WO2023284440A1 - 锂电池浆料的回收方法及用于回收其的设备 - Google Patents

锂电池浆料的回收方法及用于回收其的设备 Download PDF

Info

Publication number
WO2023284440A1
WO2023284440A1 PCT/CN2022/097187 CN2022097187W WO2023284440A1 WO 2023284440 A1 WO2023284440 A1 WO 2023284440A1 CN 2022097187 W CN2022097187 W CN 2022097187W WO 2023284440 A1 WO2023284440 A1 WO 2023284440A1
Authority
WO
WIPO (PCT)
Prior art keywords
nmp
slurry
lithium battery
spray drying
recovery method
Prior art date
Application number
PCT/CN2022/097187
Other languages
English (en)
French (fr)
Inventor
宁培超
李长东
周游
李强
阮丁山
陈嵩
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to MA61495A priority Critical patent/MA61495A1/fr
Priority to US18/270,471 priority patent/US11894531B2/en
Priority to ES202390091A priority patent/ES2957794A1/es
Priority to GB2314824.0A priority patent/GB2619867A/en
Priority to DE112022000225.5T priority patent/DE112022000225T5/de
Publication of WO2023284440A1 publication Critical patent/WO2023284440A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/18Evaporating by spraying to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of battery material recycling, and in particular relates to a method for recycling waste lithium battery slurry containing NMP and equipment for recycling it.
  • the production process of lithium batteries is divided into three major sections, one is pole piece production, the other is cell production, and the third is battery assembly.
  • the positive electrode material needs to be bonded by PVDF to bond with the aluminum foil to form a pole piece, but PVDF is a solid powder, it is necessary to dissolve PVDF with NMP and stir it evenly with the positive electrode material to form a stable electrode sheet.
  • the slurry cannot be coated normally.
  • the slurry contains a large amount of valuable metals such as Li, Ni, Co, Mn, and contains about 20 wt% of N-methylpyrrolidone (NMP), it is very valuable for recycling from an economic point of view.
  • NMP N-methylpyrrolidone
  • metal raw materials The price of NMP and NMP is rising year by year, and the recycling of slurry is particularly important for controlling the cost of lithium battery raw materials.
  • There is a lot of agglomeration in the waste lithium battery slurry, and some plastic bags, steel nails, wire gloves, disposable gloves, and rags will be mixed in when the pole piece is wiped and repaired during the production process of the coating machine and related machines.
  • the core technology of NMP slurry recovery is the solid-liquid separation of slurry, mainly including centrifugal separation, flocculation filter separation and other recovery methods.
  • the related technology discloses a recycling method for lithium battery positive electrode waste slurry, which uses a centrifuge Solid-liquid separation, but the efficiency is low, the processing capacity is small, and the centrifugation effect is poor, which is not conducive to industrial application.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a recovery method of lithium battery slurry and equipment for recovery thereof, which can improve the treatment efficiency of waste lithium battery slurry.
  • a kind of recovery method of lithium battery slurry comprising the following steps:
  • the pretreated lithium battery slurry is subjected to centrifugal spray drying to separate the solid phase and the solvent.
  • the pretreatment comprises ball milling.
  • the ball-to-material ratio of the ball mill is (5-50):1, and the rotation speed is 300-1000 r/min. Further, the grinding concentration of the ball mill is 60-80%, the time of the ball mill is 10-30min, and the filling rate is 30-45%.
  • slurry crushing is performed before the ball milling.
  • the process of first crushing and then ball milling is adopted to solve the problem of difficult handling of slurry caking materials.
  • the crushing process uses a twin-shaft crusher, and the working parameters of the twin-shaft crusher are: knife distance 10-50mm, rotation speed 100-500r/min.
  • the mesh size of the sieving is 100-300 mesh.
  • Sieving can remove foreign objects such as plastic bags, steel nails, thread gloves, disposable gloves, and rags.
  • the recovery method further includes: before the centrifugal spray drying, treating the pretreated lithium battery slurry Perform pH adjustment.
  • the pH adjustment is to adjust the pH to 7.0-8.0.
  • the oxide is unstable and easy to generate hydroxyl, that is, 5-HNMP and NHMP; and it is more likely to cause ring-opening hydrolysis of 5-HNMP and NHMP in an alkaline environment to generate N-methyl-4-hydroxyaminobutyric acid and N-hydroxy Methyl-4-aminobutyric acid, the last three kinds of NMP hydrolysis products can be polymerized to form amides or ester polymers.
  • the drying temperature of the centrifugal spray drying is 150-300°C; preferably, the feed rate is 800-1500L/h; preferably, the centrifugal speed is 8000-25000r/min.
  • the recovery method further includes the step of: condensing and purifying the gas phase generated by the centrifugal spray drying. Further, the purification is rectification.
  • the recovery method further includes the step of: calcining the solid phase.
  • the solid phase is positive electrode material powder, and the positive electrode material powder can be used as raw material for leaching after calcination, and the organic matter inside can be removed by calcination.
