WO2022089203A1 - 采用萃取法除三元电池材料浸出液中铝的方法 - Google Patents

采用萃取法除三元电池材料浸出液中铝的方法 Download PDF

Info

Publication number
WO2022089203A1
WO2022089203A1 PCT/CN2021/123402 CN2021123402W WO2022089203A1 WO 2022089203 A1 WO2022089203 A1 WO 2022089203A1 CN 2021123402 W CN2021123402 W CN 2021123402W WO 2022089203 A1 WO2022089203 A1 WO 2022089203A1
Authority
WO
WIPO (PCT)
Prior art keywords
extraction
aluminum
organic phase
leaching solution
battery material
Prior art date
Application number
PCT/CN2021/123402
Other languages
English (en)
French (fr)
Inventor
张荣荣
李伟鑫
刘勇奇
巩勤学
李长东
Original Assignee
湖南邦普循环科技有限公司
广东邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南邦普循环科技有限公司, 广东邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 湖南邦普循环科技有限公司
Priority to EP21884932.1A priority Critical patent/EP4239086A4/en
Publication of WO2022089203A1 publication Critical patent/WO2022089203A1/zh
Priority to US18/141,407 priority patent/US20230265540A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3842Phosphinic acid, e.g. H2P(O)(OH)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present disclosure belongs to the field of hydrometallurgy, and in particular relates to a method for removing aluminum from a leaching solution of ternary battery materials by an extraction method.
  • Nickel-cobalt is an important strategic resource, and the recycling of nickel-cobalt secondary resources in waste lithium-ion batteries has gradually attracted attention.
  • the battery In addition to nickel and cobalt, the battery also contains a large amount of aluminum, manganese, iron, copper, zinc, etc. The effective separation of nickel, cobalt, manganese and aluminum is of general significance in the recovery and utilization of secondary resources.
  • the hydrolysis and precipitation method is generally used to remove aluminum from molten metal.
  • the precipitation method has the advantages of easy reaction control, fast reaction speed, high aluminum removal efficiency, easy filtration of precipitated slag, simple process and low equipment investment. benefits and environmental benefits.
  • the precipitation method has the problems of co-precipitation and adsorption of heavy metals, which lead to problems such as large amount of slag, low recovery rate of heavy metals, difficulty in recycling aluminum slag, and poor working environment in the workshop. Many researchers at home and abroad have separated aluminum by solvent extraction, but All have certain limitations.
  • Extractants include: Versatic 10 extractant, di-n-butyl dithiophosphoric acid (DBTPA), di(2-ethylhexyl) dithiophosphoric acid (DETPA), Cyanex 921, naphthenic acid, etc.
  • DBTPA di-n-butyl dithiophosphoric acid
  • DETPA di(2-ethylhexyl) dithiophosphoric acid
  • Cyanex 921 mainly have problems such as few researchers, vague extraction mechanism, lack of specific extractants, and easy emulsification of the system.
  • the embodiment of the present disclosure provides a method for removing aluminum from a leaching solution of ternary battery materials by an extraction method.
  • the leaching solution of ternary battery materials containing aluminum is obtained from a nickel-cobalt-manganese solution after iron and zinc removal.
  • the extraction method uses a common acidic extractant.
  • the extraction agent, the extraction system has good phase separation, less heavy metal entrainment, no slag production, short process flow, and high metal recovery rate, which provides a new idea in the field of heavy metal and aluminum separation.
  • an embodiment of the present disclosure provides a method for removing aluminum from a ternary battery material leachate by an extraction method, including the following steps:
  • the extraction solvent is mixed with the saponifying agent to obtain the extraction solvent after the saponification;
  • saponification is a process of ion exchange.
  • Na + exchanges with H + in the extraction solvent (mixture of extractant and diluent), and Na + enters the organic phase;
  • Na + and the metal to be extracted are exchanged. After exchange, the metal enters the organic phase to achieve the separation of metal and impurities.
  • the saponification rate is 42-47%.
  • the extractant is an acidic extractant.
  • the acidic extractant is mono(2-ethylhexyl) 2-ethylphosphonate, bis(2-ethylhexyl)phosphoric acid, and bis(2,4,4-trimethyl) at least one of pentyl) phosphinic acid.
  • the diluent is at least one of kerosene, n-hexane, cyclohexane, octanol and sec-octanol.
  • the volume ratio of the extractant and the diluent is (0.01-0.4):1.
  • the extractant and the diluent are in a volume ratio of (0.1-0.35):1.
  • the extractant and diluent are about 0.25:1 by volume.
  • the saponification agent is sodium salt.
  • the sodium salt is sodium hydroxide.
  • the ternary battery material leaching solution mainly contains Ni 2+ , Co 2+ , Mn 2+ , Al 3+ , Ca 2+ , Mg 2+ , Li + , SO 4 2- , without Fe 2+ and Zn 2+ ;
  • the Al 3+ concentration of the leaching solution of the ternary battery material is between 3.0-7.0 g/L;
  • the leaching solution of the ternary battery material contains Ni 2+ , Co 2+ , The Mn 2+ concentration is between 50-70 g/L.
  • the treatment process further included between step (2) and step (1) is: washing the loaded organic phase with sulfuric acid or back-extraction liquid.
  • step (2) the extraction temperature is 25°C-60°C, and the extraction time is 3-8 min.
