WO2023024593A1 - 镍钴锰酸锂和磷酸铁锂混合废料的回收方法 - Google Patents

镍钴锰酸锂和磷酸铁锂混合废料的回收方法 Download PDF

Info

Publication number
WO2023024593A1
WO2023024593A1 PCT/CN2022/093098 CN2022093098W WO2023024593A1 WO 2023024593 A1 WO2023024593 A1 WO 2023024593A1 CN 2022093098 W CN2022093098 W CN 2022093098W WO 2023024593 A1 WO2023024593 A1 WO 2023024593A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
solution
nickel
cobalt
iron phosphate
Prior art date
Application number
PCT/CN2022/093098
Other languages
English (en)
French (fr)
Inventor
段金亮
李长东
夏阳
蔡勇
阮丁山
陈若葵
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to MA60239A priority Critical patent/MA60239A1/fr
Priority to HU2300213A priority patent/HUP2300213A2/hu
Priority to DE112022000208.5T priority patent/DE112022000208T5/de
Priority to GB2318290.0A priority patent/GB2621295A/en
Publication of WO2023024593A1 publication Critical patent/WO2023024593A1/zh
Priority to US18/213,839 priority patent/US20230332267A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0045Treating ocean floor nodules by wet processes
    • C22B47/0054Treating ocean floor nodules by wet processes leaching processes
    • C22B47/0063Treating ocean floor nodules by wet processes leaching processes with acids or salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0045Treating ocean floor nodules by wet processes
    • C22B47/0081Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of recycling battery waste materials, and in particular relates to a method for recycling mixed waste materials of nickel-cobalt lithium manganese oxide and lithium iron phosphate.
  • Lithium batteries with nickel-cobalt lithium manganese oxide as the positive electrode material have many advantages such as high energy density, good cycle performance, high voltage platform, and wide operating temperature range, as well as lithium iron phosphate with excellent safety performance and cycle performance.
  • Lithium batteries are widely used in the field of new energy. With the rapid growth of the use of lithium-ion batteries, the amount of scrapped lithium batteries has also increased rapidly in recent years.
  • nickel-cobalt lithium manganese oxide batteries elements such as nickel-cobalt-manganese-lithium have high recovery value, while in iron phosphate In lithium batteries, although the recovery value of phosphorus and iron is not high, if it is not treated, it will cause ecological environmental pollution. Therefore, realizing the recycling of various battery materials can not only save the production cost of enterprises, promote the healthy development of the new energy industry, but also reduce the pollution of waste battery materials to the environment.
  • the recycling methods of waste lithium-ion batteries mainly include pyrolysis and wet methods, among which the treatment method based on hydrometallurgy has the advantages of high recovery efficiency and simple process, so it has received high attention.
  • the existing methods are mainly for waste lithium-ion batteries.
  • the related technology discloses a comprehensive recovery method for ternary positive electrode materials of waste lithium-ion batteries. Nickel, lithium and manganese-cobalt are leached through alkaline leaching and acid leaching, and then nickel, cobalt, manganese, and lithium are gradually separated, so as to realize the recovery of each element.
  • this method has the advantages of good recovery selectivity, environmental friendliness, and high recovery rate, but it is difficult to filter by alkali leaching, and incomplete separation will lead to impure products, and the separation process is more cumbersome. It is also necessary for related technologies to obtain nickel-cobalt-manganese-lithium powder by roasting the waste ternary positive electrode, dissolving it in water, and filtering it, and then roasting, dissolving, and filtering the nickel-cobalt-manganese-lithium powder and then adding carbonate to the filter residue. Adjust the ratio of lithium, nickel, cobalt, and manganese, and finally ball mill, compact, and roast it to obtain the positive electrode material of nickel-cobalt lithium manganese oxide.
  • lithium, iron, and Phosphorus is co-precipitated into lithium iron phosphate material, but the purity and performance of the lithium iron phosphate material obtained by this method still need to be improved.
  • most of the nickel-cobalt lithium manganese oxide waste or lithium iron phosphate waste processed in the current reports are treated with one of the wastes, and there are very few reports on the simultaneous treatment of these two mixed wastes.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a kind of recycling method of nickel-cobalt lithium manganese oxide and lithium iron phosphate mixed waste, its technology is simple, environmentally friendly, and under the situation that nickel-cobalt lithium manganate waste and lithium iron phosphate waste exist simultaneously Its main elements are fully recovered and commercialized, which has a good application prospect.
  • a kind of recovery method of nickel-cobalt lithium manganate and lithium iron phosphate mixed waste comprising the following steps:
  • the acid solution is one or more of sulfuric acid, nitric acid or hydrochloric acid.
  • Preferred combinations are: the combination of sulfuric acid and hydrochloric acid, the combination of sulfuric acid and nitric acid.
  • the concentration of the acid solution is 1-8 mol/L, more preferably 1.5-5 mol/L.
  • the mass ratio of the acid solution to the mixed waste is (4-10):1, more preferably (5-8):1.
  • the temperature of the acid leaching is 50-120°C, more preferably 60-90°C; the time of the acid leaching is 3-10h, more preferably 4-8h .
  • the resin in step S2, is selected from one of chelating resin CH-90Na, XFS4195 resin, Amberlitel RC748, LonacSR-5, PuroliteS-930, Chelex100, D851 or D402-II or Several kinds.
