WO2023236808A1 - 一种耐高温爆破的聚丁烯合金材料及其制备方法 - Google Patents

一种耐高温爆破的聚丁烯合金材料及其制备方法 Download PDF

Info

Publication number
WO2023236808A1
WO2023236808A1 PCT/CN2023/097015 CN2023097015W WO2023236808A1 WO 2023236808 A1 WO2023236808 A1 WO 2023236808A1 CN 2023097015 W CN2023097015 W CN 2023097015W WO 2023236808 A1 WO2023236808 A1 WO 2023236808A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
hydrogen
molar ratio
alloy material
butene
Prior art date
Application number
PCT/CN2023/097015
Other languages
English (en)
French (fr)
Inventor
贺爱华
刘晨光
邵华锋
Original Assignee
青岛科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学 filed Critical 青岛科技大学
Publication of WO2023236808A1 publication Critical patent/WO2023236808A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the invention belongs to the technical field of new polyolefin materials, and particularly relates to a high-temperature explosion-resistant polybutene alloy material and a preparation method thereof.
  • Isotactic polybutene has excellent impact resistance, outstanding thermal creep resistance and stress cracking resistance, but its rigidity is slightly lower. Therefore, on the basis of maintaining the excellent properties of polybutene, its rigidity and resistance are improved. Thermal properties can expand the application fields of polybutene.
  • Chinese invention patent ZL01142929.1 invented a polybutylene resin composition prepared by physical blending of butene and copolymers of butene and higher ⁇ -olefins and polypropylene resin through melt kneading, which can be used for hot and cold water pipes. and pipe fittings fields.
  • Chinese invention patent ZL201010198121.3 invented a new type of polybutylene alloy material. This polybutylene alloy can shorten the molding cycle as much as possible and improve its strength and flexibility without affecting the high temperature creep resistance and flexibility of the polybutylene resin. Modulus etc.
  • Chinese invention patent (CN102838807B) discloses a polypropylene composite material with good impact resistance and low-temperature toughness and a preparation method thereof.
  • the matrix resin of the composite material is polypropylene with a mass content of 30% to 80% and a mass content of 10% to 40%.
  • % low density and low melt refers to polyolefin elastomers with good processing properties, dimensional stability and low temperature performance.
  • Chinese invention patent CN202010222942.X provides a method for preparing polybutylene alloy materials with high rigidity and high heat resistance. The above patents all use physical blending or filling blending modification methods to improve the performance of polybutylene materials. However, physical blending methods are usually difficult to achieve mixing at smaller scales or even at the molecular level. In addition, there is also the problem of poor adhesion at the phase interface.
  • the in-situ preparation of polypropylene alloy in the kettle can not only effectively improve the dispersion problem of alloy components, but also the in-situ synthesis of a small amount of copolymer can also significantly improve the phase interface of the alloy.
  • Qingdao University of Science and Technology (CN104628913A) disclosed a method of preparing polybutene alloy by dissolving butene and propylene in an aromatic organic solvent for segmented solution polymerization.
  • the multi-component structure in the alloy can be achieved under the action of organic solvents. Uniform mixing at the molecular level makes the prepared alloy materials have high impact strength and toughness.
  • Chinese patent (ZL201010198121.3) discloses a polybutylene alloy material and its preparation method.
  • the alloy contains isotactic polybutene with a mass content of 50% to 99%, isotactic polypropylene with a mass content of 1% to 40% and Propylene-butene random copolymer with a mass content of 0 to 10%. But none of them involves the synthesis of polybutylene materials with heat resistance and explosion resistance.
  • one of the objects of the present invention is to provide a polybutylene alloy material that is resistant to high temperature explosion.
  • a second object of the present invention is to provide a method for preparing a high-temperature explosion-resistant polybutylene alloy material.
  • the present invention uses a heterogeneous supported titanium catalyst to prepare isotactic polybutylene alloy in a step-by-step method: first propylene slurry or Bulk polymerization is used to prepare isotactic polypropylene; then butene polymerization is continued on the polypropylene particles, and isotactic polybutene with a medium molecular weight is obtained by adjusting the amount of hydrogen; finally butene polymerization is continued, and the molecular weight is greater than 100 by reducing the amount of hydrogen.
  • the high-temperature explosion-resistant polybutylene alloy material of the present invention includes isotactic polypropylene with a mass fraction of 1 to 40%, and a polypropylene-polybutene block copolymer with a mass fraction of 0.1 to 10%.
  • the mass fraction is 35 to 95.9% of the medium molecular weight isotactic polybutene, and the mass fraction is 3 to 15% of the high molecular weight isotactic polybutene.
  • the weight average molecular weight of the isotactic polypropylene is 200,000 to 800,000, and the isotacticity is greater than 95%; the isotacticity of the isotactic polybutene is greater than 95%; The isotacticity of the polypropylene-polybutylene block copolymer is greater than 95%, and the molar content of propylene units in the block copolymer is 40-70%.
  • the invention provides a method for preparing a high-temperature explosion-resistant polybutylene alloy material, which includes the following steps:
  • the invention provides a method two for preparing a high-temperature explosion-resistant polybutylene alloy material, which includes the following steps:
  • butene and supported titanium catalyst are The molar ratio of the titanium element in the titanium catalyst is 0.001 ⁇ 10 8 to 1 ⁇ 10 8 :1, the molar ratio of the aluminum element to the titanium element in the supported titanium catalyst is 10 to 500:1, and the molar ratio of the external electron donor to the titanium element is 5 to 25:1, the molar ratio of hydrogen to butene is 1:100 to 600, the polymerization temperature is controlled to be 0°C to 40°C, the stirring speed is 5 to 500 rpm, and the polymerization time is 0.1 to 46 hours;
  • the alkyl aluminum is triethylaluminum and triisobutylaluminum, diethyl aluminum hydride, diisobutylaluminum hydride, dimethyl aluminum monochloride, diethyl monochloride
  • Inert solvent selected from pentane, isopentane, hexane, cyclohexane, methylcyclohexane, n-heptane, n-octane, benzene, toluene, p-xylene, m-xylene, cumene, addition One or more of hydrogen gasoline and raffinate oil.
  • the titanium element accounts for 1% to 5% of the total mass of the supported catalyst, and the internal electron donor accounts for 0.5% to 20% of the total mass of the supported catalyst;
  • the carrier is one of magnesium dichloride, magnesium dibromide, magnesium iodide or silicon dioxide;
  • the external electron donor is cyclohexyltrimethoxysilane, tert-butyltrimethoxysilane, tert-hexyltrimethoxysilane silane, diisopropyldimethoxysilane, methylcyclohexyldimethoxysilane, diphenyldimethoxysilane, methyltert-butyldimethoxysilane, dicyclopentyldimethoxysilane silane, 2-ethylpiperidyl-2-tert-butyldimethoxysilane, 1,1,1-trifluoropropyl-2-eth
  • titanium is one of titanium tetrachloride, titanium tetrabromide or titanium tetraiodide containing titanium element; the internal electron donor is benzoic acid, p-methoxybenzene Formic acid, p-ethoxybenzoic acid, phenylacetic acid, diisophthalic acid One or more of butyl ester, dibutyl phthalate, benzoquinone, methyl benzoate, ethyl benzoate, and 9,9-bis(methoxymethyl)fluorene.
  • the polymerization reactor is equipped with a gas phase reflux device for cooling the upper gas and returning it to the liquid phase system of the polymerization reactor; the stirring shaft and blades of the polymerization reactor are equipped with hydrogen gas adding pipes and ventilation The port is used to disperse the gas phase in the upper part of the polymerization reactor into the liquid phase through pipes and vents to maintain uniform hydrogen concentration and distribution throughout the polymerization system.
  • the high molecular weight isotactic polybutylene is used to improve the high-temperature blast resistance and high-temperature hydrostatic pressure of the polybutylene alloy material.
  • the Vicat softening temperature of polybutylene alloy materials tested using the A50 method is 115 to 120°C.
  • the burst pressures of the polybutylene alloy pipes prepared therefrom when tested at 20°C and 95°C are both higher than those of polybutylene pipes.
  • the longitudinal shrinkage of the product is 0.2% to 0.4%, which is better than polybutylene pipe. Creep test results show that with a creep time of 4 hours, an ambient temperature of 95°C, and a test stress of 8MPa, the creep amount of polybutylene alloy is only 62% to 65% of that of polybutylene pipe.
  • the invention relates to a polybutene alloy material that is resistant to high temperature explosion.
  • the mass fraction of regular polypropylene in the polybutene alloy material is 1 to 40%, and the mass fraction of polypropylene-polybutene block copolymer is 0.1 ⁇ 10%, the mass fraction of medium molecular weight isotactic polybutene with a weight average molecular weight of 200,000 to 1,000,000 is 35 to 95.9%, and the mass fraction of high molecular weight isotactic polybutene with a weight average molecular weight of 1,100,000 to 2,000,000 It is 3 ⁇ 15%. It is a new type of polyolefin material.
  • the present invention prepares polybutene alloy through a multi-stage polymerization method: using one stage of propylene polymerization, one stage of butene polymerization with high hydrogen dosage and one stage of butene polymerization with low hydrogen dosage, to obtain isotactic polypropylene, polypropylene- Polybutene alloy material composed of polybutene block copolymer, medium molecular weight isotactic polybutene and high molecular weight isotactic polybutene.
  • the polybutene alloy material of the present invention obtains a polybutene alloy containing high molecular weight isotactic polybutene by controlling the butene polymerization in two stages under different hydrogen consumption conditions.
  • the presence of high molecular weight isotactic polybutene provides Polybutylene alloy material provides excellent high temperature blast resistance and high temperature hydrostatic pressure.
  • Vicat softening temperature tested according to GB/T 1633-2000, load 10N, heating rate 50°C/h;
  • Pipe hydrostatic pressure test According to the GB/T19473.2-2004 hydrostatic performance test of pipes, cut 250mm extruded pipes (3 sections), and adjust the processed pipes in the experimental environment for about 1 hour. The experimental conditions are as shown in Table 1.
  • the 10L stainless steel pressure polymerization kettle was vacuumed and replaced several times with high-purity nitrogen, and then replaced twice with propylene monomer. Then, triethylaluminum (Al) and the external electron donor diphenyl were added to the polymerization kettle in sequence.
  • Two-stage butene polymerization Add 1.0Kg of butene into the polymerization kettle, react at 40°C for 2 hours, and then directly obtain powdery polybutene alloy material after drying is terminated. The alloy properties are shown in Table 2.
  • Example 2 The process was the same as in Example 1 except that during propylene polymerization, the input amount of propylene was 5 L, 1.5 L of hydrogen was added, 3.6 g of hydrogen was introduced in the second-stage polymerization of butene, and the reaction was carried out at 40° C. for 1 hour.
  • the alloy properties are shown in Table 2.
  • the alloy properties are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种耐高温爆破的聚丁烯合金材料及其制备方法,所述聚丁烯合金材料中等规聚丙烯的质量份数为1~40%,聚丙烯-聚丁烯嵌段共聚物的质量份数为0.1~10%,中分子量的等规聚丁烯的质量份数为35~95.9%,高分子量的等规聚丁烯的质量份数为3~15%。采用丙烯聚合、高氢气用量丁烯聚合和低氢气用量丁烯聚合的分段聚合方法制备该合金材料。制得的聚丁烯合金材料具有优异的耐高温爆破性及高温静液压,维卡软化温度高,适用于压力管道。

