WO2023224150A1 - 황화리튬 제조 방법 - Google Patents

황화리튬 제조 방법 Download PDF

Info

Publication number
WO2023224150A1
WO2023224150A1 PCT/KR2022/007261 KR2022007261W WO2023224150A1 WO 2023224150 A1 WO2023224150 A1 WO 2023224150A1 KR 2022007261 W KR2022007261 W KR 2022007261W WO 2023224150 A1 WO2023224150 A1 WO 2023224150A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium sulfide
powder
sulfide
sulfate
Prior art date
Application number
PCT/KR2022/007261
Other languages
English (en)
French (fr)
Inventor
신동숙
Original Assignee
주식회사 솔리드아이오닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 솔리드아이오닉스 filed Critical 주식회사 솔리드아이오닉스
Priority to PCT/KR2022/007261 priority Critical patent/WO2023224150A1/ko
Publication of WO2023224150A1 publication Critical patent/WO2023224150A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • C01B17/38Dehydration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing lithium sulfide (Li 2 S).
  • All-solid lithium secondary batteries are a type in which the organic liquid electrolyte and separator of currently commercialized lithium secondary batteries are replaced with solid electrolytes.
  • Solid electrolytes have non-flammable or flame-retardant properties, so they are safer than liquid electrolytes.
  • Solid electrolytes are divided into oxide-based and sulfide-based. Sulfide-based solid electrolytes are mainly used as solid electrolytes because they have higher lithium ion conductivity and stability over a wide voltage range compared to oxide-based solid electrolytes.
  • lithium sulfide does not exist as a natural mineral, it is obtained by synthesis from other lithium compounds.
  • lithium sulfide can be produced through a synthesis process using lithium hydroxide or lithium carbonate as a lithium source.
  • the method for producing lithium sulfide can produce lithium sulfide by reacting a solid lithium source (for example, lithium hydroxide or lithium carbonate) with a gaseous sulfur source (S or CS 2(g)) .
  • a solid lithium source for example, lithium hydroxide or lithium carbonate
  • S or CS 2(g) gaseous sulfur source
  • lithium hydroxide and lithium carbonate used as lithium sources are expensive, which may increase the manufacturing cost of lithium sulfide.
  • the purpose of the present invention is to provide a method for producing lithium sulfide that can increase the purity of lithium sulfide powder while reducing the production cost of lithium sulfide.
  • the purpose of the present invention is to provide a method for producing lithium sulfide that can increase the reactivity of the lithium sulfide powder by reducing the size of the lithium sulfide powder being produced.
  • the method for producing lithium sulfide of the present invention is characterized by comprising a lithium sulfide synthesis step of synthesizing lithium sulfide powder by reacting lithium sulfate powder with a reaction gas containing carbon monoxide.
  • the method for producing lithium sulfide of the present invention may further include a lithium sulfate grinding step of pulverizing the lithium sulfate powder to a predetermined size before the lithium sulfide synthesis step. Additionally, in the lithium sulfate pulverizing step, the lithium sulfate powder may be pulverized into powder having a size of 0.01 to 10.0 ⁇ m.
  • the lithium sulfide production step of the present invention may further include a lithium sulfate preheating step of heating the lithium sulfate powder to remove moisture remaining in the lithium sulfate powder after the lithium sulfate pulverization step.
  • the lithium sulfate preheating step may be performed by heating the lithium sulfate hydrate to 100 to 400°C.
  • the method for producing lithium sulfide of the present invention may further include a lithium sulfide powder heat treatment step of increasing crystallinity of the lithium sulfide powder by heat treating the synthesized lithium sulfide powder after the lithium sulfide synthesis step.
  • the lithium sulfide powder heat treatment step may be performed at a heat treatment temperature higher than the synthesis temperature of the lithium sulfide synthesis step.
  • the synthesis temperature of the lithium sulfide synthesis step may be 650 to 840°C
  • the heat treatment temperature of the lithium sulfide powder heat treatment step may be 850 to 930°C.
  • the reaction gas may further include hydrogen and a transport gas.
  • the reaction gas contains 10 to 50 vol% of carbon monoxide based on the total volume of the reaction gas, and 50 to 90 vol% of hydrogen and transport gas, and the transport gas and hydrogen have a volume ratio of 90:10. Can be included in ratios of ⁇ 99:1.
  • the reaction gas may contain 10 to 50 vol% of carbon monoxide, 0.5 to 10 vol% of hydrogen, and 45 to 90 vol% of the transfer gas based on the total volume of the reaction gas.
  • reaction gas further contains hydrogen, and may contain 90 to 99.5 vol% of carbon monoxide and 0.5 to 10 vol% of hydrogen based on the total volume of the reaction gas.
  • the lithium sulfide powder can be used as a solid electrolyte in an all-solid-state battery.
  • the method for producing lithium sulfide of the present invention has the effect of reducing production costs by using lithium sulfate or lithium sulfate hydrate as the lithium source.
  • the method for producing lithium sulfide of the present invention does not use carbon, there is no carbon remaining in the produced lithium sulfide powder, which has the effect of increasing the purity of the lithium sulfide powder.
  • the lithium sulfide production method of the present invention uses lithium sulfate that can be pulverized into a relatively small size compared to other lithium sources, so the size of the lithium sulfide powder produced is smaller.
  • the method for producing lithium sulfide of the present invention uses lithium sulfate pulverized into small sizes, which increases the surface area and increases reactivity with gas, thereby increasing the crystallinity of the lithium sulfide powder.
  • the method for producing lithium sulfide of the present invention has the effect of increasing the reactivity of lithium sulfate powder and other powders during the solid electrolyte synthesis process because lithium sulfide powder is manufactured as a fine powder.
  • FIG. 1 is a process diagram of a method for producing lithium sulfide according to an embodiment of the present invention.
  • Figure 2 is an SEM photograph of lithium sulfate powder used in a specific example of the present invention before grinding.
  • Figure 3 is an SEM photograph of lithium sulfate powder used in a specific example of the present invention after grinding.
  • Figure 4 is an XRD graph of lithium sulfide powder synthesized according to a specific example of the present invention.
  • Figure 5 is an XRD graph of commercial lithium sulfide powder.
  • Figure 6 is a graph showing the charge/discharge performance of a half-cell made using the synthesized lithium sulfide powder of Figure 4 and commercial lithium sulfide powder.
  • FIG. 1 is a process diagram of a method for producing lithium sulfide according to an embodiment of the present invention.
  • the method for producing lithium sulfide includes a lithium sulfate pulverization step (S10) and a lithium sulfide synthesis step (S30).
  • the method for producing lithium sulfide may further include a lithium sulfate preheating step (S20) and a lithium sulfide powder heat treatment step (S40).
  • the method for producing lithium sulfide may use lithium sulfate or lithium sulfate hydrate as the lithium source. Additionally, the method for producing lithium sulfide may use a gas containing carbon monoxide (CO) as a reaction gas. Additionally, the reaction gas may further contain hydrogen. Additionally, the reaction gas may further include hydrogen and a transport gas. The transport gas may include at least one selected from nitrogen (N 2 ) and argon (Ar).
  • the method for producing lithium sulfide can produce lithium sulfide through the reaction of lithium sulfate and carbon monoxide through a reaction according to the reaction formula of Equation 1) or Equation 2) below.
  • the lithium sulfide production method uses lithium sulfate or lithium sulfate hydrate as the lithium source, thereby reducing production costs. Additionally, since the method for producing lithium sulfide does not use carbon, no carbon remains in the produced lithium sulfide powder, which can increase the purity of the synthesized lithium sulfide powder. In addition, the lithium sulfide production method uses lithium sulfate that can be pulverized into a relatively small size compared to other lithium sources, so the size of the lithium sulfide powder produced can be reduced.
  • the method for producing lithium sulfide uses lithium sulfate pulverized into small sizes, which increases the surface area and increases reactivity with gas, thereby increasing the crystallinity of the lithium sulfide powder.
  • lithium sulfide is manufactured as a fine powder, so the reactivity of lithium sulfate powder and other powders may be increased during the solid electrolyte synthesis process.
  • the lithium sulfate grinding step (S10) is a step of grinding lithium sulfate powder to a predetermined size.
  • the lithium sulfate powder may be a relatively coarse powder of various sizes and used as a raw material.
  • the lithium sulfate powder may be used as the lithium sulfate powder with an average particle diameter of about 200 ⁇ m.
  • the lithium sulfide powder In order for the lithium sulfide powder to have certain characteristics, it is necessary to use a powder having a size within a certain range. Therefore, in the lithium sulfate grinding step (S10), lithium sulfate powder can be pulverized into powder having a predetermined size.
  • the lithium sulfate powder may preferably be ground into a powder having a diameter of 0.01 to 10.0 ⁇ m. Additionally, the lithium sulfate powder may be pulverized into powder with an average particle diameter of 0.1 to 1.0 ⁇ m.
  • the lithium sulfate grinding step (S10) may be performed using a grinding device such as a ball mill device.
  • the lithium sulfate preheating step (S20) is a step of preheating the lithium sulfate powder to remove moisture remaining in the lithium sulfate powder.
  • the lithium sulfate preheating step (S20) can be optionally performed when lithium sulfate hydrate is used as the lithium source.
  • the lithium sulfate hydrate powder may be Li 2 SO 4 ⁇ nH 2 O.
  • the lithium sulfate preheating step (S20) may be performed to remove moisture remaining in the lithium sulfate powder even when lithium sulfate powder is used as a lithium source.
  • the lithium sulfate preheating step (S20) may be performed by heating lithium sulfate hydrate powder or lithium sulfate powder at a preheating temperature of 100 to 400°C.
  • the lithium sulfate preheating step (S20) may be performed by a reaction as shown in Equation 3 below.
  • the lithium sulfide synthesis step (S30) is a step of synthesizing lithium sulfide powder by reacting lithium sulfate powder and a reaction gas.
  • the lithium sulfide powder can be synthesized by reacting lithium sulfate powder and a reaction gas through a reaction such as Equation 1) or Equation 2) above.
  • the lithium sulfide synthesis step (S30) may be performed using lithium sulfate powder at a synthesis temperature of 650 to 840°C and a synthesis time of 0.5 to 5 hours.
  • the synthesis temperature may be set at a temperature lower than the melting point of lithium sulfate.
  • the lithium sulfide synthesis step (S30) may be performed at a synthesis temperature lower than 845°C, the melting point of lithium sulfate.
  • the lithium sulfide synthesis step (S30) may be performed by heating lithium sulfate powder while supplying a reaction gas.
  • lithium sulfide can be synthesized while separating oxygen from lithium sulfate powder.
  • the reaction gas may include carbon monoxide (CO). Additionally, the reaction gas may include carbon monoxide (CO) and a transport gas. Additionally, the reaction gas may include carbon monoxide (CO) and hydrogen (H 2 ). Additionally, the reaction gas may include carbon monoxide (CO), hydrogen (H 2 ), and a transport gas.
  • the transport gas may include at least one selected from nitrogen (N 2 ) and argon (Ar). When the reaction gas is a mixed gas of carbon monoxide and transfer gas, carbon monoxide may be mixed at 10 to 50 vol% based on the total volume of the reaction gas, and the transfer gas may be mixed at 50 to 90 vol%.
  • the carbon monoxide may be preferably mixed at 25 to 40 vol% and the transfer gas may be mixed at 50 to 90 vol% based on the total volume of the reaction gas.
  • the reaction gas is a mixed gas of carbon monoxide and hydrogen
  • carbon monoxide may be mixed at 90 to 99.5 vol% and hydrogen may be mixed at 0.5 to 10 vol% based on the total volume of the reaction gas.
  • the reaction gas is a mixed gas of carbon monoxide, hydrogen, and transport gas
  • carbon monoxide may be mixed at 10 to 50 vol% based on the total volume of the reaction gas, and hydrogen and transport gas may be mixed at 50 to 90 vol%.
  • the hydrogen may be mixed with carbon monoxide while mixed with the transport gas.
  • the transport gas and hydrogen may be mixed in a volume ratio of 90:10 to 99:1. Additionally, the hydrogen may be mixed with carbon monoxide separately from the transport gas. At this time, the reaction gas may be mixed with 10 to 50 vol% of carbon monoxide, 0.5 to 10 vol% of hydrogen, and 45 to 90 vol% of transfer gas.
  • the carbon monoxide can react with the oxygen of lithium sulfate to produce carbon dioxide and thereby synthesize lithium sulfide.
  • the hydrogen reacts with the oxygen of lithium sulfate to produce water vapor (H 2 O), thereby allowing lithium sulfide to be synthesized.
  • the transport gas can separate carbon dioxide and water vapor (H 2 O) generated during the synthesis of lithium sulfide from lithium sulfide and transport them to the outside. Therefore, the transport gas can efficiently synthesize lithium sulfide powder with high purity.
  • the lithium sulfide powder heat treatment step (S40) is a step of heat treating the synthesized lithium sulfide powder to increase crystallinity of the lithium sulfide powder.
  • the lithium sulfide powder heat treatment step may be performed while the reaction gas used in the lithium sulfide synthesis step is supplied.
  • the lithium sulfide powder heat treatment step can be optionally performed, and can be performed when it is necessary to increase the crystallinity of the lithium sulfide powder synthesized in the lithium sulfide synthesis step.
  • the lithium sulfide powder heat treatment step may be performed at a heat treatment temperature of 850 to 930°C for a heat treatment time of 0.5 to 5 hours.
  • the heat treatment temperature may be set to a temperature lower than the melting point of lithium sulfide.
  • the heat treatment temperature may be higher than the synthesis temperature.
  • the heat treatment temperature may be determined in a temperature range that is higher than 845°C, the melting point of lithium sulfate, and lower than 938°C, the melting point of lithium sulfide. If the heat treatment temperature is too high, the lithium sulfide powder may partially melt and the crystallinity may decrease. Additionally, if the heat treatment temperature is too low, the degree of increase in crystallinity of the lithium sulfide powder may be small.
  • Figure 2 is an SEM photograph of lithium sulfate powder used in a specific example of the present invention before grinding.
  • Figure 3 is an SEM photograph of lithium sulfate powder used in a specific example of the present invention after grinding.
  • Figure 4 is an XRD graph of lithium sulfide powder synthesized according to a specific example of the present invention.
  • Figure 5 is an XRD graph of commercial lithium sulfide powder.
  • Figure 6 is a graph showing the charge/discharge performance of a half-cell made using the synthesized lithium sulfide powder of Figure 4 and commercial lithium sulfide powder.
  • lithium sulfate monohydrate (Li 2 SO 4 ⁇ H 2 O) was used as the lithium source.
  • the lithium sulfate monohydrate can be confirmed to have a size of approximately 200 ⁇ m.
  • the lithium sulfate monohydrate was ground using a ball mill device.
  • the lithium sulfate monohydrate was ground into powder with a diameter of approximately 0.1 ⁇ m.
  • the pulverized lithium sulfate powder was placed in an alumina boat and heated in a tube furnace.
  • the lithium sulfate powder was synthesized at a synthesis temperature of 780°C for a synthesis time of 5 hours.
  • the lithium sulfate preheating step was not performed. Additionally, in this example, the lithium sulfide powder heat treatment step was not performed.
  • the crystallinity of the synthesized lithium sulfide powder was evaluated, a solid electrolyte was prepared, and various characteristics were evaluated.
  • commercial lithium sulfide powder was purchased and evaluated as a reference example for comparative evaluation.
  • the synthesized powder of the example as shown in the XRD graph of FIG. 4, only the Li 2 S peak is observed and no peaks for the unreacted phase or secondary phase are observed. Therefore, it can be confirmed that the synthesized powder is a crystalline lithium sulfide powder.
  • the commercial lithium sulfide powder of the reference example also shows a peak at the same position as that of FIG. 4. Therefore, it can be confirmed that the synthesized powder has the same phase as commercial lithium sulfide powder.
  • the milled mixed powder was dried in a vacuum oven at 110°C for 15 hours and then heat-treated at 360°C for 5 hours in a quartz tube sealed with Ar gas to prepare solid electrolyte powder.
  • the solid electrolyte powder after heat treatment was analyzed using X-ray diffraction, and a Li 6 PS 5 Cl peak was identified.
  • the prepared solid electrolyte powder was uniaxially pressed and molded at a pressure of 560 MPa in a glove box to produce pellets, and ionic conductivity was measured using an alternating current impedance method. According to the evaluation results, the ion conductivity of the solid electrolyte powder mixed with the lithium sulfide powder of the example was measured to be 2.09 mS/cm. Meanwhile, the ion conductivity of the solid electrolyte powder mixed with lithium sulfide powder in the reference example was measured to be 2.10 mS/cm. Therefore, it can be confirmed that the solid electrolyte powder of the example has good ionic conductivity.
  • Solid electrolyte pellets were produced by uniaxially pressing 150 mg of the solid electrolyte powder of the example at a pressure of 450 MPa in a mold with a diameter of 12 mm. This molding process was carried out in a glove box filled with argon gas.
  • a half-cell was manufactured by molding indium (In) powder as a negative electrode material by applying a pressure of 217 MPa.
  • the manufactured half-cell was charged and discharged at 30°C at 0.05C and with a charge/discharge range of 0.6 to 3.6V.
  • a half-cell was manufactured in the same manner using solid electrolyte powder mixed with commercial lithium sulfide powder.
  • Example (a) and Reference Example (b) exhibit comparable charge and discharge performance. Therefore, it can be confirmed that the lithium sulfide powder according to the example has the same characteristics as commercial lithium sulfide powder when used in a solid electrolyte powder.
  • the method for producing lithium sulfide powder according to the embodiment of the present invention can be applied to producing lithium sulfide powder for solid electrolyte powder.
  • the method for producing lithium sulfide powder according to an embodiment of the present invention uses relatively inexpensive lithium sulfate as a lithium source, so lithium sulfide powder can be easily produced at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 황산리튬 분말을 일산화탄소를 포함하는 반응 가스와 반응시켜 황화리튬 분말을 합성하는 황화리튬 합성 단계를 포함하며, 상기 황화리튬 합성 단계 전에, 상기 황산리튬 분말을 소정 크기로 분쇄하는 황산리튬 분쇄 단계를 더 포함할 수 있는 황화리튬 제조 방법을 개시한다.

Description

황화리튬 제조 방법
본 발명은 황화리튬(Li2S) 제조 방법에 관한 것이다.
황화리튬은 최근에 전고체 리튬이차전지용 고체 전해질의 원료로서 필요성이 증가되고 있다. 전고체 리튬이차전지는 현재 상용화된 리튬 이차전지에서 유기 액체 전해질과 분리막을 고체 전해질로 치환한 형태이다. 고체 전해질은 불연 또는 난연의 성질을 가지므로 액체 전해질에 비하여 안전성이 높다. 고체 전해질은 산화물계와 황화물계로 나뉜다. 황화물계 고체 전해질은 산화물계 고체 전해질과 비교하여 리튬 이온전도도가 높고, 넓은 전압 범위에서 안정성을 가지기 때문에 고체 전해질로 주로 사용된다.
황화리튬은 천연 광물로 존재하지 않기 때문에 다른 리튬 화합물로부터 합성하여 얻어진다. 일반적으로 황화리튬은 수산화리튬 또는 탄산리튬을 리튬원으로 사용하는 합성 과정에 의하여 제조될 수 있다. 예를 들면, 황화리튬 제조 방법은 고체의 리튬 소스(예를 들면, 수산화리튬 또는 탄산리튬)와 기체의 황 소스(S 또는 CS2(g))를 반응시켜 황화리튬을 제조할 수 있다. 그러나, 수산화리튬 또는 탄산리튬은 미분으로 분쇄하는 것이 어려워, 황 소스인 기체와의 반응 효율이 저하되므로 고순도의 황화리튬을 제조하는 것이 어려울 수 있다. 또한, 황화리튬은 합성 과정에서 크기가 증가되기 때문에, 고체 전해질의 합성 과정에서 반응성이 저하될 수 있다. 또한, 리튬 소스로 사용되는 수산화리튬과 탄산리튬은 가격이 고가이어서 황화리튬의 제조 비용을 증가시킬 수 있다.
본 발명은 황화리튬의 제조 비용을 감소시키면서도 황화리튬 분말의 순도를 증가시킬 수 있는 황화리튬 제조 방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 제조되는 황화리튬 분말의 크기를 감소시켜 황화리튬 분말의 반응성을 증가시킬 수 있는 황화리튬 제조 방법을 제공하는데 그 목적이 있다.
본 발명의 황화리튬 제조 방법은 황산리튬 분말을 일산화탄소를 포함하는 반응 가스와 반응시켜 황화리튬 분말을 합성하는 황화리튬 합성 단계를 포함하는 것을 특징으로 한다.
또한, 본 발명의 황화리튬 제조 방법은 상기 황화리튬 합성 단계 전에, 상기 황산리튬 분말을 소정 크기로 분쇄하는 황산리튬 분쇄 단계를 더 포함할 수 있다. 또한, 상기 황산리튬 분쇄 단계는 상기 황산리튬 분말을 0.01 ~ 10.0㎛의 크기를 갖는 분말로 분쇄할 수 있다.
또한, 본 발명의 황화리튬 제조 단계는 상기 황산리튬 분쇄 단계후에, 상기 황산리튬 분말을 가열하여 상기 황산리튬 분말에 잔존하는 수분을 제거하는 황산리튬 예비 가열 단계를 더 포함할 수 있다. 상기 황산리튬 예비 가열 단계는 상기 황산리튬 수화물을 100 ~ 400℃로 가열하여 진행될 수 있다.
또한, 본 발명의 황화리튬 제조 방법은 상기 황화리튬 합성 단계후에, 합성된 상기 황화리튬 분말을 열처리하여 황화리튬 분말의 결정성을 증가시키는 황화리튬 분말 열처리 단계를 더 포함할 수 있다. 상기 황화리튬 분말 열처리 단계는 상기 황화리튬 합성 단계의 합성 온도보다 높은 열처리 온도에서 진행될 수 있다.
또한, 상기 황화리튬 합성 단계의 합성 온도는 650 ~ 840℃이며, 상기 황화리튬 분말 열처리 단계의 열처리 온도는 850 ~ 930℃일 수 있다.
또한, 상기 반응 가스는 수소 및 이송 가스를 더 포함할 수 있다. 또한, 상기 반응 가스는 상기 일산화탄소가 상기 반응 가스의 전체 부피를 기준으로 10 ~ 50vol%로 혼합되고, 수소와 이송 가스가 50 ~ 90vol%로 포함되며, 상기 이송 가스와 수소는 부피비로 90:10 ~ 99:1로 포함될 수 있다. 또한, 상기 반응 가스는 상기 반응 가스의 전체 부피를 기준으로 상기 일산화탄소가 10 ~ 50vol%, 상기 수소가 0.5 ~ 10vol%, 상기 이송 가스가 45 ~ 90vol%로 포함될 수 있다.
또한, 상기 반응 가스는 수소를 더 포함하며, 상기 반응 가스의 전체 부피를 기준으로 상기 일산화탄소가 90 ~ 99.5vol%, 상기 수소가 0.5 ~ 10vol%로 포함될 수 있다.
또한, 상기 황화리튬 분말은 전고체 전지의 고체 전해질에 사용될 수 있다.
본 발명의 황화리튬 제조 방법은 리튬 소스로 황산리튬 또는 황산리튬 수화물을 사용하여 제조 비용을 감소시키는 효과가 있다.
또한, 본 발명의 황화리튬 제조 방법은 탄소를 사용하지 않으므로 제조되는 황화리튬 분말에 탄소가 잔존하지 않아서 황화리튬 분말의 순도가 증가되는 효과가 있다.
또한, 본 발명의 황화리튬 제조 방법은 다른 리튬 소스와 대비하여 상대적으로 작은 크기로 분쇄 가능한 황산리튬을 사용하므로 제조되는 황화리튬 분말의 크기가 더 작아지는 효과가 있다.
또한, 본 발명의 황화리튬 제조 방법은 작은 크기로 분쇄된 황산리튬을 사용하므로 표면적이 증가되면서 기체와의 반응성이 증가되어 황화리튬 분말의 결정성이 증가되는 효과가 있다.
또한, 본 발명의 황화리튬 제조 방법은 황화리튬 분말이 미세 분말로 제조되므로, 고체 전해질 합성 과정에서 황산리튬 분말과 다른 분말들의 반응성이 증가되는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 황화리튬 제조 방법의 공정도이다.
도 2는 본 발명의 구체적인 실시예에서 사용된 황산리튬 분말의 분쇄전 SEM 사진이다.
도 3은 본 발명의 구체적인 실시예에서 사용된 황산리튬 분말의 분쇄후 SEM 사진이다.
도 4는 본 발명의 구체적인 실시예에 따라 합성된 황화리튬 분말의 XRD 그래프이다.
도 5는 상용 황화리튬 분말의 XRD 그래프이다.
도 6은 도 4의 합성된 황화리튬 분말과 상용 황화리튬 분말을 사용하여 만든 반전지의 충방전 성능을 나타내는 그래프이다.
이하, 본 발명의 일 실시예에 따른 황화리튬 제조 방법에 대하여 구체적으로 설명한다.
먼저, 본 발명의 일 실시예에 따른 황화리튬 제조 방법에 대하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 황화리튬 제조 방법의 공정도이다.
본 발명의 일 실시예에 따른 황화리튬 제조 방법은, 도 1을 참조하면, 황산리튬 분쇄 단계(S10) 및 황화리튬 합성 단계(S30)를 포함하여 이루어진다. 또한, 상기 황화리튬 제조 방법은 황산리튬 예비 가열 단계(S20) 및 황화리튬 분말 열처리 단계(S40)를 더 포함할 수 있다.
상기 황화리튬 제조 방법은 리튬 소스로 황산리튬 또는 황산리튬 수화물을 사용할 수 있다. 또한, 상기 황화리튬 제조 방법은 반응 가스로 일산화탄소(CO)를 포함하는 가스가 사용될 수 있다. 또한, 상기 반응 가스는 수소를 더 포함할 수 있다. 또한, 상기 반응 가스는 수소와 이송 가스를 더 포함할 수 있다. 상기 이송 가스는 질소(N2) 및 아르곤(Ar)에서 선택되는 적어도 어느 하나를 포함할 수 있다.
상기 황화리튬 제조 방법은 하기의 식 1) 또는 식 2)의 반응식에 따른 반응으로 황산리튬과 일산화탄소의 반응으로 황화리튬을 제조할 수 있다.
Li2SO4 + 4CO → Li2S + 4CO2 ------- 1)
Li2SO4 + 2CO + 2H2→ Li2S + 2CO2+ 2H2O------- 2)
상기 황화리튬 제조 방법은 리튬 소스로 황산리튬 또는 황산리튬 수화물을 사용하므로 제조 비용을 감소시킬 수 있다. 또한, 상기 황화리튬 제조 방법은 탄소를 사용하지 않으므로 제조되는 황화리튬 분말에 탄소가 잔존하지 않아서 합성되는 황화리튬 분말의 순도를 증가시킬 수 있다. 또한, 상기 황화리튬 제조 방법은 다른 리튬 소스와 대비하여 상대적으로 작은 크기로 분쇄 가능한 황산리튬을 사용하므로 제조되는 황화리튬 분말의 크기를 감소시킬 수 있다. 또한, 상기 황화리튬 제조 방법은 작은 크기로 분쇄된 황산리튬을 사용하므로 표면적이 증가되면서 기체와의 반응성이 증가되어 황화리튬 분말의 결정성을 증가시킬 수 있다. 또한, 상기 황화리튬 제조 방법은 황화리튬이 미세 분말로 제조되므로, 고체 전해질 합성 과정에서 황산리튬 분말과 다른 분말들의 반응성이 증가될 수 있다.
상기 황산리튬 분쇄 단계(S10)는 황산리튬 분말을 소정 크기로 분쇄하는 단계이다. 상기 황산리튬 분말은 상대적으로 조대한 다양한 크기의 분말이 원료로 사용될 수 있다. 예를 들면, 상기 황산리튬 분말은 평균 입경이 200㎛정도의 황산리튬 분말이 사용될 수 있다. 상기 황화리튬 분말은 일정한 특성을 가지기 위해서는 소정 범위의 크기를 갖는 분말이 사용되는 것이 필요하다. 따라서, 상기 황산리튬 분쇄 단계(S10)는 황산리튬 분말을 소정 크기를 갖는 분말로 분쇄할 수 있다. 상기 황산리튬 분말은 바람직하게는 0.01 ~ 10.0㎛의 직경을 갖는 분말로 분쇄될 수 있다. 또한, 상기 황산리튬 분말은 평균 입경이 0.1 ~ 1.0㎛인 분말로 분쇄될 수 있다. 상기 황산리튬 분쇄 단계(S10)는 볼밀 장치와 같은 분쇄 장치를 이용하여 진행될 수 있다.
상기 황산리튬 예비 가열 단계(S20)는 황산리튬 분말을 예비 가열하여 황산리튬 분말에 잔존하는 수분을 제거하는 단계이다. 상기 황산리튬 예비 가열 단계(S20)는 리튬 소스로 황산리튬 수화물이 사용되는 경우에 선택적으로 진행될 수 있다. 상기 황산리튬 수화물 분말은 Li2SO4ㆍnH2O일 수 있다. 상기 황산리튬 예비 가열 단계(S20)는 리튬 소스로 황산리튬 분말이 사용되는 경우에도 황산리튬 분말에 잔존하는 수분을 제거하기 위하여 진행될 수 있다.
상기 황산리튬 예비 가열 단계(S20)는 황산리튬 수화물 분말 또는 황산리튬 분말을 100 ~ 400℃의 예비 가열 온도에서 가열하여 진행될 수 있다. 상기 황산리튬 예비 가열 단계(S20)는 아래의 식 3)과 같은 반응에 의하여 진행될 수 있다.
Li2SO4ㆍH2O → Li2SO4 + H2O ------- 3)
상기 황화리튬 합성 단계(S30)는 황산리튬 분말과 반응 가스를 반응시켜 황화리튬 분말을 합성하는 단계이다. 상기 황화리튬 분말은 위의 식 1) 또는 식 2)와 같은 반응에 의하여 황산리튬 분말과 반응 가스가 반응하여 합성될 수 있다.
상기 황화리튬 합성 단계(S30)는 황산리튬 분말을 650 ~ 840℃의 합성 온도와 0.5 ~ 5시간의 합성 시간동안 진행될 수 있다. 상기 황화리튬 합성 단계(S30)에서 합성 온도는 황산리튬의 녹는 점보다 낮은 온도에서 정해질 수 있다. 상기 황화리튬 합성 단계(S30)는 황산리튬의 용융점인 845℃보다 낮은 합성 온도에서 진행될 수 있다. 또한, 상기 황화리튬 합성 단계(S30)는 반응 가스를 공급하면서 황산리튬 분말을 가열하여 진행될 수 있다. 상기 황화리튬 합성 단계(S30)는 황산리튬 분말에서 산소를 분리하면서 황화리튬을 합성할 수 있다.
상기 반응 가스는 일산화탄소(CO)를 포함할 수 있다. 또한, 상기 반응 가스는 일산화탄소(CO)와 이송 가스를 포함할 수 있다. 또한, 상기 반응 가스는 일산화탄소(CO)와 수소(H2)를 포함할 수 있다. 또한, 상기 반응 가스는 일산화탄소(CO)와 수소(H2) 및 이송 가스를 포함할 수 있다. 상기 이송 가스는 질소(N2) 및 아르곤(Ar)에서 선택되는 적어도 하나를 포함할 수 있다. 상기 반응 가스가 일산화탄소 및 이송 가스의 혼합 가스일 때, 일산화탄소는 반응 가스의 전체 부피를 기준으로 10 ~ 50vol%로 혼합되고, 이송 가스는 50 ~ 90vol%로 혼합될 수 있다. 또한, 상기 일산화탄소는 바람직하게는 반응 가스의 전제 부피를 기준으로 25 ~ 40 vol%로 혼합되고 이송 가스는 50 ~ 90vol%로 혼합될 수 있다. 또한, 상기 반응 가스가 일산화탄소와 수소의 혼합 가스일 때, 일산화탄소는 반응 가스의 전체 부피를 기준으로 90 ~ 99.5vol%, 수소는 0.5 ~ 10vol%로 혼합될 수 있다. 또한, 상기 반응 가스는 일산화탄소와 수소 및 이송 가스의 혼합 가스일 때, 일산화탄소는 반응 가스의 전체 부피를 기준으로 10 ~ 50vol%로 혼합되고, 수소와 이송 가스는 50 ~ 90vol%로 혼합될 수 있다. 이때, 상기 수소는 이송 가스와 혼합된 상태로 일산화탄소와 혼합될 수 있다. 또한, 상기 이송 가스와 수소는 부피비로 90:10 ~ 99:1로 혼합된 상태일 수 있다. 또한, 상기 수소는 이송 가스와 별개로 일산화탄소와 혼합될 수 있다. 이때, 상기 반응 가스는 일산화탄소가 10 ~ 50vol%, 수소가 0.5 ~ 10vol%, 이송 가스가 45 ~ 90vol%로 혼합될 수 있다.
상기 일산화탄소는 황산리튬의 산소와 반응하여 이산화탄소를 생성하면서 황화리튬이 합성되도록 할 수 있다. 상기 수소는 황산리튬의 산소와 반응하여 수증기(H2O)를 생성하면서 황화리튬이 합성되도록 할 수 있다. 또한, 상기 이송 가스는 황화리튬의 합성 과정에서 생성되는 이산화탄소와 수증기(H2O)를 황화리튬으로부터 분리하여 외부로 이송시킬 수 있다. 따라서, 상기 이송 가스는 황화리튬 분말이 고순도로 효율적으로 합성되도록 할 수 있다.
상기 황화리튬 분말 열처리 단계(S40)는 합성된 황화리튬 분말을 열처리하여 황화리튬 분말의 결정성을 증가시키는 단계이다. 상기 황화리튬 분말 열처리 단계는 황화리튬 합성 단계에서 사용되는 반응 가스가 공급되면서 진행될 수 있다. 상기 황화리튬 분말 열처리 단계는 선택적으로 진행될 수 있으며, 황화리튬 합성 단계에서 합성되는 황화리튬 분말의 결정성을 증가시킬 필요가 있는 경우에 진행될 수 있다.
상기 황화리튬 분말 열처리 단계는 850 ~ 930℃의 열처리 온도에서 0.5 ~ 5시간의 열처리 시간동안 진행될 수 있다. 상기 황화리튬 분말 열처리 단계에서 열처리 온도는 황화리튬의 녹는 점보다 낮은 온도로 정해질 수 있다. 또한, 상기 열처리 온도는 합성 온도보다 높은 온도에서 진행될 수 있다. 예를 들면, 상기 열처리 온도는 황산리튬의 녹는점인 845℃보다 높고 황화리튬의 녹는점인 938℃보다 낮은 온도 범위에서 결정될 수 있다. 상기 열처리 온도가 너무 높으면 황화리튬 분말이 부분적으로 용융되면서 결정성이 낮아질 수 있다. 또한, 상기 열처리 온도가 너무 낮으면 황화리튬 분말의 결정성 증가 정도가 작을 수 있다.
다음은 보다 구체적인 실시예를 통하여 본 발명의 황화리튬 제조 방법에 대항 설명한다.
도 2는 본 발명의 구체적인 실시예에서 사용된 황산리튬 분말의 분쇄전 SEM 사진이다. 도 3은 본 발명의 구체적인 실시예에서 사용된 황산리튬 분말의 분쇄후 SEM 사진이다. 도 4는 본 발명의 구체적인 실시예에 따라 합성된 황화리튬 분말의 XRD 그래프이다. 도 5는 상용 황화리튬 분말의 XRD 그래프이다. 도 6은 도 4의 합성된 황화리튬 분말과 상용 황화리튬 분말을 사용하여 만든 반전지의 충방전 성능을 나타내는 그래프이다.
본 실시예에서는 리튬 소스로 황산리튬일수화물(Li2SO4·H2O)을 사용하였다. 상기 황산리튬일수화물은, 도 2에서 보는 바와 같이, 대략 200㎛의 크기를 가지는 것을 확인할 수 있다. 상기 황산리튬일수화물은 볼밀 장치를 사용하여 분쇄하였다. 상기 황산리튬일수화물은, 도 3에서 보는 바와 같이, 대략 0.1㎛의 직경을 갖는 분말로 분쇄하였다. 상기 분쇄된 황산리튬 분말은 알루미나 보트에 담아서 튜브로에서 가열을 하였다. 상기 황산리튬 분말은 780℃의 합성 온도에서 5시간의 합성 시간동안 합성을 진행하였다. 본 실시예에서는 황산리튬 예비 가열 단계를 진행하지 않았다. 또한, 본 실시예에서는 황화리튬 분말 열처리 단계도 진행하지 않았다.
본 실시예에서는 합성된 황화리튬 분말에 대하여는 결정성을 평가하고, 고체 전해질을 제조하여 제반 특성을 평가하였다. 또한, 본 실시예에서는 비교 평가를 위한 참고예로 상용 황화리튬 분말을 구입하여 함께 평가를 진행하였다.
[결정상 평가]
실시예의 합성된 분말은, 도 4의 XRD 그래프에서 보는 바와 같이, Li2S 피크만 관찰되고 미반응상이나 이차상에 대한 피크가 관찰되지 않는다. 따라서, 합성된 분말은 결정성을 가지는 황화리튬 분말인 것을 확인할 수 있다.
참고예의 상용 황화리튬 분말도, 도 5의 XRD 그래프에서 보는 바와 같이, 도 4와 동일한 위치에서 피크를 보여주고 있다. 따라서, 합성된 분말은 상용 황화리튬 분말과 동일한 상을 가지는 것을 확인할 수 있다.
[고체전해질 분말 제조]
위에서 합성된 황화리튬 분말 4.28g과 상용 P2S5 분말 4.141g, 상용 LiCl 분말 1.58g을 혼합하고, 직경 3mm의 지르코니아 볼 300g, 솔벤트 40g와 함께 250cc의 지르코니아 용기에 넣고 밀봉한 후에 유성 밀로 600rpm에서 20시간동안 밀링하여 혼합 분말을 제조하였다. 이때, 합성된 황화리튬 분말은 습기에 취약하므로, 분말의 혼합 및 밀봉 과정은 충분히 건조된 Ar 가스로 치환된 글로브 박스내에서 진행하였다.
상기 밀링된 혼합 분말은 진공 오븐에서 110℃로 15시간동안 건조한 후 Ar 가스로 밀봉된 석영관내에서 360℃에서 5시간 동안 열처리하여 고체 전해질 분말로 제조하였다. 열처리 후의 고체 전해질 분말을 X선 회절법으로 분석하였으며, Li6PS5Cl피크를 확인하였다.
[이온 전도도 측정]
제조된 고체 전해질 분말은 글로브 박스내에서 560MPa의 압력으로 일축 가압 성형하여 펠렛을 제작하고 교류 임피던스법으로 이온 전도도를 측정하였다. 평가 결과에 따르면, 실시예의 황화리튬 분말이 혼합된 고체 전해질 분말은 이온 전도도가 2.09mS/cm로 측정되었다. 한편, 참고예의 황화리튬 분말이 혼합된 고체 전해질 분말은 이온 전도도가 2.10mS/cm로 측정되었다. 따라서, 실시예의 고체 전해질 분말은 양호한 이온전도도를 가지는 것을 확인할 수 있다.
[반전지 제작 및 충방전 성능 평가]
실시예의 고체전해질 분말 150mg을 직경이 12mm인 몰드에서 450MPa의 압력으로 일축 가압 성형하여 고체 전해질 펠렛을 제작하였다. 이러한 성형 과정은 알곤 가스가 충진되는 글로브 박스내에서 진행하였다. 고체 전해질 팰렛의 상면에 리튬복합산화물(LiNi0.8Co0.1Mn0.1O2) 분말 57.6 질량부와 평균 입경 1㎛로 입도 조정된 고체 전해질 분말 38.4 질량부와 카본 블랙 도전재 4 질량부를 혼합한 양극재를 올려 550MPa의 압력으로 일축 가압 성형하였다. 추가로 음극재로 인듐(In) 분말을 217MPa의 압력을 가하여 성형하여 반전지를 제작하였다. 제조된 반전지에 대하여 30℃에서 0.05C로 충방전 범위를 0.6~3.6V로 하여 충방전을 행하였다.
또한, 동일하게 상용 황화리튬 분말이 혼합된 고체 전해질 분말을 사용하여 동일하게 반전지를 제작하였다.
도 6에서 보는 바와 같이 실시예(a)와 참고예(b)에 의한 반전지는 대등한 충방전 성능을 나타내는 것을 확인할 수 있다. 따라서, 실시예에 따른 황화리튬 분말은 고체전해질 분말에 사용될 때 상용 황화리튬 분말과 동일한 특성을 가지는 것을 확인할 수 있다.
실시예와 참고예의 황화리튬 분말에 대한 평가 결과는 아래의 표 1에 정리하였다.
구분 이온 전도도
(mS/cm)
1싸이클 충방전 (mAh/g) 2싸이클 충방전 (mAh/g)
충전용량 방전용량 충전용량 방전용량
실시예 2.09 238.6 153.6 159.4 154.7
참고예 2.10 239.7 150.4 160.0 153.7
상기의 구체적인 실시예에서 본 바와 같이 본 발명의 실시예에 따른 황화리튬 분말 제조 방법은 고체전해질 분말을 위한 황화리튬 분말을 제조하는데 적용될 수 있음을 확인하였다. 본 발명의 실시예에 따른 황화리튬 분말 제조 방법은 리튬 소스로 상대적으로 저렴한 황산리튬을 사용하므로 저비용으로 용이하게 황화리튬 분말을 제조할 수 있다.
이상에서 설명한 것은 본 발명에 따른 황화리튬 제조 방법을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.

Claims (13)

  1. 황산리튬 분말을 일산화탄소를 포함하는 반응 가스와 반응시켜 황화리튬 분말을 합성하는 황화리튬 합성 단계를 포함하는 것을 특징으로 하는 황화리튬 제조 방법.
  2. 제 1 항에 있어서,
    상기 황화리튬 합성 단계 전에
    상기 황산리튬 분말을 소정 크기로 분쇄하는 황산리튬 분쇄 단계를 더 포함하는 것을 특징으로 하는 황화리튬 제조 방법.
  3. 제 2 항에 있어서,
    상기 황산리튬 분쇄 단계는 상기 황산리튬 분말을 0.01 ~ 10.0㎛의 직경을 갖는 분말로 분쇄하는 것을 특징으로 하는 황화리튬 제조 단계.
  4. 제 2 항에 있어서,
    상기 황산리튬 분쇄 단계후에
    상기 황산리튬 분말을 가열하여 상기 황산리튬 분말에 잔존하는 수분을 제거하는 황산리튬 예비 가열 단계를 더 포함하는 것을 특징으로 하는 황화리튬 제조 방법.
  5. 제 4 항에 있어서,
    상기 황산리튬 예비 가열 단계는 상기 황산리튬 수화물을 100 ~ 400℃로 가열하여 진행되는 것을 특징으로 하는 황화리튬 제조 방법.
  6. 제 1 항에 있어서,
    상기 황화리튬 합성 단계후에
    합성된 상기 황화리튬 분말을 열처리하여 황화리튬 분말의 결정성을 증가시키는 황화리튬 분말 열처리 단계를 더 포함하는 것을 특징으로 하는 황화리튬 제조 방법.
  7. 제 6 항에 있어서,
    상기 황화리튬 분말 열처리 단계는 상기 황화리튬 합성 단계의 합성 온도보다 높은 열처리 온도에서 진행되는 것을 특징으로 하는 황화리튬 제조 방법.
  8. 제 7 항에 있어서,
    상기 황화리튬 합성 단계의 합성 온도는 650 ~ 840℃이며,
    상기 황화리튬 분말 열처리 단계의 열처리 온도는 850 ~ 930℃인 것을 특징으로 하는 황화리튬 제조 방법.
  9. 제 1 항에 있어서,
    상기 반응 가스는 수소 및 이송 가스를 더 포함하는 것을 특징으로 하는 황화리튬 제조 방법.
  10. 제 9 항에 있어서,
    상기 반응 가스는
    상기 일산화탄소가 상기 반응 가스의 전체 부피를 기준으로 10 ~ 50vol%로 포함되고, 수소와 이송 가스가 50 ~ 90vol%로 포함되며,
    상기 이송 가스와 수소는 부피비로 90:10 ~ 99:1로 포함되는 것을 특징으로 하는 황화리튬 제조 방법.
  11. 제 9 항에 있어서,
    상기 반응 가스는 상기 반응 가스의 전체 부피를 기준으로 상기 일산화탄소가 10 ~ 50vol%, 상기 수소가 0.5 ~ 10vol%, 상기 이송 가스가 45 ~ 90vol%로 포함되는 것을 특징으로 하는 황화리튬 제조 방법.
  12. 제 1 항에 있어서,
    상기 반응 가스는 수소를 더 포함하며, 상기 반응 가스의 전체 부피를 기준으로 상기 일산화탄소가 90 ~ 99.5vol%, 상기 수소가 0.5 ~ 10vol%로 포함되는 것을 특징으로 하는 황화리튬 제조 방법.
  13. 제 1 항에 있어서,
    상기 황화리튬 분말은 전고체 전지의 고체 전해질에 사용되는 것을 특징으로 하는 황화리튬 제조 방법.
PCT/KR2022/007261 2022-05-20 2022-05-20 황화리튬 제조 방법 WO2023224150A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/007261 WO2023224150A1 (ko) 2022-05-20 2022-05-20 황화리튬 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/007261 WO2023224150A1 (ko) 2022-05-20 2022-05-20 황화리튬 제조 방법

Publications (1)

Publication Number Publication Date
WO2023224150A1 true WO2023224150A1 (ko) 2023-11-23

Family

ID=88835366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007261 WO2023224150A1 (ko) 2022-05-20 2022-05-20 황화리튬 제조 방법

Country Status (1)

Country Link
WO (1) WO2023224150A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110132311A (ko) * 2008-10-14 2011-12-07 아이티아이 스코틀랜드 리미티드 황화 리튬의 제조방법
JP2013227180A (ja) * 2012-04-26 2013-11-07 Furukawa Co Ltd 硫化リチウムの製造方法
US20140084224A1 (en) * 2011-05-27 2014-03-27 Chemetall Gmbh Process for preparing lithium sulfide
JP2021147251A (ja) * 2020-03-17 2021-09-27 三菱マテリアル株式会社 硫化リチウムの製造方法
WO2022009810A1 (ja) * 2020-07-09 2022-01-13 三井金属鉱業株式会社 硫化リチウムの製造方法
KR20220108933A (ko) * 2021-01-28 2022-08-04 (주)솔리드아이오닉스 황화리튬 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110132311A (ko) * 2008-10-14 2011-12-07 아이티아이 스코틀랜드 리미티드 황화 리튬의 제조방법
US20140084224A1 (en) * 2011-05-27 2014-03-27 Chemetall Gmbh Process for preparing lithium sulfide
JP2013227180A (ja) * 2012-04-26 2013-11-07 Furukawa Co Ltd 硫化リチウムの製造方法
JP2021147251A (ja) * 2020-03-17 2021-09-27 三菱マテリアル株式会社 硫化リチウムの製造方法
WO2022009810A1 (ja) * 2020-07-09 2022-01-13 三井金属鉱業株式会社 硫化リチウムの製造方法
KR20220108933A (ko) * 2021-01-28 2022-08-04 (주)솔리드아이오닉스 황화리튬 제조 방법

Similar Documents

Publication Publication Date Title
WO2020111580A1 (ko) 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
JP4948659B1 (ja) リチウムイオン電池固体電解質材料用硫化リチウムの製造方法
JP5311169B2 (ja) リチウムイオン伝導性固体電解質、その製造方法及び該固体電解質を用いたリチウム二次電池用固体電解質並びに該二次電池用固体電解質を用いた全固体リチウム電池
WO2019107879A1 (ko) 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
WO2011087309A2 (ko) 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질.
WO2015080450A1 (ko) 고체 전해질층을 포함하는 이차전지
WO2014084502A1 (ko) 규소계 복합체 및 이의 제조방법
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2019107878A1 (ko) 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
WO2011059204A2 (ko) 리튬이차전지용 양극 활물질
WO2015060686A1 (ko) 고체 전해질 입자, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021256888A1 (ko) 리튬 비스옥살레이토보레이트를 고순도로 제조하는 방법 및 이를 이용한 2차 전지용 비수계 전해액
WO2017142295A1 (ko) 황화물계 고체 전해질의 제조방법, 이로부터 제조된 황화물계 고체 전해질 및 이를 포함하는 전고체 리튬 이차전지
WO2023229121A1 (ko) 습식 및 건식 공정을 통한 고순도 황화리튬의 제조방법
WO2004093099A1 (ja) リチウムイオン導電性固体電解質の製造方法及びそれを用いた全固体型二次電池
WO2010143805A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2014061974A1 (ko) 규소 산화물-탄소 복합체 및 이의 제조방법
WO2023224150A1 (ko) 황화리튬 제조 방법
KR102580338B1 (ko) 황화리튬 제조 방법
WO2018236060A1 (ko) 수산화철(FeOOH)의 제조방법 및 수산화철을 포함하는 리튬-황 전지용 양극
WO2023191598A1 (ko) 전고체 전지용 양극 및 이를 포함하는 전고체 전지
WO2013065918A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
WO2022108118A1 (ko) 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지
WO2013002559A2 (ko) 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
WO2023121307A1 (ko) 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942814

Country of ref document: EP

Kind code of ref document: A1