  • the adsorption principle is that the multi-coordination functional groups on the polymer of the resin form complexes with metal ions, so as to achieve the effect of separation.
  • step S2 the adsorption method adopts one-stage adsorption or multi-stage adsorption, which has wider applicability and better adsorption and separation effect.
  • step S2 the obtained nickel-cobalt-manganese sulfate mixed solution is precipitated to obtain a ternary precursor.
  • the lithium sinking reagent is one of sodium carbonate, sodium phosphate, potassium phosphate, potassium carbonate, sodium oxalate, potassium oxalate, sodium fluoride, potassium fluoride or ammonium fluoride one or several kinds; the heating temperature is 40-120°C, more preferably 65-100°C.
  • step S4 the precipitated liquid is concentrated until the iron concentration in the precipitated liquid is 40-150 g/L, more preferably 50-100 g/L.
  • concentration of ferrophosphorus in the solution is too low, it is difficult to form filaments during spinning, and if it is too high, the needle will be blocked or the spindle will be formed.
  • the carbon source is one or more of polyvinylpyrrolidone, polyvinylidene fluoride or polyacrylonitrile.
  • step S4 the carbon source is firstly added into dimethylformamide for dissolution, and then poured into the concentrated precipitated liquid to stir and disperse. After electrospinning, dimethylformamide is volatilized at low temperature, and then roasted at high temperature to decompose organic matter into carbon materials.
  • the drying temperature is 40-90°C, more preferably 40-70°C.
  • the heating rate should not be too fast, otherwise the filamentous structure will collapse.
  • the calcination temperature is 250-600°C, more preferably 300-550°C, and the calcination atmosphere is air or oxygen.
  • the process of the present invention can comprehensively reclaim nickel-cobalt-manganese lithium manganese oxide and lithium iron phosphate mixed waste, and the nickel-cobalt-manganese-containing iron-phosphorus-lithium acid leaching solution obtained through acid leaching is separated by resin adsorption and washed with sulfuric acid to obtain nickel sulfate Cobalt-manganese mixed solution, the mixed solution can be precipitated to obtain the precursor of nickel-cobalt-lithium-manganese oxide positive electrode material, and the obtained phosphorus-iron-lithium solution can be subjected to lithium precipitation to obtain lithium salt precipitation, the precipitated solution is concentrated, and phosphoric acid is obtained by electrospinning Iron/carbon materials can realize the directional recycling of waste nickel-cobalt lithium manganese oxide materials and lithium iron phosphate materials.
  • the preparation of iron phosphate by electrospinning in the present invention can reduce the agglomeration of materials, and the prepared material has a fiber network structure, which can increase the specific surface area of the material, thereby improving the surface performance of the material.
  • iron phosphate/carbon materials can improve the conductivity and activity of materials due to the participation of carbon materials, which is conducive to the growth of lithium iron phosphate materials in the roasting process for subsequent preparation of lithium iron phosphate materials. .
  • the invention has simple process, is friendly to the environment, has low requirements on equipment, and has good economic benefits.
  • Fig. 1 is the process flow chart of embodiment 1 of the present invention.
  • a kind of recycling method of nickel cobalt lithium manganese oxide and lithium iron phosphate mixed waste with reference to Fig. 1, concrete process is:
  • step (6) Concentrating the precipitated liquid obtained in step (5) to an iron concentration of 75g/L, dissolving polyvinylpyrrolidone in dimethylformamide, pouring it into the precipitated liquid to disperse, electrospinning, and The flake material obtained after spinning is dried at 60° C. and calcined at 500° C. to obtain iron phosphate/carbon material.
  • a kind of recycling method of nickel cobalt lithium manganese oxide and lithium iron phosphate mixed waste, concrete process is:
  • step (3) Pack the chelating resin CH-90Na into a column, and use a peristaltic pump to drip the nickel-cobalt-manganese-manganese-phosphorus-lithium solution into the resin column in step (2).
  • the resin After the resin is saturated, pass the adsorbed liquid through PuroliteS-930 resin column, wash off a little lithium adhered to the surface of the resin with pure water, and then use 1.5mol/L sulfuric acid solution to wash the saturated resin to obtain a mixed solution of nickel, cobalt and manganese sulfate, which is a phosphorous-iron-lithium solution after adsorption;
  • step (6) Concentrating the precipitated liquid obtained in step (5) until the iron concentration is 80g/L, dissolving polyvinylidene fluoride in dimethylformamide, pouring it into the precipitated liquid to disperse, and performing electrospinning, The flake material obtained after spinning is dried at 60°C and calcined at 450°C to obtain iron phosphate/carbon material.
  • a kind of recycling method of nickel cobalt lithium manganese oxide and lithium iron phosphate mixed waste, concrete process is:
  • step (6) Concentrating the precipitated liquid obtained in step (5) to an iron concentration of 75g/L, dissolving polyvinylpyrrolidone in dimethylformamide, pouring it into the precipitated liquid to disperse, electrospinning, and The flake material obtained after spinning is dried at 60° C. and calcined at 400° C. to obtain iron phosphate/carbon material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ocean & Marine Engineering (AREA)
  • Oceanography (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种镍钴锰酸锂和磷酸铁锂混合废料的回收方法,包括以下步骤:将混合废料进行酸浸得到酸浸液,使用树脂对酸浸液中的镍、钴、锰进行吸附,树脂吸附饱和后使用硫酸进行洗涤,得到硫酸镍钴锰混合液和吸附后液;硫酸镍钴锰混合液进行沉淀得到三元前驱体,吸附后液进行沉锂得到锂盐沉淀和沉淀后液;将沉淀后液进行浓缩,加入碳源搅拌分散,进行静电纺丝,之后经烘干、焙烧处理得到磷酸铁/碳材料。

