WO2023000844A1 - 一种废旧电池浆料回收处理的方法 - Google Patents

一种废旧电池浆料回收处理的方法 Download PDF

Info

Publication number
WO2023000844A1
WO2023000844A1 PCT/CN2022/097180 CN2022097180W WO2023000844A1 WO 2023000844 A1 WO2023000844 A1 WO 2023000844A1 CN 2022097180 W CN2022097180 W CN 2022097180W WO 2023000844 A1 WO2023000844 A1 WO 2023000844A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
metal
flocculant
waste battery
battery slurry
Prior art date
Application number
PCT/CN2022/097180
Other languages
English (en)
French (fr)
Inventor
宁培超
李长东
周游
李强
阮丁山
陈嵩
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023000844A1 publication Critical patent/WO2023000844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of battery material recycling, and in particular relates to a method for recycling waste battery slurry.
  • NMP slurry recycling can not only realize the closed loop of lithium battery industry but also protect the environment.
  • the slurry recovery technology is relatively simple, and the solid-liquid separation is carried out by centrifugation.
  • a recycling method for the waste slurry of the positive electrode of lithium batteries uses a centrifuge for solid-liquid separation. NMP is recovered by distillation, the solid phase is calcined at high temperature, crushed by a pulverizer, and finally the metal is recovered by leaching.
  • the centrifugation method has low efficiency, small processing capacity and poor centrifugation effect, which is not conducive to industrial application.
  • the system includes connecting the centrifuge to a double-effect evaporator and a double-helix high-temperature calcination equipment, and the pulverizer, sieving machine, and reactor It is sequentially connected after the double-helix high-temperature calcination equipment. Also, the system uses a centrifugal process to separate the slurry from solid to liquid, which is less efficient.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method for recycling and treating waste battery slurry, which can improve the efficiency of solid-liquid separation of NMP, facilitate the realization of industrialization, reduce the difficulty of processing NMP slurry, and realize huge economic benefits.
  • the present invention adopts the following technical solutions:
  • a method for recycling waste battery slurry comprising the following steps:
  • the stirring speed is 100-300 r/min, and the stirring time is 0.5-1 h.
  • dispersing the waste battery slurry is also included at a speed of 600-1000 r/min.
  • the mesh size of the sieve used for the sieving is 2-10 mesh.
  • the step (2) also includes evaporating and concentrating the filtrate obtained after the pressure filtration to obtain NMP.
  • the flocculation time is 30-60 minutes.
  • the flocculant is at least one of metal sulfate, metal chloride or metal nitrate.
  • the metal in the metal sulfate, metal chloride or metal nitrate is at least one of Mg, Ca, Cu, Ni, Zn, Co, Fe and Al.
  • the metal chloride salt is at least one of MgCl 2 , CoCl 2 , ZnCl 2 , NiCl 2 , CaCl 2 , and CuCl 2 .
  • the metal nitrate is Ca(NO 3 ) 2 , Zn(NO 3 ) 2 , Al(NO 3 ) 3 , Mg(NO 3 ) 2 , Fe(NO 3 ) 3 , Cu(NO 3 ) 2. At least one of Co(NO 3 ) 2 .
  • the flocculant is MgCl 2 , CoCl 2 , NiCl 2 , CaCl 2 , NiSO 4 , ZnSO 4 , CoSO 4 , CuSO 4 , CaSO 4 , MgSO 4 , Al(NO 3 ) 3 , Fe(NO 3 ) at least one of 3 .
  • the metal ion concentration of the flocculant is 30-110 g/L.
  • the metal ion concentration of the flocculant is 20-100 g/L.
  • the mass ratio of the filter residue to calcium oxide is (30-100):1.
  • Calcium oxide can react with the water in the filter residue, and the reaction temperature is as high as about 700°C, so as to remove the PVDF in it without calcination and reduce energy consumption.
  • the present invention disperses and stirs the waste battery slurry first, then adds a flocculant for flocculation, so that the colloidal particles are agglomerated into agglomerates, thereby causing an alternating internal charge imbalance, causing the separation of the positive electrode material from NMP and PVDF, and then carrying out Press filtration further makes the cathode material and NMP completely separated, improving the separation efficiency and separation rate.
  • the filter residue after pressure filtration is mixed with calcium oxide, and the calcium oxide can react with the water in the filter residue at a reaction temperature of about 700°C, thereby removing PVDF (organic matter) and obtaining a positive electrode material with less impurities.
