件
CN114171692A (zh) 一种有机电致发光器件及显示装置
CN115160342A (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN114105785A (zh) 用于有机电致发光器件的有机化合物及其应用、有机电致发光器件
CN114685411A (zh) 有机化合物及其应用、有机电致发光器件
CN112661760B (zh) 用于有机电子材料的化合物及含有其的有机电致发光器件
WO2023185039A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2024016687A1 (zh) 含氮化合物和电子元件及电子装置
CN112778300B (zh) 有机化合物及含有其的有机电致发光器件
WO2024114085A1 (zh) 三芳基胺型有机化合物及其应用、有机电致发光器件
CN115703797A (zh) 具有大共轭结构的有机化合物、有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879295

Country of ref document: EP

Kind code of ref document: A1