Description

镍钴锰酸锂和磷酸铁锂混合废料的回收方法 技术领域
本发明属于电池废旧材料回收利用技术领域,具体涉及一种镍钴锰酸锂和磷酸铁锂混合废料的回收方法。
背景技术
以镍钴锰酸锂为正极材料的锂电池由于其能量密度高、循环性能好、电压平台高、工作温度范围宽等众多优点,和安全性能和循环性能优良的以磷酸铁锂为正极材料的锂电池被普遍应用于新能源领域。随着锂离子电池使用量的快速增长,近几年锂电池的报废量也在快速增长,在镍钴锰酸锂电池中,镍钴锰锂等元素具有较高的回收价值,而在磷酸铁锂电池中,虽然磷铁元素的回收价值不高,但是如果不进行处理,将会造成生态环境污染问题。因此,实现各类电池材料的循环利用,不仅能节约企业生产成本,促进新能源行业的健康发展,还能减轻废旧电池材料对环境的污染。
目前废旧锂离子电池的回收方法主要包括火法和湿法,其中基于湿法冶金的处理方法具有回收效率高、流程简单等优点而获得了较高的关注,现有方法主要针对废旧锂离子电池的正极和负极较多。相关技术公开了一种废旧锂离子电池三元正极材料的综合回收方法,通过碱浸、酸浸浸出镍锂和锰钴,再逐步分离镍、钴、锰、锂的目的,从而实现各元素的分别回收,此方法具有回收选择性好、对环境友好以及回收率高等优点,但是碱浸过滤困难、会出现分离不完全的情况会导致产物不纯,且分离过程较为繁琐。还要相关技术通过将废旧三元正极片焙烧、水溶解、过滤得到镍钴锰锂粉末,之后将镍钴锰锂粉末进行焙烧、溶解、混合碳酸钾溶液过滤后向滤渣中补充碳酸盐以调整锂、镍、钴、锰的比例,最后将其球磨、压紧、焙烧重新获得镍钴锰酸锂正极材料,该方法可以实现废镍钴锰酸锂正极材料的再产品化,有利于节约资源、减低成本和保护环境,但是高温还原焙烧能耗高,对设备、人员的要求高,产业化难度大。而关于磷酸铁锂材料的回收,传统的方法是通过冶炼回收制备出碳酸锂和磷、铁化合物,这种方法会造成磷、 铁资源的浪费以及对环境的污染。另外还有通过共沉淀法,如有种方法将磷酸铁锂废料酸溶后得到含锂离子、亚铁离子、磷酸根离子的混合溶液,通过调整各离子浓度、pH等,使锂、铁、磷共沉淀成磷酸铁锂材料,但这种方法所获得磷酸铁锂材料纯度和性能还有待提高。除此之外,还有通过向磷酸铁锂正极废料中补加碳酸锂后进行烧结修复的方法获得新的磷酸铁锂材料,这种方法对废料的形貌和成分要求较高,适用性不强。并且,目前报道中处理的镍钴锰酸锂废料或者磷酸铁锂废料大多是对其中的一种废料进行处理,而极少有同时处理这两种混合废料的报道。
因此,亟需开发一种工艺简单、对环境友好、可以同时回收镍钴锰酸锂和磷酸铁锂混合废料的工艺。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种镍钴锰酸锂和磷酸铁锂混合废料的回收方法,其工艺简单、对环境友好,并在镍钴锰酸锂废料和磷酸铁锂废料同时存在的情况下对其主要元素进行全组分回收并实现产品化,具有良好的应用前景。
根据本发明的一个方面,提出了一种镍钴锰酸锂和磷酸铁锂混合废料的回收方法,包括以下步骤:
S1:将镍钴锰酸锂和磷酸铁锂混合废料加入到酸溶液中进行酸浸,固液分离得到酸浸液;
S2:使用树脂对所述酸浸液中的镍、钴、锰进行吸附,树脂吸附饱和后使用硫酸进行洗涤,得到硫酸镍钴锰混合液和吸附后液;
S3:将所述吸附后液加热后加入沉锂试剂,得到锂盐沉淀和沉淀后液;
S4:将所述沉淀后液进行浓缩,加入碳源搅拌分散,进行静电纺丝,将纺丝后得到的片状材料进行烘干,焙烧处理,得到磷酸铁/碳材料。
在本发明的一些实施方式中,步骤S1中,所述酸溶液为硫酸、硝酸或盐酸中的一种或几种。优选的组合为:硫酸和盐酸的组合、硫酸和硝酸的组合。
在本发明的一些实施方式中,步骤S1中,所述酸溶液的浓度为1-8mol/L,进一步优选为1.5-5mol/L。
在本发明的一些实施方式中,步骤S1中,所述酸溶液与混合废料的质量比为(4-10):1,进一步优选为(5-8):1。
在本发明的一些实施方式中,步骤S1中,所述酸浸的温度为50-120℃,进一步优选为60-90℃;所述酸浸的时间为3-10h,进一步优选为4-8h。