Description

一种耐高温爆破的聚丁烯合金材料及其制备方法 技术领域
本发明属于新型聚烯烃材料技术领域,特别涉及一种耐高温爆破的聚丁烯合金材料及其制备方法。
背景技术
高等规聚丁烯(iPB)具有优异的抗冲击性能、突出的耐热蠕变和耐应力开裂性能,但其刚性略低,因此在保持聚丁烯优异性能的基础上,提高其刚性和耐热性,可拓展聚丁烯的应用领域。
中国发明专利ZL01142929.1发明了一种丁烯及丁烯与高级α-烯烃的共聚物和聚丙烯树脂通过熔融捏合的物理共混方式制备的聚丁烯树脂组合物,可用于冷热水管材及管件领域。中国发明专利ZL201010198121.3发明了一种新型的聚丁烯合金材料,该聚丁烯合金在不影响聚丁烯树脂高温抗蠕变性和柔性的前提下,尽量缩短成型周期,提高其强度及模量等。中国发明专利(CN102838807B)公开了一种耐冲击和低温韧性良好的聚丙烯复合材料及其制备方法,该复合材料的基体树脂为质量含量30%~80%的聚丙烯和质量含量10%~40%的低密度低熔指聚烯烃弹性体,具有良好的加工性能、尺寸稳定性和低温性能。中国发明专利CN202010222942.X提供了一种高刚性及高耐热性聚丁烯合金材料的制备方法。以上专利均为采用物理共混或填充共混改性的方法来提高聚丁烯材料的性能。但是物理共混的手段通常难以达到更小尺度甚至分子级别的混合,此外还存在相界面粘合力差的问题。
釜内原位制备聚丙烯合金,不仅可以有效改善合金组分的分散问题,同时少量共聚物的原位合成还可明显改善合金的相界面。青岛科技大学(CN104628913A)公开了一种通过丁烯与丙烯溶解在芳香族有机溶剂中进行分段溶液聚合的方法制备聚丁烯合金,合金中的多组分结构在有机溶剂的作用下可达到分子级别的均匀混合,使得制备的合金材料具有较高的冲击强度和韧性。中国专利(ZL201010198121.3)公布了一种聚丁烯合金材料及其制备方法,合金含有质量含量50%~99%的全同聚丁烯、质量含量1%~40%的全同聚丙烯和质量含量0~10%的丙烯-丁烯无规共聚物。但均未涉及耐热和耐爆破性能的聚丁烯材料的合成。
发明内容
针对以上提及的现有技术方案中存在的问题,本发明的目的之一是提供一种耐高温爆破的聚丁烯合金材料。
本发明的目的之二是提供一种耐高温爆破的聚丁烯合金材料的制备方法。
本发明通过采用非均相负载型的钛催化剂,分步法制备等规聚丁烯合金:先丙烯淤浆或 本体聚合制备等规聚丙烯;然后在聚丙烯颗粒上继续进行丁烯聚合,通过调节氢气用量得到中分子量的等规聚丁烯;最后继续进行丁烯聚合,通过减小氢气用量得到分子量大于100万的高分子量的等规聚丁烯,从而原位合成了聚丁烯合金。或者采用丁烯先聚合,得到中分子量的等规聚丁烯;然后减少氢气用量,继续进行丁烯聚合得到分子量大于100万的高分子量的等规聚丁烯;最后进行丙烯本体聚合,得到等规聚丙烯。
本发明的耐高温爆破的聚丁烯合金材料中,包括质量份数为1~40%的等规聚丙烯,质量份数为0.1~10%的聚丙烯-聚丁烯嵌段共聚物,质量份数为35~95.9%的中分子量的等规聚丁烯,质量份数为3~15%的高分子量的等规聚丁烯。
本发明的聚丁烯合金材料中,中分子量的等规聚丁烯的重均分子量为20~100万,高分子量的等规聚丁烯的重均分子量为110~200万。
本发明的聚丁烯合金材料中,等规聚丙烯的重均分子量为20~80万,等规度大于95%;所述的等规聚丁烯的等规度大于95%;所述的聚丙烯-聚丁烯嵌段共聚物的等规度大于95%,嵌段共聚物中丙烯单元的摩尔含量为40-70%。
本发明提供了一种耐高温爆破的聚丁烯合金材料的制备方法一,包括以下步骤:
(1)聚合反应器抽排并用高纯氮气置换数次后,通过质量流量计向聚合反应器依次加入丙烯和/或5~10个碳原子的惰性溶剂、烷基铝、外给电子体、负载钛催化剂,氢气;其中所述丙烯与惰性溶剂的质量比为1:0~100,丙烯与负载钛催化剂中钛元素的摩尔比为0.001×108~1×108:1,烷基铝中铝元素与负载钛催化剂中钛元素的摩尔比为10~200:1,外给电子体与钛元素的摩尔比为5~25:1,氢气与丙烯摩尔比为1:50~600,控制聚合温度为0℃~80℃,搅拌转速5~500转/分钟,聚合时间为0.01~3小时,进行丙烯聚合;
(2)当上述反应体系的聚合时间达到0.01~3小时中的任意一时间点后,减压除去剩余丙烯单体、氢气、或/和惰性溶剂,得到活性聚丙烯颗粒;
(3)向含有活性聚丙烯颗粒的聚合反应器中依次加入丁烯、烷基铝、氢气,其中丁烯与负载钛催化剂中钛元素的摩尔比为0.001×107~1×107:1,铝元素与负载钛催化剂中钛元素的摩尔比为10~200:1,氢气与丁烯的摩尔比为1:700~1300,聚合时间为0.1~2小时,聚合温度为0℃~60℃;
(4)当上述反应体系的聚合时间达到0.1~2小时中的任意一时间点后,向聚合反应器加入氢气,氢气与丁烯的摩尔比为1:100~600,聚合时间为0.1~46小时,聚合温度为0℃~60℃;
(5)当上述反应体系的聚合时间达到0.1~46小时中的任意一时间点后,减压除去未反应的丁烯单体和氢气,得到聚丁烯合金材料。
本发明提供了一种耐高温爆破的聚丁烯合金材料的制备方法二,包括以下步骤:
(1)聚合反应器抽排并用高纯氮气置换数次后,通过质量流量计向聚合反应器依次加入丁烯、烷基铝、外给电子体、负载钛催化剂、氢气,其中丁烯与负载钛催化剂中钛元素的摩尔比为0.001×108~1×108:1,铝元素与负载钛催化剂中钛元素的摩尔比为10~500:1,外给电子体与钛元素的摩尔比为5~25:1,氢气与丁烯摩尔比为1:100~600,控制聚合温度为0℃~40℃,搅拌转速5~500转/分钟,聚合时间为0.1~46小时;
(2)当上述反应体系的聚合时间达到0.1~46小时中的任意一时间点后,向聚合反应器加入丁烯单体,调控氢气与丁烯的摩尔比为1:700~1300,聚合时间为0.1~2小时,聚合温度为0℃~60℃;
(3)当上述反应体系的聚合时间达到0.1~2小时中的任意一时间点后,减压除去未反应的丁烯和氢气,得到活性聚丁烯颗粒;
(4)向聚合反应器依次加入丙烯、烷基铝、氢气,其中丙烯与负载钛催化剂中钛元素的摩尔比为0.001×108~1×108:1,烷基铝中铝元素与负载钛催化剂中钛元素的摩尔比为0~100:1,氢气与丙烯摩尔比为1:50~600,控制聚合温度为0℃~80℃,搅拌转速5~500转/分钟,聚合时间为0.01~3小时;
(5)当上述反应体系的聚合时间达到0.01~3小时中的任意一时间点后,减压除去未反应的单体和氢气,得到聚丁烯合金材料。
聚丁烯合金的制备方法中,烷基铝为三乙基铝与三异丁基铝、氢化二乙基铝、氢化二异丁基铝、二甲基一氯化铝、二乙基一氯化铝、二异丁基一氯化铝中的一种的混合物,混合物中三乙基铝的质量含量为80~100%;惰性溶剂与丙烯的体积比为0~100:1。
惰性溶剂,选自戊烷、异戊烷、己烷、环己烷、甲基环己烷、正庚烷、正辛烷、苯、甲苯、对二甲苯、间二甲苯、异丙苯、加氢汽油和抽余油中的一种或多种。
聚丁烯合金的制备方法中,负载钛催化剂中,钛元素占负载催化剂总质量的1%~5%,内给电子体占负载催化剂总质量的0.5%~20%;所述的负载采用的载体为二氯化镁、二溴化镁、二碘化镁或二氧化硅中的一种;所述的外给电子体为环己基三甲氧基硅烷、叔丁基三甲氧基硅烷、叔己基三甲氧基硅烷、二异丙基二甲氧基硅烷、甲基环己基二甲氧基硅烷、二苯基二甲氧基硅烷、甲基叔丁基二甲氧基硅烷、二环戊基二甲氧基硅烷、2-乙基哌啶基-2-叔丁基二甲氧基硅烷、1,1,1-三氟丙基-2-乙基哌啶基-二甲氧基硅烷、乙基三甲氧基硅烷、丙基三甲氧基硅烷、苯基三甲氧基硅烷、二环己基二甲氧基硅烷中的一种或多种。
聚丁烯合金的制备方法中,钛为含钛元素的四氯化钛、四溴化钛或四碘化钛中的一种;所述的内给电子体为苯甲酸、对甲氧基苯甲酸、对乙氧基苯甲酸、苯乙酸、邻苯二甲酸二异 丁基酯、邻苯二甲酸二丁基酯、苯醌、苯甲酸甲酯、苯甲酸乙酯、9,9-双(甲氧基甲基)芴中的一种或多种。
聚丁烯合金的制备方法中,聚合反应器带有气相回流装置,用于上层气体的冷却、返回聚合反应器液相体系中;聚合反应器的搅拌轴和桨叶带有氢气加入管道和通气口,用于将聚合反应器上部的气相通过管道和通气口分散于液相,维持整个聚合体系的氢气浓度均与分布。
本发明的聚丁烯合金材料,高分子量的等规聚丁烯用于提高聚丁烯合金材料的耐高温爆破性及高温静液压。聚丁烯合金材料采用A50方法测试的维卡软化温度为115~120℃,由其制备的聚丁烯合金管在20℃和95℃下测试的爆破压力均高于聚丁烯管。产品纵向收缩率0.2%~0.4%,优于聚丁烯管。蠕变测试结果表明,蠕变时间4h,环境温度95℃,测试应力8MPa,聚丁烯合金的蠕变量仅为聚丁烯管的62%~65%。
本发明的有益效果为:
本发明涉及一种耐高温爆破的聚丁烯合金材料,聚丁烯合金材料中等规聚丙烯的质量份数为1~40%,聚丙烯-聚丁烯嵌段共聚物的质量份数为0.1~10%,重均分子量20~100万的中分子量的等规聚丁烯的质量份数为35~95.9%,重均分子量110~200万的高分子量的等规聚丁烯的质量份数为3~15%。是一种新型的聚烯烃材料。
本发明的耐高温爆破的聚丁烯合金材料具有如下特点:
1.本发明通过多段聚合的方法制备聚丁烯合金:采用一段的丙烯聚合反应,一段高氢气用量下丁烯聚合和一段低氢气用量下丁烯聚合,得到含有等规聚丙烯、聚丙烯-聚丁烯嵌段共聚物、中分子量的等规聚丁烯和高分子量的等规聚丁烯组成的聚丁烯合金材料。
2.本发明的聚丁烯合金材料,通过控制两段不同氢气用量条件下的丁烯聚合,得到含有高分子量等规聚丁烯的聚丁烯合金,高分子量等规聚丁烯的存在给聚丁烯合金材料提供了优异的耐高温爆破性及高温静液压。
3.本发明在聚合过程中,通过采用氢气分布装置,实现聚合体系能氢气的均匀分布,进一步得到分子量分布均匀的聚丁烯合金材料。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
除非特别说明,本发明采用的方法和设备为本领域的常规方法和设备。
实施例中涉及的相关测试条件如下:
等规度:采用乙醚抽提48小时后不溶物所占的重量百分数表示;
维卡软化温度:依据GB/T 1633-2000测试,负荷10N,升温速度50℃/h;
管材纵向收缩率:管材纵向回收率测试:根据GB/T6671-2001,取三个200mm试样,在距离管材两端至少10mm处画两条相距100mm的圆周线,将烘箱温度调至110℃,将试样放入烘箱(样品不触及烘箱底部和壁),保持60min,取出试样,冷却至23℃,测量标线间距离L,计算样品纵向回收率R=∣L0-L∣/L0,计算三个试样R的算数平均值,作为管材纵向回收率。
管材爆破试验:根据GB/T-15560,选取300mm管材测试挤出管材液压瞬时爆破性能,测试温度分别为20℃和95℃,平行试验各3根。
管材静液压实验:按照GB/T19473.2-2004测试管材静液压性能测试,裁取250mm挤出管材(3段),将处理好的管材在实验环境中调节1h左右,实验条件如表1。
表1管材静液压试验条件
为快速筛选及加强不同材料间对比,静液压测试采用实验室自行设计的静液压加强测试实验:若15.5MPa常温静液压,维持2h后,没有破裂、渗透,增加0.5MPa环应力,2h后若没有渗透、破裂现象,重复上述步骤;95℃6.5MPa静液压,维持22h后若没有破裂、渗透,增加增加0.5MPa环应力,2h后若没有渗透、破裂现象,重复上述步骤。
耐热蠕变实验:通过DMA测试管材的耐热蠕变性能,蠕变时间4h,环境温度95℃,测试应力8MPa。
管材加工参数:采用实验室小型单螺杆挤出机进行管材挤出,制备符合GB/T 19473.2要求的S10PB管材,管材外径20.4±0.1,管材壁厚1.30±0.10。
实施例1
10L不锈钢压力聚合釜,真空抽排并用高纯氮气置换数次后,再采用丙烯单体置换两次,然后向聚合釜中依次计量加入三乙基铝(Al)、外给电子体二苯基二甲氧基硅烷(Si)和MgCl2负载TiCl4催化剂(Ti含量2.8wt%)2.0g,其中Al/Ti=10(摩尔比),Si/Ti=25(摩尔比),加入氢气1L,通过釜底气相加料器连续向聚合釜内通入丙烯10L,控制搅拌转速500转/分钟,40℃聚合2h,随后降温并排空丙烯和氢气。丁烯一段聚合:向聚合釜中加入丁烯2.0Kg,加 入氢气36g,补加三乙基铝使Al/Ti=100(摩尔比),40℃反应,48h,随后降温并排空丁烯和氢气。丁烯二段聚合:向聚合釜中加入丁烯1.0Kg,40℃反应2h,终止干燥后直接得到粉状聚丁烯合金材料。合金特性见表2。
实施例2
除了丙烯聚合时,丙烯通入量为5L,加入氢气1.5L,丁烯二段聚合通入氢气3.6g,40℃反应1h外,其他同实施例1。合金特性见表2。
实施例3
20L不锈钢压力聚合釜,真空抽排并用高纯氮气置换数次后,再采用丁烯单体置换两次,然后向聚合釜中依次计量加入丁烯7.5Kg、三乙基铝(Al)、叔己基三甲氧基硅烷(Si)和SiO2负载TiCl4催化剂(Ti含量3.2wt%)0.2g,其中Al/Ti=150(摩尔比),Si/Ti=5(摩尔比),加入氢气5g,控制搅拌转速400转/分钟,15℃聚合1h,随后加入氢气30g,继续聚合40h,降温并排空丁烯和氢气。向聚合釜中加入丙烯5L,加入氢气4g,80℃反应0.5h,随后降温并排空丙烯和氢气。终止干燥后直接得到粉状聚丁烯合金材料。合金特性见表2。
实施例4
10L不锈钢压力聚合釜,真空抽排并用高纯氮气置换数次后,再采用丙烯单体置换两次,然后向聚合釜中依次计量加入三乙基铝(Al)、外给电子体二苯基二甲氧基硅烷(Si)和MgCl2负载TiCl4催化剂(Ti含量2.8wt%)2.0g,其中Al/Ti=10(摩尔比),Si/Ti=25(摩尔比),加入氢气1L,通过釜底气相加料器连续向聚合釜内通入丙烯10L,控制搅拌转速500转/分钟,40℃聚合2h,随后降温并排空丙烯和氢气。丁烯一段聚合:向聚合釜中加入丁烯2.0Kg,加入氢气36g,补加三乙基铝使Al/Ti=100(摩尔比),40℃反应,48h,随后降温并排空丁烯和氢气。终止干燥后直接得到粉状聚丁烯合金材料。合金特性见表2。
对比例1
20L不锈钢压力聚合釜,真空抽排并用高纯氮气置换数次后,再采用丁烯单体置换两次,然后向聚合釜中依次计量加入丁烯7.5Kg、三乙基铝(Al)、叔己基三甲氧基硅烷(Si)和MgCl2负载TiCl4催化剂(Ti含量3.2wt%)0.2g,其中Al/Ti=150(摩尔比),Si/Ti=5(摩尔比),加入氢气35g,控制搅拌转速400转/分钟,15~40℃聚合48h,随后降温并排空丁烯和氢气。终止干燥后直接得到粉状均聚合聚丁烯材料。合金特性见表2。
表2各实施例得到聚合物特性

Claims (10)

  1. 一种耐高温爆破的聚丁烯合金材料,其特征在于,所述聚丁烯合金材料包括质量份数为1~40%的等规聚丙烯,质量份数为0.1~10%的聚丙烯-聚丁烯嵌段共聚物,质量份数为35~95.9%的中分子量的等规聚丁烯,质量份数为3~15%的高分子量的等规聚丁烯。
  2. 根据权利要求1所述的聚丁烯合金材料,其特征在于,所述的中分子量的等规聚丁烯的重均分子量为20~100万,高分子量的等规聚丁烯的重均分子量为110~200万。
  3. 根据权利要求1所述的聚丁烯合金材料,其特征在于,所述的等规聚丙烯的重均分子量为20~80万,等规度大于95%;所述的等规聚丁烯的等规度大于95%;所述的聚丙烯-聚丁烯嵌段共聚物的等规度大于95%,嵌段共聚物中丙烯单元的摩尔含量为40-70%。
  4. 一种耐高温爆破的聚丁烯合金材料的制备方法,其特征在于,包括以下步骤:
    方法一
    (1)聚合反应器抽排并用高纯氮气置换数次后,通过质量流量计向聚合反应器依次加入丙烯和/或5~10个碳原子的惰性溶剂、烷基铝、外给电子体、负载钛催化剂,氢气;其中所述丙烯与惰性溶剂的质量比为1:0~100,丙烯与负载钛催化剂中钛元素的摩尔比为0.001×108~1×108:1,烷基铝中铝元素与负载钛催化剂中钛元素的摩尔比为10~200:1,外给电子体与钛元素的摩尔比为5~25:1,氢气与丙烯摩尔比为1:50~600,控制聚合温度为0℃~80℃,搅拌转速5~500转/分钟,聚合时间为0.01~3小时,进行丙烯聚合;
    (2)当上述反应体系的聚合时间达到0.01~3小时中的任意一时间点后,减压除去剩余丙烯单体、氢气、或/和惰性溶剂,得到活性聚丙烯颗粒;
    (3)向含有活性聚丙烯颗粒的聚合反应器中依次加入丁烯、烷基铝、氢气,其中丁烯与负载钛催化剂中钛元素的摩尔比为0.001×107~1×107:1,铝元素与负载钛催化剂中钛元素的摩尔比为10~200:1,氢气与丁烯的摩尔比为1:700~1300,聚合时间为0.1~2小时,聚合温度为0℃~60℃;
    (4)当上述反应体系的聚合时间达到0.1~2小时中的任意一时间点后,向聚合反应器加入氢气,氢气与丁烯的摩尔比为1:100~600,聚合时间为0.1~46小时,聚合温度为0℃~60℃;
    (5)当上述反应体系的聚合时间达到0.1~46小时中的任意一时间点后,减压除去未反应的丁烯单体和氢气,得到聚丁烯合金材料;
    或方法二
    (1)聚合反应器抽排并用高纯氮气置换数次后,通过质量流量计向聚合反应器依次加入丁烯、烷基铝、外给电子体、负载钛催化剂、氢气,其中丁烯与负载钛催化剂中钛元素的摩尔比为0.001×108~1×108:1,铝元素与负载钛催化剂中钛元素的摩尔比为10~500:1,外给电子体与钛元素的摩尔比为5~25:1,氢气与丁烯摩尔比为1:100~600,控制聚合温度为0℃~40 ℃,搅拌转速5~500转/分钟,聚合时间为0.1~46小时;
    (2)当上述反应体系的聚合时间达到0.1~46小时中的任意一时间点后,向聚合反应器加入丁烯单体,调控氢气与丁烯的摩尔比为1:700~1300,聚合时间为0.1~2小时,聚合温度为0℃~60℃;
    (3)当上述反应体系的聚合时间达到0.1~2小时中的任意一时间点后,减压除去未反应的丁烯和氢气,得到活性聚丁烯颗粒;
    (4)向聚合反应器依次加入丙烯、烷基铝、氢气,其中丙烯与负载钛催化剂中钛元素的摩尔比为0.001×108~1×108:1,烷基铝中铝元素与负载钛催化剂中钛元素的摩尔比为0~100:1,氢气与丙烯摩尔比为1:50~600,控制聚合温度为0℃~80℃,搅拌转速5~500转/分钟,聚合时间为0.01~3小时;
    (5)当上述反应体系的聚合时间达到0.01~3小时中的任意一时间点后,减压除去未反应的单体和氢气,得到聚丁烯合金材料。
  5. 根据权利要求4所述的制备方法,其特征在于,所述的烷基铝为三乙基铝与三异丁基铝、氢化二乙基铝、氢化二异丁基铝、二甲基一氯化铝、二乙基一氯化铝、二异丁基一氯化铝中的一种的混合物,混合物中三乙基铝的质量含量为80~100%。
  6. 根据权利要求4所述的制备方法,其特征在于,所述的负载钛催化剂中,钛元素占负载催化剂总质量的1%~5%,内给电子体占负载催化剂总质量的0.5%~20%;所述的负载采用的载体为二氯化镁、二溴化镁、二碘化镁或二氧化硅中的一种;所述的外给电子体为环己基三甲氧基硅烷、叔丁基三甲氧基硅烷、叔己基三甲氧基硅烷、二异丙基二甲氧基硅烷、甲基环己基二甲氧基硅烷、二苯基二甲氧基硅烷、甲基叔丁基二甲氧基硅烷、二环戊基二甲氧基硅烷、2-乙基哌啶基-2-叔丁基二甲氧基硅烷、1,1,1-三氟丙基-2-乙基哌啶基-二甲氧基硅烷、乙基三甲氧基硅烷、丙基三甲氧基硅烷、苯基三甲氧基硅烷、二环己基二甲氧基硅烷中的一种或多种。
  7. 根据权利要求6所述的制备方法,其特征在于,所述的钛为含钛元素的四氯化钛、四溴化钛或四碘化钛中的一种;所述的内给电子体为苯甲酸、对甲氧基苯甲酸、对乙氧基苯甲酸、苯乙酸、邻苯二甲酸二异丁基酯、邻苯二甲酸二丁基酯、苯醌、苯甲酸甲酯、苯甲酸乙酯、9,9-双(甲氧基甲基)芴中的一种或多种。
  8. 根据权利要求4所述的制备方法,其特征是,所述的聚合反应器带有气相回流装置,用于上层气体的冷却、返回聚合反应器液相体系中;所述的聚合反应器的搅拌轴和桨叶带有氢气加入管道和通气口,用于将聚合反应器上部的气相通过管道和通气口分散于液相,维持整个聚合体系的氢气浓度均与分布。
  9. 根据权利要求1和2任一所述的聚丁烯合金材料,其特征是,所述的高分子量的等规聚丁烯用于提高聚丁烯合金材料的耐高温爆破性及高温静液压。
  10. 根据权利要求1和2任一所述的聚丁烯合金材料的应用,其特征是,所述的聚丁烯合金材料采用A50方法测试的维卡软化温度为115~120℃,由其制备的聚丁烯合金管95℃爆破压力、蠕变性能及耐静液压性能均优于聚丁烯管。
PCT/CN2023/097015 2022-06-10 2023-05-30 一种耐高温爆破的聚丁烯合金材料及其制备方法 WO2023236808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210655842.5 2022-06-10
CN202210655842.5A CN115260664B (zh) 2022-06-10 2022-06-10 一种耐高温爆破的聚丁烯合金材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023236808A1 true WO2023236808A1 (zh) 2023-12-14

Family

ID=83759806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097015 WO2023236808A1 (zh) 2022-06-10 2023-05-30 一种耐高温爆破的聚丁烯合金材料及其制备方法

Country Status (2)

Country Link
CN (1) CN115260664B (zh)
WO (1) WO2023236808A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260664B (zh) * 2022-06-10 2023-11-03 青岛科技大学 一种耐高温爆破的聚丁烯合金材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1318553A (en) * 1969-06-13 1973-05-31 Shell Int Research Alpha olefin block copolymers and their preparation
CN103951898A (zh) * 2014-04-12 2014-07-30 青岛科技大学 聚1-丁烯/1-丁烯-丙烯共聚物釜内合金及其制备方法
CN104193870A (zh) * 2014-08-26 2014-12-10 河北工业大学 一种高等规度聚丁烯-1粉料制备方法
CN104761834A (zh) * 2015-03-30 2015-07-08 青岛科技大学 一种高等规聚烯烃合金材料及其制备方法
CN106893020A (zh) * 2015-12-17 2017-06-27 中国石油天然气股份有限公司 一种球形聚丁烯-1的制备方法
US20210147663A1 (en) * 2017-06-30 2021-05-20 Mitsui Chemicals, Inc. Propylene-based polymer, method for producing the same, propylene-based resin composition and molded article
CN115260664A (zh) * 2022-06-10 2022-11-01 青岛科技大学 一种耐高温爆破的聚丁烯合金材料及其制备方法
US20220380585A1 (en) * 2019-08-08 2022-12-01 Prime Polymer Co., Ltd. Propylene polymer composition and shaped article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104628914B (zh) * 2015-02-15 2017-06-20 青岛科技大学 一种高等规聚丁烯合金的工业生产方法及装置
CN104628912B (zh) * 2015-02-15 2017-06-20 青岛科技大学 一种聚丁烯合金材料的制备方法
CN104761814B (zh) * 2015-03-30 2017-04-12 青岛科技大学 一种聚烯烃合金的制备方法
CN106867120B (zh) * 2017-03-03 2019-08-27 青岛科技大学 一种高等规聚丁烯合金材料的制备方法
CN108707289B (zh) * 2018-04-02 2022-03-29 青岛科技大学 一种聚烯烃合金材料及其制备方法
CN111234075A (zh) * 2020-03-26 2020-06-05 青岛科技大学 一种用于合成聚丁烯釜内合金的催化剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1318553A (en) * 1969-06-13 1973-05-31 Shell Int Research Alpha olefin block copolymers and their preparation
CN103951898A (zh) * 2014-04-12 2014-07-30 青岛科技大学 聚1-丁烯/1-丁烯-丙烯共聚物釜内合金及其制备方法
CN104193870A (zh) * 2014-08-26 2014-12-10 河北工业大学 一种高等规度聚丁烯-1粉料制备方法
CN104761834A (zh) * 2015-03-30 2015-07-08 青岛科技大学 一种高等规聚烯烃合金材料及其制备方法
CN106893020A (zh) * 2015-12-17 2017-06-27 中国石油天然气股份有限公司 一种球形聚丁烯-1的制备方法
US20210147663A1 (en) * 2017-06-30 2021-05-20 Mitsui Chemicals, Inc. Propylene-based polymer, method for producing the same, propylene-based resin composition and molded article
US20220380585A1 (en) * 2019-08-08 2022-12-01 Prime Polymer Co., Ltd. Propylene polymer composition and shaped article
CN115260664A (zh) * 2022-06-10 2022-11-01 青岛科技大学 一种耐高温爆破的聚丁烯合金材料及其制备方法

Also Published As

Publication number Publication date
CN115260664B (zh) 2023-11-03
CN115260664A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
RU2668075C2 (ru) Гетерофазный сополимер
CN109415544B (zh) 聚合物组合物以及用于生产该聚合物组合物的方法
CN102268160B (zh) 一种聚丁烯合金材料及其制备方法
JP5568446B2 (ja) プロピレン重合反応装置及びプロピレン系ブロック共重合体の製造方法
CN103571044B (zh) 一种高抗冲聚丙烯釜内合金的制备方法
NO176442B (no) Polypropylenmateriale og fremgangsmåte for fremstilling av dette
WO2023236808A1 (zh) 一种耐高温爆破的聚丁烯合金材料及其制备方法
JPS5950246B2 (ja) 成形用オレフイン共重合体の製法
Niu et al. Synthesis of spherical trans-1, 4-polyisoprene/trans-1, 4-poly (butadiene-co-isoprene) rubber alloys within reactor
CN104628914A (zh) 一种高等规聚丁烯合金的工业生产方法及装置
CN108192005B (zh) 一种聚烯烃及其制备方法
CN109415448B (zh) 聚合物组合物以及制备聚合物组合物的方法
KR101742714B1 (ko) 프로필렌 중합체의 제조 방법
CN112912409A (zh) 具有改善的均质性的用于耐高压管道的聚乙烯组合物
CN103571045B (zh) 抗冲聚丙烯釜内合金的制备方法
CN104610669A (zh) 一种聚烯烃合金材料及其制备方法
CN107075018B (zh) 用于聚合超高分子量聚乙烯的方法
WO2001081433A1 (fr) Catalyseur pour polymerisation en masse ou pour polymerisation en phase vapeur, procede de polymerisation reposant sur l'utilisation de ce catalyseur et polymere olefinique obtenu a l'aide dudit catalyseur
JPH11199719A (ja) ポリエチレン製パイプ
CN107540949B (zh) 一种高等规聚丙烯合金及其制备方法
JP2007204613A (ja) α−オレフィン重合用触媒およびα−オレフィン重合体の製造法
CN105566531A (zh) 一种高立构规整度聚丙烯的制备方法
CN114507309B (zh) 用于二次电池隔膜的聚乙烯树脂、制造其的方法以及应用其的隔膜
CN109517098B (zh) 一种离线预聚合催化剂及丙烯均聚合和共聚合的方法
JP5577219B2 (ja) プロピレン重合反応装置及びプロピレン系重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818973

Country of ref document: EP

Kind code of ref document: A1