  • the calcination temperature is 600-1000° C.
  • the calcination time is 1-2 h.
  • the recovery method is carried out in the following steps:
  • the present invention also provides a centrifugal spray drying system for the recovery method, comprising a spray chamber, a cyclone separator, a condenser, a condensate storage tank and a rectification tower, the upper part of the spray chamber is provided with a centrifugal nozzle, two A hot air inlet and a hot air outlet are respectively provided on the sides, and the hot air outlet is connected to the inlet of the cyclone separator, and the cyclone separator, the condenser, the condensate storage tank and the rectification tower are connected in sequence.
  • the slurry When the system is running, the slurry is centrifuged at high speed through the centrifugal nozzle, and the NMP and water in the slurry will evaporate quickly and instantaneously under the action of variable temperature hot air, and the solid phase and gas phase will enter the cyclone separator for separation, and the gas phase will pass through
  • the condenser is condensed to obtain NMP condensate temporarily stored in the condensate storage tank, and the condensate is purified through a rectification tower to obtain pure NMP organic phase and water phase.
  • a bag filter is also connected between the cyclone separator and the condenser. The powder with less density will enter the bag filter for absorption.
  • the present invention adopts the centrifugal spray process to effectively solve these problems, and the centrifugal spray can completely remove the positive electrode material and NMP High-efficiency separation, increased processing capacity, continuous feeding and discharging, and expanded processing scale; this process does not introduce impurity elements, improves the purity of NMP, is simple to operate, low in processing costs, and reduces environmental pollution. The economic benefit is very promising for industrial application.
  • the centrifugal spray drying system of the present invention is improved on the original centrifugal spray drying equipment, and is designed in combination with centrifugal spray drying and NMP condensation recovery technology, so that NMP can be directly recovered after the positive electrode material and NMP are separated, and the treatment efficiency is high. Realize continuous production.
  • Fig. 1 is the overall structure schematic diagram of the centrifugal spray drying system of embodiment 1 of the present invention
  • Fig. 2 is the SEM topography figure of the solid drying material of embodiment 2 of the present invention.
  • Fig. 3 is the FT-IR diagram of the NMP condensate in Example 3 of the present invention.
  • a centrifugal spray drying system as shown in Figure 1, consists of a spray chamber 100, two cyclone separators 200, a bag filter 300, a condenser 400, a condensate storage tank 500, a rectification tower 600, and a water phase collector 700 and NMP collector 800, the upper part of spray chamber 100 is provided with centrifugal nozzle 110, the two sides are respectively provided with hot air inlet 120 and hot air outlet 130, hot air outlet 130 is connected with the inlet of cyclone separator 200, cyclone separator 200, cloth bag
  • the dust collector 300, the condenser 400, the condensate storage tank 500 and the rectification tower 600 are connected in sequence.
  • a kind of recovery method that contains NMP waste lithium battery slurry, concrete steps are as follows:
  • S1 Take 1000L NMP waste slurry and use a dual-shaft crusher with a knife distance of 50mm for coarse crushing at a speed of 100r/min. Take the NMP waste slurry and put it in a ball mill with a speed of 300r/min and a ball-to-material ratio of 15:1. The grinding concentration is 60%, the filling rate is 30%, and the ball milling is carried out for 15 minutes;
  • a centrifugal spray drying system consisting of a spray chamber 100, two cyclone separators 200, a bag filter 300, a condenser 400, a condensate storage tank 500, a rectification tower 600, an aqueous phase collector 700 and an NMP collector 800
  • the upper part of the spray chamber 100 is provided with a centrifugal nozzle 110, and the two sides are respectively provided with a hot air inlet 120 and a hot air outlet 130, and the hot air outlet 130 is connected with the inlet of the cyclone separator 200, the cyclone separator 200, the bag filter 300, the condensation
  • the device 400, the condensate storage tank 500 and the rectification column 600 are connected in sequence.
  • a kind of recovery method that contains NMP waste lithium battery slurry, concrete steps are as follows:
  • S1 Take 1000L NMP waste slurry and use a dual-shaft crusher with a knife distance of 10mm for coarse crushing at a speed of 500r/min. Take the NMP waste slurry and put it in a ball mill with a speed of 700r/min and a ball-to-material ratio of 5:1. The grinding concentration is 70%, the filling rate is 45%, and the ball milling is carried out for 20 minutes;
  • the NMP condensate obtained by condensation in the condenser is temporarily stored in the condensate storage tank, and the condensate is purified through a rectification tower to obtain pure NMP organic phase and water phase; the obtained solid dry material is calcined at 700°C for 1.5 h, remove the organic matter inside, so that it can be used as raw material for wet process.