在本发明的一些实施方式中,步骤S2中,所述树脂选自螯合树脂CH-90Na、XFS4195树脂、AmberlitelRC748、LonacSR-5、PuroliteS-930、Chelex100、D851或D402-Ⅱ中的一种或几种。其吸附原理为树脂的高分子上多配位官能团与金属离子形成络合物,从而达到分离的效果。
在本发明的一些实施方式中,步骤S2中,所述吸附的方式采用一段吸附或者多段吸附,采用该种吸附方式的适用性更广,吸附分离效果更好。
在本发明的一些实施方式中,步骤S2中,所得硫酸镍钴锰混合液进行沉淀得到三元前驱体。
在本发明的一些实施方式中,步骤S2中,所述沉锂试剂为碳酸钠、磷酸钠、磷酸钾、碳酸钾、草酸钠、草酸钾、氟化钠、氟化钾或氟化铵的一种或几种;所述加热的温度为40-120℃,进一步优选为65-100℃。
在本发明的一些实施方式中,步骤S4中,将所述沉淀后液进行浓缩,浓缩至沉淀后液中的铁浓度为40-150g/L,进一步优选为50-100g/L。当溶液中磷铁浓度太低时,纺丝时不易成丝,太高则会堵针头或者形成纺锤。
在本发明的一些实施方式中,步骤S4中,所述碳源为聚乙烯吡咯烷酮、聚偏氟乙烯或聚丙烯腈中的一种或几种。
在本发明的一些实施方式中,步骤S4中,将所述碳源先加入到二甲基甲酰胺中溶解,然后倒入浓缩后的沉淀后液中搅拌分散。经静电纺丝后先低温使得二甲基甲酰胺挥发,再高温焙烧使得有机物分解成碳材料。
在本发明的一些实施方式中,步骤S4中,所述烘干的温度为40-90℃,进一步优选为40-70℃。升温速度不宜过快,否则会导致丝状结构坍塌。
在本发明的一些实施方式中,步骤S4中,所述焙烧的温度为250-600℃,进一步优选为300-550℃,焙烧的氛围为空气或者氧气。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明的工艺可对镍钴锰酸锂和磷酸铁锂混合废料进行全面性的回收,经酸浸得到的含镍钴锰磷铁锂酸浸液通过树脂吸附分离、硫酸洗涤得到硫酸镍钴锰混合液,该混合液可通过沉淀得到镍钴锰酸锂正极材料前驱体,得到的磷铁锂溶液可进行沉锂得到锂盐沉淀,将沉淀后液进行浓缩、通过静电纺丝得到磷酸铁/碳材料,可实现废旧镍钴锰酸锂材料和磷酸铁锂材料的定向循环。
2、本发明通过静电纺丝的方法制备磷酸铁可减少材料的团聚现象,所制备的材料为纤维网状结构,可以提高材料的比表面积,从而提高材料的表面性能。磷酸铁/碳材料相较于磷酸铁材料来说,由于碳材料的参与可以提高材料的导电性能,提高材料的活性,有利于用于后续制备磷酸铁锂材料时焙烧工序磷酸铁锂材料的生长。
3、本发明工艺简单、对环境友好、对设备要求低,具备良好的经济效益。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种镍钴锰酸锂和磷酸铁锂混合废料的回收方法,参照图1,具体过程为:
(1)将镍钴锰酸锂废料和磷酸铁锂废料进行混合、粉碎、过筛,得到镍钴锰酸锂和磷酸铁锂混合废料;
(2)称取50g步骤(1)中的镍钴锰酸锂和磷酸铁锂混合废料,加入到体积为250ml、浓度为2.5mol/L的硫酸溶液中,将装好物料的烧杯置于80℃的水浴锅中,并开启搅拌反应4h,将反应后的浆料过滤,得到含镍钴锰磷铁锂溶液和石墨渣;
(3)将螯合树脂CH-90Na装柱,使用蠕动泵将步骤(2)中含镍钴锰磷铁锂溶液滴入树脂柱中,树脂吸附饱和后将树脂表面粘附的少许锂用纯水清洗掉,再使用1.5mol/L的硫酸溶液对饱和树脂进行洗涤,得到硫酸镍钴锰混合液,吸附后液为含磷铁锂溶液;
(4)将步骤(3)中的硫酸镍钴锰混合溶液进行沉淀得到三元前驱体;
(5)将含磷铁锂溶液加热至90℃,滴加碳酸钠溶液进行沉锂,过滤后将所得滤渣进行纯水洗涤、烘箱干燥8h后得到碳酸锂,测定沉锂后液内的锂含量并计算锂的回收率;
(6)将步骤(5)得到的沉淀后液进行浓缩至铁浓度为75g/L,将聚乙烯吡咯烷酮溶于二甲基甲酰胺中,倒入沉淀后液中分散,进行静电纺丝,将纺丝后得到的片状材料在60℃烘干,在500℃下焙烧处理,得到磷酸铁/碳材料。
表1实施例1中各成分计算结果
Figure PCTCN2022093098-appb-000001
Figure PCTCN2022093098-appb-000002
