WO2023005429A1 - 一种废锂电池浆料的回收方法 - Google Patents

一种废锂电池浆料的回收方法 Download PDF

Info

Publication number
WO2023005429A1
WO2023005429A1 PCT/CN2022/097175 CN2022097175W WO2023005429A1 WO 2023005429 A1 WO2023005429 A1 WO 2023005429A1 CN 2022097175 W CN2022097175 W CN 2022097175W WO 2023005429 A1 WO2023005429 A1 WO 2023005429A1
Authority
WO
WIPO (PCT)
Prior art keywords
recovery method
lithium battery
waste lithium
slurry
nmp
Prior art date
Application number
PCT/CN2022/097175
Other languages
English (en)
French (fr)
Inventor
宁培超
李长东
阮丁山
周游
李强
陈嵩
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023005429A1 publication Critical patent/WO2023005429A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of battery material recycling, and in particular relates to a recycling method for waste lithium battery slurry.
  • lithium-ion batteries Due to the advantages of high energy density, high voltage platform, and high cycle retention rate, lithium-ion batteries have become the power source of new energy vehicles.
  • the development of lithium batteries and related industries has played a decisive and guarantee role in the development of new energy vehicles.
  • the slurry fails due to changes in the environment, foreign matter, and viscosity during the pulping and coating process, resulting in the slurry not being able to be coated normally.
  • the slurry contains LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.3 Co 0.3 Mn 0.3 O 2 , LiCoO 2 , LiFePO 4 and other cathode materials, N -Methylpyrrolidone (NMP), PVDF, carbon black, etc. If valuable metals and expensive organic solvents can be recovered, it will reduce the production cost of battery manufacturers and protect the environment at the same time.
  • NMP N -Methylpyrrolidone
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a recovery method of waste lithium battery slurry, which can improve the treatment efficiency of battery slurry, the recovery rate of NMP, and reduce the difficulty of NMP slurry treatment, thereby realizing huge economic benefits.
  • a kind of recovery method of waste lithium battery slurry comprising the following steps:
  • step S2 Treat the solid phase obtained in step S1 with low acid and filter to obtain battery powder.
  • Low acid treatment can remove the generated Ca(OH) 2 .
  • step S1 the waste lithium battery slurry is further crushed before being mixed with calcium oxide.
  • the crushing process uses a twin-shaft crusher, the knife distance of the twin-shaft crusher is 10-50 mm, and the rotation speed is 100-500 r/min.
  • step S1 the mass ratio of the waste lithium battery slurry to calcium oxide is 30-100:1.
  • step S1 the pressure of the negative pressure is -0.1-0.06 MPa.
  • the stirring speed is 50-150 r/min; preferably, the stirring time is 30-60 min.
  • step S1 a vacuum paddle agitator is used for the stirring, and the filling rate of materials in the vacuum paddle agitator is 60-90%.
  • step S1 the gas phase evaporated during the stirring process is condensed and collected to obtain condensate, the pH of the condensate is adjusted, and the condensate after pH adjustment is purified and recovered.
  • the purification method is rectification.
  • the low acid is one or more of dilute sulfuric acid or dilute hydrochloric acid; the concentration of the low acid is 0.1-0.5 mol/L.
  • the battery powder in step S2, is also subjected to high-acid leaching to obtain leachate and leach residue, and then the leachate is subjected to impurity removal and precipitation treatment, wherein the leach residue is carbon black.
  • the concentration of the high acid is 8-13 mol/L.
  • the reagent used for the removal of impurities is NaF, and the amount of NaF used is 2.1-2.3 times the amount of Ca 2+ substances in the leaching solution.
  • the precipitation treatment is to add NaOH solution to the impurity-removed leaching solution; preferably, the concentration of the NaOH solution is 3-8 mol/L. NaOH solution was added as a precipitating agent to realize the precipitation of Ni, Co and Mn.
  • the recovery method is carried out using a slurry recovery system
  • the slurry recovery system includes a vacuum paddle mixer, a cyclone separator, a bag filter, a condenser, and a liquid storage system connected in sequence.
  • the vacuum paddle mixer is provided with paddles
  • the top of the vacuum paddle mixer is provided with a slurry feeding port, a calcium oxide feeding port and a gas phase outlet, and the cyclone separator and the gas phase
  • the outlet is connected
  • the bottom of the vacuum paddle mixer is provided with a discharge port
  • the discharge port is connected with a screw feeder
  • the bottom of the screw feeder is provided with an acid leaching tank, an impurity removal tank and a Sedimentation tank.