  • a centrifugal spray drying system consisting of a spray chamber 100, two cyclone separators 200, a bag filter 300, a condenser 400, a condensate storage tank 500, a rectification tower 600, an aqueous phase collector 700 and an NMP collector 800
  • the upper part of the spray chamber 100 is provided with a centrifugal nozzle 110, and the two sides are respectively provided with a hot air inlet 120 and a hot air outlet 130, and the hot air outlet 130 is connected with the inlet of the cyclone separator 200, the cyclone separator 200, the bag filter 300, the condensation
  • the device 400, the condensate storage tank 500 and the rectification column 600 are connected in sequence.
  • a kind of recovery method that contains NMP waste lithium battery slurry, concrete steps are as follows:
  • S1 Take 1000L NMP waste slurry and use a dual-shaft crusher with a knife distance of 30mm for coarse crushing at a speed of 300r/min. Take the NMP waste slurry and put it in a ball mill with a speed of 1000r/min and a ball-to-material ratio of 50:1. The grinding concentration is 80%, the filling rate is 35%, and the ball milling is carried out for 30 minutes;
  • a centrifugal spray drying system consisting of a spray chamber 100, two cyclone separators 200, a bag filter 300, a condenser 400, a condensate storage tank 500, a rectification tower 600, an aqueous phase collector 700 and an NMP collector 800
  • the upper part of the spray chamber 100 is provided with a centrifugal nozzle 110, and the two sides are respectively provided with a hot air inlet 120 and a hot air outlet 130, and the hot air outlet 130 is connected with the inlet of the cyclone separator 200, the cyclone separator 200, the bag filter 300, the condensation
  • the device 400, the condensate storage tank 500 and the rectification column 600 are connected in sequence.
  • a kind of recovery method that contains NMP waste lithium battery slurry, concrete steps are as follows:
  • S1 Take 1000L NMP waste slurry and use a dual-shaft crusher with a knife distance of 50mm for coarse crushing at a speed of 300r/min. Take the NMP waste slurry and put it in a ball mill with a speed of 1000r/min and a ball-to-material ratio of 50:1. The grinding concentration is 80%, the filling rate is 30%, and the ball milling is carried out for 10 minutes;
  • a centrifugal spray drying system consisting of a spray chamber 100, two cyclone separators 200, a bag filter 300, a condenser 400, a condensate storage tank 500, a rectification tower 600, an aqueous phase collector 700 and an NMP collector 800
  • the upper part of the spray chamber 100 is provided with a centrifugal nozzle 110, and the two sides are respectively provided with a hot air inlet 120 and a hot air outlet 130, and the hot air outlet 130 is connected with the inlet of the cyclone separator 200, the cyclone separator 200, the bag filter 300, the condensation
  • the device 400, the condensate storage tank 500 and the rectification column 600 are connected in sequence.
  • a kind of recovery method that contains NMP waste lithium battery slurry, concrete steps are as follows:
  • S1 Take 1000L NMP waste slurry and use a dual-shaft crusher with a knife distance of 15mm for coarse crushing at a speed of 500r/min. Take the NMP waste slurry and put it in a ball mill with a speed of 700r/min and a ball-to-material ratio of 10:1. The grinding concentration is 75%, the filling rate is 45%, and the ball milling is carried out for 30 minutes;
  • Table 1 shows the solid content of the NMP waste slurry, the purity of the NMP condensate, the purity of the NMP organic phase after water removal, and the pH and impurity content of the NMP organic phase in Examples 1-5.
  • the solid content of NMP waste slurry treated by the present invention can reach more than 70%, and the obtained solid is in powder form, indicating that the present invention can process slurry with higher solid content.
  • the higher the solid content the higher the purity of NMP condensate, which can reach 90%, and the impurity content is low, Ni+Co+Mn ⁇ 1ppm, indicating that the recovered NMP only needs to be purified by simple distillation to obtain 99.9 % electronic grade NMP solvent, which also means that the higher the purity of NMP, the lower the subsequent impurity removal pressure, thereby reducing the recovery cost.
  • Fig. 2 is the SEM topography figure of the solid dry material of embodiment 2, can find, its appearance is spherical, and there are flocs on the surface, and this is mainly organic matter and carbon black, can be removed by calcining.
  • Fig. 3 is the infrared spectrogram of the NMP condensate of embodiment 3, it can be seen that the NMP condensate (the legend of "condensate” in the corresponding figure) has characteristic absorption peaks similar to pure NMP, and the more obvious absorption peak is 3400cm- The absorption peak of -OH at about 1 corresponds to the characteristic peak of H 2 O, indicating that the NMP condensate has a small amount of water, which can be removed by a rectification tower.
  • the raw liquid in the figure is untreated waste slurry.

Abstract

一种锂电池浆料的回收方法,该方法是将锂电池浆料进行预处理,再将预处理后的锂电池浆料进行离心喷雾干燥,分离固相和溶剂。一种用于回收锂电池浆料的设备,为离心喷雾干燥系统,其包括喷雾室(100)、旋风分离器(200)、冷凝器(400)、冷凝液储罐(500)和精馏塔(600);该系统在原有的离心喷雾干燥设备上进行改进,结合离心喷雾干燥和NMP冷凝回收的工艺进行设计,使得正极材料和NMP分离后可以直接回收NMP。

Description

锂电池浆料的回收方法及用于回收其的设备 技术领域
本发明属于电池材料循环利用技术领域,具体涉及一种含NMP废锂电池浆料的回收方法及用于回收其的设备。
背景技术
锂电池生产工艺流程分为三大工段,一是极片制作,二是电芯制作,三是电池组装。其中在第一段工序中,由于正极材料需要通过PVDF的粘结作用才可与铝箔粘结形成极片,但PVDF为固体粉末,故需用NMP将PVDF溶解并与正极材料搅拌均匀才能形成稳定的悬浊液,但由于在制浆、涂布过程中,环境、异物、粘度的变化引起浆料的失效,从而导致浆料无法正常进行涂布。由于浆料中含有大量的Li、Ni、Co、Mn等有价金属,且含有大约20wt%的N-甲基吡咯烷酮(NMP),从经济的角度来说,非常具有回收价值,近年来金属原料和NMP价格逐年攀升,对浆料进行回收对于锂电池原料成本的控制就显得尤为重要。废锂电池浆料中有较多结块现象,且在极片制做过程中擦拭、维修涂布机和相关机器,就会混入一些的塑料袋、钢钉、线手套、一次性手套、抹布等异物,这些异物通常会包裹在结块浆料中,很难通过人工将其挑除,且会影响虹吸泵输料,必须靠人工进行填料,这无疑会大大增加处理的成本,而且对环境也有一定的污染性。从环境的角度来看,如果将废锂电池浆料丢弃,则会严重危害环境。NMP浆料回收不止可以实现锂电行业闭环且保护了环境。
目前,NMP浆料回收的核心技术为浆料的固液分离,主要有离心分离、絮凝压滤分离等回收方法,相关技术公开了一种锂电池正极废弃浆料的回收处理方法,采用离心机固液分离,但效率较低、处理量小,离心效果差,不利于工业化应用。还有相关技术公开了一种锂电池阴极废液的处理方法及其应用,将阴极废液注入处理池中,然后向处理池中加入絮凝剂,搅拌静置,上层清液直接进污水处理,沉淀则硅藻土搅拌均匀,最后对硅藻土浆料进行压滤,得滤液和滤渣,但絮凝压滤工序复杂、容易引入杂质。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种锂电池浆料的回收方法及用于回收其的设备,能够提高废锂电池浆料的处理效率。
根据本发明的一个方面,提出了一种锂电池浆料的回收方法,包括以下步骤:
将锂电池浆料进行预处理;
将所述预处理后的锂电池浆料进行离心喷雾干燥,分离固相和溶剂。
在本发明的一些实施方式中,所述预处理包括球磨。
在本发明的一些实施方式中,所述球磨的球料比为(5-50):1,转速为300-1000r/min。进一步地,所述球磨的磨矿浓度为60-80%,所述球磨的时间为10-30min,充填率为30-45%。
在本发明的一些实施方式中,在所述球磨前,进行浆料破碎处理。采用先破碎后球磨工艺,解决浆料结块料难处理的问题。
在本发明的一些优选的实施方式中,所述破碎处理采用双轴破碎机,所述双轴破碎机的工作参数为:刀距10-50mm,转速100-500r/min。
在本发明的一些实施方式中,在所述球磨后,进行过筛;所述过筛的筛网目数为100-300目。过筛可以去除掉塑料袋、钢钉、线手套、一次性手套、抹布等异物。
在本发明的一些实施方式中,在所述锂电池浆料的溶剂包括NMP的情况下,所述回收方法还包括:在所述离心喷雾干燥前,对所述预处理后的锂电池浆料进行pH调节。
在本发明的一些实施方式中,所述pH调节为调节pH至7.0-8.0。进一步地,所述pH调节所用的pH调节剂为0.1-0.5mol/L硫酸。调节pH可防止NMP水解,未调节pH之前,pH约为12.5,由于在碱性环境下,NMP中与N相邻的三个C都有可能被活化,其中C=O中的C活化后可直接造成NMP开环水解,生成N-甲基-4-氨基丁酸;若与N相邻的亚甲基和甲基的C被活化,先会发生氧化反应,生成过氧化物,由于该过氧化物不稳定,易生成羟基,即生成5-HNMP和NHMP;并且碱性环境下更容易造成5-HNMP和NHMP开环水解,生成N-甲基-4-羟基氨基丁酸和N-羟甲基-4-氨基丁酸,最后这三 种NMP水解产物可发生聚合反应生成酰胺类或酯类聚合物。
在本发明的一些实施方式中,所述离心喷雾干燥的干燥温度为150-300℃;优选的,进料速度为800-1500L/h;优选的,离心转速为8000-25000r/min。
在本发明的一些实施方式中,所述回收方法还包括步骤:对所述离心喷雾干燥产生的气相进行冷凝和提纯。进一步地,所述提纯为精馏。
在本发明的一些实施方式中,所述回收方法还包括步骤:对所述固相进行煅烧。固相为正极材料粉末,正极材料粉末经过煅烧后可用作浸出的原料,煅烧可去除掉里面的有机物。
在本发明的一些优选的实施方式中,所述煅烧的温度为600-1000℃,煅烧的时间为1-2h。