  • the present invention solves the problems of long process time and low efficiency of centrifuging waste lithium battery slurry, improves the separation efficiency, facilitates the realization of industrialization, and reduces the difficulty of NMP slurry treatment.
  • the flocculation procedure of the present invention does not need to carry out flocculation sedimentation, and can directly carry out pressure filtration, thereby improving the solid-liquid separation efficiency and increasing the processing capacity.
  • Fig. 2 is an SEM image of the filter residue of Example 1 of the present invention.
  • Fig. 2 is the SEM image of the filter residue of Example 1. From Fig. 2, it can be seen that most of the spherical particles of the filter residue remain intact, and there are a small amount of smaller secondary particles, indicating that the process has less damage to the positive electrode material and can be used for the positive electrode. Materials are recycled.
  • the filter residue in Example 3 is a mixture of LiNi 0.5 Co 0.2 Mn 0.3 O 2 and LiFePO 4 .
  • a method for recycling waste battery slurry the specific steps are as follows:
  • step (1) 1000 L of waste battery slurry is directly subjected to solid-liquid separation using a centrifuge (the filter cloth used is 200-800 mesh).
  • a method for recycling waste battery slurry the specific steps are as follows:
  • the flocculant of Comparative Example 3 is a composite of polyferric sulfate-aluminum sulfate, and it takes a certain amount of time to flocculate the waste positive electrode slurry of lithium batteries (because the composite should be prepared first, and then diatomaceous earth is added), while using Example 1 -3 No need to carry out flocculation and precipitation, because the powerfulness of the flocculant (inorganic salt) of the present invention can improve the efficiency of solid-liquid separation of the slurry, increase the yield, and the treatment of the spent positive electrode slurry of lithium batteries needs to be carried out with diatomite mud for pressure filtration, It can be understood as a composite flocculant.
  • the embodiments of the present invention only need MgCl 2 , CoCl 2 , NiCl 2 , CaCl 2 , NiSO 4 , ZnSO 4 , CoSO 4 , CuSO 4 , CaSO 4 , MgSO 4 , Al(NO 3 ) 3.
  • Any flocculant in Fe(NO 3 ) 3 can achieve the effect.
  • the use of two flocculation procedures in Comparative Example 3 will greatly increase the difficulty of process control, which is challenging for industrialization. From the perspective of the entire process, silicon The introduction of diatomaceous earth will bring great problems, because diatomite is composed of SiO2 and organic matter, which will undoubtedly bring great pressure to the acid leaching and impurity removal of organometallic filter residues.
  • Example 1-3 and Comparative Example 1-3 are separated from the waste battery slurry to obtain the data comparison of the positive electrode material
  • Table 1 shows the time and efficiency of separating and obtaining positive electrode materials from waste battery slurry in Examples 1-3 and Comparative Examples 1-3, as well as the impurities of the filter residue.
  • the flocculants added in Examples 1-3 are mainly ions, and the added ions can be removed by washing with weak acid several times, and the impurity content in the filter residue after washing is low.
  • the flocculants added in Comparative Example 3 were polyferric sulfate-aluminum sulfate composite and diatomite. Comparative Example 3 did not mention the subsequent treatment of the filter residue, and the diatomite was stable and could not be removed by washing with weak acid, making subsequent treatment difficult.
  • the waste lithium battery slurry is a highly viscous solid-liquid two-phase suspension system formed by uniformly dispersing electrode active materials, binders, and conductive agents in a solvent.
  • a centrifuge is used for solid-liquid separation, and the filter cloth used is 200-800 mesh.
  • the main principle is to realize the separation between the positive electrode material and NMP and PVDF according to the difference in centrifugal force when the material rotates at high speed. It will bring problems such as long processing time and low efficiency.
  • Comparative Example 2 because no calcium oxide was added to remove the organic matter (binder), the positive electrode material contained the binder, which increased the impurity content of the positive electrode material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种废旧电池浆料回收处理的方法,该方法包括以下步骤:将废旧电池浆料进行搅拌、筛分,再加入絮凝剂进行絮凝,得到浆料;对浆料进行压滤,取滤渣与氧化钙混合,得到正极材料。通过先将废旧电池浆料分散搅拌,再加入絮凝剂进行絮凝,使胶粒之间凝聚成团,从而引起胶粒内部电荷不平衡,引起正极材料与NMP、PVDF的分离,再进行压滤进一步使得正极材料与PVDF彻底分离,提高分离效率和分离率。