实施例2
一种镍钴锰酸锂和磷酸铁锂混合废料的回收方法,具体过程为:
(1)将镍钴锰酸锂废料和磷酸铁锂废料进行混合、粉碎、过筛,得到镍钴锰酸锂和磷酸铁锂混合废料;
(2)称取50g步骤(1)中的镍钴锰酸锂和磷酸铁锂混合废料,加入到体积为250ml、浓度为3.5mol/L的硫酸和硝酸混合溶液中,将装好物料的烧杯置升温至于90℃的水浴锅中,并开启搅拌反应4h,将反应后的浆料过滤,得到含镍钴锰磷铁锂溶液和石墨渣;
(3)将螯合树脂CH-90Na装柱,使用蠕动泵将步骤(2)中含镍钴锰磷铁锂溶液滴入树脂柱中,树脂吸附饱和后,将吸附后液过PuroliteS-930树脂柱,将树脂表面粘附的少许锂用纯水清洗掉,再使用1.5mol/L的硫酸溶液对饱和树脂进行洗涤,得到硫酸镍钴锰混合液,吸附后液为含磷铁锂溶液;
(4)将步骤(3)中的硫酸镍钴锰混合溶液进行沉淀得到三元前驱体;
(5)将含磷铁锂溶液加热至80℃,滴加碳酸钾溶液进行沉锂,过滤后将所得滤渣进行纯水洗涤、烘箱干燥8h后得到碳酸锂,测定沉锂后液内的锂含量并计算锂的回收率;
(6)将步骤(5)得到的沉淀后液进行浓缩至铁浓度为80g/L,将聚偏氟乙烯溶于二甲基甲酰胺中,倒入沉淀后液中分散,进行静电纺丝,将纺丝后得到的片状材料在60℃烘干,在450℃下焙烧处理,得到磷酸铁/碳材料。
表2实施例2中各成分计算结果
Figure PCTCN2022093098-appb-000003
实施例3
一种镍钴锰酸锂和磷酸铁锂混合废料的回收方法,具体过程为:
(1)将镍钴锰酸锂废料和磷酸铁锂废料进行混合、粉碎、过筛,得到镍钴锰酸锂和磷酸铁锂混合废料;
(2)称取50g步骤(1)中的镍钴锰酸锂和磷酸铁锂混合废料,加入到体积为250ml、浓度为4mol/L的盐酸溶液中,将装好物料的烧杯置升温至于80℃的水浴锅中,并开启搅拌反应6h,将反应后的浆料过滤,得到含镍钴锰磷铁锂溶液和石墨渣;
(3)将螯合树脂CH-90Na装柱,使用蠕动泵将步骤(2)中含镍钴锰磷铁锂溶液滴入树脂柱中,树脂吸附饱和后,将吸附后液过D851树脂柱,将树脂表面粘附的少许锂用纯水清洗掉,再使用1.5mol/L的硫酸溶液对饱和树脂进行洗涤,得到硫酸镍钴锰混合液,吸附后液为含磷铁锂溶液;
(4)将步骤(3)中的硫酸镍钴锰混合溶液进行沉淀得到三元前驱体;
(5)将含磷铁锂溶液加热至90℃,滴加碳酸钠溶液进行沉锂,过滤后将所得滤渣进行纯水洗涤、烘箱干燥8h后得到碳酸锂,测定沉锂后液内的锂含量并计算锂的回收率;
(6)将步骤(5)得到的沉淀后液进行浓缩至铁浓度为75g/L,将聚乙烯吡咯烷酮溶于二甲基甲酰胺中,倒入沉淀后液中分散,进行静电纺丝,将纺丝后得到的片状材料在60℃烘干,在400℃下焙烧处理,得到磷酸铁/碳材料。
表3实施例3中各成分计算结果
Figure PCTCN2022093098-appb-000004
Figure PCTCN2022093098-appb-000005
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种镍钴锰酸锂和磷酸铁锂混合废料的回收方法,其特征在于,包括以下步骤:
    S1:将镍钴锰酸锂和磷酸铁锂混合废料加入到酸溶液中进行酸浸,固液分离得到酸浸液;
    S2:使用树脂对所述酸浸液中的镍、钴、锰进行吸附,树脂吸附饱和后使用硫酸进行洗涤,得到硫酸镍钴锰混合液和吸附后液;
    S3:将所述吸附后液加热后加入沉锂试剂,得到锂盐沉淀和沉淀后液;
    S4:将所述沉淀后液进行浓缩,加入碳源搅拌分散,进行静电纺丝,将纺丝后得到的片状材料进行烘干,焙烧处理,得到磷酸铁/碳材料。
  2. 根据权利要求1所述的回收方法,其特征在于,步骤S1中,所述酸溶液为硫酸、硝酸或盐酸中的一种或几种。
  3. 根据权利要求1所述的回收方法,其特征在于,步骤S1中,所述酸溶液与混合废料的质量比为(4-10):1。
  4. 根据权利要求1所述的回收方法,其特征在于,步骤S2中,所述树脂选自螯合树脂CH-90Na、XFS4195树脂、AmberlitelRC748、LonacSR-5、PuroliteS-930、Chelex100、D851或D402-Ⅱ中的一种或几种。
  5. 根据权利要求1所述的回收方法,其特征在于,步骤S2中,所得硫酸镍钴锰混合液进行沉淀得到三元前驱体。
  6. 根据权利要求1所述的回收方法,其特征在于,步骤S2中,所述沉锂试剂为碳酸钠、磷酸钠、磷酸钾、碳酸钾、草酸钠、草酸钾、氟化钠、氟化钾或氟化铵的一种或几种;所述加热的温度为40-120℃。
  7. 根据权利要求1所述的回收方法,其特征在于,步骤S4中,将所述沉淀后液进行浓缩,浓缩至沉淀后液中的铁浓度为40-150g/L。
  8. 根据权利要求1所述的回收方法,其特征在于,步骤S4中,所述碳源为聚乙烯吡咯烷酮、聚偏氟乙烯或聚丙烯腈中的一种或几种。
  9. 根据权利要求1所述的回收方法,其特征在于,步骤S4中,将所述碳源先加入到二甲基甲酰胺中溶解,然后倒入浓缩后的沉淀后液中搅拌分散。
  10. 根据权利要求1所述的回收方法,其特征在于,步骤S4中,所述烘干的温度为40-90℃;所述焙烧的温度为250-600℃。
PCT/CN2022/093098 2021-08-25 2022-05-16 镍钴锰酸锂和磷酸铁锂混合废料的回收方法 WO2023024593A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MA60239A MA60239A1 (fr) 2021-08-25 2022-05-16 Procédé de récupération des déchets mixtes de manganate de lithium-nickel-cobalt et de phosphate de lithium-fer
HU2300213A HUP2300213A2 (hu) 2021-08-25 2022-05-16 Eljárás lítium-nikkel-mangán-kobalt-oxid és lítium-vasfoszfát vegyes hulladékanyag újrafeldolgozására
DE112022000208.5T DE112022000208T5 (de) 2021-08-25 2022-05-16 Recyclingverfahren für gemischte Abfälle aus Lithium-Nickel-Mangan-Kobalt-Oxid und Lithium-Eisen-Phosphat
GB2318290.0A GB2621295A (en) 2021-08-25 2022-05-16 Method for recovering mixed waste of lithium nickel cobalt manganate and lithium iron phosphate
US18/213,839 US20230332267A1 (en) 2021-08-25 2023-06-24 Recycling method for mixed waste material of lithium nickel manganese cobalt oxide and lithium iron phosphate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110980738.9 2021-08-25
CN202110980738.9A CN113809424B (zh) 2021-08-25 2021-08-25 镍钴锰酸锂和磷酸铁锂混合废料的回收方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/213,839 Continuation US20230332267A1 (en) 2021-08-25 2023-06-24 Recycling method for mixed waste material of lithium nickel manganese cobalt oxide and lithium iron phosphate

Publications (1)

Publication Number Publication Date
WO2023024593A1 true WO2023024593A1 (zh) 2023-03-02

Family

ID=78894032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093098 WO2023024593A1 (zh) 2021-08-25 2022-05-16 镍钴锰酸锂和磷酸铁锂混合废料的回收方法

Country Status (7)

Country Link
US (1) US20230332267A1 (zh)
CN (1) CN113809424B (zh)
DE (1) DE112022000208T5 (zh)
GB (1) GB2621295A (zh)
HU (1) HUP2300213A2 (zh)
MA (1) MA60239A1 (zh)
WO (1) WO2023024593A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116281918A (zh) * 2023-03-09 2023-06-23 中国科学院广州能源研究所 一种退役磷酸铁锂黑粉全组分精细分离回收的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809424B (zh) * 2021-08-25 2023-05-05 广东邦普循环科技有限公司 镍钴锰酸锂和磷酸铁锂混合废料的回收方法
CN114988382B (zh) * 2022-06-16 2023-08-25 蜂巢能源科技股份有限公司 一种废旧磷酸铁锂电池粉料的回收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209164A1 (en) * 2017-05-11 2018-11-15 Worcester Polytechnic Institute Method and apparatus for recycling lithium iron phosphate batteries
CN110371943A (zh) * 2019-06-28 2019-10-25 湖南邦普循环科技有限公司 一种镍钴锰酸锂和磷酸铁锂混合废料的选择性回收工艺
CN112813270A (zh) * 2020-12-30 2021-05-18 江苏海普功能材料有限公司 废旧镍钴锰三元锂电池正极材料回收方法
CN113809424A (zh) * 2021-08-25 2021-12-17 广东邦普循环科技有限公司 镍钴锰酸锂和磷酸铁锂混合废料的回收方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269981A (zh) * 2018-01-03 2018-07-10 中航锂电(洛阳)有限公司 一种镍钴锰酸锂复合正极材料及其制备方法、锂电池
CN108598474B (zh) * 2018-04-24 2019-07-05 湖北工程学院 一种高能量密度锂电池磷酸铁锂正极材料及其制备方法
CN110518200B (zh) * 2019-08-01 2021-12-28 乳源东阳光磁性材料有限公司 一种碳/磷酸锰铁锂纤维丝、氧化镨双层包覆的镍钴铝正极材料及其制备方法
CN110527836A (zh) * 2019-09-12 2019-12-03 金川集团股份有限公司 一种离子交换法回收废旧镍钴锰锂离子电池中有价金属的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209164A1 (en) * 2017-05-11 2018-11-15 Worcester Polytechnic Institute Method and apparatus for recycling lithium iron phosphate batteries
CN110371943A (zh) * 2019-06-28 2019-10-25 湖南邦普循环科技有限公司 一种镍钴锰酸锂和磷酸铁锂混合废料的选择性回收工艺
CN112813270A (zh) * 2020-12-30 2021-05-18 江苏海普功能材料有限公司 废旧镍钴锰三元锂电池正极材料回收方法
CN113809424A (zh) * 2021-08-25 2021-12-17 广东邦普循环科技有限公司 镍钴锰酸锂和磷酸铁锂混合废料的回收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAO GUAN-NAN, ZHANG HAO, CHEN XIAO-HONG, CAO GAO-PING, YANG YUSHENG: "A novel method for preparing pomegranate-structured FePO4/C composite materials as cathode for lithium-ion batteries", MATERIALS RESEARCH BULLETIN, ELSEVIER, KIDLINGTON., GB, vol. 47, no. 12, 1 December 2012 (2012-12-01), GB , pages 4048 - 4053, XP093038833, ISSN: 0025-5408, DOI: 10.1016/j.materresbull.2012.08.062 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116281918A (zh) * 2023-03-09 2023-06-23 中国科学院广州能源研究所 一种退役磷酸铁锂黑粉全组分精细分离回收的方法
CN116281918B (zh) * 2023-03-09 2024-03-29 中国科学院广州能源研究所 一种退役磷酸铁锂黑粉全组分精细分离回收的方法

Also Published As

Publication number Publication date
DE112022000208T5 (de) 2023-08-31
CN113809424B (zh) 2023-05-05
MA60239A1 (fr) 2024-05-31
US20230332267A1 (en) 2023-10-19
CN113809424A (zh) 2021-12-17
GB202318290D0 (en) 2024-01-17
HUP2300213A2 (hu) 2023-10-28
GB2621295A (en) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2023024593A1 (zh) 镍钴锰酸锂和磷酸铁锂混合废料的回收方法
CN111129632B (zh) 废旧三元锂离子电池正负极混合材料回收方法
CN102903985B (zh) 从磷酸亚铁锂废料中回收碳酸锂的方法
CN102751549B (zh) 一种废旧锂离子电池正极材料全组分资源化回收方法
CN109065996B (zh) 一种废旧镍钴锰酸锂三元正极材料再生的方法
CN102891345B (zh) 从磷酸亚铁锂废料中回收氯化锂的方法
CN110343864B (zh) 微波焙烧辅助回收废旧电极材料中锂和钴的方法
CN104466292B (zh) 从钴酸锂正极材料的废锂离子电池中回收钴锂金属的方法
CN111082043A (zh) 一种废旧镍钴锰酸锂三元电池正极材料的回收利用方法
CN109256596B (zh) 一种逆向制备铝掺杂三元前驱体的方法及系统
WO2020019920A1 (zh) 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
CN109234524A (zh) 一种从废旧三元锂电池中综合回收有价金属的方法及系统
CN108400399A (zh) 一种废旧锰酸锂电池制备磷酸锰锂/碳正极材料的方法
WO2022193781A1 (zh) 一种废旧三元正极材料的再生方法和应用
CN104485493B (zh) 废锂离子电池中钴酸锂正极活性材料的修复再生方法
CN109119711B (zh) 一种采用废旧钴酸锂电池制备高电压正极材料的方法
CN102910607B (zh) 磷酸亚铁锂正极材料综合回收利用方法
CN111048862B (zh) 一种高效回收锂离子电池正负极材料为超级电容器电极材料的方法
CN106129519A (zh) 一种采用报废磷酸铁锂电池制备碳酸锂的方法
JP2024514966A (ja) 使用済みリチウムイオン電池からの有価金属の回収方法
CN102881960B (zh) 从磷酸亚铁锂废料中回收氢氧化锂的方法
Chen et al. Hydrometallurgical processes for valuable metals recycling from spent lithium-ion batteries
CN104466293A (zh) 锂离子电池正极材料钴酸锂废料的再生方法
CN104485494B (zh) 钴酸锂废锂离子电池中正极活性材料的再生方法
CN113548701A (zh) 一种锂离子筛的制备和应用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P2300213

Country of ref document: HU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/014182

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 202318290

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220516