在本发明的一些优选的实施方式中,所述回收方法按以下步骤进行:
S1:将含NMP的锂电池浆料进行粗破,再球磨,得到球磨后浆料;
S2:将所述球磨后浆料过筛,取筛下物进行pH调节;
S3:将调节pH后的浆料进行离心喷雾干燥,得到固体粉末,气相NMP进行冷凝和提纯。
本发明还提供一种用于所述回收方法的离心喷雾干燥系统,包括喷雾室、旋风分离器、冷凝器、冷凝液储罐和精馏塔,所述喷雾室的上部设有离心喷嘴,两侧分别设有热风入口和热风出口,所述热风出口与所述旋风分离器的入口连接,所述旋风分离器、冷凝器、冷凝液储罐和精馏塔依次连接。该系统运行时,浆料通过离心喷嘴进行高速离心,在可变温度热空气的作用下浆料中的NMP和水会快速瞬间蒸发,固相和气相会进入旋风分离器实现分离,气相会经过冷凝器进行冷凝得到NMP冷凝液暂存在冷凝液储罐中,冷凝液经过精馏塔进行提纯,得到纯净的NMP有机相和水相。
在本发明的一些实施方式中,所述旋风分离器和冷凝器之间还连接有布袋收尘器。密度较小的粉料会进入布袋除尘器进行吸收。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、针对目前主流工艺离心-煅烧和絮凝沉淀工艺存在离心效率低、絮凝压滤工序复杂、引入杂质等不足,本发明采用离心喷雾工艺能有效解决这些问题,离心喷雾可将正极材料和NMP完全高效分离,增加处理量,能够实现连续进料出料,扩大处理规模;该过程不引入杂质元素,提高了NMP纯度,操作简单,处理成本低,同时减少了对环境的污染,可以创造出巨大的经济效益,非常具有工业化应用前景。
2、本发明的离心喷雾干燥系统在原有的离心喷雾干燥设备上进行改进,结合离心喷雾干燥和NMP冷凝回收的工艺进行设计,使得正极材料和NMP分离后可以直接回收NMP,处理效率高,可实现连续化生产。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的离心喷雾干燥系统的整体结构示意图;
图2为本发明实施例2的固体干燥料的SEM形貌图;
图3为本发明实施例3的NMP冷凝液的FT-IR图。
附图标记:喷雾室100、离心喷嘴110、热风入口120、热风出口130、旋风分离器200、布袋收尘器300、冷凝器400、冷凝液储罐500、精馏塔600、水相收集器700、NMP收集器800。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种离心喷雾干燥系统,如图1所示,由喷雾室100、两个旋风分离器200、布袋收尘器300、冷凝器400、冷凝液储罐500、精馏塔600、水相收集器700和NMP收集器800组成,喷雾室100的上部设有离心喷嘴110,两侧分别设有热风入口120和热风出 口130,热风出口130与旋风分离器200的入口连接,旋风分离器200、布袋收尘器300、冷凝器400、冷凝液储罐500和精馏塔600依次连接。
一种含NMP废锂电池浆料的回收方法,具体步骤如下:
S1:取1000L NMP废浆料用刀距为50mm的双轴破碎机进行粗破,转速为100r/min,取NMP废浆料放于球磨机中以转速300r/min、球料比15:1、磨矿浓度60%、充填率为30%进行球磨15min;
S2:将球磨后的浆料过100目筛网,去除掉异物,用0.3mol/L稀硫酸将浆料pH调节至7.0左右;
S3:将调节好pH的浆料泵入离心喷雾干燥系统中,控制系统参数:热风入口温度150℃、进料速度800L/h、离心转速8000r/min、热风出口温度150℃,浆料通过离心喷嘴进行高速离心,在热空气的作用下浆料中的NMP和水会快速瞬间蒸发,固相和气相进入两级旋风分离器实现分离,密度较小的粉料进入布袋除尘器进行吸收,气相经过冷凝器进行冷凝得到NMP冷凝液暂存在冷凝液储罐中,冷凝液经过精馏塔进行提纯,得到纯净的NMP有机相和水相;将得到的固体干燥料在空气气氛下1000℃煅烧1h,去除掉里面的有机物,从而可用作湿法工艺的原料。
实施例2
一种离心喷雾干燥系统,由喷雾室100、两个旋风分离器200、布袋收尘器300、冷凝器400、冷凝液储罐500、精馏塔600、水相收集器700和NMP收集器800组成,喷雾室100的上部设有离心喷嘴110,两侧分别设有热风入口120和热风出口130,热风出口130与旋风分离器200的入口连接,旋风分离器200、布袋收尘器300、冷凝器400、冷凝液储罐500和精馏塔600依次连接。
一种含NMP废锂电池浆料的回收方法,具体步骤如下:
S1:取1000L NMP废浆料用刀距为10mm的双轴破碎机进行粗破,转速为500r/min,取NMP废浆料放于球磨机中以转速700r/min、球料比5:1、磨矿浓度70%、充填率为45%进行球磨20min;
S2:将球磨后的浆料过200目筛网,去除掉异物,用0.2mol/L稀硫酸将浆料pH调节至7.1左右;