Description

一种废旧电池浆料回收处理的方法 技术领域
本发明属于电池材料回收技术领域,具体涉及一种废旧电池浆料回收处理的方法。
背景技术
在锂电池生产过程中,由于在制浆、涂布过程中,浆料放置时间过长、pH过高、有异物引入、水含量过高,导致浆料无法正常进行涂布,从而导致浆料的报废,而废浆料中LiCoO 2、LiNi xCo yMn 1-x-yO 2(0.3≦x≦1,0.3≦y≦1)和LiFePO 4混合物的含量超过60wt%,且含有约20~30wt%的N-甲基吡咯烷酮(NMP),从经济的角度来说,非常有回收价值,近年来金属原料和NMP价格逐年攀升,对浆料进行回收对于锂电池原料成本的控制就显得尤为重要。从环境的角度来看,如果将其丢弃,则会严重危害环境。NMP浆料回收不止可以实现锂电行业闭环且保护了环境。
目前,浆料回收技术比较单一,都是采用离心方式进行固液分离,如目前有的相关技术,一种锂电池正极废弃浆料的回收处理方法,该方法采用离心机固液分离,常压蒸馏回收NMP,高温煅烧固相,粉碎机破碎,最后浸出回收金属。但用离心的方法效率较低、处理量小,离心效果差,不利于工业化应用。还有的相关技术,公开了一种锂电池正极废弃浆料的回收系统,该系统包括将离心机分别与双效蒸发器、双螺旋高温煅烧设备连接,所述粉碎机、筛分机、反应釜依次连接在双螺旋高温煅烧设备之后。同样该系统采用的是离心工艺对浆料进行固液分离,效率较低。
针对离心效率低的问题,亟需提供一种提高废旧电池浆料固液分离效率的方法。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种废旧电池浆料回收处理方法,该方法能提高NMP固液分离效率、有利于实现工业化、降低NMP浆料处理难度,实现巨大的经济利益。
为实现上述目的,本发明采用以下技术方案:
一种废旧电池浆料回收处理的方法,包括以下步骤:
(1)将废旧电池浆料进行搅拌、筛分,再加入絮凝剂进行絮凝,得到浆料;
(2)对所述浆料进行压滤,取滤渣与氧化钙混合,得到正极材料。
优选地,步骤(1)中,所述搅拌的速度为100~300r/min,所述搅拌的时间为0.5~1h。
优选地,所述搅拌前还包括对所述废旧电池浆料进行分散,速度为600~1000r/min。
优选地,步骤(1)中,所述筛分使用的筛网的目数为2-10目。
优选地,步骤(2)中还包括对所述压滤后得到的滤液进行蒸发浓缩,得到NMP。
优选地,步骤(1)中,所述絮凝的时间为30~60min。
优选地,步骤(1)中,所述絮凝剂为金属硫酸盐、金属氯盐或金属硝酸盐中的至少一种。
进一步优选地,所述金属硫酸盐、金属氯盐或金属硝酸盐中的金属为Mg、Ca、Cu、Ni、Zn、Co、Fe、Al中的至少一种。
进一步优选地,所述金属硫酸盐为NiSO 4、ZnSO 4、CoSO 4、CuSO 4、CaSO 4或MgSO 4中的至少一种。
进一步优选地,所述金属氯盐为MgCl 2、CoCl 2、ZnCl 2、NiCl 2、CaCl 2、CuCl 2中的至少一种。
进一步优选地,所述金属硝酸盐为Ca(NO 3) 2、Zn(NO 3) 2、Al(NO 3) 3、Mg(NO 3) 2、Fe(NO 3) 3、Cu(NO 3) 2、Co(NO 3) 2中的至少一种。
更优选地,所述絮凝剂为MgCl 2、CoCl 2、NiCl 2、CaCl 2、NiSO 4、ZnSO 4、CoSO 4、CuSO 4、CaSO 4、MgSO 4、Al(NO 3) 3、Fe(NO 3) 3中的至少一种。
进一步优选地,所述金属为Mg、Ca、Cu、Ni、Zn、Co中的至少一种时,所述絮凝剂的金属离子浓度为30~110g/L。
进一步优选地,所述金属为Fe、Al中的至少一种时,所述絮凝剂的金属离子浓度为20~100g/L。
优选地,步骤(1)中,将所述絮凝剂溶解后得到絮凝剂溶液,所述絮凝剂溶液和所述废旧电池浆料的体积比为(0.02~1.0):1。
优选地,步骤(2)中,所述滤渣与氧化钙的质量比为(30~100):1。氧化钙可以与滤渣中的水反应,反应温度高达700℃左右,从而将其中的PVDF去除,无需进行煅烧,减少能源消耗。
相对于现有技术,本发明的有益效果如下:
1、本发明通过先将废旧电池浆料分散搅拌,再加入絮凝剂进行絮凝,使胶粒之间凝聚成团,从而引起交替内部电荷不平衡,引起正极材料与NMP、PVDF的分离,再进行压滤进一步使得正极材料与NMP彻底分离,提高分离效率和分离率。取压滤后的滤渣与氧化钙混合,氧化钙可以与滤渣中的水反应,反应温度高达700℃左右,从而将其中的PVDF(有机物)去除,得到杂质含量少的正极材料。
2、本发明解决了离心分离废旧锂电池浆料工序时间长、效率低等问题,提高了分离效率、有利于实现工业化、降低了NMP浆料处理难度。本发明的絮凝工序无须进行絮凝沉淀,可以直接进行压滤,提高了固液分离效率、提高处理量。
附图说明
图1为本发明实施例1滤渣的XRD图;
图2为本发明实施例1滤渣的SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的废旧电池浆料回收处理的方法,具体步骤如下:
(1)取1000L废旧电池浆料以1000r/min速度进行分散,搅拌速度为100r/min,时间为0.5h,将搅拌充分的废旧电池浆料进行过2目筛网,然后加入浓度为110g/L二价金属盐絮凝剂溶液(MgCl 2、CoCl 2、NiCl 2或CaCl 2),加入量为50L,边搅拌边加入金属盐絮凝剂,搅拌时间为1.5h,得到浆料;
(2)然后将絮凝完成的浆料泵入到压滤机里面进行压滤,随后将滤渣与氧化钙以质量比为30:1进行混合,搅拌1h,得到正极材料,滤液进行蒸发浓缩得到NMP。
图1为实施例1的滤渣的XRD图,可以发现,滤渣由LiNiO 2、LiCoO 2、LiFePO 4组成,说明利用实施例1的方法可以很好的处理市面上主流正极浆料,进一步说明该废浆料回收方法具有广泛的实用性,工业化较强。
图2为实施例1的滤渣的SEM图,从图2中可以看到滤渣大部分球形颗粒保持完整,有少量较小的二次颗粒,说明该工艺对正极材料的破坏较小,可以对正极材料进行再生利用。
实施例2
本实施例的废旧电池浆料回收处理的方法,具体步骤如下:
(1)取1000L废旧电池浆料以750r/min的速度进行分散,搅拌速度为200r/min,搅拌的时间为1h,将搅拌充分的废旧电池浆料进行过10目筛网,然后加入浓度为100g/L二价金属盐絮凝剂溶液(NiSO 4、CoSO 4),加入量为50L,边搅拌边加,搅拌时间为1.5h,得到浆料;
(2)然后将絮凝完成的浆料泵入到压滤机里面进行压滤,随后将滤渣与氧化钙以质量比为60:1进行混合,搅拌1h,得到正极材料,滤液进行蒸发浓缩得到NMP。
实施例2的滤渣成分为LiNi 0.8Co 0.1Mn 0.1O 2、LiCoO 2的混合物。
实施例3
本实施例的废旧电池浆料回收处理的方法,具体步骤如下:
(1)取1000L废旧电池浆料以750r/min的速度进行分散,搅拌速度为200r/min,搅拌的时间为1h,将搅拌充分的废旧电池浆料进行过5目筛网,然后加入金属离子浓度为50g/L三价金属盐絮凝剂溶液(Al(NO 3) 3、Fe(NO 3) 3),加入量为30L,边搅拌边加,搅拌时间为1.5h,得到浆料;
(2)然后将絮凝完成的浆料泵入到压滤机里面进行压滤,随后将滤渣与氧化钙以质量比为60:1进行混合,搅拌1h,得到正极材料,滤液进行蒸发浓缩得到NMP。
实施例3的滤渣成分为LiNi 0.5Co 0.2Mn 0.3O 2、LiFePO 4的混合物。
对比例1
一种废旧电池浆料回收处理的方法,具体步骤如下:
与实施例1的区别在于:步骤(1)中直接对1000L废旧电池浆料进行采用离心机固液分离(所采用的滤布为200-800目)。
对比例2
一种废旧电池浆料回收处理的方法,具体步骤如下:
与实施例1的区别在于:对比例2没有添加氧化钙。
对比例3
本对比例的废旧电池浆料回收处理的方法,具体步骤如下:
(1)取1000L废旧电池浆料以750r/min的速度进行分散,搅拌速度为200r/min,搅拌的时间为1h,将搅拌充分的废旧电池浆料进行过5目筛网,然后加入聚合硫酸铁-硫酸铝的复配物,加入量为30L,再加入硅藻土,边搅拌边加,搅拌时间为1.5h,得到浆料;
(2)然后将絮凝完成的浆料泵入到压滤机里面进行压滤,随后将滤渣与氧化钙以质量比为60:1进行混合,搅拌1h,得到正极材料,滤液进行蒸发浓缩得到NMP。
对比例3絮凝剂为聚合硫酸铁-硫酸铝的复配物,在处理锂电池废正极浆料絮凝需要一定时间(因为要先制备复配物,再加入硅藻土),而利用实施例1-3无须进行絮凝沉淀,由于本发明絮凝剂(无机盐)的强效性可以提高浆料固液分离的效率,提高产量,处理锂电池废正极浆料需用硅藻土泥浆进行压滤,可以理解为复合的絮凝剂,本发明的实施例只需MgCl 2、CoCl 2、NiCl 2、CaCl 2、NiSO 4、ZnSO 4、CoSO 4、CuSO 4、CaSO 4、MgSO 4、Al(NO 3) 3、Fe(NO 3) 3中的任何一种絮凝剂便可达到效果,同时对比例3使用两种絮凝工序会大大增加工艺的控制难度,对工业化有挑战性,从整个工艺来看,硅藻土的引入会带来很大的问题,由于硅藻土成分为SiO 2和有机质,这无疑会对有机金属滤渣的酸浸除杂带来很大的压力。
表1实施例1-3和对比例1-3的从废旧电池浆料中分离得到正极材料的数据对比
Figure PCTCN2022097180-appb-000001
表1为实施例1-3和对比例1-3从废旧电池浆料中分离得到正极材料的时间和效率,还有滤渣的杂质。可以看出实施例1-3所加入的絮凝剂以离子为主,可以通过多次弱酸 水洗除去掉所加的离子,经过水洗后滤渣中杂质含量较低。对比例3所加的絮凝剂为聚合硫酸铁-硫酸铝复合物、硅藻土,对比例3未提及后续滤渣的处理,且硅藻土稳定不能通过弱酸水洗去除,后续较难处理。而且本发明入的絮凝剂主要为无机盐形式,可溶于水,而对比例3所加的絮凝剂为聚合物硫酸铁和聚合硫酸铝的复配物,其中的Al 3+、Fe 3+是无法溶于水中的,无法通过水洗除去。
由于废锂电池浆料是由电极活性材料、粘结剂、导电剂均匀分散于溶剂中形成的高粘稠的固液两相悬浮体系。对比例1采用离心机进行固液分离,所采用的滤布为200-800目,其主要原理是依据物料在高速旋转时的离心力差异来实现正极材料和NMP、PVDF之间的分离,这就会带来处理工序时间长、效率低等问题。对比例2中由于不加入氧化钙进行除掉有机物(粘结剂),使得正极材料中含有粘结剂,增大了正极材料的杂质含量。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种废旧电池浆料回收处理的方法,其特征在于,包括以下步骤:
    (1)将废旧电池浆料进行搅拌、筛分,再加入絮凝剂进行絮凝,得到浆料;
    (2)对所述浆料进行压滤,取滤渣与氧化钙混合,得到正极材料。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中,所述搅拌的速度为100~300r/min,搅拌的时间为0.5~1h。
  3. 根据权利要求1所述的方法,其特征在于,步骤(2)中还包括对所述压滤后得到的滤液进行蒸发浓缩,得到NMP。
  4. 根据权利要求1所述的方法,其特征在于,步骤(1)中,所述絮凝剂为金属硫酸盐、金属氯盐或金属硝酸盐中的至少一种。
  5. 根据权利要求4所述的方法,其特征在于,所述金属硫酸盐、金属氯盐或金属硝酸盐中的金属为Mg、Ca、Cu、Ni、Zn、Co、Fe或Al中的至少一种。
  6. 根据权利要求4所述的方法,其特征在于,所述金属硫酸盐为NiSO 4、ZnSO 4、CoSO 4、CuSO 4、CaSO 4或MgSO 4中的至少一种;所述金属氯盐为MgCl 2、CoCl 2、ZnCl 2、NiCl 2、CaCl 2、CuCl 2中的至少一种;所述金属硝酸盐为Ca(NO 3) 2、Zn(NO 3) 2、Al(NO 3) 3、Mg(NO 3) 2、Fe(NO 3) 3、Cu(NO 3) 2、Co(NO 3) 2中的至少一种。
  7. 根据权利要求5所述的方法,其特征在于,所述金属为Mg、Ca、Cu、Ni、Zn、Co中的至少一种时,所述絮凝剂的金属离子浓度为30~110g/L。
  8. 根据权利要求5所述的方法,其特征在于,所述金属为Fe、Al中的至少一种时,所述絮凝剂的金属离子浓度为20~100g/L。
  9. 根据权利要求1所述的方法,其特征在于,步骤(1)中,将所述絮凝剂溶解后得到絮凝剂溶液,所述絮凝剂溶液和所述废旧电池浆料的体积比为(0.02~1.0):1。
  10. 根据权利要求1所述的方法,其特征在于,步骤(2)中,所述滤渣与氧化钙的质量比为(30~100):1。
PCT/CN2022/097180 2021-07-23 2022-06-06 一种废旧电池浆料回收处理的方法 WO2023000844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110839203.X 2021-07-23
CN202110839203.XA CN113690502B (zh) 2021-07-23 2021-07-23 一种废旧电池浆料回收处理的方法

Publications (1)

Publication Number Publication Date
WO2023000844A1 true WO2023000844A1 (zh) 2023-01-26

Family

ID=78577816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097180 WO2023000844A1 (zh) 2021-07-23 2022-06-06 一种废旧电池浆料回收处理的方法

Country Status (2)

Country Link
CN (1) CN113690502B (zh)
WO (1) WO2023000844A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540602B (zh) * 2021-06-22 2023-02-14 广东邦普循环科技有限公司 一种报废正极浆料的处理方法和应用
CN113690502B (zh) * 2021-07-23 2024-03-08 广东邦普循环科技有限公司 一种废旧电池浆料回收处理的方法
CN114388921A (zh) * 2021-12-21 2022-04-22 广东邦普循环科技有限公司 一种从锂电池浆料中回收正极材料的方法及其装置
CN115367906A (zh) * 2022-07-04 2022-11-22 浙江南都电源动力股份有限公司 一种锂电池nmp清洗废液的回收方法
CN115513548A (zh) * 2022-08-31 2022-12-23 广东邦普循环科技有限公司 磷酸铁锂正极废液的回收方法及其回收生产线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101617435A (zh) * 2007-02-20 2009-12-30 丰田自动车株式会社 用于二次电池电极材料的剥离剂和使用该剥离剂处理二次电池的方法
JP2013041698A (ja) * 2011-08-12 2013-02-28 Sumitomo Metal Mining Co Ltd 水系正極材ペースト中の有価金属回収方法
CN110436592A (zh) * 2019-08-16 2019-11-12 金为环保科技(常州)有限公司 一种锂电池阴极废液的处理方法
CN111018768A (zh) * 2019-04-01 2020-04-17 赣州中能实业有限公司 一种n-甲基吡咯烷酮的回收方法
CN112251617A (zh) * 2020-09-30 2021-01-22 湖南金凯循环科技有限公司 一种从废金属锂电池回收锂的方法
CN113690502A (zh) * 2021-07-23 2021-11-23 广东邦普循环科技有限公司 一种废旧电池浆料回收处理的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544627B (zh) * 2010-12-29 2014-12-10 比亚迪股份有限公司 一种锂电池电极材料中n-甲基吡咯烷酮的回收方法
CN109119713B (zh) * 2018-08-24 2020-07-31 广西师范大学 一种回收锂离子电池中正极活性物质的方法
CN110436593A (zh) * 2019-08-16 2019-11-12 金为环保科技(常州)有限公司 一种回收锂电池阳极废液中n甲基吡咯烷酮的方法
CN111088430A (zh) * 2019-12-26 2020-05-01 甘肃睿思科新材料有限公司 一种锂电池正极废弃浆料的回收处理方法
CN111848350A (zh) * 2020-07-23 2020-10-30 江苏理文化工有限公司 一种利用反应热高效蒸发甲醇的工艺
CN112110465A (zh) * 2020-08-28 2020-12-22 宁夏中宁县兴日晟环保科技有限公司 一种聚合氯化铝絮凝剂用聚合氯化铝的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101617435A (zh) * 2007-02-20 2009-12-30 丰田自动车株式会社 用于二次电池电极材料的剥离剂和使用该剥离剂处理二次电池的方法
JP2013041698A (ja) * 2011-08-12 2013-02-28 Sumitomo Metal Mining Co Ltd 水系正極材ペースト中の有価金属回収方法
CN111018768A (zh) * 2019-04-01 2020-04-17 赣州中能实业有限公司 一种n-甲基吡咯烷酮的回收方法
CN110436592A (zh) * 2019-08-16 2019-11-12 金为环保科技(常州)有限公司 一种锂电池阴极废液的处理方法
CN112251617A (zh) * 2020-09-30 2021-01-22 湖南金凯循环科技有限公司 一种从废金属锂电池回收锂的方法
CN113690502A (zh) * 2021-07-23 2021-11-23 广东邦普循环科技有限公司 一种废旧电池浆料回收处理的方法

Also Published As

Publication number Publication date
CN113690502B (zh) 2024-03-08
CN113690502A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2023000844A1 (zh) 一种废旧电池浆料回收处理的方法
WO2022166023A1 (zh) 一种镍铁合金资源化回收的方法和应用
CN110482514B (zh) 一种电池级无水磷酸铁的制备方法
CN107267759A (zh) 一种锂离子电池正极材料的综合回收方法
WO2022242186A1 (zh) 利用磷铁废料制备高纯度磷酸铁的方法
CN106987721B (zh) 一种含重金属污泥的无废利用方法
CN104745823B (zh) 一种从废旧锂离子电池中回收锂的方法
CN108432031A (zh) 废锂离子电池中包含的LiCoO2的酸溶解方法
CN114349030B (zh) 一种磷酸铁锂废旧正极片的综合湿法回收利用方法
CN104229906B (zh) 利用表面处理过程产生的含镍废水制备电镀级硫酸镍的方法和设备
WO2022089203A1 (zh) 采用萃取法除三元电池材料浸出液中铝的方法
WO2023024593A1 (zh) 镍钴锰酸锂和磷酸铁锂混合废料的回收方法
CN111620423A (zh) 一种锂电池阴极废液的处理方法及其应用
CN112479264B (zh) 掺杂型大颗粒碳酸钴及利用废钴酸锂电池制备其的方法
WO2023050805A1 (zh) 一种废旧锂电池中除氟的方法
WO2022267421A1 (zh) 一种报废正极浆料的处理方法和应用
CN111485102A (zh) 一种全资源化利用钛白废酸的工艺
CN114318020B (zh) 一种从含铊硫化废渣中分离铊的处理方法
CN111455176B (zh) 一种废旧钴酸锂正极材料的回收方法
WO2023005429A1 (zh) 一种废锂电池浆料的回收方法
WO2024045515A1 (zh) 磷酸铁锂正极废液的回收方法及其回收生产线
CN115784188A (zh) 回收制备电池级磷酸铁的方法
CN114959302B (zh) 采用红土镍矿制备硫酸镍/钴的方法
CN115321505B (zh) 一种含锂废水综合回收制取磷酸铁锂的方法及应用
JP2023521497A (ja) 廃電極からアルミニウムを選択的に除去する方法およびこれを用いて廃電極から金属成分を回収する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE