WO2023277192A1 - スポンジコバルト触媒組成物およびその製造方法 - Google Patents

スポンジコバルト触媒組成物およびその製造方法 Download PDF

Info

Publication number
WO2023277192A1
WO2023277192A1 PCT/JP2022/026528 JP2022026528W WO2023277192A1 WO 2023277192 A1 WO2023277192 A1 WO 2023277192A1 JP 2022026528 W JP2022026528 W JP 2022026528W WO 2023277192 A1 WO2023277192 A1 WO 2023277192A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt catalyst
sponge cobalt
sponge
oxoacid
less
Prior art date
Application number
PCT/JP2022/026528
Other languages
English (en)
French (fr)
Inventor
啓智 山▲崎▼
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to EP22833337.3A priority Critical patent/EP4364843A1/en
Priority to JP2022563138A priority patent/JP7284879B1/ja
Publication of WO2023277192A1 publication Critical patent/WO2023277192A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation

Definitions

  • the present invention relates to a sponge cobalt catalyst composition and a method for producing the same.
  • Sponge metal catalysts also called Raney (registered trademark) metal catalysts
  • Raney registered trademark
  • Sponge metal catalysts form an alloy of metals having catalytic activity (such as nickel, cobalt, copper, iron, silver, and palladium) and eluted metals (such as aluminum, silicon, zinc, and magnesium) to form alloys. It is obtained by a method of eluting eluted metal from (hereinafter also referred to as “developing”).
  • Sponge metal catalysts have many fine pores derived from such a production method, and are utilized in various catalytic reactions by taking advantage of this feature.
  • Sponge cobalt catalysts are one kind of sponge metal catalysts and are widely used as catalysts for hydrogenation reactions. For example, it is used for the hydrogenation reaction of nitriles.
  • the oxoacid containing Mo is adsorbed on the sponge cobalt catalyst in a range of 5 mg or more and 1000 mg or less per 1 kg of the sponge cobalt catalyst in terms of Mo, according to [1] or [2].
  • a sponge cobalt catalyst composition Any one of [1] to [3], wherein the oxoacid is at least one selected from WO 4 2- , MoO 4 2- , Mo 7 O 24 6- and Mo 8 O 26 4- The sponge cobalt catalyst composition according to .
  • the molar ratio (W/Co) between W contained in the oxoacid adsorbed on the sponge cobalt catalyst and Co contained in the sponge cobalt catalyst is in the range of 0.00001 or more and 0.0005 or less.
  • the molar ratio (Mo/Co) between Mo contained in the oxoacid adsorbed on the sponge cobalt catalyst and Co contained in the sponge cobalt catalyst is in the range of 0.00001 or more and 0.01 or less.
  • FIG. 1 is an image diagram of the sponge cobalt catalyst composition of the present invention.
  • Example 1 (adsorption of oxoacid containing W), Example 4 (adsorption of oxoacid containing Mo), Example 5 (adsorption of oxoacid containing W and oxoacid containing Mo) and Comparative Example 1 (adsorption of oxoacid containing W) 4 is a graph showing the relationship between the ratio of meta-xylylenediamine contained in the reaction liquid and the number of reactions in an activity test using a sponge cobalt catalyst (without acid adsorption).
  • the inventors investigated the surface state of the sponge cobalt catalyst where the catalytic reaction occurs. Specifically, the inventors have found that by adsorbing an oxoacid containing W or Mo on the surface of a sponge cobalt catalyst, the catalytic activity increases even after long-term use.
  • the present invention relates to a sponge cobalt catalyst composition containing a sponge cobalt catalyst on which an oxoacid containing W or Mo is adsorbed.
  • the sponge cobalt catalyst composition of the present invention (hereinafter also referred to as "catalyst composition of the present invention") will be described in detail below.
  • the catalyst composition of the invention comprises water, an oxoacid, and a sponge cobalt catalyst.
  • the sponge cobalt catalyst contained in the catalyst composition of the present invention is present in water because the surface of the sponge cobalt catalyst deteriorates when exposed to the atmosphere. Part or all of the oxoacid present in this water is adsorbed on the surface of the sponge cobalt catalyst (see FIG. 1).
  • the surface of the sponge cobalt catalyst contained in the catalyst composition of the present invention is modified with oxoacid, and it is considered that the catalytic activity increases even after long-term use.
  • the oxoacid contains W (tungsten) or Mo (molybdenum).
  • the W-containing oxoacid is preferably WO 4 2- .
  • the oxoacid containing Mo is preferably MoO 4 2- , Mo 7 O 24 6- and Mo 8 O 26 4- .
  • the sponge cobalt catalyst having the oxoacid adsorbed on its surface has high catalytic activity even after long-term use.
  • the sponge cobalt catalyst adsorbing the oxoacid containing W and the oxoacid containing Mo has higher catalytic activity when used for a long period of time.
  • the preferred content of the oxoacid adsorbed on the surface of the sponge cobalt catalyst is and different.
  • the oxoacid (adsorption) contains W
  • the content is preferably 5 mg or more and 1200 mg or less, more preferably 10 mg or more and 300 mg or less, in terms of W, relative to 1 kg of the sponge cobalt catalyst.
  • the amount is 20 mg or more and 200 mg or less.
  • the content is preferably in the range of 5 mg or more and 2000 mg or less, and in the range of 50 mg or more and 1500 mg or less per 1 kg of the sponge cobalt catalyst, in terms of Mo. More preferably, it is particularly preferably in the range of 100 mg or more and 1200 mg or less.
  • the catalytic activity of the sponge cobalt catalyst tends to be high when used for a long period of time. This content is calculated using a value obtained by subtracting the amount of W and Mo contained in water from the total amount of W and Mo contained in the sponge cobalt catalyst composition of the present invention.
  • the molar ratio (W/Co) between W contained in the oxoacid (adsorption) and Co contained in the sponge cobalt catalyst is preferably 0.00001 or more and 0.0005 or less, and is preferably 0.00002 or more and 0.00002 or more. 0003 or less is more preferable, and 0.00003 or more and 0.0001 or less is particularly preferable.
  • the molar ratio (Mo/Co) between Mo contained in the oxoacid (adsorption) and Co contained in the sponge cobalt catalyst is preferably 0.00001 or more and 0.01 or less, 0.00005 or more, It is more preferably 0.005 or less, and particularly preferably 0.0001 or more and 0.003 or less. When this molar ratio is within the range described above, the catalytic activity of the sponge cobalt catalyst is high even when used for a long period of time.
  • the molar ratio (Mo/W) is preferably 1 or more and 10 or less, more preferably 1 or more and 7 or less. 1 or more and 5 or less are particularly preferable. When this molar ratio is within the range described above, the catalytic activity of the sponge cobalt catalyst is high even when used for a long period of time.
  • the sponge cobalt catalyst is spongy by removing part of Al from an alloy containing Co (cobalt) and Al (aluminum). By becoming spongy, the metal surface of Co increases and the catalytic activity also increases.
  • the sponge cobalt catalyst preferably contains Al.
  • the Al content of the catalyst of the present invention is preferably 30% by mass or more and 70% by mass or less, more preferably 40% by mass or more and 60% by mass or less, and 50% by mass or more and 60% by mass or less. is particularly preferred.
  • the sponge cobalt catalyst is preferably granular.
  • agglomerates having a minor axis and a major axis of less than 1 mm are defined as powder, and other agglomerates are defined as grains.
  • the sponge cobalt catalyst exhibits the effects of the invention whether it is in the form of granules or powder, and particularly in the form of granules.
  • a granular sponge cobalt catalyst tends to have a smaller outer surface area than a powdery sponge cobalt catalyst, and its catalytic activity tends to decrease when used for a long period of time.
  • the sponge cobalt catalyst since the sponge cobalt catalyst has the oxoacid adsorbed on its surface, its catalytic activity is high even after long-term use.
  • the granular sponge cobalt catalyst can be used as a fixed bed catalyst, and the catalyst and the product can be easily separated, so that the productivity is excellent.
  • the sponge cobalt catalyst has a grain size (particle size) in the range of 1 mm or more and 5 mm or less.
  • the grain size can be determined by the opening of the sieve. For example, when the catalyst of the present invention is sieved using a sieve with a mesh size of 1 mm, it can be determined that the particles above the sieve have a size of 1 mm or more, and the particles below the sieve have a size of less than 1 mm.
  • the water has a role of protecting the surface of the sponge cobalt catalyst and a medium for adsorbing the oxoacid to the sponge cobalt catalyst. Therefore, the content of the water should be contained to such an extent that the surface of the sponge cobalt catalyst is covered. For example, as shown in FIG. 1, it is preferable that the entire sponge cobalt catalyst is submerged in water. Therefore, the amount of water is appropriately adjusted depending on the amount of sponge cobalt catalyst.
  • the proportion of oxoacid contained in the water is preferably 50% or less, more preferably 40% or less, relative to the total amount of oxoacid contained in the catalyst composition of the present invention. Not all of the oxoacid contained in the catalyst composition of the present invention is adsorbed on the sponge cobalt catalyst, and some of it may remain in the water due to adsorption equilibrium. Since the water and the sponge cobalt catalyst are separated when the catalyst composition of the present invention is used, even if the water contains oxoacid, there is no significant effect. However, since it may cause problems in waste water treatment, etc., the smaller the ratio, the better.
  • the pH of the water is preferably 8 or higher, more preferably 8.5 or higher, and particularly preferably 9 or higher.
  • the surface of the sponge cobalt catalyst is positively charged, so that negatively charged oxoacids are more likely to be adsorbed.
  • the catalyst composition of the present invention may contain ammonium ions or alkali ions in addition to W, Mo, Co and Al. These ions may be included as counter cations of the oxoacid. It may also be contained as ions derived from the alkali used when preparing the sponge cobalt catalyst.
  • the component that functions as a cocatalyst is preferably 0.1% by mass or more and 10% by mass or less, more preferably 0.1% by mass or more and 5% by mass or less, and 0.1% by mass. Above, it is especially preferable that it is 3 mass % or less.
  • the catalyst composition of the present invention can be used in a wide range of fields as long as it is used in fields where cobalt catalysts are used.
  • it can be used as a catalyst for hydrogenation reactions.
  • Known hydrogenation reactions include carbon-carbon double bond, carbon-carbon triple bond, benzene nucleus, pyridine, carbonyl group, nitro group, nitrile, fatty acid and ester reactions.
  • the catalyst of the present invention can be suitably used as a catalyst for the hydrogenation reaction of nitriles.
  • the water is removed to remove the sponge cobalt catalyst.
  • the method for producing the catalyst composition of the present invention comprises an alloy preparation step of preparing an alloy containing Co and Al, removing the Al from the alloy to produce a sponge cobalt catalyst. an immersion step of immersing the sponge cobalt catalyst in water; and an adsorption step of adding an oxoacid salt containing W or Mo to the water to cause the sponge cobalt catalyst to adsorb the oxoacid.
  • the manufacturing method of the present invention will be described in detail below.
  • the alloy can be prepared by a conventionally known method. For example, it can be prepared by mixing and melting metal Co and metal Al.
  • the content of Co contained in the alloy is preferably 20% by mass or more and 70% by mass or less, and more preferably 30% by mass or more and 60% by mass or less.
  • the content of Al contained in the alloy is preferably 30% by mass or more and 80% by mass or less, and more preferably 40% by mass or more and 70% by mass or less.
  • part of the Al contained in the alloy is removed in the expansion step described later, and the place where the Al was present becomes a cavity, forming a spongy cobalt alloy. Therefore, the more Al contained in the alloy, the more cavities are likely to increase, but the strength is likely to decrease. Therefore, the content of Co and the content of Al in the alloy are preferably within the ranges described above.
  • a conventionally known method can be used to remove Al from the alloy.
  • a method of treating the alloy with an alkaline solution can be used.
  • the type of alkali is not particularly limited, and conventionally known alkalis such as alkali hydroxides and alkali carbonates can be used. More specifically, sodium hydroxide or potassium hydroxide is preferably used.
  • the alkali content of the alkali solution is preferably 0.01 times or more and 3 times or less in molar ratio with respect to the Al content in the alloy. Al in the alloy can be efficiently removed when the alkali amount of the alkaline solution is within the above range.
  • the Al when the removal of Al is insufficient, the Al may be removed to the target level by increasing the number of treatments. Furthermore, when Al is left in the alloy, the amount of alkali in the alkaline solution is preferably 0.1 to 1 times the amount of Al in the alloy.
  • a conventionally known method can be used as a method of adding an oxoacid salt containing W or Mo to the water to cause the sponge cobalt catalyst to adsorb the oxoacid.
  • oxoacid salts such as Na2WO4 , K2WO4 , Na2MoO4 , Mo7O24 ( NH4 ) 6 may be added to the water.
  • the temperature of the aqueous solution containing the oxoacid is preferably 10° C. or higher and 100° C. or lower, and more preferably 10° C. or higher and 50° C. or lower.
  • the time for performing these treatments depends on the amount of treatment, but if it is 1 hour or more and 24 hours or less, the oxoacid can be adsorbed on the surface of the sponge cobalt catalyst without any problem.
  • the aqueous solution containing 150 ppm of Na 2 WO 4 refers to an aqueous solution containing 150 ppm of W derived from Na 2 WO 4. Converting this to the amount of Na 2 WO 4 added to 1 kg of sponge cobalt catalyst, 240 mg ). Then, after standing for 12 hours or longer, a sponge cobalt catalyst composition was obtained. Table 1 shows the charged composition of the obtained sponge cobalt composition and the properties obtained by composition analysis and the like. An activity test was also conducted on the sponge cobalt catalyst separated from this catalyst composition. Table 1 shows the results. Further, the results of activity tests are shown in FIGS. 2, 3, 4 and 5. FIG.
  • Example 4 Na 2 WO 4 was changed to Mo 7 O 24 (NH 4 ) 6 (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade), and the amount of Mo 7 O 24 (NH 4 ) 6 added to 1 kg of sponge cobalt catalyst was 240 mg.
  • a sponge cobalt catalyst composition was obtained in the same manner as in Example 1, except for the above. Table 1 shows the charged composition of the obtained sponge cobalt composition and the properties obtained by composition analysis and the like. An activity test was also conducted on the sponge cobalt catalyst separated from this catalyst composition. Table 1 shows the results. Furthermore, the results of the activity test are shown in FIGS. 4 and 5.
  • FIG. 4 and 5 shows the results.
  • Example 6 A sponge cobalt catalyst composition was obtained in the same manner as in Example 1, except that Na 2 WO 4 was changed to K 2 WO 4 (manufactured by Wako Pure Chemical Industries, Ltd., reagent). Table 1 shows the charged composition of the obtained sponge cobalt composition and the properties obtained by composition analysis and the like. An activity test was also conducted on the sponge cobalt catalyst separated from this catalyst composition. Table 1 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

【課題】長期間使用しても触媒活性が高いスポンジコバルト触媒を提供すること。 【解決手段】水、オキソ酸、スポンジコバルト触媒を含み、前記オキソ酸はWまたはMoを含み、前記オキソ酸の一部または全部が前記スポンジコバルト触媒に吸着された、スポンジコバルト触媒組成物。

Description

スポンジコバルト触媒組成物およびその製造方法
 本発明は、スポンジコバルト触媒組成物およびその製造方法に関する。
 スポンジ金属触媒とは、ラネー(登録商標)金属触媒とも呼ばれており、スポンジ状形態の活性金属を主成分とする触媒の総称である。より詳しくは、久保松照夫、小松信一郎、「ラネー触媒」、共立出版(1971)に記載されている。スポンジ金属触媒は、触媒作用を有する金属(例えばニッケル、コバルト、銅、鉄、銀、およびパラジウム等)と、溶出金属(例えば、アルミニウム、珪素、亜鉛、およびマグネシウム等)との合金を作り、合金から溶出金属を溶出する(以下、「展開する」ともいう。)方法で得られる。スポンジ金属触媒は、このような製造方法に由来する微細な空孔を多く有しており、この特徴を生かして種々の触媒反応に利用されている。スポンジコバルト触媒は、スポンジ金属触媒の1種であって、水素化反応用の触媒として広く利用されている。例えば、ニトリルの水素化反応用として利用されている。
 特許文献1および2には、アジポニトリルを水素化してヘキサメチレンジアミンを合成する反応にスポンジコバルト触媒を用いることが開示されている。また、特許文献3および4には、フタロニトリルを水素化してキシリレンジアミンを合成する反応にスポンジコバルト触媒を用いることが開示されている。更に、特許文献5には、アミノアセトニトリルを水素化してエチレンジアミンを合成する反応にスポンジコバルト触媒を用いることが開示されている。
特開2001-302595号公報 特表2002-529227号公報 特開昭54-41804号公報 特開2013-177346号公報 特表2010-520175号公報
 従来のスポンジコバルト触媒は、長期間使用するとその触媒活性が低下しやすいという課題があった。
 そこで、本発明は、長期間使用しても触媒活性が高いスポンジコバルト触媒を含むスポンジコバルト触媒組成物およびその製造方法を提供することを目的とする。
 本発明の一態様によれば、以下のスポンジコバルト触媒組成物およびその製造方法が提供される。
[1]水、オキソ酸、スポンジコバルト触媒を含み、
 前記オキソ酸はWまたはMoを含み、
 前記オキソ酸の一部または全部が前記スポンジコバルト触媒に吸着された、
 スポンジコバルト触媒組成物。
[2]Wを含む前記オキソ酸が、W換算で、前記スポンジコバルト触媒1kgに対して5mg以上、1200mg以下の範囲で前記スポンジコバルト触媒に吸着された、[1]に記載のスポンジコバルト触媒組成物。
[3]Moを含む前記オキソ酸が、Mo換算で、前記スポンジコバルト触媒1kgに対して5mg以上、1000mg以下の範囲で前記スポンジコバルト触媒に吸着された、[1]または[2]に記載のスポンジコバルト触媒組成物。
[4]前記オキソ酸が、WO 2-、MoO 2-、Mo724 6-、Mo26 4-から選ばれる少なくとも1種である、[1]~[3]のいずれかに記載のスポンジコバルト触媒組成物。
[5]前記スポンジコバルト触媒に吸着されたオキソ酸に含まれるWと前記スポンジコバルト触媒に含まれるCoとのモル比率(W/Co)が、0.00001以上、0.0005以下の範囲にある、[1]~[4]のいずれかに記載のスポンジコバルト触媒組成物。
[6]前記スポンジコバルト触媒に吸着されたオキソ酸に含まれるMoと前記スポンジコバルト触媒に含まれるCoとのモル比率(Mo/Co)が、0.00001以上、0.01以下の範囲にある、[1]~[5]のいずれかに記載のスポンジコバルト触媒組成物。
[7]前記スポンジコバルト触媒に吸着された前記オキソ酸に含まれるWとMoとのモル比率(Mo/W)が、1以上、10以下の範囲にある、[1]~[6]のいずれかに記載のスポンジコバルト触媒組成物。
[8]前記スポンジコバルト触媒に含まれるコバルトの含有量が、30質量%以上、70質量%以下の範囲にある、[1]~[7]のいずれかに記載のスポンジコバルト触媒組成物。
[9]前記スポンジコバルト触媒に含まれるアルミニウムの含有量が、30質量%以上、70質量%以下の範囲にある、[1]~[8]のいずれかに記載のスポンジコバルト触媒組成物。
[10]ニトリルを水素化する反応に用いる、[1]~[9]のいずれかに記載のスポンジコバルト触媒組成物。
[11]コバルトおよびアルミニウムを含む合金を準備する合金調製工程、
 前記合金から前記アルミニウムを除去してスポンジコバルト触媒を得る展開工程、
 前記スポンジコバルト触媒を水に浸漬する浸漬工程、
 WまたはMoを含むオキソ酸塩を前記水に添加して前記スポンジコバルト触媒に前記オキソ酸を吸着させる吸着工程、を含む
 スポンジコバルト触媒組成物の製造方法。
本発明のスポンジコバルト触媒組成物のイメージ図である。 実施例1~3(スポンジコバルト触媒に吸着されたW:88~534mg/kg-cat)および比較例1(Wなし)のスポンジコバルト触媒を用いた活性試験における、反応液に含まれるイソフタロニトリル割合と反応回数との関係を示すグラフである。 実施例1~3(スポンジコバルト触媒に吸着されたW:88~534mg/kg-cat)および比較例1(Wなし)のスポンジコバルト触媒を用いた活性試験における、反応液に含まれるメタキシリレンジアミン割合と反応回数との関係を示すグラフである。 実施例1(Wを含むオキソ酸が吸着)、実施例4(Moを含むオキソ酸が吸着)、実施例5(Wを含むオキソ酸およびMoを含むオキソ酸が吸着)および比較例1(オキソ酸が吸着していない)のスポンジコバルト触媒を用いた活性試験における、反応液に含まれるイソフタロニトリル割合と反応回数との関係を示すグラフである。 実施例1(Wを含むオキソ酸が吸着)、実施例4(Moを含むオキソ酸が吸着)、実施例5(Wを含むオキソ酸およびMoを含むオキソ酸が吸着)および比較例1(オキソ酸が吸着していない)のスポンジコバルト触媒を用いた活性試験における、反応液に含まれるメタキシリレンジアミン割合と反応回数との関係を示すグラフである。
 本発明者は、前述の課題を解決するため、触媒反応が起こるスポンジコバルト触媒の表面状態について検討した。具体的には、スポンジコバルト触媒の表面にWまたはMoを含むオキソ酸を吸着させることで、長期間使用しても触媒活性が高くなることを見出した。
 本発明は、WまたはMoを含むオキソ酸が吸着されたスポンジコバルト触媒を含む、スポンジコバルト触媒組成物に関する。以下、本発明のスポンジコバルト触媒組成物(以下、「本発明の触媒組成物」ともいう。)について詳述する。
 [本発明の触媒組成物]
 本発明の触媒組成物は、水、オキソ酸、スポンジコバルト触媒を含む。スポンジコバルト触媒が大気雰囲気に曝されるとその表面が劣化するので、本発明の触媒組成物に含まれるスポンジコバルト触媒は水中に存在している。この水中に存在するオキソ酸の一部または全部は、前記スポンジコバルト触媒の表面に吸着されている(図1参照)。本発明の触媒組成物に含まれるスポンジコバルト触媒は、その表面がオキソ酸で改質され、長期間使用しても触媒活性が高くなるものと考えられる。
 前記オキソ酸は、W(タングステン)またはMo(モリブデン)を含む。Wを含むオキソ酸は、WO 2-であることが好ましい。また、Moを含むオキソ酸は、MoO 2-、Mo24 6-、Mo26 4-であることが好ましい。前記オキソ酸が表面に吸着したスポンジコバルト触媒は、長期間使用しても触媒活性が高い。また、Wを含むオキソ酸とMoを含むオキソ酸とを吸着したスポンジコバルト触媒は、長期間使用した際の触媒活性がより高い。
 前記オキソ酸の中でスポンジコバルト触媒の表面に吸着されたオキソ酸(「オキソ酸(吸着)」ともいう。)の好ましい含有量は、オキソ酸(吸着)がWを含む場合、Moを含む場合とで異なる。オキソ酸(吸着)がWを含む場合、その含有量は、W換算で、スポンジコバルト触媒1kgに対して5mg以上、1200mg以下であることが好ましく、10mg以上、300mg以下であることがより好ましく、20mg以上、200mg以下であることが特に好ましい。またオキソ酸(吸着)がMoを含む場合、前記含有量は、Mo換算で、スポンジコバルト触媒1kgに対して5mg以上、2000mg以下の範囲にあることが好ましく、50mg以上、1500mg以下の範囲にあることがより好ましく、100mg以上、1200mg以下の範囲にあることが特に好ましい。オキソ酸(吸着)の含有量が前述の範囲にあると、長期間使用した際のスポンジコバルト触媒の触媒活性が高くなりやすい。なお、この含有量は、本発明のスポンジコバルト触媒組成物に含まれるW、Moの全量から、水に含まれるW、Moの量を引いた値を使って算出される。
 オキソ酸(吸着)に含まれるWとスポンジコバルト触媒に含まれるCoとのモル比率(W/Co)は、0.00001以上、0.0005以下であることが好ましく、0.00002以上、0.0003以下であることがより好ましく、0.00003以上、0.0001以下であることが特に好ましい。また、オキソ酸(吸着)に含まれるMoとスポンジコバルト触媒に含まれるCoとのモル比率(Mo/Co)は、0.00001以上、0.01以下であることが好ましく、0.00005以上、0.005以下であることがより好ましく、0.0001以上、0.003以下であることが特に好ましい。このモル比率が前述の範囲にあると、スポンジコバルト触媒を長期間使用してもその触媒活性が高い。
 スポンジコバルト触媒の表面にWを含むオキソ酸とMoを含むオキソ酸とが吸着されている場合、そのモル比率(Mo/W)は、1以上、10以下が好ましく、1以上、7以下がより好ましく、1以上、5以下が特に好ましい。このモル比率が前述の範囲にあると、スポンジコバルト触媒を長期間使用してもその触媒活性が高い。
 前記スポンジコバルト触媒は、Co(コバルト)およびAl(アルミニウム)を含む合金からAlの一部が除去され、スポンジ状になっている。スポンジ状になることで、Coの金属表面が増加し、触媒活性も高くなる。
 前記スポンジコバルト触媒に含まれるCoの含有量は、30質量%以上、70質量%以下の範囲にあることが好ましく、40質量%以上、60質量%以下の範囲にあることがより好ましく、50質量%以上、60質量%以下の範囲にあることが特に好ましい。前記含有量が前述の範囲にあると、前記スポンジコバルト触媒の初期活性が高くなりやすい。
 前記スポンジコバルト触媒は、Alを含むことが好ましい。本発明の触媒のAl含有量は、30質量%以上、70質量%以下であることが好ましく、40質量%以上、60質量%以下であることがより好ましく、50質量%以上、60質量%以下であることが特に好ましい。
 前記スポンジコバルト触媒は、粒状であることが好ましい。本発明においては、短径および長径が1mm未満の塊を粉と定義し、それ以外の塊を粒と定義する。前記スポンジコバルト触媒は、粒状であっても、粉状であっても発明の効果を発揮し、特に粒状の場合にその効果を発揮する。粒状のスポンジコバルト触媒は、粉状のスポンジコバルト触媒と比べてその外表面積が小さくなりやすく、長期間使用した際に触媒活性も低下しやすい。しかしながら、前記スポンジコバルト触媒は、その表面に前記オキソ酸が吸着されているので、長期間使用しても触媒活性が高い。また、粒状のスポンジコバルト触媒は、固定床用の触媒として用いることができ、触媒と生成物との分離が容易であることから、生産性に優れる。前記スポンジコバルト触媒は、粒の大きさ(粒度)が1mm以上、5mm以下の範囲にあることがより好ましい。粒の大きさは、篩の目開きで判断できるものとする。例えば、目開きが1mmの篩を使って本発明の触媒をふるったとき、篩上が1mm以上の大きさの粒、篩下が1mm未満の大きさの粉であると判断することができる。
 前記水は、スポンジコバルト触媒の表面を保護する役割と、オキソ酸をスポンジコバルト触媒に吸着させる媒体としての働きがある。したがって、前記水の含有量は、スポンジコバルト触媒の表面を覆う程度に含まれていればよい。例えば、図1のように、スポンジコバルト触媒の全てが水に浸かっている状態が好ましい。したがって、スポンジコバルト触媒の量によって水の量は適宜調整される。
 前記水に含まれるオキソ酸の割合は、本発明の触媒組成物に含まれるオキソ酸の総量に対して、50%以下が好ましく、40%以下がより好ましい。本発明の触媒組成物に含まれるオキソ酸は、その全てがスポンジコバルト触媒に吸着するわけではなく、吸着平衡によってその一部が前記水に残留することがある。本発明の触媒組成物を使用する際には水とスポンジコバルト触媒とを分離するので、水にオキソ酸が含まれていたとしても、大きな影響はない。しかしながら、排水処理等で問題になることがあるので、前記割合は小さいほうが好ましい。
 前記水のpHは、8以上であることが好ましく、8.5以上であることがより好ましく、9以上であることが特に好ましい。pHがこの範囲にあると、スポンジコバルト触媒の表面が正電荷を帯びるので、負電荷のオキソ酸がより吸着されやすくなる。
 本発明の触媒組成物は、W、Mo、CoおよびAl以外に、アンモニウムイオン、またはアルカリイオンを含んでいてもよい。これらのイオンは、前記オキソ酸のカウンターカチオンとして含まれることがある。また、スポンジコバルト触媒を調製する際に使用したアルカリに由来するイオンとして含まれることもある。
 本発明の触媒組成物は、W、Mo、Co、Al、アンモニウムイオン、およびアルカリイオン以外の成分を10質量%以下の範囲で含んでいてもよい。例えば、C(カーボン)、Si(シリコン)、Mg(マグネシウム)、Ca(カルシウム)等の混入しやすい元素や、ニッケル、モリブデン、ジルコニウム、銅、クロム、鉄およびマンガン等の助触媒として機能する元素を含んでいてもよい。具体的には、混入しやすい元素は、2質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることが特に好ましい。また、助触媒として機能する成分は、0.1質量%以上、10質量%以下であることが好ましく、0.1質量%以上、5質量%以下であることがより好ましく、0.1質量%以上、3質量%以下であることが特に好ましい。
 本発明の触媒組成物は、コバルト触媒が使用される分野の用途であれば、幅広い分野で使用することができる。例えば、水素化反応用の触媒として使用することができる。水素化反応には、炭素-炭素二重結合、炭素-炭素三重結合、ベンゼン核、ピリジン、カルボニル基、ニトロ基、ニトリル、脂肪酸およびエステル等の反応が知られている。本発明の触媒は、ニトリルの水素化反応の触媒として好適に使用できる。これらの用途で本発明の本発明の触媒組成物を使用する場合、水を除去してスポンジコバルト触媒を取り出す。このときスポンジコバルト触媒の表面に吸着された前記オキソ酸は、水に含まれるカウンターカチオンと塩を形成するものと考えられる。例えば、Wを含むオキソ酸がスポンジコバルト触媒に吸着していて、ナトリウムイオンがカウンターカチオンとして存在している場合、スポンジコバルト触媒の表面でNaWOが形成されているものと考えられる。
 [本発明の触媒組成物の製造方法]
 本発明の触媒組成物の製造方法(以下、「本発明の製造方法」ともいう。)は、CoおよびAlを含む合金を準備する合金調製工程、前記合金から前記Alを除去してスポンジコバルト触媒を得る展開工程、前記スポンジコバルト触媒を水に浸漬する浸漬工程、WまたはMoを含むオキソ酸塩を前記水に添加して前記スポンジコバルト触媒に前記オキソ酸を吸着させる吸着工程、を含む。以下、本発明の製造方法について詳述する。
 [合金調製工程]
 前記合金は、従来公知の方法で調製することができる。例えば、金属Coおよび金属Alを混合し、溶融する方法で調製することができる。前記合金に含まれるCoの含有量は、20質量%以上、70質量%以下であることが好ましく、30質量%以上、60質量%以下であることがより好ましい。また、前記合金に含まれるAlの含有量は、30質量%以上、80質量%以下であることが好ましく、40質量%以上、70質量%以下であることがより好ましい。本発明の製造方法において、前記合金に含まれるAlの一部は後述の展開工程で除去され、Alが存在していた場所が空洞になり、スポンジ状のコバルト合金が形成される。したがって、前記合金に含まれるAlが多いほど空洞が増えやすくなるものの、強度は低下しやすくなる。したがって、前記合金のCoの含有量およびAlの含有量は、前述の範囲にあることが好ましい。
 前記合金調製工程は、前記合金の粒度を調整する粒度調整工程を含むことが好ましい。具体的には、前記合金を粉砕し、粒の大きさを1mm以上、5mm以下に調整することが好ましい。このように、前記合金の粒度を調整すると、後述の展開工程でAlが除去されやすくなり、生産効率が高くなる。
 [展開工程]
 前記合金からAlを除去する方法は、従来公知の方法を用いることができる。例えば、前記合金をアルカリ溶液で処理する方法を用いることができる。アルカリ溶液を用いる場合、アルカリの種類は特に限定されず、アルカリ水酸化物、アルカリ炭酸塩といった従来公知のアルカリを用いることができる。より具体的には、水酸化ナトリウム、または水酸化カリウムを用いることが好ましい。また、アルカリ溶液のアルカリ量は、前記合金中のAl含有量に対して、モル比で0.01倍以上、3倍以下であることが好ましい。アルカリ溶液のアルカリ量が前述の範囲にあると、効率的に前記合金中のAlを除去することができる。また、Alの除去が不十分である場合は、処理回数を増やす等によって、目標とするレベルまでAlを除去すればよい。更に、前記合金にAlを残留させる場合は、アルカリ溶液のアルカリ量が、前記合金中のAl量に対して、0.1以上、1倍以下であることが好ましい。
 前記展開工程において、展開温度は、10℃以上、100℃未満であることが好ましく、20℃以上、90℃以下であることがより好ましい。展開温度が高くなるとAlは溶出しやすくなる。しかし、急激にAlが溶出すると展開後のスポンジコバルト触媒が崩壊しやすくなるので、Alの除去具合によって適宜調整すればよい。また、展開時間についてもAlの除去具合によって適宜調整すればよく、処理量にもよるが、0.5時間以上、12時間以下であれば問題なくAlを除去できる。
 [浸漬工程]
 前記展開工程において得られたスポンジコバルト触媒を水に浸漬することで、スポンジコバルト触媒の表面が保護される。また、水はオキソ酸をスポンジコバルト触媒の表面に吸着させる媒体ともなる。
 前記浸漬工程は、スポンジコバルト触媒を洗浄する洗浄工程を含んでいてもよい。例えば、スポンジコバルト触媒に水を流通させて洗浄した後で、水に浸漬してもよい。スポンジコバルト触媒を洗浄する際の水の温度は、20℃以上、60℃以下であることが好ましく、30℃以上、50℃以下であることがより好ましい。このような温度の水で洗浄することで、スポンジコバルト触媒に含まれる可溶性の不純物が除去されやすくなる。
 前記浸漬工程は、pH調整工程を含むことが好ましい。pHを8以上、好ましくは8.5以上、特に好ましくは9以上に調整することで、後述の吸着工程においてスポンジコバルト触媒の表面にオキソ酸がより吸着しやすくなる。pHを調整する方法は、従来公知の方法を用いることができる。例えば、アンモニア、水酸化ナトリウム、水酸化カリウム等の塩基性化合物を添加することで、pHを調整することができる。
 [吸着工程]
 WまたはMoを含むオキソ酸塩を前記水に添加して前記スポンジコバルト触媒に前記オキソ酸を吸着させる方法は、従来公知の方法を用いることができる。例えば、NaWO、KWO、NaMoO、Mo24(NH等のオキソ酸塩を前記水に添加するとよい。このとき、前記オキソ酸を含む水溶液の温度は、10℃以上、100℃以下であることが好ましく、10℃以上、50℃以下であることがより好ましい。また、これらの処理を行う時間は、処理量にもよるが、1時間以上、24時間以下であれば問題なく前記オキソ酸をスポンジコバルト触媒の表面に吸着できる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 [測定方法ないし評価方法]
 各種測定ないし評価は以下のように行った。
 [1]組成分析
 測定試料をビーカーに採取し、塩酸と硝酸とを加えて加熱した後、水を加えて溶解させた。さらに、これを水で希釈した後、ICP装置(アジレントテクノロジー株式会社製、730ICP-OES、誘導結合プラズマ発光分光分析法)を用いてCo、Al、WおよびMoの含有量を測定した。なお、スポンジコバルト触媒に吸着されたWまたはMoを含むオキソ酸の量は、触媒組成物に含まれるオキソ酸の全量から、水に含まれるオキソ酸の量を引いて算出した。
 [2]活性試験
 特開昭54-41804号公報の実施例に記載された方法を参考に、ニトリルの水素化活性試験を行った。具体的には、330mLオートクレーブにイソフタロニトリル8g、メタノール24mL、トルエン96mL、測定試料(スポンジコバルト触媒)3gおよび水酸化ナトリウム水溶液(50質量%)1gを仕込み、水素圧8MPa、反応温度70℃、撹拌数900rpmで6時間反応させた。反応後、測定試料を除去し、反応液をガスクロマトグラフィーで分析した。得られたチャートから、イソフタロニトリルとメタキシリレンジアミンのピークを分離し、チャートに含まれるすべてのピークエリアに対する各成分の比率を求めた。
 [実施例1]
 コバルト40質量%、アルミニウム60質量%の組成からなるCoAl合金粒(大きさ:1mm以上、5mm以下)を水酸化ナトリウムで展開・洗浄し、スポンジコバルト触媒を得た。展開後のスポンジコバルト触媒を水に浸漬した後、25℃でpHを測定したところ、10であった。その後、スポンジコバルト触媒の重量(水中重量)に対して150ppmのNaWOを含む水溶液(NaWO・2HO:和光純薬社製、試薬特級)を常温で添加した(ここで、150ppmのNaWOを含む水溶液とは、NaWOに由来するWを150ppm含む水溶液を指すものである。これをスポンジコバルト触媒1kgに対するNaWOの添加量に換算すると、240mgに相当する)。その後、12時間以上放置した後、スポンジコバルト触媒組成物を得た。得られたスポンジコバルト組成物の仕込み組成、組成分析等により得られた性状を表1に示す。また、この触媒組成物から分離されたスポンジコバルト触媒について、活性試験を行った。その結果を表1に示す。更に、活性試験の結果を図2、図3、図4および図5に示す。
 [実施例2]
 スポンジコバルト触媒1kgに対するNaWOの添加量を150mgとしたこと以外は、実施例1と同様の方法でスポンジコバルト触媒組成物を得た。得られたスポンジコバルト組成物の仕込み組成、組成分析等により得られた性状を表1に示す。また、この触媒組成物から分離されたスポンジコバルト触媒について、活性試験を行った。その結果を表1に示す。更に、活性試験の結果を図2および図3に示す。
 [実施例3]
 スポンジコバルト触媒1kgに対するNaWOの添加量を1600mgとしたこと以外は、実施例1と同様の方法でスポンジコバルト触媒組成物を得た。得られたスポンジコバルト組成物の仕込み組成、組成分析等により得られた性状を表1に示す。また、この触媒組成物から分離されたスポンジコバルト触媒について、活性試験を行った。その結果を表1に示す。更に、活性試験の結果を図2および図3に示す。
 [実施例4]
 NaWOをMo24(NH(和光純薬社製、試薬特級)に変更したこと、スポンジコバルト触媒1kgに対する、Mo24(NHの添加量を240mgとしたこと以外は、実施例1と同様の方法でスポンジコバルト触媒組成物を得た。得られたスポンジコバルト組成物の仕込み組成、組成分析等により得られた性状を表1に示す。また、この触媒組成物から分離されたスポンジコバルト触媒について、活性試験を行った。その結果を表1に示す。更に、活性試験の結果を図4および図5に示す。
 [実施例5]
 NaWOおよびMo24(NHを添加したこと、スポンジコバルト触媒1kgに対する添加量をそれぞれ240mgとしたことしたこと以外は、実施例1と同様の方法でスポンジコバルト触媒組成物を得た。得られたスポンジコバルト組成物の仕込み組成、組成分析等により得られた性状を表1に示す。また、この触媒組成物から分離されたスポンジコバルト触媒について、活性試験を行った。その結果を表1に示す。更に、活性試験の結果を図4および図5に示す。
 [実施例6]
 NaWOをKWO(和光純薬社製、試薬)に変更したこと以外は、実施例1と同様の方法でスポンジコバルト触媒組成物を得た。得られたスポンジコバルト組成物の仕込み組成、組成分析等により得られた性状を表1に示す。また、この触媒組成物から分離されたスポンジコバルト触媒について、活性試験を行った。その結果を表1に示す。
 [実施例7]
 スポンジコバルト触媒1kgに対する、Mo24(NHの添加量を1000mgとしたこと以外は、実施例4と同様の方法でスポンジコバルト触媒組成物を得た。得られたスポンジコバルト組成物の仕込み組成、組成分析等により得られた性状を表1に示す。また、この触媒組成物から分離されたスポンジコバルト触媒について、活性試験を行った。その結果を表1に示す。
 [比較例1]
 NaWOを添加しなかったこと以外は、実施例1と同様の方法でスポンジコバルト触媒組成物を得た。得られたスポンジコバルト組成物の仕込み組成、組成分析等により得られた性状を表1に示す。また、この触媒組成物から分離されたスポンジコバルト触媒について、活性試験を行った。その結果を表1に示す。更に、活性試験の結果を図2、図3、図4および図5に示す。
Figure JPOXMLDOC01-appb-T000001
 図2の結果から、WOが吸着した実施例1のスポンジコバルト触媒は、WOが吸着していない比較例1のスポンジコバルト触媒と比較して、反応液中のイソフタロニトリルの割合が少ない。反応液中に含まれるイソフタロニトリルは反応せずに残留したものであって、反応液中に含まれるイソフタロニトリルが少ないほど、反応したイソフタロニトリルが多いことを表しており、つまり触媒活性が高いことを示している。したがって、実施例1のスポンジコバルト触媒は、比較例1のスポンジコバルト触媒と比較して触媒活性が高いと考えられる。更に、これを継続して使用することでその差はより顕著になり、5回反応後のイソフタロニトリル割合でみると、比較例1のイソフタロニトリル割合が約6%であるのに対し、実施例1のイソフタロニトリル割合は約1%である。
 図2の結果に加え、図3の結果に示される通り、イソフタロニトリルを水素化して得られるメタキシリレンジアミンの割合でみても、実施例1のスポンジコバルト触媒を用いたほうが、比較例1のスポンジコバルト触媒を用いた場合と比較してメタキシリレンジアミンの生成量が多いことが分かる。
 図4および図5の結果から、Mo24が吸着した実施例4のスポンジコバルト触媒は、Mo24が吸着していない比較例1のスポンジコバルト触媒と比較して、5回反応後の触媒活性が高くなっており、WOが吸着した実施例1のスポンジコバルト触媒と同じように、Mo24が吸着したスポンジコバルト触媒は長期間使用しても触媒活性が高いことが分かる。更に、WOおよびMo24が吸着した実施例5のスポンジコバルト触媒は、WOが吸着した実施例1のスポンジコバルト触媒およびMo24が吸着した実施例4のスポンジコバルト触媒と比較して、5回反応後の触媒活性が高い。

Claims (11)

  1.  水、オキソ酸、スポンジコバルト触媒を含み、
     前記オキソ酸はWまたはMoを含み、
     前記オキソ酸の一部または全部が前記スポンジコバルト触媒に吸着された、
     スポンジコバルト触媒組成物。
  2.  Wを含む前記オキソ酸が、W換算で、前記スポンジコバルト触媒1kgに対して5mg以上、1200mg以下の範囲で前記スポンジコバルト触媒に吸着された、請求項1に記載のスポンジコバルト触媒組成物。
  3.  Moを含む前記オキソ酸が、Mo換算で、前記スポンジコバルト触媒1kgに対して5mg以上、1000mg以下の範囲で前記スポンジコバルト触媒に吸着された、請求項2に記載のスポンジコバルト触媒組成物。
  4.  前記オキソ酸が、WO 2-、MoO 2-、Mo724 6-、Mo26 4-から選ばれる少なくとも1種である、請求項3に記載のスポンジコバルト触媒組成物。
  5.  前記スポンジコバルト触媒に吸着されたオキソ酸に含まれるWと前記スポンジコバルト触媒に含まれるCoとのモル比率(W/Co)が、0.00001以上、0.0005以下の範囲にある、請求項4に記載のスポンジコバルト触媒組成物。
  6.  前記スポンジコバルト触媒に吸着されたオキソ酸に含まれるMoと前記スポンジコバルト触媒に含まれるCoとのモル比率(Mo/Co)が、0.00001以上、0.01以下の範囲にある、請求項5に記載のスポンジコバルト触媒組成物。
  7.  前記スポンジコバルト触媒に吸着された前記オキソ酸に含まれるWとMoとのモル比率(Mo/W)が、1以上、10以下の範囲にある、請求項6に記載のスポンジコバルト触媒組成物。
  8.  前記スポンジコバルト触媒に含まれるコバルトの含有量が、30質量%以上、70質量%以下の範囲にある、請求項7に記載のスポンジコバルト触媒組成物。
  9.  前記スポンジコバルト触媒に含まれるアルミニウムの含有量が、30質量%以上、70質量%以下の範囲にある、請求項8に記載のスポンジコバルト触媒組成物。
  10.  ニトリルを水素化する反応に用いる、請求項1~請求項9のいずれか1項に記載のスポンジコバルト触媒組成物。
  11.  コバルトおよびアルミニウムを含む合金を準備する合金調製工程、
     前記合金から前記アルミニウムを除去してスポンジコバルト触媒を得る展開工程、
     前記スポンジコバルト触媒を水に浸漬する浸漬工程、
     WまたはMoを含むオキソ酸塩を前記水に添加して前記スポンジコバルト触媒に前記オキソ酸を吸着させる吸着工程、を含む
     スポンジコバルト触媒組成物の製造方法。
PCT/JP2022/026528 2021-07-02 2022-07-01 スポンジコバルト触媒組成物およびその製造方法 WO2023277192A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22833337.3A EP4364843A1 (en) 2021-07-02 2022-07-01 Sponge cobalt catalyst composition and method for producing same
JP2022563138A JP7284879B1 (ja) 2021-07-02 2022-07-01 スポンジコバルト触媒組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-110950 2021-07-02
JP2021110950 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023277192A1 true WO2023277192A1 (ja) 2023-01-05

Family

ID=84692807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026528 WO2023277192A1 (ja) 2021-07-02 2022-07-01 スポンジコバルト触媒組成物およびその製造方法

Country Status (3)

Country Link
EP (1) EP4364843A1 (ja)
JP (1) JP7284879B1 (ja)
WO (1) WO2023277192A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441804A (en) 1977-09-02 1979-04-03 Takeda Chem Ind Ltd Preparation of primary amines
JPH032145A (ja) * 1989-02-07 1991-01-08 W R Grace & Co ポリアミンの製造
JPH07185352A (ja) * 1993-10-16 1995-07-25 Degussa Ag 成形及び活性化したラネー金属固床触媒、その製造方法、固床中での有機化合物の水素添加方法並びに該触媒のための前駆物
JP2001302595A (ja) 2000-04-28 2001-10-31 Kawaken Fine Chem Co Ltd 一級アミンの製造方法および接触還元用触媒
JP2002512606A (ja) * 1997-03-28 2002-04-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 3−アミノペンタンニトリルの水素化による1,3−ジアミノペンタンの製造
JP2002529227A (ja) 1998-11-05 2002-09-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ラネーコバルト触媒およびその触媒を用いた有機化合物の水素化方法
JP2004516308A (ja) * 2000-12-23 2004-06-03 デグサ アクチエンゲゼルシャフト ニトリルおよびイミンの水素化により第一級および第二級アミンを製造する方法
JP2008528459A (ja) * 2005-01-24 2008-07-31 ビーエーエスエフ ソシエタス・ヨーロピア キシリレンジアミンの製造方法
JP2010520175A (ja) 2007-03-01 2010-06-10 ビーエーエスエフ ソシエタス・ヨーロピア エチレンジアミンの製造方法
JP2013177346A (ja) 2012-02-28 2013-09-09 Mitsubishi Gas Chemical Co Inc メタキシリレンジアミンの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441804A (en) 1977-09-02 1979-04-03 Takeda Chem Ind Ltd Preparation of primary amines
JPH032145A (ja) * 1989-02-07 1991-01-08 W R Grace & Co ポリアミンの製造
JPH07185352A (ja) * 1993-10-16 1995-07-25 Degussa Ag 成形及び活性化したラネー金属固床触媒、その製造方法、固床中での有機化合物の水素添加方法並びに該触媒のための前駆物
JP2002512606A (ja) * 1997-03-28 2002-04-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 3−アミノペンタンニトリルの水素化による1,3−ジアミノペンタンの製造
JP2002529227A (ja) 1998-11-05 2002-09-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ラネーコバルト触媒およびその触媒を用いた有機化合物の水素化方法
JP2001302595A (ja) 2000-04-28 2001-10-31 Kawaken Fine Chem Co Ltd 一級アミンの製造方法および接触還元用触媒
JP2004516308A (ja) * 2000-12-23 2004-06-03 デグサ アクチエンゲゼルシャフト ニトリルおよびイミンの水素化により第一級および第二級アミンを製造する方法
JP2008528459A (ja) * 2005-01-24 2008-07-31 ビーエーエスエフ ソシエタス・ヨーロピア キシリレンジアミンの製造方法
JP2010520175A (ja) 2007-03-01 2010-06-10 ビーエーエスエフ ソシエタス・ヨーロピア エチレンジアミンの製造方法
JP2013177346A (ja) 2012-02-28 2013-09-09 Mitsubishi Gas Chemical Co Inc メタキシリレンジアミンの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEONITO O. GARCIANO II; NGUYEN H. TRAN; G. S. KAMALI KANNANGARA; ADRIYAN S. MILEV; MICHAEL A. WILSON; HERBERT VOLK: "Development of Raney cobalt catalysts for the hydrogenation of squalene type compounds", REACTION KINETICS, MECHANISMS AND CATALYSIS, SPRINGER NETHERLANDS, DORDRECHT, vol. 108, no. 1, 18 September 2012 (2012-09-18), Dordrecht , pages 127 - 138, XP035163107, ISSN: 1878-5204, DOI: 10.1007/s11144-012-0498-1 *
TERUO KUBOMATSUSHINICHIRO KOMATSU: "Raney Catalyst", 1971, KYORITSU SHUPPAN CO., LTD.

Also Published As

Publication number Publication date
JPWO2023277192A1 (ja) 2023-01-05
EP4364843A1 (en) 2024-05-08
JP7284879B1 (ja) 2023-05-31

Similar Documents

Publication Publication Date Title
EP1240941B1 (en) Use of copper-aluminium mixed oxide catalysts in hydrogenation reactions
CN1802212B (zh) 镀镍和镀钴海绵催化剂
JP6041881B2 (ja) 硫黄を含有するパラジウム/炭素触媒、その製造方法及びp−フェニレンジアミン系老化防止剤
KR100205206B1 (ko) 수식래네촉매 및 그 제조방법
CN1081084C (zh) 氨氧化反应催化剂组合物
RU2468111C2 (ru) Металлические порошки
KR970706932A (ko) 니켈금속 미세분말 및 그 제조방법
WO2017130909A1 (ja) 流動床アンモ酸化反応触媒及びアクリロニトリルの製造方法
WO2023277192A1 (ja) スポンジコバルト触媒組成物およびその製造方法
ES2391134T3 (es) Procedimiento de producción de compuestos que contienen nitrógeno
US20110011772A1 (en) Nickel and Cobalt Plated Sponge Catalysts
CN108889303A (zh) 二氧化碳制甲醇的负载型高分散铜基催化剂及制法和应用
CN111013620A (zh) 一种耐磨的混合金属氧化物催化剂及其制备方法
CN112934225B (zh) 一种双金属组分间苯二甲腈加氢催化剂及制备和应用
CN105642302A (zh) 一种合成1,4-丁炔二醇的铜铋催化剂及其制备方法
CA1122961A (en) Process for preparing butanediol of high quality
JP2006219688A (ja) 金属超微粉の精製方法
JP4162435B2 (ja) モリブデン担持スポンジ金属触媒の製造方法
KR20110052732A (ko) 크롬(ⅲ)원을 포함하는 수용액의 제조 방법
JP6936532B2 (ja) ニッケル鉄合金水素化触媒及びその製造方法
JP4707382B2 (ja) 硝酸性窒素含有水処理用触媒およびその製造方法
JPS6176447A (ja) ニトリル化合物の水和方法
CN112023962A (zh) 用于甲醇合成的催化剂及其制备方法以及合成甲醇的方法
CN114797870B (zh) 一种用于间苯二甲腈加氢制备间苯二甲胺的催化剂及其制备方法和应用
CN104136120A (zh) 包含钴铬钼-合金的金属粉末状催化剂

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022563138

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833337

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022833337

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022833337

Country of ref document: EP

Effective date: 20240202