  • the present invention uses a large amount of heat released by the reaction of calcium oxide and water to provide conditions for the evaporation of NMP and water, and realizes evaporation of NMP and water at a low boiling point through negative pressure vacuum evaporation, NMP can be recovered through condensation and purification, and the solid slag
  • the positive electrode material can be regenerated by removing impurities and precipitating directly. Since this method does not need to use an external heat source to heat the slurry, the energy consumption is reduced to a certain extent, and the method is simple and efficient, reducing the The pollution to the environment has a certain industrial application prospect.
  • Fig. 1 is the overall structural representation of the slurry recovery system of the present invention
  • Fig. 2 is the XRD figure of solid phase before and after evaporation of embodiment 2 of the present invention
  • Fig. 3 is the SEM picture of the solid phase before the evaporation of Example 3 of the present invention.
  • Fig. 4 is the SEM picture of the solid phase after evaporation of Example 3 of the present invention.
  • a kind of recovery method of waste lithium battery slurry adopts the slurry recovery system shown in Figure 1 to carry out, and concrete process is:
  • the evaporated gas phase is passed through a cyclone dust collector and a bag filter to remove the battery powder in the gas phase, and then the NMP and water are condensed through the condenser, and the condensate is adjusted to a pH of 8.0 with 0.1mol/L dilute sulfuric acid to prevent NMP Hydrolysis, and then further purification treatment through a rectification tower to obtain an NMP organic phase and an aqueous phase, and the NMP organic phase can be directly used as a raw material for preparing pole pieces.
  • a kind of recovery method of waste lithium battery slurry, concrete process is:
  • the evaporated gas phase is passed through a cyclone dust collector and a bag filter to remove the battery powder in the gas phase, and then the NMP and water are condensed through the condenser, and the condensate is adjusted to a pH of 7.5 with 0.3mol/L dilute sulfuric acid to prevent NMP Hydrolysis, and then further purification treatment through a rectification tower to obtain an NMP organic phase and an aqueous phase, and the NMP organic phase can be directly used as a raw material for preparing pole pieces.
  • a kind of recovery method of waste lithium battery slurry, concrete process is:
  • the evaporated gas phase removes the battery powder in the gas phase through a cyclone dust collector and a bag filter, and then condenses NMP and water through a condenser, and the condensate is adjusted to a pH of 7.0 with 0.8mol/L dilute sulfuric acid to prevent NMP Hydrolysis, and then further purification treatment through a rectification tower to obtain an NMP organic phase and an aqueous phase, and the NMP organic phase can be directly used as a raw material for preparing pole pieces.
  • Table 1 shows the experimental data of Examples 1-3, which are the ignition loss rate of solid slag, the metal content of the solution after low-acid treatment, the NMP purity of the condensate, the purity of the NMP organic phase, and the impurity content in the NMP organic phase.
  • the ignition loss rate of solid slag is less than 2.0wt%, indicating that the heat generated by calcium oxide and water fully volatilizes NMP and water. It can be seen from the metal content of the solution after low-acid treatment that the contents of Ca 2+ and Li + are both low, indicating that low-acid can remove Ca(OH) 2 while ensuring less dissolution of Li + . After the condensate is treated in a rectification tower, the NMP is further purified, and the purity of the NMP organic phase can reach more than 98.3 wt%, while the total content of metal impurities is less than 1ppm.
  • Figure 2 is the XRD pattern of the solid phase before and after evaporation in Example 2. It can be found that the main phase before evaporation is LiNiO 2 , and no other miscellaneous peaks are found. The phases are Li 0.79 Ni 1.21 O 2 , Li 2 CO 3 , the high temperature partially decomposes the positive electrode material, but no Ca(OH) 2 peak exists, indicating that it is mainly uncrystallized, because the uncrystallized Ca(OH) 2 It is easy to react with dilute acid, which is beneficial to the removal of Ca(OH) 2 by dilute acid.
  • FIG 3 and Figure 4 are the SEM images of the solid phase before evaporation and the solid phase after evaporation, respectively. It can be seen that the flocculent PVDF on the surface is removed after the intense heat release of calcium oxide, and the morphology of the battery powder remains intact, which can be repaired regeneration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Secondary Cells (AREA)

Abstract

废锂电池浆料的回收方法包括:先向废锂电池浆料中加入氧化钙,在负压环境下进行搅拌以分离固相和液相,再将所得固相用低酸处理,过滤,得到电池粉。利用氧化钙与水反应释放出来的大量热来为NMP和水的蒸发提供条件,并通过负压真空蒸发使NMP、水在低沸点下实现蒸发,NMP可以通过冷凝回收,固相直接进行湿法处理,通过除杂、沉淀再生得到电池粉,回收方法由于不需用外来的热源对浆料进行加热,在一定程度上降低了能量消耗,且回收方法操作简单、高效,减少了对环境的污染,具有一定的工业化应用前景。

Description

一种废锂电池浆料的回收方法 技术领域
本发明属于电池材料循环利用技术领域,具体涉及一种废锂电池浆料的回收方法。
背景技术
锂离子电池由于有高能量密度、高电压平台、高循环保持率等优点,成为新能源汽车的动力来源,锂电池及相关产业的发展对新能源汽车的发展起到了决定性和保障作用。
锂电池生产工艺流程匀浆工段,由于在制浆、涂布过程中,环境、异物、粘度的变化引起浆料的失效,从而导致浆料无法正常进行涂布。浆料中含有LiNi 0.8Co 0.1Mn 0.1O 2、LiNi 0.5Co 0.2Mn 0.3O 2、LiNi 0.6Co 0.2Mn 0.2O 2、LiNi 0.3Co 0.3Mn 0.3O 2、LiCoO 2、LiFePO 4等正极材料、N-甲基吡咯烷酮(NMP)、PVDF、炭黑等,如果能够将有价金属还有昂贵的有机溶剂进行回收,那么将降低电池制造企业的生产成本,同时保护了环境。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种废锂电池浆料的回收方法,能够提高电池浆料的处理效率、NMP回收率、降低NMP浆料处理难度,从而实现巨大的经济利益。
根据本发明的一个方面,提出了一种废锂电池浆料的回收方法,包括以下步骤:
S1:向废锂电池浆料中加入氧化钙,在负压环境下进行搅拌以分离固相和液相;
S2:将步骤S1所得固相用低酸处理,过滤,得到电池粉。
低酸处理可以除去生成的Ca(OH) 2
在本发明的一些实施方式中,步骤S1中,所述废锂电池浆料与氧化钙混合前还进行破碎处理。
在本发明的一些优选的实施方式中,所述破碎处理采用双轴破碎机,所述双轴破碎机的刀距为10~50mm,转速为100~500r/min。
在本发明的一些实施方式中,步骤S1中,所述废锂电池浆料与氧化钙的质量比为 30~100:1。
在本发明的一些实施方式中,步骤S1中,所述负压的压力为-0.1~-0.06MPa。
在本发明的一些实施方式中,步骤S1中,所述搅拌的速度为50~150r/min;优选的,所述搅拌的时间为30~60min。
在本发明的一些优选的实施方式中,步骤S1中,所述搅拌采用真空桨叶搅拌机,物料在真空桨叶搅拌机的充填率为60~90%。
在本发明的一些实施方式中,步骤S1中,将所述搅拌过程中蒸发的气相进行冷凝收集得到冷凝液,调节所述冷凝液的pH,并对调节pH后的冷凝液进行纯化回收。优选的,所述纯化的方式为精馏。
在本发明的一些优选的实施方式中,调节所述冷凝液的pH为7.0~8.0。由于在碱性环境下,NMP中与N相邻的三个C都有可能被活化,其中C=O中的C活化后可直接造成NMP开环水解,控制pH可以防止NMP水解。
在本发明的一些实施方式中,步骤S2中,所述低酸为稀硫酸或稀盐酸中的一种或几种;所述低酸的浓度为0.1~0.5mol/L。
在本发明的一些实施方式中,步骤S2中,所述电池粉还进行高酸浸出,得到浸出液和浸出渣,再对所述浸出液进行除杂和沉淀处理,其中,浸出渣为炭黑。优选的,所述高酸的浓度为8~13mol/L。
在本发明的一些实施方式中,所述除杂所用的试剂为NaF,所述NaF的用量为所述浸出液中Ca 2+物质的量的2.1~2.3倍。
在本发明的一些实施方式中,所述沉淀处理是向除杂后的浸出液中加入NaOH溶液;优选的,所述NaOH溶液的浓度为3~8mol/L。加入NaOH溶液作为沉淀剂实现Ni、Co、Mn的沉淀。
在本发明的一些实施方式中,所述的回收方法采用浆料回收系统进行,所述浆料回收系统包括依次连接的真空桨叶搅拌机、旋风分离器、布袋收尘器、冷凝器、储液罐和精馏塔,所述真空桨叶搅拌机内设有桨叶,所述真空桨叶搅拌机的顶部设有浆料投料口、氧化钙投料口和气相出口,所述旋风分离器与所述气相出口连接,所述真空桨叶搅拌机 的底部设有出料口,所述出料口连接有螺旋给料机,所述螺旋给料机的下方设有依次连接的酸浸槽、除杂槽和沉淀槽。该系统运行时,浆料经过破碎后,从浆料投料口投入真空桨叶搅拌机中,并加入氧化钙,并对真空桨叶搅拌机抽真空,氧化钙和水生成的热气会将NMP和水蒸发,在负压的环境下,少量的电池粉和气相会直接进入旋风分离器实现分离,密度较小的粉料会进入布袋除尘器进行吸收,气相会经过冷凝器进行冷凝得到冷凝液,冷凝液经过精馏塔进行提纯,得到NMP有机相和水相,除去液相后的固体从真空桨叶搅拌机的出料口出料,再通过酸浸槽、除杂槽和沉淀槽进行处理。利用该系统能够实现连续进料出料,处理效率高。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
本发明利用氧化钙与水反应释放出来的大量热来为NMP和水的蒸发提供条件,并通过负压真空蒸发使NMP、水在低沸点下实现蒸发,NMP可以通过冷凝和提纯回收,固体渣直接做湿法处理,可通过除杂、沉淀再生正极材料,该方法由于不需用外来的热源对浆料进行加热,在一定程度上降低了能量消耗,且该方法操作简单、高效,减少了对环境的污染,具有一定的工业化应用前景。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明浆料回收系统的整体结构示意图;
图2为本发明实施例2蒸发前后固相的XRD图;
图3为本发明实施例3蒸发前固相的SEM图;
图4为本发明实施例3蒸发后固相的SEM图。
附图标记:真空桨叶搅拌机100、旋风分离器200、布袋收尘器300、冷凝器400、储液罐500、精馏塔600、螺旋给料机700、酸浸槽800、除杂槽900、沉淀槽1000、酸液储罐1100。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施 例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种废锂电池浆料的回收方法,采用图1所示的浆料回收系统进行,具体过程为:
(1)取1000L废锂电池浆料用刀距为50mm双轴破碎机进行粗破,转速为100r/min,再将浆料放于真空桨叶搅拌机中,同时加入氧化钙,浆料与氧化钙重量比为100:1,充填率为60%,将压力抽至-0.1MPa,搅拌30min;
(2)用0.1mol/L稀硫酸处理得到的固体渣,处理后过滤得到电池粉,将电池粉用8mol/L硫酸进行酸浸得到浸出渣和浸出液,浸出渣为炭黑,浸出液加入NaF除去浸出液的Ca杂质,NaF的投量为浸出液中Ca 2+物质的量的2.1倍,过滤后所得滤液加入3mol/L的NaOH使Ni、Co、Mn沉淀,实现正极材料的再生;
(3)蒸发出来的气相通过旋风除尘器、布袋收尘器除去气相中的电池粉,然后通过冷凝器使NMP和水得到冷凝,冷凝液用0.1mol/L稀硫酸调节pH为8.0以防止NMP水解,再通过精馏塔实现进一步的提纯处理,得到NMP有机相和水相,NMP有机相可以直接用作制备极片的原料。
实施例2
一种废锂电池浆料的回收方法,具体过程为:
(1)取1000L废锂电池浆料用刀距为50mm双轴破碎机进行粗破,转速为100r/min,再将浆料放于真空桨叶搅拌机中,同时加入氧化钙,浆料与氧化钙重量比为65:1,充填率为75%,将压力抽至-0.08MPa,搅拌50min;
(2)用0.5mol/L稀硫酸处理得到的固体渣,处理后过滤得到电池粉,将电池粉用13mol/L硫酸进行酸浸得到浸出渣和浸出液,浸出渣为炭黑,浸出液加入NaF除去浸出液的Ca杂质,NaF的投量为浸出液中Ca 2+物质的量的2.3倍,过滤后所得滤液加入5mol/L的NaOH使Ni、Co、Mn沉淀,实现正极材料的再生;
(3)蒸发出来的气相通过旋风除尘器、布袋收尘器除去气相中的电池粉,然后通过冷凝器使NMP和水得到冷凝,冷凝液用0.3mol/L稀硫酸调节pH为7.5以防止NMP 水解,再通过精馏塔实现进一步的提纯处理,得到NMP有机相和水相,NMP有机相可以直接用作制备极片的原料。
实施例3
一种废锂电池浆料的回收方法,具体过程为:
(1)取1000L废锂电池浆料用刀距为50mm双轴破碎机进行粗破,转速为100r/min,再将浆料放于真空桨叶搅拌机中,同时加入氧化钙,浆料与氧化钙重量比为100:1,充填率为90%,将压力抽至-0.06MPa,搅拌60min;
(2)用0.3mol/L稀硫酸处理得到的固体渣,处理后过滤得到电池粉,将电池粉用8mol/L硫酸进行酸浸得到浸出渣和浸出液,浸出渣为炭黑,浸出液加入NaF除去浸出液的Ca杂质,NaF的投量为浸出液中Ca 2+物质的量的2.2倍,过滤后所得滤液加入8mol/L的NaOH使Ni、Co、Mn沉淀,实现正极材料的再生;
(3)蒸发出来的气相通过旋风除尘器、布袋收尘器除去气相中的电池粉,然后通过冷凝器使NMP和水得到冷凝,冷凝液用0.8mol/L稀硫酸调节pH为7.0以防止NMP水解,再通过精馏塔实现进一步的提纯处理,得到NMP有机相和水相,NMP有机相可以直接用作制备极片的原料。
表1为实施例1-3的实验数据,分别为固体渣的灼失率、低酸处理后溶液金属含量、冷凝液NMP纯度、NMP有机相纯度、NMP有机相中杂质含量。
表1
Figure PCTCN2022097175-appb-000001
从表1可以看出,固体渣的灼失率都小于2.0wt%,说明氧化钙与水产生的热量使NMP和水得到了充分的挥发。从低酸处理后溶液金属含量可以看出,Ca 2+和Li +含量都 较低,说明低酸可以去除Ca(OH) 2,同时可以保证Li +溶出较少。冷凝液经过精馏塔处理后,NMP得到进一步提纯,NMP有机相纯度可以达到98.3wt%以上,同时金属杂质总含量小于1ppm。
图2为实施例2蒸发前后固相的XRD图,可以发现蒸发前主要的物相为LiNiO 2,并未发现其他杂峰存在,加入氧化钙后CaO与水反应物相有所变化,主要物相为Li 0.79Ni 1.21O 2、Li 2CO 3,高温使正极材料发生了部分分解,但未发现Ca(OH) 2峰的存在,说明主要以未结晶为主,由于未结晶Ca(OH) 2容易与稀酸反应,有利于后面稀酸除去Ca(OH) 2
图3和图4分别为蒸发前固相和蒸发后固相的SEM图,可以看出表面的絮状PVDF经氧化钙剧烈放热后去除掉了,且电池粉形貌保持完好,可进行修复再生。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种废锂电池浆料的回收方法,其特征在于,包括以下步骤:
    S1:向废锂电池浆料中加入氧化钙,在负压环境下进行搅拌以分离固相和液相;
    S2:将步骤S1所得固相用低酸处理,过滤,得到电池粉。
  2. 根据权利要求1所述的回收方法,其特征在于,步骤S1中,所述废锂电池浆料与氧化钙混合前还进行破碎处理。
  3. 根据权利要求1所述的回收方法,其特征在于,步骤S1中,所述废锂电池浆料与氧化钙的质量比为30~100:1。
  4. 根据权利要求1所述的回收方法,其特征在于,步骤S1中,所述负压的压力为-0.1~-0.06MPa。
  5. 根据权利要求1所述的回收方法,其特征在于,步骤S1中,所述搅拌的速度为50~150r/min;优选的,所述搅拌的时间为30~60min。
  6. 根据权利要求1所述的回收方法,其特征在于,步骤S1中,将所述搅拌过程中蒸发的气相进行冷凝收集得到冷凝液,调节所述冷凝液的pH,并对调节pH后的冷凝液进行纯化回收。
  7. 根据权利要求1所述的回收方法,其特征在于,步骤S2中,所述低酸为稀硫酸或稀盐酸中的一种或几种;所述低酸的浓度为0.1~0.5mol/L。
  8. 根据权利要求1所述的回收方法,其特征在于,步骤S2中,所述电池粉还进行高酸浸出,得到浸出液和浸出渣,再对所述浸出液进行除杂和沉淀处理;优选的,所述高酸的浓度为8~13mol/L。
  9. 根据权利要求8所述的回收方法,其特征在于,所述除杂所用的试剂为NaF,所述NaF的用量为所述浸出液中Ca 2+物质的量的2.1~2.3倍。
  10. 根据权利要求8所述的回收方法,其特征在于,所述沉淀处理是向除杂后的浸出液中加入NaOH溶液;优选的,所述NaOH溶液的浓度为3~8mol/L。
PCT/CN2022/097175 2021-07-28 2022-06-06 一种废锂电池浆料的回收方法 WO2023005429A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110856527.4 2021-07-28
CN202110856527.4A CN113764759B (zh) 2021-07-28 2021-07-28 一种废锂电池浆料的回收方法

Publications (1)

Publication Number Publication Date
WO2023005429A1 true WO2023005429A1 (zh) 2023-02-02

Family

ID=78788117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097175 WO2023005429A1 (zh) 2021-07-28 2022-06-06 一种废锂电池浆料的回收方法

Country Status (2)

Country Link
CN (1) CN113764759B (zh)
WO (1) WO2023005429A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764759B (zh) * 2021-07-28 2024-05-10 广东邦普循环科技有限公司 一种废锂电池浆料的回收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898328A (zh) * 2014-01-23 2014-07-02 广西有色金属集团汇元锰业有限公司 一种锰钴镍废渣中提取钴的方法
KR101831260B1 (ko) * 2017-09-28 2018-02-22 정경희 진공 건조를 통한 배터리 원료 및 nmp 회수장치
CN108963371A (zh) * 2018-07-13 2018-12-07 赣州寒锐新能源科技有限公司 一种从废旧锂离子电池中回收有价金属的方法
CN111848350A (zh) * 2020-07-23 2020-10-30 江苏理文化工有限公司 一种利用反应热高效蒸发甲醇的工艺
CN113764759A (zh) * 2021-07-28 2021-12-07 广东邦普循环科技有限公司 一种废锂电池浆料的回收方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848471B (zh) * 2017-04-18 2021-11-09 中科过程(北京)科技有限公司 一种废旧锂离子电池正极材料的混酸浸出及回收方法
CN109652654B (zh) * 2018-12-30 2021-01-26 沈阳化工研究院有限公司 一种废旧三元动力锂电池资源化回收金属元素的方法
CN111088430A (zh) * 2019-12-26 2020-05-01 甘肃睿思科新材料有限公司 一种锂电池正极废弃浆料的回收处理方法
CN113120930A (zh) * 2021-04-21 2021-07-16 中国科学院过程工程研究所 一种通过热解处理废旧锂离子电池制备氢氧化锂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898328A (zh) * 2014-01-23 2014-07-02 广西有色金属集团汇元锰业有限公司 一种锰钴镍废渣中提取钴的方法
KR101831260B1 (ko) * 2017-09-28 2018-02-22 정경희 진공 건조를 통한 배터리 원료 및 nmp 회수장치
CN108963371A (zh) * 2018-07-13 2018-12-07 赣州寒锐新能源科技有限公司 一种从废旧锂离子电池中回收有价金属的方法
CN111848350A (zh) * 2020-07-23 2020-10-30 江苏理文化工有限公司 一种利用反应热高效蒸发甲醇的工艺
CN113764759A (zh) * 2021-07-28 2021-12-07 广东邦普循环科技有限公司 一种废锂电池浆料的回收方法

Also Published As

Publication number Publication date
CN113764759B (zh) 2024-05-10
CN113764759A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN107739830A (zh) 一种废旧磷酸铁锂电池正极材料的回收方法
CN108193054B (zh) 一种从含锂废水中提取锂的方法
CN106340692B (zh) 一种清洁回收正极材料中锂的方法
WO2023284440A1 (zh) 锂电池浆料的回收方法及用于回收其的设备
CN114195112A (zh) 一种废旧磷酸铁锂电池的回收方法
CN109652654B (zh) 一种废旧三元动力锂电池资源化回收金属元素的方法
CN111547697B (zh) 一种废旧磷酸铁锂材料的修复方法
CN113880064B (zh) 一种低耗磷酸处理高杂磷酸铁锂废粉的方法
CN110635191A (zh) 一种废旧动力锂电池全组分清洁回收方法
WO2023000844A1 (zh) 一种废旧电池浆料回收处理的方法
CN104944665A (zh) 一种盐酸酸洗废液综合资源化处理装置及方法
CN109911909B (zh) 一种钴酸锂正极材料制备过程中废弃匣钵的回收处理方法
Wu et al. Selective recovery of lithium from spent lithium iron phosphate batteries using oxidation pressure sulfuric acid leaching system
CN108923096B (zh) 一种废旧锂离子电池负极全组分回收与再生的方法
WO2023005429A1 (zh) 一种废锂电池浆料的回收方法
WO2022267421A1 (zh) 一种报废正极浆料的处理方法和应用
WO2023050805A1 (zh) 一种废旧锂电池中除氟的方法
CN109913652B (zh) 一种三元正极材料制备过程中废弃耐火材料的综合处理方法
CN114149099A (zh) 一种铝电解槽大修渣湿法处理废水的深度除氟工艺
CN111455176B (zh) 一种废旧钴酸锂正极材料的回收方法
WO2024055518A1 (zh) 一种从锂离子电池电解液中回收锂的方法
CN112299638A (zh) 一种三元前驱体生产废水母液处理系统和处理方法
CN115149140B (zh) 一种从废旧磷酸铁锂电池中回收铁和锂的方法
CN114212765B (zh) 一种磷酸铁锂废粉中锂铁磷组分循环再生的方法
CN115784188A (zh) 回收制备电池级磷酸铁的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE