WO2020019920A1 - 一种由红土镍矿硝酸浸出液制备三元正极材料的方法 - Google Patents

一种由红土镍矿硝酸浸出液制备三元正极材料的方法 Download PDF

Info

Publication number
WO2020019920A1
WO2020019920A1 PCT/CN2019/092498 CN2019092498W WO2020019920A1 WO 2020019920 A1 WO2020019920 A1 WO 2020019920A1 CN 2019092498 W CN2019092498 W CN 2019092498W WO 2020019920 A1 WO2020019920 A1 WO 2020019920A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
cobalt
manganese
cathode material
ternary cathode
Prior art date
Application number
PCT/CN2019/092498
Other languages
English (en)
French (fr)
Inventor
王成彦
马保中
陈永强
赵林
但勇
金长浩
赵澎
Original Assignee
眉山顺应动力电池材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眉山顺应动力电池材料有限公司 filed Critical 眉山顺应动力电池材料有限公司
Publication of WO2020019920A1 publication Critical patent/WO2020019920A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for preparing a lithium ion battery cathode material, in particular to a method for preparing a nickel-cobalt-manganese ternary cathode material from a nitric acid leaching solution of laterite nickel ore.
  • lithium-ion batteries have been widely used as secondary energy sources in electric vehicles, drones, and mobile smart terminals such as mobile phones, tablets, and notebook computers. With the rapid development of the application market worldwide, the output of lithium-ion batteries has also increased dramatically.
  • lithium ion battery anode materials there are many series of lithium ion battery anode materials being researched and developed. Among them, nickel-cobalt-manganese ternary cathode materials are considered to be the most promising lithium ion because of their high capacity, stable cycling performance, good safety performance, and low price.
  • One of the battery anode materials its annual domestic demand is gradually replacing lithium cobaltate at an annual growth rate of 20%.
  • the raw materials for producing nickel-cobalt-manganese ternary cathode materials directly affect the production cost and performance of lithium ion cathode materials.
  • the preparation of ternary materials mostly uses refined sulfates, nitrates, chlorides, etc. as raw materials. Most of these salts are made from ore, and from the ore to the product, it needs to go through a series of impurity removal and extraction processes. The process is long, the emissions are large, and the energy consumption is high.
  • nickel-cobalt is an important strategic non-ferrous metal, while China's nickel-cobalt resources are in short supply, relying heavily on foreign imports, and are expensive.
  • laterite nickel ore In fact, China has already controlled 10 billion tons of overseas laterite nickel ore resources.
  • This resource is a typical complex multi-metal resource, accompanied by various valuable metals such as nickel, cobalt, chromium, and manganese.
  • nickel, cobalt, chromium, and manganese At present, most researches have been focused on the recovery of nickel, while other elements such as cobalt, manganese, copper, iron, and aluminum have not been used efficiently, which not only wastes resources, but also causes environmental pollution.
  • laterite nickel ore also contains the nickel, cobalt, and manganese elements required for the preparation of ternary cathode materials. If ternary cathode materials can be directly prepared from laterite nickel ore, it will be beneficial to the comprehensive utilization of resources and environmentally friendly development. It can also reduce the production cost of ternary cathode materials.
  • the treatment of laterite nickel ore mainly includes the pyrolysis process for producing ferronickel and the wet process for producing nickel salts. These methods have problems such as low resource utilization, high energy consumption, and serious environmental pollution.
  • the inventor's research team developed an original limonite laterite nickel ore with efficient and comprehensive utilization of a new clean production process that can achieve the efficient extraction and comprehensive utilization of nickel, cobalt, chromium, aluminum, and iron in laterite nickel ore, and reduce waste emissions at the source.
  • the main technical indicators rank the world's leading level.
  • This process uses nitric acid to decompose laterite nickel ore.
  • the nickel, cobalt, and manganese in the nitric acid leachate are all produced and sold as nickel-cobalt compounds. No method for preparing new energy materials directly from the nitric acid leachate has been reported.
  • the invention aims to provide a method for directly preparing a nickel-cobalt-manganese ternary cathode material from a laterite nickel ore nitric acid leaching solution with simple process flow and stable product quality.
  • the method for preparing a precursor of a nickel-cobalt-manganese ternary cathode material provided by the present invention combines materials and metallurgical technology, and uses a nitrate leaching solution of laterite nickel ore as a raw material, which has the advantages of short process flow and low cost.
  • the technical solutions adopted by the present invention are:
  • the laterite nickel ore nitric acid leaching solution is used as a raw material, the pH value of the solution is adjusted to deeply precipitate iron and aluminum, and iron-aluminum slag and filtrate are obtained after solid-liquid separation; further fluoride salts are added to the above filtrate to further decalcify magnesium to obtain calcium and magnesium slag and Nickel-rich cobalt-manganese liquid;
  • step A Adjusting the pH value of the nickel-rich cobalt-manganese solution obtained in step A to selectively precipitate nickel, cobalt, and manganese; and filtering and washing to obtain a nickel-cobalt-manganese slag and a nickel-depleted cobalt-manganese solution once;
  • the prepared ternary cathode material precursor, lithium source, additives and water are added to a high-pressure reaction kettle in a certain proportion for hydrothermal reaction. After the reaction is completed, it is directly dried, and then the mixture is ground and then roasted at high temperature to obtain nickel. Cobalt manganese lithium ternary cathode material.
  • step A one or more of secondary nickel-cobalt-manganese slag, magnesium oxide, magnesium carbonate, calcium oxide, and calcium carbonate are added to adjust the pH value to 4.2 to 4.5 and control the reaction temperature to 30 to 80 ° C.
  • the reaction time is 0.5 ⁇ 2h.
  • step B the pH value is adjusted to 7.0 to 7.6 by adding one or more of magnesium oxide, calcium oxide and sodium hydroxide, the reaction temperature is controlled to be 30 to 80 ° C., and the reaction time is 0.5 to 2 h.
  • step C the pH value is adjusted from 7.6 to 8.3 by adding one or more of magnesium oxide, calcium oxide, and sodium hydroxide, the reaction temperature is controlled to be 30 to 80 ° C., and the reaction time is 0.5 to 2 h.
  • the acid solution used in step D is one or more of sulfuric acid, nitric acid, and hydrochloric acid solutions;
  • the nickel salt is one or more of nickel sulfate, nickel nitrate, nickel chloride or nickel hydroxide;
  • the cobalt salt is one or more of cobalt sulfate, cobalt nitrate, cobalt chloride or cobalt hydroxide;
  • the manganese salt is one or more of manganese sulfate, manganese nitrate or manganese hydroxide;
  • the concentration of the sodium hydroxide is 0.5 to 2.5 mol / L
  • the concentration of ammonia water is 0.2 to 1.0 mol / L
  • the reaction temperature is 40 to 70 ° C
  • the reaction time is 5 to 20 hours.
  • the lithium source in step E is one or more of lithium hydroxide, lithium sulfate, lithium nitrate, lithium acetate, and lithium oxalate;
  • the additive is one or more of hydrogen peroxide, oxygen, and ozone;
  • the lithium source is compounded at a molar ratio of Li / (Ni + Co + Mn) of 1.0 to 1.07 times;
  • the amount of the additive is 0.1 to 10 times the molar ratio of O / (Ni + Co + Mn);
  • the liquid-solid ratio L / S of the hydrothermal reaction process is 1: 1 to 5: 1, the hydrothermal temperature is 140 ° C to 250 ° C, and the holding time is 1 to 6 hours;
  • the drying temperature is 80 ° C to 120 ° C, and the drying time is 2 to 10 hours;
  • the roasting temperature is 750-900 ° C, and the roasting time is 2-10 hours.
  • the method for preparing a nickel-cobalt-manganese ternary cathode material directly uses nitrate leaching solution of laterite nickel ore as a raw material to deeply combine nonferrous smelting and material preparation, thereby improving the comprehensive utilization of associated resources in laterite nickel ore.
  • Wide source of raw materials simple process and low cost.
  • the hydrothermal synthetic cathode material used has low lithium content and no solid-liquid separation. The lithium can be embedded in the precursor during the hydrothermal process, and a ternary material is initially formed. After the subsequent stage of firing, no agglomeration and crystal form can be obtained. Good and excellent cathode material for electrochemical performance.
  • FIG. 1 is a process flow chart of preparing a ternary cathode material from a laterite nickel ore nitric acid leaching solution provided by the present invention
  • FIG. 2 is a charge-discharge cycle performance chart of the ternary positive electrode material prepared in Example 1 at 1C;
  • FIG. 3 is an electron micrograph of the ternary positive electrode material prepared in Example 2.
  • This embodiment provides a method for preparing a nickel-cobalt-manganese ternary cathode material from a laterite nickel ore nitric acid leaching solution.
  • the specific preparation method is as follows:
  • the above solution was supplemented with cobalt sulfate and manganese sulfate, so that the concentrations of nickel, cobalt, and manganese in the solution were 90 g / L, 11.25 g / L, and 11.25 g / L, respectively.
  • This embodiment provides a method for preparing a nickel-cobalt-manganese ternary cathode material from a laterite nickel ore nitric acid leaching solution.
  • the specific preparation method is as follows:
  • Nickel-cobalt-manganese slag is dissolved once with nitric acid, and the content of the resulting nickel-cobalt-manganese solution is shown in the table below.
  • the above solution is supplemented with cobalt nitrate and manganese nitrate, so that the concentrations of nickel, cobalt, and manganese in the solution are 120 g / L, 48 g / L, and 72 g / L, respectively.
  • This embodiment provides a method for preparing a nickel-cobalt-manganese ternary cathode material from a laterite nickel ore nitric acid leaching solution.
  • the specific preparation method is as follows:
  • the above solution is supplemented with cobalt sulfate and manganese sulfate so that the concentrations of nickel, cobalt, and manganese in the solution are 150 g / L, 18.75 g / L, and 18.75 g / L, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种由红土镍矿硝酸浸出液制备三元正极材料的方法,包括:将红土镍矿硝酸浸出液调节pH,得到铁铝渣和滤液,向滤液中加入氟盐深度脱钙镁,得到钙镁渣和富镍钴锰液,富镍钴锰液再经pH调节,沉淀镍、钴和锰,得到一次镍钴锰渣和贫镍钴锰液,调节贫镍钴锰液的pH,深度沉淀镍钴锰,得到的二次镍钴锰渣返回用于调节红土镍矿硝酸浸出液的pH,由一次镍钴锰渣制备三元正极材料前驱体;由前驱体、锂源、添加剂和水按计量加入到高压反应釜中,经水热反应后直接干燥、研磨、高温焙烧,即得镍钴锰锂三元正极材料。该方法提高了红土镍矿中伴生资源的综合利用,具有原料来源广,工艺流程简单,成本低等特点。该方法制备的三元正极材料粒度分布均匀,稳定性好,比容量高,活性高。

Description

一种由红土镍矿硝酸浸出液制备三元正极材料的方法 技术领域
本发明涉及一种锂离子电池正极材料的制备方法,特别涉及一种由红土镍矿的硝酸浸出液制备镍钴锰三元正极材料的方法。
背景技术
近年来,锂离子电池作为二次能源广泛应用于电动汽车,无人机,以及手机、平板电脑、笔记本电脑等可移动智能终端。随着应用市场在全球范围内突飞猛进的发展,锂离子电池的产量亦急剧增长。目前,正在研究开发的锂离子电池正极材料系列众多,其中镍钴锰三元正极材料因具有容量高、循环性能稳定、安全性能好、价格低廉等优点,被认为是最具有发展前景的锂离子电池正极材料之一,其国内年需求量正以20%的年增长速度逐渐取代钴酸锂。
但是,生产镍钴锰三元正极材料的原料直接影响着锂离子正极材料的生产成本和性能。目前,三元材料的制备大多以精制的硫酸盐、硝酸盐、氯化物等为原料。这些盐大部分由矿石制取,而从矿石到产品又需要经过一系列的除杂和提取工序,流程长,排放大,能耗高。此外,镍钴属于重要的战略有色金属,而我国镍钴资源短缺,大量依靠国外进口,价格昂贵。
实际上,我国已掌控了百亿吨的海外红土镍矿资源。该资源为典型的复杂多金属资源,伴生有镍、钴、铬、锰等多种有价金属。目前开展的研究多集中于镍的回收,而其它元素如钴、锰、铜、铁、铝等都未得到高效利用,不仅浪费了资源,同时造成了环境污染。事实上,红土镍矿中同时含有制备三元正极材料所需的镍、钴、锰元素,若能通过红土镍矿直接制备出三元正极材料,既有利于资源的综合利用和环境友好发展,又能降低三元正极材料的生产成本。
目前,红土镍矿的处理主要有生产镍铁的火法工艺和生产镍盐的湿法工艺,这些方法均存在资源利用率低、能耗高、环境污染严重等问题。发明人所在研究团队开发的原创性褐铁型红土镍矿高效综合利用清洁生产新工艺能够实现红土镍矿中镍、钴、铬、铝、铁的高效提取与综合利用,源头消减废弃物排放,主要技术指标居世界领先水平。该工艺是以硝酸分解红土镍矿,其硝酸浸出液中的镍、钴、锰等均以镍钴化合物产出并出售,而直接由硝酸浸出液制备新能源材料的方法还未见报道。
发明内容
本发明旨在提供一种工艺流程简单,产品质量稳定的由红土镍矿硝酸浸出液直接制备镍钴锰三元正极材料的方法。本发明提供的制备镍钴锰三元正极材料前驱体的方法将材料和冶金技术相结合,以红土镍矿的硝酸浸出液作为原料,具有工艺流程短,成本低的优势。为实现本发明的目的,本发明采取的技术方案是:
A.杂质深度脱除
以红土镍矿硝酸浸出液为原料,调节溶液的pH值,使铁铝深度沉淀,固液分离后得 到铁铝渣和滤液;再往上述滤液中加入氟盐深度脱钙镁,得到钙镁渣和富镍钴锰液;
B.可控沉淀镍钴锰
将步骤A得到的富镍钴锰液调节pH值,使镍、钴、锰选择性沉淀,过滤洗涤后得到一次镍钴锰渣和贫镍钴锰液;
C.深度沉淀镍钴锰
调节步骤B所得贫镍钴锰液的pH,使残余的镍钴锰沉淀分离,过滤后得到的二次镍钴锰渣返回步骤A用于调节红土镍矿硝酸浸出液的pH值;
D.三元正极材料前驱体的制备
(1)将所得一次镍钴锰渣经酸溶液溶解,得到纯镍钴锰溶液,
(2)根据目标产物中镍钴锰组分比例,向步骤(1)所得纯镍钴锰溶液中补充可溶性镍盐、钴盐和锰盐中的一种或多种,使镍钴锰总金属离子浓度为0.5~3.0mol/L
(3)将步骤(2)所述混合溶液、氢氧化钠溶液、氨水在氮气或氩气保护下缓慢加入到反应釜中,反应结束后过滤、洗涤、干燥,得到前驱体Ni xCo yMn 1-x-y(OH) 2
E.三元正极材料的制备
将制备的三元正极材料前驱体、锂源、添加剂和水按一定比例加入到高压反应釜中进行水热反应,反应结束后直接干燥,然后经研磨混料,再经高温焙烧,即得镍钴锰锂三元正极材料。
进一步地,步骤A中通过加入二次镍钴锰渣、氧化镁、碳酸镁、氧化钙和碳酸钙中的一种或多种,调节pH值为4.2~4.5,控制反应温度为30~80℃,反应时间为0.5~2h。
进一步地,步骤B中通过加入加入氧化镁、氧化钙、氢氧化钠中的一种或多种调节pH值为7.0~7.6,控制反应温度为30~80℃,反应时间为0.5~2h。
进一步地,步骤C中通过加入氧化镁、氧化钙、氢氧化钠中的一种或多种调节pH值为7.6~8.3,控制反应温度为30~80℃,反应时间为0.5~2h。
进一步地,步骤D中采用的酸溶液为硫酸、硝酸、盐酸溶液中的一种或多种;
所述镍盐为硫酸镍、硝酸镍、氯化镍或氢氧化镍中的一种或多种;
所述钴盐为硫酸钴、硝酸钴、氯化钴或氢氧化钴中的一种或多种;
所述锰盐为硫酸锰、硝酸锰或氢氧化锰中的一种或多种;
所述氢氧化钠的浓度为0.5~2.5mol/L,氨水浓度为0.2~1.0mol/L,反应温度40~70℃,反应时间5~20h。
进一步地,步骤E中的锂源为氢氧化锂、硫酸锂、硝酸锂、乙酸锂、草酸锂中的一种或几种;
所述添加剂为双氧水、氧气、臭氧的一种或多种;
所述锂源以Li/(Ni+Co+Mn)摩尔比的1.0~1.07倍配入;
所述添加剂用量为O/(Ni+Co+Mn)摩尔比的0.1~10倍;
所述水热反应过程液固比L/S为1:1~5:1,水热温度为140℃~250℃,保温时间1~6h;
所述干燥温度为80℃~120℃,干燥时间2~10h;
所述焙烧温度为750~900℃,焙烧时间为2~10h。
本发明提供的制备的镍钴锰三元正极材料的方法,以红土镍矿的硝酸浸出液为原 料直接制备,使有色冶炼和材料制备深度结合,提高了红土镍矿中伴生资源的综合利用,具有原料来源广,工艺流程简单,成本低等特点。采用的水热合成正极材料,锂用量低、无固液分离,水热过程中即可实现锂在前驱体中的嵌入,初步形成三元材料,经后续一段焙烧即可得到无团聚、晶型好、电化学性能优异的正极材料。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明的提供的一种由红土镍矿硝酸浸出液种制备三元正极材料的工艺流程图;
图2为实施实例1所制备三元正极材料的在1C下充放电循环性能图;图3为实施实例2所制备三元正极材料的电镜图。
具体实施方式
以下结合实施例旨在进一步说明本发明,而非限制
实施例1:
本实施例提供一种由红土镍矿硝酸浸出液种制备镍钴锰三元正极材料的方法,其具体制备方法为:
A.杂质深度脱除:取300mL红土镍矿硝酸浸出液,各元素含量见下表
Figure PCTCN2019092498-appb-000001
通过加入碳酸镁料浆,调节pH值为4.2,控制温度为50℃,时间为1h,反应结束后固液分离,铁铝的沉淀率分别为99.9%和99.5%。然后往滤液中加入氟化钠,钙镁的沉淀率均达到99.9%以上(即,杂质深度脱除)。
B.可控沉淀镍钴锰
然后向上述滤液种加入氧化镁,调节pH为7.2,控制温度为60℃,时间为2h,反应结束后固液分离,得到一次镍钴锰渣。镍、钴、锰的沉淀率分别为85.2%和83.5%和70.4%,
C.深度沉淀镍钴锰
向上述滤液中加入氢氧化镁,调节pH为8.0,控制温度为55℃,时间为2h,反应结束后固液分离,残余镍、钴、锰的沉淀率分别为99.6%和99.7%和96.5%,
D.三元正极材料前驱体的制备
(1)采用硫酸溶解一次镍钴锰渣,所得富镍钴锰溶液的含量见下表
Figure PCTCN2019092498-appb-000002
(2)根据目标产物中镍钴锰组分比例,上述溶液中补充硫酸钴和硫酸锰,使溶液中 镍、钴、锰的浓度分别为90g/L,11.25g/L,11.25g/L,
(3)将上述混合溶液与0.5mol/L氢氧化钠溶液、1.0mol/L氨水并行滴加至氮气保护的搅拌反应器中,控制pH11.0,温度为60℃,保温反应15h,过滤得到前驱体Ni 0.8Co 0.1Mn 0.1(OH) 2
E.三元正极材料的制备
取60g干燥后的前驱体加至高压釜中,按液固比L/S=2:1加入水,Li/(Ni+Co+Mn)摩尔比1.04加入氢氧化锂;高压釜密封、加热至200℃并搅拌,通入氧气至压力为3MPa,保温时间6h;冷却后倒出浆料直接120℃干燥2h,研磨混匀,于箱式马弗炉中850℃焙烧4h后得到三元正极材料成品。
实施例2:
本实施例提供一种由红土镍矿硝酸浸出液种制备镍钴锰三元正极材料的方法,其具体制备方法为:
A.杂质深度脱除:取300mL红土镍矿硝酸浸出液,各元素含量见下表
Figure PCTCN2019092498-appb-000003
通过加入碳酸镁料浆,调节pH值为4.3,控制温度为55℃,时间为1.5h,反应结束后固液分离,铁铝的沉淀率分别为99.9%和99.4%。然后往滤液中加入氟化钠,钙镁的沉淀率均达到99.9%以上。
B.可控沉淀镍钴锰
然后向上述滤液种加入氧化镁,调节pH为7.1,控制温度为65℃,时间为1.5h,反应结束后固液分离,得到一次镍钴锰渣。镍、钴、锰的沉淀率分别为84.2%和83.1%和70.1%,
C.深度沉淀镍钴锰
向上述滤液中加入氢氧化镁,调节pH为8.1,控制温度为60℃,时间为2h,反应结束后固液分离,残余镍、钴、锰的沉淀率分别为99.2%和99.3%和99.4%,
D.三元正极材料前驱体的制备
(1)采用硝酸溶解一次镍钴锰渣,所得富镍钴锰溶液的含量见下表
Figure PCTCN2019092498-appb-000004
(2)根据目标产物中镍钴锰组分比例,上述溶液中补充硝酸钴和硝酸锰,使溶液中镍、钴、锰的浓度分别为120g/L,48g/L,72g/L,
(3)将上述混合溶液与1.0mol/L氢氧化钠溶液、1.5mol/L氨水并行滴加至氩气保护的反应釜中,控制pH11.2,温度为65℃,保温反应16h,过滤得到前驱体Ni 0.5Co 0.2Mn 0.3(OH) 2
E.三元正极材料的制备
取80g干燥后的前驱体加至高压釜中,按液固比L/S=3:1加入水,Li/(Ni+Co+Mn)摩尔比1.03加入氢氧化锂;高压釜密封、加热至210℃并搅拌,通入氧气至压力为2MPa,保温时间6h;冷却后倒出浆料直接120℃干燥2h,研磨混匀,于箱式马弗炉中800℃焙烧5h后得到 三元正极材料成品。
实施例3:
本实施例提供一种由红土镍矿硝酸浸出液种制备镍钴锰三元正极材料的方法,其具体制备方法为:
A.杂质深度脱除:取300mL红土镍矿硝酸浸出液,各元素含量见下表
Figure PCTCN2019092498-appb-000005
通过加入碳酸镁料浆,调节pH值为4.5,控制温度为50℃,时间为2.0h,反应结束后固液分离,铁铝的沉淀率分别为99.9%和99.9%。然后往滤液中加入氟化氨,钙镁的沉淀率均达到99.9%以上。
B.可控沉淀镍钴锰
然后向上述滤液种加入氧化镁,调节pH为7.2,控制温度为60℃,时间为2.0h,反应结束后固液分离,得到一次镍钴锰渣。镍、钴、锰的沉淀率分别为86.2%和87.1%和83.7%,
C.深度沉淀镍钴锰
向上述滤液中加入氢氧化镁,调节pH为8.3,控制温度为65℃,时间为2h,反应结束后固液分离,残余镍、钴、锰的沉淀率分别为99.3%和99.6%和99.2%,
D.三元正极材料前驱体的制备
(1)采用硫酸溶解一次镍钴锰渣,控制液固比为1:1,所得富镍钴锰溶液的含量见下表
Figure PCTCN2019092498-appb-000006
(2)根据目标产物中镍钴锰组分比例,上述溶液中补充硫酸钴和硫酸锰,使溶液中镍、钴、锰的浓度分别为150g/L,18.75g/L,18.75g/L,
(3)将上述混合溶液与1.5mol/L氢氧化钠溶液、1.0mol/L氨水并行滴加至氮气保护的搅拌反应器中,控制pH11.5,温度为50℃,保温反应20h,过滤得到前驱体Ni 0.8Co 0.1Mn 0.1(OH) 2
E.三元正极材料的制备
取100g干燥后的前驱体加至高压釜中,按液固比L/S=4:1加入水,Li/(Ni+Co+Mn)摩尔比1.05加入氢氧化锂;高压釜密封、加热至190℃并搅拌,通入氧气至压力为3MPa,保温时间5h;冷却后倒出浆料直接120℃干燥2h,研磨混匀,于箱式马弗炉中820℃焙烧5h后得到三元正极材料成品。

Claims (6)

  1. 一种由红土镍矿硝酸浸出液制备三元正极材料的方法,其特征在于,包括以下步骤:
    A.杂质深度脱除
    以红土镍矿硝酸浸出液为原料,调节溶液的pH值,深度脱除铁铝,固液分离后得到铁铝渣和滤液;再往上述滤液中加入氟盐深度脱钙镁,得到钙镁渣和富镍钴锰液;
    B.可控沉淀镍钴锰
    将步骤A得到的富镍钴锰液调节pH值,使镍、钴、锰选择性沉淀,过滤洗涤后得到一次镍钴锰渣和贫镍钴锰液;
    C.深度沉淀镍钴锰
    调节步骤B所得贫镍钴锰液的pH,使残余的镍钴锰沉淀分离,过滤后得到的二次镍钴锰渣返回步骤A用于调节红土镍矿硝酸浸出液的pH值;
    D.三元前驱体制备
    (1)将所得一次镍钴锰渣经酸溶液溶解,得到纯镍钴锰溶液,
    (2)根据目标产物中镍钴锰组分比例,向步骤(1)所得纯镍钴锰溶液中补充可溶性镍盐、钴盐和锰盐中的一种或多种,使镍钴锰总金属离子浓度为0.5~3.0mol/L;
    (3)将步骤(2)所述混合溶液、氢氧化钠溶液、氨水在氮气或氩气保护下缓慢加入到反应釜中,反应结束后过滤、洗涤、干燥,得到前驱体Ni xCo yMn 1-x-y(OH) 2
    E.三元正极材料的制备
    将制备的三元正极材料前驱体、锂源、添加剂和水按一定比例加入到高压反应釜中进行水热反应,反应结束后直接干燥,然后经研磨混料,再经高温焙烧,即得镍钴锰锂三元正极材料。
  2. 根据权利要求1所述由红土镍矿硝酸浸出液制备三元正极材料的方法,其特征在于,所述步骤A通过加入二次镍钴锰渣、氧化镁、碳酸镁、氧化钙和碳酸钙中的一种或多种,调节pH值为4.2~4.5,控制反应温度为30~80℃,反应时间为0.5~2h。
  3. 根据权利要求1所述由红土镍矿硝酸浸出液制备三元正极材料的方法,其特征在于,所述步骤B通过加入氧化镁、氧化钙、氢氧化钠中的一种或多种调节pH值为7.0~7.6,控制反应温度为30~80℃,反应时间为0.5~2h。
  4. 根据权利要求1所述由红土镍矿硝酸浸出液制备三元正极材料的方法,其特征在于,所述步骤C通过加入氧化镁、氧化钙、氢氧化钠中的一种或多种调节pH值为7.6~8.5,控制反应温度为30~80℃,反应时间为0.5~2h。
  5. 根据权利要求1所述由红土镍矿硝酸浸出液制备三元正极材料的方法,其特征在于,所述步骤D中采用的酸溶液为硫酸、硝酸、盐酸溶液中的一种或多种;
    所述镍盐为硫酸镍、硝酸镍、氯化镍或氢氧化镍中的一种或多种;
    所述钴盐为硫酸钴、硝酸钴、氯化钴或氢氧化钴中的一种或多种;
    所述锰盐为硫酸锰、硝酸锰或氢氧化锰中的一种或多种;
    所述氢氧化钠的浓度为0.5~2.5mol/L,氨水浓度为0.2~2.0mol/L,反应温度40~70℃,反应时间5~20h。
  6. 根据权利要求1所述由红土镍矿硝酸浸出液制备三元正极材料的方法,其特征在于,所述步骤E中锂源为氢氧化锂、硫酸锂、硝酸锂、乙酸锂、草酸锂中的一种或几种;
    所述添加剂为双氧水、氧气、臭氧的一种或多种;
    所述锂源以Li/(Ni+Co+Mn)摩尔比的1.0~1.07倍配入;
    所述添加剂用量为O/(Ni+Co+Mn)摩尔比的0.1~10倍;
    所述水热反应过程液固比L/S为1:1~5:1,水热温度为140℃~250℃,保温时间1~6h;
    所述干燥温度为80℃~120℃,干燥时间2~10h;
    所述焙烧温度为750~900℃,焙烧时间为2~10h。
PCT/CN2019/092498 2018-07-24 2019-06-24 一种由红土镍矿硝酸浸出液制备三元正极材料的方法 WO2020019920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810816570.6A CN109052492B (zh) 2018-07-24 2018-07-24 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
CN201810816570.6 2018-07-24

Publications (1)

Publication Number Publication Date
WO2020019920A1 true WO2020019920A1 (zh) 2020-01-30

Family

ID=64836266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092498 WO2020019920A1 (zh) 2018-07-24 2019-06-24 一种由红土镍矿硝酸浸出液制备三元正极材料的方法

Country Status (2)

Country Link
CN (1) CN109052492B (zh)
WO (1) WO2020019920A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061748A (zh) * 2021-03-12 2021-07-02 中国恩菲工程技术有限公司 红土镍矿浸出液处理系统和方法
CN114620782A (zh) * 2022-05-16 2022-06-14 宜宾锂宝新材料有限公司 三元正极材料及其金属异物的去除方法
CN115109927A (zh) * 2021-03-17 2022-09-27 中国科学院过程工程研究所 一种红土镍矿盐酸浸出液除锰镁的方法
CN115490277A (zh) * 2022-09-30 2022-12-20 山东精工电子科技股份有限公司 一种磁场改性锂离子电池三元材料及其制备方法
EP4219405A4 (en) * 2020-10-14 2024-06-19 LG Energy Solution, Ltd. METHOD FOR PRODUCING A POSITIVE ELECTRODE ACTIVE MATERIAL WITH A HIGH NICKEL CONTENT

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109052492B (zh) * 2018-07-24 2020-02-07 眉山顺应动力电池材料有限公司 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
CN110629022A (zh) * 2019-10-31 2019-12-31 眉山顺应动力电池材料有限公司 一种利用硝酸介质综合处理红土镍矿的方法
CN112095003B (zh) * 2020-08-17 2022-04-08 四川顺应动力电池材料有限公司 一种从红土镍矿中回收多种有价金属及酸碱双介质再生循环的方法
CN113060712B (zh) * 2021-03-15 2023-01-17 中南大学 一种由金属镍钴铁粉制备磷酸铁和氢氧化镍钴锰电池前驱体材料的方法
CN114614136B (zh) * 2022-04-01 2024-04-16 山东宏匀纳米科技有限公司 一种红土镍矿制取二水磷酸铁和三元正极材料的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100947A (ja) * 2003-08-21 2005-04-14 Mitsubishi Materials Corp 非水二次電池用正極材料質及びその製造方法並びにこれを用いた非水二次電池
KR20080096093A (ko) * 2007-04-27 2008-10-30 한국산업기술대학교산학협력단 리튬 이차전지용 Lⅰ(NⅰCoMn)O₂계 양극 활물질및 이를 제조하는 방법
CN103545504A (zh) * 2013-10-17 2014-01-29 江西赣锋锂业股份有限公司 一种三元正极材料前驱体的制备方法
CN107579218A (zh) * 2017-08-23 2018-01-12 中国科学院过程工程研究所 一种由红土镍矿的酸浸出液直接制备镍钴铝三元正极材料前驱体的方法
CN107732232A (zh) * 2017-10-18 2018-02-23 重庆特瑞新能源材料有限公司 一种水热合成镍钴锰酸锂正极材料的制备方法
CN109052492A (zh) * 2018-07-24 2018-12-21 北京科技大学 一种由红土镍矿硝酸浸出液制备三元正极材料的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321812B (zh) * 2011-09-01 2013-04-17 东北大学 一种综合利用红土镍矿的方法
KR101497921B1 (ko) * 2013-06-28 2015-03-03 한국생산기술연구원 폐리튬이온전지로부터 ncm계 양극활물질의 재생방법과 이 방법에 의해 제조된 ncm계 양극활물질
CN105296744B (zh) * 2015-10-26 2017-10-20 广西银亿再生资源有限公司 一种红土镍矿资源化处理及综合回收利用的方法
CN108232187B (zh) * 2018-01-03 2020-03-10 武汉科技大学 高分散六边形纳米片结构镍钴锰三元正极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100947A (ja) * 2003-08-21 2005-04-14 Mitsubishi Materials Corp 非水二次電池用正極材料質及びその製造方法並びにこれを用いた非水二次電池
KR20080096093A (ko) * 2007-04-27 2008-10-30 한국산업기술대학교산학협력단 리튬 이차전지용 Lⅰ(NⅰCoMn)O₂계 양극 활물질및 이를 제조하는 방법
CN103545504A (zh) * 2013-10-17 2014-01-29 江西赣锋锂业股份有限公司 一种三元正极材料前驱体的制备方法
CN107579218A (zh) * 2017-08-23 2018-01-12 中国科学院过程工程研究所 一种由红土镍矿的酸浸出液直接制备镍钴铝三元正极材料前驱体的方法
CN107732232A (zh) * 2017-10-18 2018-02-23 重庆特瑞新能源材料有限公司 一种水热合成镍钴锰酸锂正极材料的制备方法
CN109052492A (zh) * 2018-07-24 2018-12-21 北京科技大学 一种由红土镍矿硝酸浸出液制备三元正极材料的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4219405A4 (en) * 2020-10-14 2024-06-19 LG Energy Solution, Ltd. METHOD FOR PRODUCING A POSITIVE ELECTRODE ACTIVE MATERIAL WITH A HIGH NICKEL CONTENT
CN113061748A (zh) * 2021-03-12 2021-07-02 中国恩菲工程技术有限公司 红土镍矿浸出液处理系统和方法
CN113061748B (zh) * 2021-03-12 2022-07-12 中国恩菲工程技术有限公司 红土镍矿浸出液处理系统和方法
CN115109927A (zh) * 2021-03-17 2022-09-27 中国科学院过程工程研究所 一种红土镍矿盐酸浸出液除锰镁的方法
CN114620782A (zh) * 2022-05-16 2022-06-14 宜宾锂宝新材料有限公司 三元正极材料及其金属异物的去除方法
CN115490277A (zh) * 2022-09-30 2022-12-20 山东精工电子科技股份有限公司 一种磁场改性锂离子电池三元材料及其制备方法
CN115490277B (zh) * 2022-09-30 2024-02-13 山东精工电子科技股份有限公司 一种磁场改性锂离子电池三元材料及其制备方法

Also Published As

Publication number Publication date
CN109052492A (zh) 2018-12-21
CN109052492B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2020019920A1 (zh) 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
CN109088115B (zh) 废旧锂离子电池正极材料循环利用制备三元正极材料方法
CN107994288B (zh) 废旧镍钴锰酸锂三元电池正极材料中有价金属回收方法
CN108878866B (zh) 利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法
CN111129632B (zh) 废旧三元锂离子电池正负极混合材料回收方法
WO2018192121A1 (zh) 一种从锂离子电池正极废料中高效回收正极材料前驱体和碳酸锂的方法
CN109065996B (zh) 一种废旧镍钴锰酸锂三元正极材料再生的方法
CN102163760B (zh) 一种从锂电池正极材料中分离回收锂和钴的方法
CN102324514B (zh) 一种锂离子电池三元正极材料用前驱体的制备方法
CN105742744B (zh) 一种从废旧锂离子电池回收过程产生的含锂废液中提取锂的方法
CN113200574A (zh) 一种从混合废旧锂电再生富锂锰基正极的方法
CN107579218B (zh) 一种由红土镍矿的酸浸出液直接制备镍钴铝三元正极材料前驱体的方法
CN110615486A (zh) 一种废旧动力锂电池中有价金属选择性提取及三元正极材料再制备的工艺
CN112830526B (zh) 一种利用镍钴锰渣再生三元前驱体的方法
CN115074540B (zh) 一种废动力电池有价组分综合回收方法
CN113548701A (zh) 一种锂离子筛的制备和应用方法
CN114249313A (zh) 一种从废磷酸铁锂粉末中回收电池级磷酸铁的方法
CN112342383B (zh) 三元废料中镍钴锰与锂的分离回收方法
CN112259820B (zh) 一种利用废旧锂电池制备核壳型三元正极材料的方法
CN115784188A (zh) 回收制备电池级磷酸铁的方法
WO2023005031A1 (zh) 一种镍钴锰三元前驱体材料的制备方法以及锂离子电池
CN114988382A (zh) 一种废旧磷酸铁锂电池粉料的回收方法
CN115216622A (zh) 三元锂电池正负极材料回收方法
Zhu et al. Review on the sustainable recycling of spent ternary lithium-ion batteries: From an eco-friendly and efficient perspective
CN220283639U (zh) 一种镍锰二元前驱体制备系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841450

Country of ref document: EP

Kind code of ref document: A1