S3:将调节好pH的浆料泵入离心喷雾干燥系统中,控制系统参数:热风入口温度200℃、进料速度1000L/h、离心转速15000r/min、热风出口温度100℃,浆料通过离心喷嘴进行高速离心,在热空气的作用下浆料中的NMP和水会快速瞬间蒸发,固相和气相进入两级旋风分离器实现分离,密度较小的粉料进入布袋除尘器进行吸收,气相经过冷凝器进行冷凝得到NMP冷凝液暂存在冷凝液储罐中,冷凝液经过精馏塔进行提纯,得到纯净的NMP有机相和水相;将得到的固体干燥料在空气气氛下700℃煅烧1.5h,去除掉里面的有机物,从而可用作湿法工艺的原料。
实施例3
一种离心喷雾干燥系统,由喷雾室100、两个旋风分离器200、布袋收尘器300、冷凝器400、冷凝液储罐500、精馏塔600、水相收集器700和NMP收集器800组成,喷雾室100的上部设有离心喷嘴110,两侧分别设有热风入口120和热风出口130,热风出口130与旋风分离器200的入口连接,旋风分离器200、布袋收尘器300、冷凝器400、冷凝液储罐500和精馏塔600依次连接。
一种含NMP废锂电池浆料的回收方法,具体步骤如下:
S1:取1000L NMP废浆料用刀距为30mm的双轴破碎机进行粗破,转速为300r/min,取NMP废浆料放于球磨机中以转速1000r/min、球料比50:1、磨矿浓度80%、充填率为35%进行球磨30min;
S2:将球磨后的浆料过300目筛网,去除掉异物,用0.1mol/L稀硫酸将浆料pH调节至7.5左右;
S3:将调节好pH的浆料泵入离心喷雾干燥系统中,控制系统参数:热风入口温度300℃、进料速度1500L/h、离心转速18000r/min、热风出口温度150℃,浆料通过离心喷嘴进行高速离心,在热空气的作用下浆料中的NMP和水会快速瞬间蒸发,固相和气相进入两级旋风分离器实现分离,密度较小的粉料进入布袋除尘器进行吸收,气相经过冷凝器进行冷凝得到NMP冷凝液暂存在冷凝液储罐中,冷凝液经过精馏塔进行提纯, 得到纯净的NMP有机相和水相;将得到的固体干燥料在空气气氛下600℃煅烧2h,去除掉里面的有机物,从而可用作湿法工艺的原料。
实施例4
一种离心喷雾干燥系统,由喷雾室100、两个旋风分离器200、布袋收尘器300、冷凝器400、冷凝液储罐500、精馏塔600、水相收集器700和NMP收集器800组成,喷雾室100的上部设有离心喷嘴110,两侧分别设有热风入口120和热风出口130,热风出口130与旋风分离器200的入口连接,旋风分离器200、布袋收尘器300、冷凝器400、冷凝液储罐500和精馏塔600依次连接。
一种含NMP废锂电池浆料的回收方法,具体步骤如下:
S1:取1000L NMP废浆料用刀距为50mm的双轴破碎机进行粗破,转速为300r/min,取NMP废浆料放于球磨机中以转速1000r/min、球料比50:1、磨矿浓度80%、充填率为30%进行球磨10min;
S2:将球磨后的浆料过100目筛网,去除掉异物,用0.5mol/L稀硫酸将浆料pH调节至8.0左右;
S3:将调节好pH的浆料泵入离心喷雾干燥系统中,控制系统参数:热风入口温度200℃、进料速度800L/h、离心转速25000r/min、热风出口温度100℃,浆料通过离心喷嘴进行高速离心,在热空气的作用下浆料中的NMP和水会快速瞬间蒸发,固相和气相进入两级旋风分离器实现分离,密度较小的粉料进入布袋除尘器进行吸收,气相经过冷凝器进行冷凝得到NMP冷凝液暂存在冷凝液储罐中,冷凝液经过精馏塔进行提纯,得到纯净的NMP有机相和水相;将得到的固体干燥料在空气气氛下1000℃煅烧1h,去除掉里面的有机物,从而可用作湿法工艺的原料。
实施例5
一种离心喷雾干燥系统,由喷雾室100、两个旋风分离器200、布袋收尘器300、冷凝器400、冷凝液储罐500、精馏塔600、水相收集器700和NMP收集器800组成,喷雾室100的上部设有离心喷嘴110,两侧分别设有热风入口120和热风出口130,热风出口130与旋风分离器200的入口连接,旋风分离器200、布袋收尘器300、冷凝器400、 冷凝液储罐500和精馏塔600依次连接。
一种含NMP废锂电池浆料的回收方法,具体步骤如下:
S1:取1000L NMP废浆料用刀距为15mm的双轴破碎机进行粗破,转速为500r/min,取NMP废浆料放于球磨机中以转速700r/min、球料比10:1、磨矿浓度75%、充填率为45%进行球磨30min;
S2:将球磨后的浆料过300目筛网,去除掉异物,用0.3mol/L稀硫酸将浆料pH调节至7.0左右;
S3:将调节好pH的浆料泵入离心喷雾干燥系统中,控制系统参数:热风入口温度300℃、进料速度1000L/h、离心转速15000r/min、热风出口温度150℃,浆料通过离心喷嘴进行高速离心,在热空气的作用下浆料中的NMP和水会快速瞬间蒸发,固相和气相进入两级旋风分离器实现分离,密度较小的粉料进入布袋除尘器进行吸收,气相经过冷凝器进行冷凝得到NMP冷凝液暂存在冷凝液储罐中,冷凝液经过精馏塔进行提纯,得到纯净的NMP有机相和水相;将得到的固体干燥料在空气气氛下600℃煅烧1.5h,去除掉里面的有机物,从而可用作湿法工艺的原料。
表1为实施例1-5NMP废浆料的固含量、NMP冷凝液的纯度、除水后NMP有机相的纯度以及NMP有机相的pH和杂质含量。
表1
Figure PCTCN2022097187-appb-000001