  • step (2) the extraction adopts single-stage extraction or multi-stage counter-current extraction, and the number of stages of the multi-stage counter-current extraction is 3-7.
  • the back extraction agent is one of hydrochloric acid, sulfuric acid and acetic acid.
  • the concentration of the acid is 2-4 mol/L.
  • the embodiments of the present disclosure also provide applications of the methods of the above embodiments in metal material recovery.
  • the embodiment of the present disclosure adopts the extraction solvent after saponification in the above extraction method to separate nickel, cobalt, manganese and aluminum in the leaching solution of the ternary battery material, with less heavy metal entrainment, short technological process and high metal recovery rate.
  • the above-mentioned extraction method is used to separate the nickel, cobalt, manganese and aluminum in the leaching solution of the ternary battery material, and the loading amount of the organic aluminum supported by the organic phase is high.
  • the extraction rate of aluminum can reach 97.42%
  • the loss rate of nickel cobalt manganese is only about 0.1%.
  • the embodiment of the present disclosure adopts the extraction method to separate the nickel, cobalt, manganese and aluminum in the leaching solution of the ternary battery material, without the generation of traditional solid waste aluminum slag, and the aluminum can be effectively recovered, which provides a new method in the field of heavy metal and aluminum separation. ideas.
  • FIG. 1 is a schematic diagram of a process flow of an embodiment of the present disclosure.
  • the present embodiment adopts the extraction method to remove aluminum in the leaching solution of the ternary battery material, including the following steps:
  • Saponification Preparation of extraction solvent for aluminum element: Mix bis(2,4,4-trimethylpentyl)phosphinic acid with kerosene in a volume ratio of 1/4 to prepare an extraction solvent for aluminum element (blank organic phase ), the extraction solvent is mixed with dope alkali, and the saponification rate is controlled at 45% to obtain the extraction solvent after the saponification;
  • the present embodiment adopts the extraction method to remove aluminum in the leaching solution of the ternary battery material, including the following steps:
  • Saponification Preparation of extraction solvent for aluminum element: Mix bis(2,4,4-trimethylpentyl)phosphinic acid with kerosene in a volume ratio of 1/4 to prepare an extraction solvent for aluminum element (blank organic phase ), the extraction solvent is mixed with the saponification agent dope alkali, and the saponification rate is controlled at 45% to obtain the extraction solvent after the saponification;
  • the present embodiment adopts the extraction method to remove aluminum in the leaching solution of the ternary battery material, including the following steps:
  • Saponification Preparation of extraction solvent of aluminum element: Mix bis(2,4,4-trimethylpentyl)phosphinic acid and kerosene in a volume ratio of 1/3 to prepare an extraction solvent of aluminum element (blank organic phase ), the extraction solvent is mixed with the saponification agent dope alkali, and the saponification rate is controlled at 45% to obtain the extraction solvent after the saponification;
  • the method for removing aluminum in the leaching solution of ternary battery materials by extraction method includes the following steps:
  • Saponification preparation of extraction solvent of aluminum element: the extraction solvent (blank organic phase) of aluminum element is prepared by mixing naphthenic acid and kerosene in a volume ratio of 1/4, and the extraction solvent is mixed with dope alkali to control the saponification rate At 45%, the extraction solvent after saponification is obtained;
  • the method for removing aluminum in the leaching solution of ternary battery materials by extraction method includes the following steps:
  • (1) saponification the preparation of the extraction solvent of aluminum element: the naphthenic acid is mixed with kerosene by volume ratio 1/3 to make the extraction solvent (blank organic phase) of aluminum element, and the extraction solvent is mixed with the saponification agent concentrated liquid alkali, The saponification rate is controlled at 45% to obtain the extraction solvent after saponification;
  • Comparative example 3 adopts the extraction method to remove aluminum in the leaching solution of ternary battery material, including the following steps:
  • Saponification preparation of the extraction solvent of aluminum: di(2-ethylhexyl) phosphonate and kerosene are mixed by volume ratio 1/4 to prepare the extraction solvent (blank organic phase) of aluminum, and the extraction solvent is mixed with The concentrated solution is mixed with alkali, and the saponification rate is controlled at 45% to obtain the extraction solvent after saponification;
  • the extraction rate of Al 3+ can reach 35.78% under single-stage extraction conditions. However, its extraction rate is low, and the heavy metal adsorption capacity is also high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种采用萃取法除三元电池材料浸出液中铝的方法,包括如下步骤:(1)皂化:将萃取溶剂与皂化剂混合,得到皂化后的萃取溶剂;(2)萃取:将三元电池材料浸出液与皂化后的萃取溶剂混合得到负载有机相和萃余液;(3)反萃:将负载有机相与反萃剂混合,获得待用有机相和反萃液;萃取溶剂包括萃取剂和稀释剂。本公开实施例采用上述萃取法分离镍钴锰和铝,重金属夹带少、工艺流程短、金属回收率高。本公开实施例采用萃取法分离镍钴锰和铝,负载有机铝的负载量高,经4级逆流萃取,铝的萃取率可以达到97.42%,镍钴锰的损失率只有0.1%左右。

Description

采用萃取法除三元电池材料浸出液中铝的方法 技术领域
本公开属于湿法冶金领域,特别是涉及一种采用萃取法除三元电池材料浸出液中铝的方法。
背景技术
近些年来,社会大众的环保意识逐步加强,高校、科研单位及企业在动力电池、电池管理系统等方面的研发,电动汽车市场得到了快速发展。随着新能源车的快速产业化,其销量将突飞猛进,锂离子电池的保有量也将会随之呈几何级数增长,与此同时,废旧锂离子动力电池的污染问题和合理资源化回收利用的问题成为当期那乃至今后国内外普遍关注和亟待解决的难题。
镍钴作为重要的战略性资源,废旧锂离子电池中镍钴的二次资源的回收利用逐渐受到重视。电池中除含镍、钴外,还含有大量的铝、锰、铁、铜、锌等,有效分离镍、钴、锰和铝在二次资源回收利用方面具有普遍意义。
目前,金属液中除铝一般采用水解沉淀法,沉淀法除铝具有反应易控制、反应速度快、除铝效率高、沉淀渣易过滤、工艺简单及设备投资少等优点,具有很好的经济效益和环境效益。但沉淀法存在重金属共沉淀和吸附的问题,导致渣量大、重金属回收率低、铝渣资源化处理困难及车间作业环境差等问题;国内外有许多研究者通过溶剂萃取法分离铝,但均存在一定局限性,萃取剂包括:Versatic 10萃取剂、二正丁基二硫代磷酸(DBTPA)、二(2-乙基己基)二硫代磷酸(DETPA)、Cyanex 921、环烷酸等,目前萃取法分离镍钴锰与铝主要存在研究者少、萃取机理模糊、特效萃取剂匮乏、体系易乳化等难题。
发明内容
本公开实施例提供一种采用萃取法除三元电池材料浸出液中铝的方法,该含铝的三元电池材料浸出液来自除铁锌后的镍钴锰溶液,该萃取法萃取剂采用常见的酸性萃取剂,萃取体系分相好、重金属夹带少、无渣产生、工艺流程短、金属回收率高,在重金属与铝分离领域提供了一种新思路。
为实现上述目的,本公开实施例提供了一种采用萃取法除三元电池材料浸出液中铝的方法,包括如下步骤:
(1)皂化:将萃取溶剂与皂化剂混合,得到皂化后的萃取溶剂;
(2)萃取:将三元电池材料浸出液与皂化后的萃取溶剂混合得到负载有机相和萃余液;
(3)反萃:将负载有机相与反萃剂混合,获得待用有机相和反萃液;所述萃取溶剂包括萃取剂和稀释剂。
不受理论的束缚,皂化是离子交换的过程,皂化阶段Na +与萃取溶剂(萃取剂与稀释剂的混合物)中的H +进行交换,Na +进入有机相;萃取阶段Na +与待萃金属进行交换,金属进入有机相,实现金属与杂质的分离。
在一实施例中,所述皂化率为42-47%。
在一实施例中,所述萃取剂为酸性萃取剂。
在另一实施例中,所述酸性萃取剂为2-乙基膦酸单(2-乙基己基)酯、二(2-乙基己基)磷酸和二(2,4,4-三甲基戊基)次膦酸中的至少一种。
在一实施例中,所述稀释剂为煤油、正己烷、环己烷、辛醇和仲辛醇中的至少一种。
在一实施例中,所述萃取剂和稀释剂按体积比为(0.01-0.4):1。
在另一实施例中,所述萃取剂和稀释剂按体积比为(0.1-0.35):1。
在另一实施例中,所述萃取剂和稀释剂按体积比约为0.25:1。
在一实施例中,步骤(1)中,所述皂化剂为钠盐。
在另一实施例中,所述钠盐为氢氧化钠。
在一实施例中,步骤(2)中,所述三元电池材料浸出液主要含有Ni 2+、Co 2+、Mn 2+、Al 3+、Ca 2+、Mg 2+、Li +、SO 4 2-,不含Fe 2+、Zn 2+;所述三元电池材料浸出液的Al 3+浓度介于3.0-7.0g/L;所述三元电池材料浸出液的Ni 2+、Co 2+、Mn 2+浓度介于50-70g/L。
在一实施例中,在步骤(2)与步骤(1)之间还包括的处理过程为:用硫酸或者反萃液对负载有机相进行洗涤。
在一实施例中,步骤(2)中,所述萃取的温度为25℃-60℃,萃取的时间3-8min。
在一实施例中,步骤(2)中,所述萃取采用的是单级萃取或多级逆流萃取,所述多级逆流萃取的级数为3-7级。
在一实施例中,步骤(3)中,反萃剂为盐酸、硫酸和醋酸中的一种。
在另一实施例中,所述酸的浓度为2-4mol/L。
本公开实施例还提供了上述实施例的方法在金属材料回收中的应用。
本公开实施例的优点:
(1)本公开实施例采用上述萃取法中的皂化后的萃取溶剂分离三元电池材料浸出液中的镍钴锰和铝,重金属夹带少、工艺流程短、金属回收率高。
(2)本公开实施例采用上述萃取法分离三元电池材料浸出液中的镍钴锰和铝,负载有机相负载有机铝的负载量高,经4级逆流萃取,铝的萃取率可以达到97.42%,镍钴锰的损失率只有0.1%左右。
(3)本公开实施例采用萃取法分离三元电池材料浸出液中的镍钴锰和铝,无传统的固废铝渣产生,铝可以达到有效回收,在重金属与铝分离领域提供了一种新思路。
附图说明
图1是本公开实施例的工艺流程示意图。
具体实施方式
为了对本公开进行深入的理解,下面结合实例对本公开的若干实施方案进行描述,以进一步的说明本公开的特点和优点,任何不偏离本公开主旨的变化或者改变能够为本领域的技术人员理解,本公开的保护范围由所属权利要求范围确定。
实施例1
本实施例采用萃取法除三元电池材料浸出液中铝的方法,包括如下步骤:
(1)皂化:铝元素的萃取溶剂制备:将二(2,4,4-三甲基戊基)次膦酸与煤油按体积比1/4混合制成铝元素的萃取溶剂(空白有机相),将萃取溶剂与浓液碱混合,控制皂化率在45%,得到皂化后的萃取溶剂;
(2)萃取:取50mL含铝溶液(其中Al 3+=6.4g/L,Ni 2+=27.17g/L,Co 2+=16.29g/L,Mn 2+=9.81g/L)与50mL皂化后的萃取溶剂混合得到负载有机相,反应的温度为40℃,反应5分钟,检测萃余液中Al 3+=3.4g/L,Al 3+的单级萃取率46.88%;
(3)反萃:将负载有机相与10mL2mol/L硫酸混合,分相后获得空白有机相和反萃液,反萃液中Al 3+=14.95g/L,Ni 2+=0.017g/L,Co 2+=0.002g/L,Mn 2+=0.011g/L;
将萃取剂换成二(2,4,4-三甲基戊基)次膦酸,同样条件下,有机体系对Al的选择性要高于环烷酸,镍钴锰的萃取率要低很多。
实施例2
本实施例采用萃取法除三元电池材料浸出液中铝的方法,包括如下步骤:
(1)皂化:铝元素的萃取溶剂制备:将二(2,4,4-三甲基戊基)次膦酸与煤油按体积比1/4混合制成铝元素的萃取溶剂(空白有机相),将萃取溶剂与皂化剂浓液碱混合,控制皂化率在45%,得到皂化后的萃取溶剂;
(2)萃取:取50mL含铝溶液(其中Al 3+=6.4g/L,Ni 2+=27.17g/L,Co 2+=16.29g/L,Mn 2+=9.81g/L)与50mL皂化后的萃取溶剂混合得到负载有机相,进行5级逆流萃取实验,萃余液中Al 3+=0.208g/L,Al 3+的5级逆流萃取率为96.75%;
(3)反萃:将负载有机相与10mL4mol/L硫酸混合,分相后获得空白有机和反萃液,反萃液中Al 3+=30.58g/L,Ni 2+=0.007g/L,Co 2+=0.002g/L,Mn 2+=0.009g/L。
实施例3
本实施例采用萃取法除三元电池材料浸出液中铝的方法,包括如下步骤:
(1)皂化:铝元素的萃取溶剂制备:将二(2,4,4-三甲基戊基)次膦酸与煤油按体积比1/3混合制成铝元素的萃取溶剂(空白有机相),将萃取溶剂与皂化剂浓液碱混合,控制皂化率在45%,得到皂化后的萃取溶剂;
(2)萃取:取50mL含铝溶液(其中Al 3+=6.4g/L,Ni 2+=27.17g/L,Co 2+=16.29g/L,Mn 2+=9.81g/L)与50mL皂化后的萃取溶剂混合得到负载有机相,进行4级逆流萃取实验,萃余液中Al 3+=0.165g/L,Al 3+的4级逆流萃取率为97.42%;
(3)反萃:将负载有机相与10mL4mol/L硫酸混合,分相后获得空白有机相和反萃液,反萃液中Al 3+=31.03g/L,Ni 2+=0.010g/L,Co 2+=0.004g/L,Mn 2+=0.007g/L。
对比例1
对比例1采用萃取法除三元电池材料浸出液中铝的方法,包括如下步骤:
(1)皂化:铝元素的萃取溶剂制备:将环烷酸与煤油按体积比1/4混合制成铝元素的萃取溶剂(空白有机相),将萃取溶剂与浓液碱混合,控制皂化率在45%,得到皂化后的萃取溶剂;
(2)萃取:取50mL含铝溶液(其中Al 3+=6.4g/L,Ni 2+=27.17g/L,Co 2+=16.29g/L,Mn 2+=9.81g/L)与50mL皂化后的萃取溶剂混合得到负载有机相,反应的温度为40℃,反应5分钟,检测萃余液中Al 3+=3.8g/L,Al 3+的单级萃取率40.63%;
(3)反萃:将负载有机相与10mL2mol/L硫酸混合,分相后获得空白有机和反萃液,反萃液中Al 3+=12.96g/L,Ni 2+=2.15g/L,Co 2+=0.94g/L,Mn 2+=1.04g/L;
采用环烷酸作为萃取剂,单级萃取条件下,Al 3+的萃取率为40.63%,但是重金属的吸附量也较高。
对比例2
对比例2采用萃取法除三元电池材料浸出液中铝的方法,包括如下步骤:
(1)皂化:铝元素的萃取溶剂制备:将环烷酸作与煤油按体积比1/3混合制成铝元素的 萃取溶剂(空白有机相),将萃取溶剂与皂化剂浓液碱混合,控制皂化率在45%,得到皂化后的萃取溶剂;
(2)萃取:取50mL含铝溶液(其中Al 3+=6.4g/L,Ni=27.17g/L,Co=16.29g/L,Mn=9.81g/L)与50mL皂化后的萃取溶剂混合得到负载有机相,进行4级逆流萃取实验,萃余液中Al 3+=0.35g/L,Al 3+的4级逆流萃取率为94.53%;
(3)反萃:将负载有机相与10mL2mol/L硫酸混合,分相后获得空白有机相和反萃液,反萃液中Al 3+=31.03g/L,Ni 2+=0.010g/L,Co 2+=0.004g/L,Mn 2+=0.007g/L;
采用环烷酸作为萃取剂,4级萃取条件下,Al 3+的萃取率为94.53%,但是重金属的吸附量也较高。
对比例3
对比例3采用萃取法除三元电池材料浸出液中铝的方法,包括如下步骤:
(1)皂化:铝元素的萃取溶剂制备:将膦酸二(2-乙基己基)酯与煤油按体积比1/4混合制成铝元素的萃取溶剂(空白有机相),将萃取溶剂与浓液碱混合,控制皂化率在45%,得到皂化后的萃取溶剂;
(2)萃取:取50mL含铝的三元电池材料浸出液(其中Al 3+=6.4g/L,Ni 2+=27.17g/L,Co 2+=16.29g/L,Mn=9.81g/L)与50mL皂化后的萃取溶剂混合得到负载有机相,反应的温度为40℃,反应5分钟,检测萃余液中Al 3+=2.29g/L,Al 3+的单级萃取率35.78%;
(3)反萃:将负载有机相与10mL2mol/L硫酸混合,分相后获得空白有机相和反萃液,反萃液中Al 3+=12.96g/L,Ni 2+=2.15g/L,Co 2+=0.94g/L,Mn 2+=1.04g/L;
采用膦酸二(2-乙基己基)酯作为萃取剂,单级萃取条件下,Al 3+的萃取率可以达到35.78%。但是其萃取率较低,且重金属吸附量也高。
上述实施例为本公开的若干实施方式,但本公开的实施方式并不受上述实施例的限制,其它的任何未背离本公开的精神实质与原理下所作的改变、修饰、简化均应为等效的置换方式,都包含在本公开的保护范围之内。

Claims (10)

  1. 一种采用萃取法除三元电池材料浸出液中铝的方法,包括如下步骤:
    (1)皂化:将萃取溶剂与皂化剂混合,得到皂化后的萃取溶剂;
    (2)萃取:将三元电池材料浸出液与皂化后的萃取溶剂混合得到负载有机相和萃余液;
    (3)反萃:将负载有机相与反萃剂混合,获得待用有机相和反萃液;所述萃取溶剂包括萃取剂和稀释剂。
  2. 根据权利要求1所述的方法,其中,所述萃取剂为酸性萃取剂。
  3. 根据权利要求2所述的方法,其中,所述酸性萃取剂为2-乙基膦酸单(2-乙基己基)酯、二(2-乙基己基)磷酸和二(2,4,4-三甲基戊基)次膦酸中的至少一种。
  4. 根据权利要求1所述的方法,其中,所述稀释剂为煤油、正己烷、环己烷、辛醇和仲辛醇中的至少一种。
  5. 根据权利要求1所述的方法,其中,按体积比计,所述萃取剂:稀释剂为(0.01-0.4):1。
  6. 根据权利要求1所述的方法,其中,步骤(1)中,所述皂化剂为钠盐;所述钠盐为氢氧化钠。
  7. 根据权利要求1所述的方法,其中,所述三元电池材料浸出液含有Ni 2+、Co 2+、Mn 2+、Al 3+、Ca 2+、Mg 2+、Li +、SO 4 2-,不含Fe 2+、Zn 2+;所述三元电池材料浸出液的Al 3+浓度介于3.0-7.0g/L;所述三元电池材料浸出液的Ni 2+、Co 2+、Mn 2+浓度介于50-70g/L。
  8. 根据权利要求1所述的方法,其中,在步骤(2)与步骤(1)之间还包括的处理过程为:用硫酸或者反萃液对负载有机相进行洗涤;步骤(2)中,所述萃取是单级萃取或多级逆流萃取。
  9. 根据权利要求1所述的方法,其中,步骤(3)中,所述反萃剂为盐酸、硫酸和醋酸中的一种。
  10. 权利要求1-9中任一项所述的方法在金属材料回收中的应用。
PCT/CN2021/123402 2020-10-29 2021-10-13 采用萃取法除三元电池材料浸出液中铝的方法 WO2022089203A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21884932.1A EP4239086A4 (en) 2020-10-29 2021-10-13 EXTRACTION METHOD FOR REMOVING ALUMINUM FROM LEACH SOLUTION OF TERNARY BATTERY MATERIAL
US18/141,407 US20230265540A1 (en) 2020-10-29 2023-04-29 Extraction method for removing aluminum from ternary battery material leachate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011176863.6 2020-10-29
CN202011176863.6A CN112342393B (zh) 2020-10-29 2020-10-29 采用萃取法除三元电池材料浸出液中铝的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/141,407 Continuation US20230265540A1 (en) 2020-10-29 2023-04-29 Extraction method for removing aluminum from ternary battery material leachate

Publications (1)

Publication Number Publication Date
WO2022089203A1 true WO2022089203A1 (zh) 2022-05-05

Family

ID=74356054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123402 WO2022089203A1 (zh) 2020-10-29 2021-10-13 采用萃取法除三元电池材料浸出液中铝的方法

Country Status (4)

Country Link
US (1) US20230265540A1 (zh)
EP (1) EP4239086A4 (zh)
CN (1) CN112342393B (zh)
WO (1) WO2022089203A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117987647A (zh) * 2024-04-03 2024-05-07 赣南科技学院 从废旧三元锂电池硫酸浸出液中去除杂质铁和铝的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342393B (zh) * 2020-10-29 2022-10-18 湖南邦普循环科技有限公司 采用萃取法除三元电池材料浸出液中铝的方法
WO2022236381A1 (en) * 2021-05-13 2022-11-17 Commonwealth Scientific And Industrial Research Organisation Production of high purity nickel and cobalt compounds
CN113802017A (zh) * 2021-09-14 2021-12-17 湖南中金岭南康盟环保科技有限公司 一种萃取法分离回收废旧磷酸铁锂电池正极材料酸浸出液中铝的方法
CN115386731B (zh) * 2022-09-05 2024-02-09 郑州中科新兴产业技术研究院 一种废旧三元锂电池酸性浸出液中铝离子的协同萃取分离方法
CN117947274B (zh) * 2024-03-26 2024-06-25 赣南科技学院 全萃取分离废旧三元锂电池硫酸浸出液中金属元素的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694218A (zh) * 2011-03-23 2012-09-26 吉坤日矿日石金属株式会社 铝的溶剂提取方法
CN105375078A (zh) * 2015-10-23 2016-03-02 赣州市芯隆新能源材料有限公司 一种由锂离子电池正极片循环制备球形镍钴锰酸锂的方法
CN106898742A (zh) * 2017-03-10 2017-06-27 赣州市芯隆新能源材料有限公司 废旧锂电池制备镍钴锰酸锂锂离子电池正极材料的方法
CN111825110A (zh) * 2020-05-12 2020-10-27 宁夏百川新材料有限公司 废旧锂离子电池正极材料的回收利用方法
CN112342393A (zh) * 2020-10-29 2021-02-09 湖南邦普循环科技有限公司 采用萃取法除三元电池材料浸出液中铝的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706457B2 (ja) * 2013-02-27 2015-04-22 Jx日鉱日石金属株式会社 金属混合溶液からの金属の分離回収方法
CN106319228B (zh) * 2016-08-26 2018-06-19 荆门市格林美新材料有限公司 一种从含镍钴锰废渣中同步回收镍钴锰的方法
CN109852797B (zh) * 2017-12-16 2020-12-29 虔东稀土集团股份有限公司 一种用于萃取分离锂元素的萃取溶剂及其萃取分离锂元素的方法
CN108517409B (zh) * 2018-04-04 2019-11-29 长沙矿冶研究院有限责任公司 一种从废旧动力电池正极废料中回收有价金属的方法
CN110512080A (zh) * 2019-09-12 2019-11-29 金川集团股份有限公司 一种废旧镍钴锰锂离子电池中有价金属分离回收方法
CN110616331B (zh) * 2019-10-16 2021-11-30 衢州华友资源再生科技有限公司 一种动力锂离子电池全金属回收循环利用的方法
CN111334664B (zh) * 2020-03-07 2021-03-09 江苏北矿金属循环利用科技有限公司 一种基于镁盐循环的三元锂电池正极材料综合回收有价金属的方法
CN111206148B (zh) * 2020-03-16 2021-11-26 宁波容百新能源科技股份有限公司 一种利用废旧三元锂电池回收制备三元正极材料的方法
CN111592459B (zh) * 2020-06-28 2021-10-15 北京博萃循环科技有限公司 羧酸类化合物、其制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694218A (zh) * 2011-03-23 2012-09-26 吉坤日矿日石金属株式会社 铝的溶剂提取方法
CN105375078A (zh) * 2015-10-23 2016-03-02 赣州市芯隆新能源材料有限公司 一种由锂离子电池正极片循环制备球形镍钴锰酸锂的方法
CN106898742A (zh) * 2017-03-10 2017-06-27 赣州市芯隆新能源材料有限公司 废旧锂电池制备镍钴锰酸锂锂离子电池正极材料的方法
CN111825110A (zh) * 2020-05-12 2020-10-27 宁夏百川新材料有限公司 废旧锂离子电池正极材料的回收利用方法
CN112342393A (zh) * 2020-10-29 2021-02-09 湖南邦普循环科技有限公司 采用萃取法除三元电池材料浸出液中铝的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4239086A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117987647A (zh) * 2024-04-03 2024-05-07 赣南科技学院 从废旧三元锂电池硫酸浸出液中去除杂质铁和铝的方法

Also Published As

Publication number Publication date
US20230265540A1 (en) 2023-08-24
CN112342393B (zh) 2022-10-18
EP4239086A1 (en) 2023-09-06
CN112342393A (zh) 2021-02-09
EP4239086A4 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
WO2022089203A1 (zh) 采用萃取法除三元电池材料浸出液中铝的方法
CN108517409B (zh) 一种从废旧动力电池正极废料中回收有价金属的方法
CN106319228B (zh) 一种从含镍钴锰废渣中同步回收镍钴锰的方法
CN109449523B (zh) 一种废旧锂离子电池综合回收方法
KR20190082167A (ko) 배터리 폐기물로 황산 니켈, 망간, 리튬, 코발트와 코발토스 산화물을 제조하는 방법
CN103168107B (zh) 用于从锂二次电池废料中回收有价值金属的方法
CN109055746A (zh) 一种从高镍锂离子电池正极废料中回收有价金属的方法
CN112538569B (zh) 一种从含镍钴锰的料液中分离镍钴锰的方法
WO2022048307A1 (zh) 一种含镍钴锰的料液中镍钴锰的回收方法
CN113046574B (zh) 一种利用铜电解脱铜后液处理粗氢氧化钴制备高纯镍、钴产品的方法
CN112442596B (zh) 一种羧酸类萃取剂对电池中间料液中镍钴锰的分离回收方法
CN114085996B (zh) 一种含镍钴料协同处理回收镍钴的方法
CN112522517A (zh) 一种回收镍钴锰锂的方法
CN112342387A (zh) 一种镍和镁的分离方法及其应用
CN103060562A (zh) 一种无机强酸镍盐溶液的提纯方法
CN109536728A (zh) 一种从电池电极材料浸出液中回收镍钴的方法
CN114561541A (zh) 一种电池正极片浸出液中同步回收镍钴锰的方法
CN114457245A (zh) 一种从氢氧化镍钴制备硫酸镍与硫酸钴的方法
CN107437626A (zh) 一种废旧锌锰电池制备碳包覆磷酸锰的方法
WO2022048308A1 (zh) 一种从含铜锰钙锌混合溶液中分离铜锰的方法
CN112501445B (zh) 一种制备电池级镍钴锰的方法
CN112281001B (zh) 一种利用含锰废液制备锰盐的方法
CN115595444A (zh) 一种离心式提取退役动力蓄电池稀贵金属的方法及系统
CN114645143B (zh) 一种红土镍矿中镍钴铜锰的分离方法
EP4215630A1 (en) Method for separating nickel from lithium, and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021884932

Country of ref document: EP

Effective date: 20230530