从表1可以看出,本发明处理的NMP废浆料固含量可以达到70%以上,并且得到的固体为粉末状,说明本发明可以处理较高固含量的浆料。且可以发现,固含量越高,NMP冷凝液纯度越高,可以达到90%且杂质含量较低,Ni+Co+Mn<1ppm,说明回收的 NMP只需进行简单精馏提纯处理就可获得99.9%以上的电子级NMP溶剂,同时也意味着NMP纯度越高后续除杂压力越小,从而降低了回收成本。
图2为实施例2的固体干燥料的SEM形貌图,可以发现,其形貌为球形,并且表面有絮状物,这主要是有机物和炭黑,可通过煅烧去除。
图3为实施例3的NMP冷凝液的红外光谱图,可以看出NMP冷凝液(对应图中“冷凝液”的图例)具有与纯NMP相似的特征吸收峰,比较明显的吸收峰为3400cm-1左右的-OH的吸收峰,对应于H 2O的特征峰,说明NMP冷凝液有少量的水分,后续可通过精馏塔去除,图中原液为未处理的废浆料。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种锂电池浆料的回收方法,其特征在于,包括以下步骤:
    将锂电池浆料进行预处理;
    将所述预处理后的锂电池浆料进行离心喷雾干燥,分离固相和溶剂。
  2. 根据权利要求1所述的回收方法,其特征在于,所述预处理包括球磨。
  3. 根据权利要求2所述的回收方法,其特征在于,所述球磨的球料比为(5-50):1,转速为300-1000r/min。
  4. 根据权利要求2所述的回收方法,其特征在于,在所述球磨前,进行浆料破碎处理。
  5. 根据权利要求2所述的回收方法,其特征在于,在所述球磨后,进行过筛;所述过筛的筛网目数为100-300目。
  6. 根据权利要求1所述的回收方法,其特征在于,在所述锂电池浆料的溶剂包括NMP的情况下,所述回收方法还包括:在所述离心喷雾干燥前,对所述预处理后的锂电池浆料进行pH调节。
  7. 根据权利要求7所述的回收方法,其特征在于,所述pH调节为调节pH至7.0-8.0。
  8. 根据权利要求1所述的回收方法,其特征在于,所述离心喷雾干燥的干燥温度为150-300℃;优选的,进料速度为800-1500L/h;优选的,离心转速为8000-25000r/min。
  9. 根据权利要求1所述的回收方法,其特征在于,还包括步骤:对所述离心喷雾干燥产生的气相进行冷凝和提纯。
  10. 一种用于权利要求9所述回收方法的离心喷雾干燥系统,其特征在于,包括喷雾室、旋风分离器、冷凝器、冷凝液储罐和精馏塔,所述喷雾室的上部设有离心喷嘴,两侧分别设有热风入口和热风出口,所述热风出口与所述旋风分离器的入口连接,所述旋风分离器、冷凝器、冷凝液储罐和精馏塔依次连接。
PCT/CN2022/097187 2021-07-15 2022-06-06 锂电池浆料的回收方法及用于回收其的设备 WO2023284440A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MA61495A MA61495A1 (fr) 2021-07-15 2022-06-06 Procédé de récupération de suspension épaisse de batterie au lithium et dispositif de récupération de celle-ci
US18/270,471 US11894531B2 (en) 2021-07-15 2022-06-06 Method for recovering lithium battery slurry and device for recovery of same
ES202390091A ES2957794A1 (es) 2021-07-15 2022-06-06 Procedimiento para recuperar suspensión de batería de litio y dispositivo para recuperar el mismo
GB2314824.0A GB2619867A (en) 2021-07-15 2022-06-06 Method for recovering lithium battery slurry and device for recovery of same
DE112022000225.5T DE112022000225T5 (de) 2021-07-15 2022-06-06 Verfahren zur rückgewinnung von lithiumbatterieaufschwämmungen und vorrichtung zur rückgewinnung derselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110799471.3A CN113648670B (zh) 2021-07-15 2021-07-15 锂电池浆料的回收方法及用于回收其的设备
CN202110799471.3 2021-07-15

Publications (1)

Publication Number Publication Date
WO2023284440A1 true WO2023284440A1 (zh) 2023-01-19

Family

ID=78489388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097187 WO2023284440A1 (zh) 2021-07-15 2022-06-06 锂电池浆料的回收方法及用于回收其的设备

Country Status (7)

Country Link
US (1) US11894531B2 (zh)
CN (1) CN113648670B (zh)
DE (1) DE112022000225T5 (zh)
ES (1) ES2957794A1 (zh)
GB (1) GB2619867A (zh)
MA (1) MA61495A1 (zh)
WO (1) WO2023284440A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540602B (zh) * 2021-06-22 2023-02-14 广东邦普循环科技有限公司 一种报废正极浆料的处理方法和应用
CN113648670B (zh) * 2021-07-15 2023-03-10 广东邦普循环科技有限公司 锂电池浆料的回收方法及用于回收其的设备
CN114583310B (zh) * 2022-03-08 2024-03-15 荆门亿纬创能锂电池有限公司 一种锂离子电池负极浆料回收再利用的方法
GB202313089D0 (en) 2022-07-21 2023-10-11 Guangdong Brunp Recycling Technology Co Ltd Not published

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105727579A (zh) * 2016-01-28 2016-07-06 苏州鼎烯聚材纳米科技有限公司 浆料的低成本高效率超临界喷雾干燥方法及设备
CN106390495A (zh) * 2016-09-25 2017-02-15 黄卫东 一种空气能喷雾干燥设备
CN211169856U (zh) * 2019-09-29 2020-08-04 南通百川新材料有限公司 一种废旧磷酸铁锂电池回收利用系统
CN111740079A (zh) * 2020-06-10 2020-10-02 包头昊明稀土新电源科技有限公司 超低自放电极片的制备方法
CN113648670A (zh) * 2021-07-15 2021-11-16 广东邦普循环科技有限公司 锂电池浆料的回收方法及用于回收其的设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5859332B2 (ja) * 2011-02-15 2016-02-10 住友化学株式会社 電池廃材からの活物質の回収方法
CN103151525B (zh) * 2013-03-21 2015-04-22 浙江美思锂电科技有限公司 一种磷酸铁锂的全自动生产工艺及其设备
CN107994286A (zh) * 2017-12-07 2018-05-04 北京工业大学 一种汽车废旧动力电池正极材料的回收及再生的工艺方法
CN109626350B (zh) * 2019-02-25 2020-12-22 中钢集团南京新材料研究院有限公司 一种废旧磷酸铁锂电池正极片制备电池级磷酸铁的方法
CN111129636A (zh) * 2019-12-31 2020-05-08 深圳清华大学研究院 废旧磷酸铁锂电池正极材料的再生方法
CN111180820B (zh) * 2020-01-04 2021-10-12 浙江大学 锂离子电池原装材料回收和用于再造电池的方法
CN111977704A (zh) * 2020-07-27 2020-11-24 昆明理工大学 一种废旧三元锂离子电池正极材料的快速再生方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105727579A (zh) * 2016-01-28 2016-07-06 苏州鼎烯聚材纳米科技有限公司 浆料的低成本高效率超临界喷雾干燥方法及设备
CN106390495A (zh) * 2016-09-25 2017-02-15 黄卫东 一种空气能喷雾干燥设备
CN211169856U (zh) * 2019-09-29 2020-08-04 南通百川新材料有限公司 一种废旧磷酸铁锂电池回收利用系统
CN111740079A (zh) * 2020-06-10 2020-10-02 包头昊明稀土新电源科技有限公司 超低自放电极片的制备方法
CN113648670A (zh) * 2021-07-15 2021-11-16 广东邦普循环科技有限公司 锂电池浆料的回收方法及用于回收其的设备

Also Published As

Publication number Publication date
CN113648670A (zh) 2021-11-16
US11894531B2 (en) 2024-02-06
GB202314824D0 (en) 2023-11-08
US20230395888A1 (en) 2023-12-07
CN113648670B (zh) 2023-03-10
GB2619867A (en) 2023-12-20
DE112022000225T5 (de) 2023-08-24
MA61495A1 (fr) 2023-11-30
ES2957794A1 (es) 2024-01-25

Similar Documents

Publication Publication Date Title
WO2023284440A1 (zh) 锂电池浆料的回收方法及用于回收其的设备
CN108963371B (zh) 一种从废旧锂离子电池中回收有价金属的方法
CN106587142B (zh) 一种利用废铅酸蓄电池铅膏制备4bs的方法
CN110635191A (zh) 一种废旧动力锂电池全组分清洁回收方法
AU2021103810A4 (en) Device and method for integrated recycling and regeneration of full components of graphite anode of waste lithium battery
CN104944665A (zh) 一种盐酸酸洗废液综合资源化处理装置及方法
CN111088430A (zh) 一种锂电池正极废弃浆料的回收处理方法
CN108046302B (zh) 一种电石渣生产高纯熟石灰的方法
CN113540602B (zh) 一种报废正极浆料的处理方法和应用
CN114349030B (zh) 一种磷酸铁锂废旧正极片的综合湿法回收利用方法
CN110838601A (zh) 失效锂离子电池正极活性材料的干法修复方法及修复得到的材料
CN106916956A (zh) 一种溶析结晶法回收磷酸铁锂废料中有价金属并再利用的方法
CN111392718A (zh) 一种退役锂电池负极材料再利用方法
CN115818613B (zh) 以废弃磷酸铁锂制备碳包覆的氟磷酸铁钠的方法及其应用
CN109821857A (zh) 一种电解锰渣无害化处理方法及其装置
CN114614133A (zh) 一种槟榔渣和废旧正极材料的联合处理方法
AU2021105816A4 (en) A Reclaiming Method For Cathode Materials Of Retired Lithium-Ion Batteries
CN111455176B (zh) 一种废旧钴酸锂正极材料的回收方法
WO2024055518A1 (zh) 一种从锂离子电池电解液中回收锂的方法
CN115149140B (zh) 一种从废旧磷酸铁锂电池中回收铁和锂的方法
CN115663326A (zh) 一种分离极片与电池粉的方法以及动力电池定向循环方法
CN111170359A (zh) 一种脱硫铅制备红丹的装置及其工艺
CN115295911A (zh) 一种三元正极废浆料综合回收的方法
WO2023005429A1 (zh) 一种废锂电池浆料的回收方法
CN104164568A (zh) 回收废旧锂离子电池中金属元素的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P2300249

Country of ref document: HU

ENP Entry into the national phase

Ref document number: 202314824

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220606

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/014489

Country of ref document: MX