WO2022108118A1 - 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지 - Google Patents

에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지 Download PDF

Info

Publication number
WO2022108118A1
WO2022108118A1 PCT/KR2021/014119 KR2021014119W WO2022108118A1 WO 2022108118 A1 WO2022108118 A1 WO 2022108118A1 KR 2021014119 W KR2021014119 W KR 2021014119W WO 2022108118 A1 WO2022108118 A1 WO 2022108118A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfide
solid electrolyte
based solid
acetate
organic solvent
Prior art date
Application number
PCT/KR2021/014119
Other languages
English (en)
French (fr)
Inventor
박건호
김경수
조우석
유지상
정구진
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2022108118A1 publication Critical patent/WO2022108118A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic

Definitions

  • the present invention relates to an all-solid-state battery, and more particularly, to a method for producing a sulfide-based solid electrolyte using an ester-based organic solvent, and to a sulfide-based solid electrolyte and an all-solid-state battery prepared by the production method.
  • Lithium secondary batteries have been widely commercialized because of their excellent energy density and output characteristics among various secondary batteries.
  • a lithium secondary battery (hereinafter referred to as a 'liquid-type secondary battery') including a liquid-type electrolyte containing an organic solvent is mainly used.
  • liquid type secondary battery the liquid electrolyte is decomposed by the electrode reaction, causing the battery to expand, and the risk of ignition due to leakage of the liquid electrolyte is pointed out.
  • a lithium secondary battery hereinafter referred to as an 'all-solid-state battery' to which a solid electrolyte having excellent stability is applied is attracting attention.
  • Solid electrolytes can be divided into oxide-based and sulfide-based electrolytes. Since sulfide-based solid electrolytes have high lithium ion conductivity and are stable over a wide voltage range compared to oxide-based solid electrolytes, sulfide-based solid electrolytes are mainly used as solid electrolytes for all-solid-state batteries.
  • mass synthesis is difficult due to the difficulty of increasing the size of the high-energy milling machine and the difficulty of uniform dispersion and amorphization.
  • the present invention comprises the steps of preparing a mixture by mixing a raw material of a sulfide-based solid electrolyte with an ester-based organic solvent; drying the mixture to prepare a powder; and heat-treating the powder to prepare a sulfide-based solid electrolyte.
  • the ester-based organic solvent is methyl acetate, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, isoamyl acetate, amyl acetate, octyl acetate, benzyl acetate, linalyl acetate, geranyl acetate, bornyl acetate, methyl propionate ( metyl propionate, ethyl propionate, propyl propionate, butyl propionate, pentyl propionate, geranyl propionate, Linalyl propinoate, octyl proppionate, terphenyl proppionate, propyl isobutyrate, methyl butyrate, ethyl butyrate , propyl butyrate, butyl butyrate, pentyl butyrate, geranyl butyrate, linalyl butyrate, octyl buty
  • the sulfide-based solid electrolyte may be represented by the following formula.
  • M is at least one selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn and Sb, and X is one selected from the group consisting of F, Cl, Br, and I.
  • the raw material of the sulfide-based solid electrolyte may include Li 2 S, P 2 S 5 and LiCl.
  • the sulfide-based solid electrolyte may be Li 6 PS 5 Cl having an azirodite structure.
  • Preparing the mixture, preparing the powder, and preparing the sulfide-based solid electrolyte are each performed in a glove box or dry room not exposed to moisture and oxygen, or performed in an inert gas atmosphere.
  • the present invention provides a sulfide-based solid electrolyte prepared by the above preparation method.
  • the ion conductivity of the sulfide-based solid electrolyte is 5 ⁇ 10 -4 S/cm or more at 25°C.
  • the sulfide-based solid electrolyte may further include a conductive carbon residue.
  • the present invention provides an all-solid-state battery comprising a sulfide-based solid electrolyte prepared by the above manufacturing method.
  • the all-solid-state battery includes a solid electrolyte membrane, a positive electrode, a negative electrode, and a separator.
  • the sulfide-based solid electrolyte may be included in at least one of a solid electrolyte membrane, a positive electrode, a negative electrode, and a separator.
  • a sulfide-based solid electrolyte having an azirodite structure can be prepared using a wet process using an ester-based organic solvent having relatively low polarity and few side reactions.
  • the sulfide-based solid electrolyte prepared by the manufacturing method according to the present invention exhibits improved lithium ion conductivity characteristics compared to the sulfide-based solid electrolyte prepared by the conventional wet process because raw materials can be uniformly mixed.
  • FIG. 1 is a flowchart showing a method for preparing a sulfide-based solid electrolyte using an ester-based organic solvent according to the present invention.
  • FIG. 3 is a charge/discharge graph of an all-solid-state battery using the sulfide-based solid electrolyte according to Example 1.
  • FIG. 1 is a flowchart showing a method for preparing a sulfide-based solid electrolyte using an ester-based organic solvent according to the present invention.
  • the method for producing a sulfide-based solid electrolyte according to the present invention comprises the steps of preparing a mixture by mixing a raw material of a sulfide-based solid electrolyte with an ester-based organic solvent (S10), drying the mixture to prepare a powder Step (S20), and heat-treating the powder to prepare a sulfide-based solid electrolyte (S30).
  • step S10 the raw material of the sulfide-based solid electrolyte is added to the ester-based organic solvent and stirred to prepare a mixture.
  • the raw material is determined according to the sulfide-based solid electrolyte to be manufactured.
  • the sulfide-based solid electrolyte may be represented by the following formula (1).
  • M is at least one selected from the group consisting of Al, Si, P, Ga, Ge, As, In, Sn, and Sb.
  • X is one selected from the group consisting of F, Cl, Br, and I.
  • the raw material may include Li 2 S, P 2 S 5 and LiCl.
  • Ester-based organic solvents are methyl acetate, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, isoamyl acetate, amyl Amyl acetate, octyl acetate, benzyl acetate, linalyl acetate, geranyl acetate, bornyl acetate, methyl propionate propionate), ethyl propionate, propyl propionate, butyl propionate, pentyl propionate, geranyl propionate, li linalyl propionate, octyl propioate, terphenyl propionate, propyl isobutyrate, methyl butyrate, ethyl butyrate, propyl butyrate, butyl butyrate, pentyl butyrate, geranyl butyrate, linalyl butyrate, octyl buti
  • the ester-based organic solvent used for the preparation of the mixed solution has relatively low polarity and has less side reaction with the raw material compared to other organic solvents.
  • the raw material can be uniformly dispersed in the ester-based organic solvent to prepare a mixed solution.
  • step S20 the mixture is dried in step S20 to prepare a powder.
  • step S30 through the heat treatment of the powder, it is obtained by synthesizing the sulfide-based solid electrolyte according to the present invention.
  • the sulfide-based solid electrolyte according to the present invention may further include a conductive carbon residue resulting from a solvent during drying and heat treatment.
  • the sulfide-based solid electrolyte according to the present invention may be included in the material of the all-solid-state battery.
  • the sulfide-based solid electrolyte may be included in at least one of a solid electrolyte membrane constituting an all-solid-state battery, a positive electrode, a negative electrode, and a separator.
  • a sulfide-based solid electrolyte having an azirodite structure can be prepared using a wet process using an ester-based organic solvent having relatively low polarity and few side reactions.
  • the sulfide-based solid electrolyte prepared by the manufacturing method according to the present invention exhibits improved lithium ion conductivity compared to the sulfide-based solid electrolyte prepared by the conventional wet process. That is, the lithium ion conductivity of the solid electrolyte according to the present invention is 5 ⁇ 10 -4 S/cm or more at room temperature (25°C).
  • raw materials Li 2 S, P 2 S 5 and LiCl were mixed with an ester-based organic solvent (butyl butyrate (Example 1), butyl acetate (Example 2), butyl propionate (Example 3), propyl propionate (Example 3) Example 4)), and stirred at room temperature at 300 rpm for 12 hours in a solvent to prepare a mixture.
  • the mixture was placed in a container bathed with silicone oil and vacuum dried at 150° C. to prepare a powder.
  • the prepared powder was vacuum heat treated at 550° C. for 12 hours to prepare sulfide-based solid electrolytes according to Examples 1 to 4.
  • Li 6 PS 5 Cl was confirmed as the main peak. That is, it can be seen that the sulfide-based solid electrolyte according to Example 1 is Li 6 PS 5 Cl.
  • Comparative Example 2 a sulfide-based solid electrolyte was prepared in the same manner as in Comparative Example 1, except that absolute ethanol was used as the organic solvent.
  • Example 1 As compared with Comparative Examples 1 and 2, it can be seen that the lithium ion conductivity characteristics are high.
  • a battery was manufactured and evaluated using the solid electrolyte of Example 1.
  • 150 mg of the solid electrolyte was press-molded at a pressure of 370 MPa to make dense pellets, and then a positive electrode composite and a lithium indium alloy were attached to both sides, respectively.
  • the positive electrode composite was prepared by mixing LiNi 0.6 Co 0.2 Mn 0.2 O 2 and a solid electrolyte having a layered structure in a mass ratio of 80:20, respectively.
  • FIG. 3 is a charge/discharge graph of an all-solid-state battery using the sulfide-based solid electrolyte according to Example 1.
  • the manufactured all-solid-state batteries were charged and discharged with currents of 0.05 C, 0.1 C, and 0.2 C, respectively, and exhibited discharge capacities of 157, 145, and 124 mAh/g, respectively.
  • the wet process applying the ester-based organic solvent according to the present invention is effective for the synthesis of the sulfide solid electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 황화물계 고체전해질의 원료 물질과의 부반응은 억제하면서 습식 공정으로 황화물계 고체전해질을 제조할 수 있는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지에 관한 것이다. 본 발명은 에스터계 유기용매에 황화물계 고체전해질의 원료 물질을 혼합하여 혼합물을 제조하는 단계, 혼합물을 건조하여 분말을 제조하는 단계, 및 분말을 열처리하여 황화물계 고체전해질을 제조하는 단계;를 포함하는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법을 제공한다.

Description

에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지
본 발명은 전고체전지에 관한 것으로, 더욱 상세하게는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지에 관한 것이다.
전기자동차 및 대용량 전력 저장장치의 요구가 높아지면서 이를 충족시키기 위한 다양한 전지의 개발이 이루어져 왔다.
리튬 이차전지는 다양한 이차전지 중에서 에너지밀도 및 출력 특성이 가장 우수하여 널리 상용화되었다. 리튬 이차전지로는 유기용매를 포함하는 액체 타입의 전해질을 포함하는 리튬 이차전지(이하 '액체 타입 이차전지'라 함)가 주로 사용되고 있다.
하지만 액체 타입 이차전지는 액체전해질이 전극 반응에 의해 분해되어 전지의 팽창을 야기하고 액체전해질의 누출에 의한 발화의 위험성이 지적되고 있다. 이러한 액체 타입 이차전지의 문제점을 해소하기 위해서, 안정성이 우수한 고체전해질을 적용한 리튬 이차전지(이하 '전고체전지'라 함)가 주목받고 있다.
고체전해질은 산화물계와 황화물계로 나눌 수 있다. 황화물계 고체전해질이 산화물계 고체전해질과 비교하여 높은 리튬이온전도도를 가지고, 넓은 전압 범위에서 안정하기 때문에, 전고체전지용 고체전해질로 황화물계 고체전해질을 주로 사용하고 있다.
이러한 황화물계 고체전해질의 합성법으로는 주로 고체 상태의 원료 물질을 고에너지 밀링기를 이용하여 균일하게 분산 및 혼합 후 열처리하는 고상법이 널리 사용되고 있다.
하지만 고에너지 밀링기의 대형화의 어려움, 균일 분산 및 비정질화의 어려움으로 인하여 대량 합성이 어려운 상황이다.
이러한 문제점을 해소하기 위해서, 황화물계 고체전해질의 원료 물질을 유기용매에 분산시킨 뒤 열처리를 하는 습식 공정이 검토되고 있다. 유기용매와 황화물의 반응성 때문에 제한된 유기용매 만이 사용이 가능하다.
예컨대 유기용매로 에탄올, THF(Tetrahydrofuran) 등과 같은 극성용매를 사용할 경우, 해당 극성용매가 황화물계 고체전해질의 원료 물질과 부반응을 일으키기 때문에, 황화물계 고체전해질의 높은 리튬이온전도도를 얻을 수 없다.
반대로 자일렌과 같은 무극성용매를 사용할 경우, 해당 무극성용매와 황화물계 고체전해질의 원료 물질 간에 부반응은 발생하지 않지만, 무극성용매에 원료 물질이 분산 및 혼합이 잘 진행되지 않기 때문에, 황화물계 고체전해질이 합성되지 않는 문제가 발생한다.
따라서 본 발명의 목적은 황화물계 고체전해질의 원료 물질과의 부반응은 억제하면서 습식 공정으로 황화물계 고체전해질을 제조할 수 있는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지를 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 에스터계 유기용매에 황화물계 고체전해질의 원료 물질을 혼합하여 혼합물을 제조하는 단계; 상기 혼합물을 건조하여 분말을 제조하는 단계; 및 상기 분말을 열처리하여 황화물계 고체전해질을 제조하는 단계;를 포함하는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법을 제공한다.
상기 에스터계 유기용매는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), 프로필 아세테이트(propyl acetate), 이소부틸 아세테이트(isobutyl acetate), 부틸 아세테이트(butyl acetate), 이소아밀 아세테이트(isoamyl acetate), 아밀 아세테이트(amyl acetate), 옥틸 아세테이트(octyl acetate), 벤젤 아세테이트(benzyl acetate), 리날릴 아세테이트(linalyl acetate), 게라닐 아세테이트(geranyl acetate), 보르닐 아세테이트(bornyl acetate), 메틸 프로피오네이트(metyl propionate), 에틸 프로피오네이트(ethyl propionate), 프로필 프로피오네이트(propyl propionate), 부틸 프로피오네이트(butyl propionate), 펜틸 프로피오네이트(pentyl propionate), 게라릴 프로피오네이트(geranyl propionate), 리날릴 프로피노에이트(linalyl propinoate), 옥틸 프로피오네이트(octyl proppionate), 테르페닐 프로피오네이트(terphenyl proppionate), 프로필 이소부티레이트(propyl isobutyrate), 메틸 부티레이트(methyl butyrate), 에틸 부티레이트(ethyl butyrate), 프로필 부티레이트(propyl butyrate), 부틸 부티레이트(butyl butyrate), 펜틸 부티레이트(pentyl butyrate), 게라릴 부티레이트(geranyl butyrate), 리날릴 부티레이트(linalyl butyrate), 옥틱 부티레이트(octyl butyrate), 및 테르페닐 부티레이트(terphenyl butyrate)로 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있다.
상기 황화물계 고체전해질은 하기 화학식으로 표시될 수 있다.
[화학식]
LiaMbScXd (1≤a≤7, 0<b≤3, 4≤c≤7, 0<d≤1.5)
M은 Al, Si, P, Ga, Ge, As, In, Sn 및 Sb로 이루어진 군에서 선택되는 하나 이상이고, X는 F, Cl, Br, 및 I로 이루어진 군에서 선택되는 하나이다.
상기 황화물계 고체전해질은 아지로다이트 구조를 갖는 Li6-xPS5-xX1+x (0≤x≤0.5, X=Cl, Br 및 I 중 적어도 하나를 포함)을 포함한다.
상기 황화물계 고체전해질의 원료 물질은 Li2S, P2S5 및 LiCl를 포함할 수 있다. 상기 황화물계 고체전해질은 아지로다이트 구조를 갖는 Li6PS5Cl 일 수 있다.
상기 혼합물을 제조하는 단계, 상기 분말을 제조하는 단계, 및 상기 황화물계 고체전해질을 제조하는 단계는 각각, 수분과 산소에 노출되지 않는 글로브 박스 또는 드라이룸 내에서 수행되거나, 불활성가스 분위기에서 수행될 수 있다.
본 발명은 상기의 제조 방법으로 제조된 황화물계 고체전해질을 제공한다.
상기 황화물계 고체전해질의 이온전도도는 25℃에서 5ㅧ10-4 S/cm 이상이다.
상기 황화물계 고체전해질은 도전성 탄소 잔여물을 더 포함할 수 있다.
본 발명은 상기의 제조 방법으로 제조된 황화물계 고체전해질을 포함하는 전고체전지를 제공한다.
상기 전고체전지는 고체전해질막, 양극, 음극 및 분리막을 포함한다.
그리고 상기 황화물계 고체전해질은 고체전해질막, 양극, 음극 및 분리막 중에 적어도 하나에 포함될 수 있다.
본 발명에 따르면, 비교적 극성이 낮고 부반응이 적은 에스터계 유기용매를 사용하여 아지로다이트 구조를 갖는 황화물계 고체전해질을 습식 공정을 이용하여 제조할 수 있다.
본 발명에 따른 제조 방법으로 제조된 황화물계 고체전해질은, 원료 물질을 균일하게 혼합할 수 있기 때문에, 기존의 습식 공정으로 제조된 황화물계 고체전해질과 비교하여, 향상된 리튬이온전도도 특성을 나타낸다.
본 발명에 따른 제조 방법은 습식 공정으로 원료 물질을 혼합할 수 있기 때문에, 대량으로 황화물계 고체전해질을 제조할 수 있다.
도 1은 본 발명에 따른 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법을 보여주는 흐름도이다.
도 2는 실시예1 내지 4에 따른 황화물계 고체전해질의 X선 회절 분석 결과를 보여주는 그래프이다.
도 3은 실시예1에 따른 황화물계 고체전해질을 사용한 전고체전지의 충방전 그래프이다.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 벗어나지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.
도 1은 본 발명에 따른 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법을 보여주는 흐름도이다.
도 1을 참조하면, 본 발명에 따른 황화물계 고체전해질의 제조 방법은 에스터계 유기용매에 황화물계 고체전해질의 원료 물질을 혼합하여 혼합물을 제조하는 단계(S10), 혼합물을 건조하여 분말을 제조하는 단계(S20), 및 분말을 열처리하여 황화물계 고체전해질을 제조하는 단계(S30)를 포함한다.
먼저 본 발명에 따른 황화물계 고체전해질의 제조 방법에 따른 전체 단계가 대기 중의 산소 또는 수분에 노출되지 않도록, 글로브박스 또는 드라이룸에서 진행하거나 불활성가스 분위기에 진행한다.
먼저 S10단계에서 에스터계 유기용매에 황화물계 고체전해질의 원료 물질을 투입한 후 교반하여 혼합물을 제조한다.
여기서 원료 물질은 제조할 황화물계 고체전해질에 따라서 결정된다.
황화물계 고체전해질은 하기 화학식1로 표시될 수 있다.
[화학식 1]
LiaMbScXd (1≤a≤7, 0<b≤3, 4≤c≤7, 0<d≤1.5)
여기서 M은 Al, Si, P, Ga, Ge, As, In, Sn 및 Sb로 이루어진 군에서 선택되는 하나 이상이다.
X는 F, Cl, Br, 및 I로 이루어진 군에서 선택되는 하나이다.
여기서 제조할 황화물계 고체전해질은 아지로다이트 구조를 갖는 Li6-xPS5-xX1+x (0≤x≤0.5, X=Cl, Br 및 I로 이루어진 군에서 선택되는 하나) 일 수 있다. 예컨대 제조할 황화물계 고체전해질이 Li6-xPS5-xCl1+x(0≤x≤0.5)인 경우, 원료 물질은 Li2S, P2S5 및 LiCl를 포함할 수 있다.
에스터계 유기용매는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), 프로필 아세테이트(propyl acetate), 이소부틸 아세테이트(isobutyl acetate), 부틸 아세테이트(butyl acetate), 이소아밀 아세테이트(isoamyl acetate), 아밀 아세테이트(amyl acetate), 옥틸 아세테이트(octyl acetate), 벤젤 아세테이트(benzyl acetate), 리날릴 아세테이트(linalyl acetate), 게라닐 아세테이트(geranyl acetate), 보르닐 아세테이트(bornyl acetate), 메틸 프로피오네이트(metyl propionate), 에틸 프로피오네이트(ethyl propionate), 프로필 프로피오네이트(propyl propionate), 부틸 프로피오네이트(butyl propionate), 펜틸 프로피오네이트(pentyl propionate), 게라릴 프로피오네이트(geranyl propionate), 리날릴 프로피오네이트(linalyl propionate), 옥틸 프로피오네이트(octyl propioate), 테르페닐 프로피오네이트(terphenyl propionate), 프로필 이소부티레이트(propyl isobutyrate), 메틸 부티레이트(methyl butyrate), 에틸 부티레이트(ethyl butyrate), 프로필 부티레이트(propyl butyrate), 부틸 부티레이트(butyl butyrate), 펜틸 부티레이트(pentyl butyrate), 게라릴 부티레이트(geranyl butyrate), 리날릴 부티레이트(linalyl butyrate), 옥틱 부티레이트(octyl butyrate), 및 테르페닐 부티레이트(terphenyl butyrate)로 이루어진 그룹에서 선택된 적어도 하나를 포함할 수 있다.
혼합액의 제조에 사용되는 에스터계 유기용매는 비교적 극성이 낮고 원료 물질과의 부반응이 다른 유기용매에 비해서 적다. 에스터계 유기용매에 원료 물질이 균일하게 분산되어 혼합액으로 제조할 수 있다.
이어서 S20단계에서 혼합물을 건조하여 분말을 제조한다.
그리고 S30단계에서 분말에 대한 열처리를 통해서 본 발명에 따른 황화물계 고체전해질을 합성하여 얻는다. 이때 본 발명에 따른 황화물계 고체전해질은 건조 및 열처리하는 과정에서 용매에서 기인하는 도전성 탄소 잔여물을 더 포함할 수 있다.
본 발명에 따른 황화물계 고체전해질은 전고체전지의 소재에 포함될 수 있다. 예컨대 황화물계 고체전해질은 전고체전지를 구성하는 고체전해질막, 양극, 음극 및 분리막 중에 적어도 하나에 포함될 수 있다.
이와 같이 본 발명에 따른 제조 방법에 따르면, 비교적 극성이 낮고 부반응이 적은 에스터계 유기용매를 사용하여 아지로다이트 구조를 갖는 황화물계 고체전해질을 습식 공정을 이용하여 제조할 수 있다.
본 발명에 따른 제조 방법으로 제조된 황화물계 고체전해질은, 기존의 습식 공정으로 제조된 황화물계 고체전해질과 비교하여, 향상된 리튬이온전도도 특성을 나타낸다. 즉 본 발명에 따른 고체전해질은 리튬이온전도도는 상온(25℃)에서 5ㅧ10-4 S/cm 이상이다.
[실시예 및 비교예]
이와 같은 본 발명에 따른 제조 방법으로 제조된 황화물계 고체전해질의 리튬이온전도도를 확인하기 위해서 실시예1, 비교예1 및 비교예2에 따른 황화물계 고체전해질을 제조하였다.
실시예1 내지 4
먼저 원료 물질 Li2S, P2S5 및 LiCl을 에스터계 유기용매(부틸 부티레이트(실시예1), 부틸 아세테이트(실시예2), 부틸 프로피오네이트(실시예3), 프로필 프로피오네이트(실시예4))에 넣고, 상온에서 300 rpm으로 12시간 동안 용매 상에서 교반하여 혼합물을 제조하였다. 다음으로 혼합액을 실리콘 오일로 중탕한 용기에 넣고 150℃에서 진공 건조하여 분말을 제조하였다. 그리고 제조한 분말을 550℃에서 12시간 동안 진공 열처리하여 실시예1 내지 4에 따른 황화물계 고체전해질을 제조하였다.
도 2는 실시예1 내지 4에 따른 황화물계 고체전해질의 X선 회절 분석 결과를 보여주는 그래프이다.
도 2를 참조하면, 실시예1 내지 4에 따른 황화물계 고체전해질의 X선 회절 분석 결과 Li6PS5Cl이 메인 피크로 확인되었다. 즉 실시예1에 따른 황화물계 고제전해질은 Li6PS5Cl인 것을 알 수 있다.
비교예1
먼저 원료 물질 Li2S, P2S5 및 LiCl을 파라-자일렌(p-xylene)에 넣고 상온에서 300 rpm으로 12시간 동안 용매 상에서 교반하여 혼합물을 제조하였다. 다음으로 혼합물을 실리콘 오일로 중탕한 용기에 넣고 150℃에서 진공 건조하여 분말을 제조하였다. 그리고 분말을 550℃에서 12시간 동안 진공 열처리하여 비교예1에 따른 황화물계 고체전해질을 제조하였다.
비교예2
비교예2에서는 유기용매로 무수에탄올을 사용한 것을 제외하고, 비교예1와 동일한 공정으로 황화물계 고체전해질을 제조하였다.
실시예 및 비교예에 따른 황화물계 고체전해질에 대한 AC 임피던스(impedance) 측정을 통하여 상온 리튬이온전도도를 확인하였다. 측정한 리튬이온전도도는 아래의 표1과 같다. 비교예2에 따른 황화물계 고체전해질은 AC 임피던스로는 리튬이온전도도가 측정되지 않았다. 즉 비교예2에 따른 황화물계 고체전해질은 AC 임피던스로 측정할 수 있는 한계치 이하의 낮은 리튬이온전도도를 갖는 것으로 판단된다.
리튬이온전도도(S/cm) 유기용매
실시예1 1.2ㅧ10-3 부틸 부티레이트
실시예2 7.2ㅧ10-4 부틸 아세테이트
실시예3 7.3ㅧ10-4 부틸 프로피오네이트
실시예4 6.4ㅧ10-4 프로필 프로피오네이트
비교예1 - 파라-자일렌
비교예2 1.5ㅧ10-5 무수에탄올
표1을 참조하면, 실시예1에 따른 황화물계 고체전해질은 1.2ㅧ10-3 S/cm의 리튬이온전도도가 측정되었다. 비교예1에 따른 고체전해질은 측정가능치 이하의 리튬이온전도도를 가지고 있었으며, 비교예2에 따른 황화물계 고제전해질은 1.5ㅧ10-5 S/cm의 리튬이온전도도가 측정되었다.이와 같이 실시예1이 비교예1 내지 2와 비교하여 높은 리튬이온전도도 특성을 나타내는 것을 확인할 수 있다. 즉 원료 물질의 유기용매에 대한 분산 및 혼합 정도와 부반응 차이에 따라서, 황화물계 고체전해질의 합성 여부와 리튬이온전도도에 큰 영향을 미치는 것을 확인할 수 있다.
본 발명에서 제공된 황화물계 고체전해질의 효용성을 확인하고자 실시예1의 고체전해질을 사용하여 전지를 제작 및 평가하였다. 이를 위해, 고체전해질 150 mg을 370 MPa의 압력으로 가압성형하여 치밀한 펠렛을 만든 후, 양면에 양극복합체와 리튬인듐 합금을 각각 부착하였다. 이때 양극복합체는 층상구조를 가지는 LiNi0.6Co0.2Mn0.2O2, 고체전해질을 각각 80:20의 질량비로 혼합하여 준비했다.
도 3은 실시예1에 따른 황화물계 고체전해질을 사용한 전고체전지의 충방전 그래프이다.
도 3을 참조하면, 제작된 전고체전지는 각각 0.05 C, 0.1 C, 0.2 C의 전류로 충방전 되었으며, 각각 157, 145, 124 mAh/g의 방전용량을 발현했다.
따라서 본 발명에 따른 에스터계 유기용매를 적용한 습식 공정은 황화물 고체전해질의 합성에 효과적임을 확인할 수 있다.
그리고 습식 공정으로 원료 물질을 혼합할 수 있기 때문에, 대량으로 황화물계 고체전해질을 제조할 수 있다.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.

Claims (12)

  1. 에스터계 유기용매에 황화물계 고체전해질의 원료 물질을 혼합하여 혼합물을 제조하는 단계;
    상기 혼합물을 건조하여 분말을 제조하는 단계; 및
    상기 분말을 열처리하여 황화물계 고체전해질을 제조하는 단계;
    를 포함하는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법.
  2. 제1항에 있어서,
    상기 에스터계 유기용매는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), 프로필 아세테이트(propyl acetate), 이소부틸 아세테이트(isobutyl acetate), 부틸 아세테이트(butyl acetate), 이소아밀 아세테이트(isoamyl acetate), 아밀 아세테이트(amyl acetate), 옥틸 아세테이트(octyl acetate), 벤젤 아세테이트(benzyl acetate), 리날릴 아세테이트(linalyl acetate), 게라닐 아세테이트(geranyl acetate), 보르닐 아세테이트(bornyl acetate), 메틸 프로피오네이트(metyl propionate), 에틸 프로피오네이트(ethyl propionate), 프로필 프로피오네이트(propyl propionate), 부틸 프로피오네이트(butyl propionate), 펜틸 프로피오네이트(pentyl propionate), 게라릴 프로피오네이트(geranyl propionate), 리날릴 프로피오네이트(linalyl propinoate), 옥틸 프로피오네이트(octyl propinoaten), 테르페닐 프로피오네이트(terphenyl propinoate), 프로필 이소부티레이트(propyl isobutyrate), 메틸 부티레이트(methyl butyrate), 에틸 부티레이트(ethyl butyrate), 프로필 부티레이트(propyl butyrate), 부틸 부티레이트(butyl butyrate), 펜틸 부티레이트(pentyl butyrate), 게라릴 부티레이트(geranyl butyrate), 리날릴 부티레이트(linalyl butyrate), 옥틱 부티레이트(octyl butyrate), 및 테르페닐 부티레이트(terphenyl butyrate)로 이루어진 그룹에서 선택된 적어도 하나를 포함하는 것을 특징으로 하는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법.
  3. 제1항에 있어서,
    상기 황화물계 고체전해질은 하기 화학식으로 표시되는 것을 특징으로 하는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법.
    [화학식]
    LiaMbScXd (1≤a≤7, 0<b≤3, 4≤c≤7, 0<d≤1.5)
    M은 Al, Si, P, Ga, Ge, As, In, Sn 및 Sb로 이루어진 군에서 선택되는 하나 이상이고, X는 F, Cl, Br, 및 I로 이루어진 군에서 선택되는 하나이다.
  4. 제1항에 있어서,
    상기 황화물계 고체전해질은 아지로다이트 구조를 갖는 Li6-xP1-xMxS5-xX1+x (0≤x≤0.5, X=Cl, Br 및 I로 이루어진 군에서 선택되는 하나를 포함)인 것을 특징으로 하는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법.
  5. 제1항에 있어서,
    상기 황화물계 고체전해질의 원료 물질은 Li2S, P2S5 및 LiCl를 포함하는 것을 특징으로 하는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법.
  6. 제5항에 있어서,
    상기 황화물계 고체전해질은 아지로다이트 구조를 갖는 Li6PS5Cl 인 것을 특징으로 하는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법.
  7. 제1항에 있어서,
    상기 혼합물을 제조하는 단계, 상기 분말을 제조하는 단계, 및 상기 황화물계 고체전해질을 제조하는 단계는 각각,
    수분과 산소에 노출되지 않는 글로븍 박스 또는 드라이룸 내에서 수행되거나, 불활성가스 분위기에서 수행되는 것을 특징으로 하는 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 제조 방법으로 제조된 황화물계 고체전해질.
  9. 제8항에 있어서,
    상기 황화물계 고체전해질의 이온전도도는 25℃에서 5ㅧ10-4 S/cm 이상인 것을 특징으로 하는 황화물계 고체전해질.
  10. 제8항에 있어서,
    상기 황화물계 고체전해질은 도전성 탄소 잔여물을 더 포함하는 것을 특징으로 하는 황화물계 고체전해질.
  11. 제1항 내지 제7항 중 어느 한 항에 따른 제조 방법으로 제조된 황화물계 고체전해질을 포함하는 전고체전지.
  12. 제11항에 있어서,
    상기 전고체전지는 고체전해질막, 양극, 음극 및 분리막을 포함하고,
    상기 황화물계 고체전해질은 상기 고체전해질막, 상기 양극, 상기 음극 및 상기 분리막 중에 적어도 하나에 포함되는 것을 특징으로 하는 전고체전지.
PCT/KR2021/014119 2020-11-19 2021-10-13 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지 WO2022108118A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200156013A KR20220069203A (ko) 2020-11-19 2020-11-19 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지
KR10-2020-0156013 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022108118A1 true WO2022108118A1 (ko) 2022-05-27

Family

ID=81709048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014119 WO2022108118A1 (ko) 2020-11-19 2021-10-13 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지

Country Status (2)

Country Link
KR (1) KR20220069203A (ko)
WO (1) WO2022108118A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230170445A (ko) * 2022-06-10 2023-12-19 삼성에스디아이 주식회사 전고체 전지용 양극, 양극 조성물, 및 이를 포함하는 전고체 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985489B2 (ja) * 2008-03-11 2012-07-25 住友電気工業株式会社 Liイオン伝導性固体電解質
KR20190041735A (ko) * 2017-10-13 2019-04-23 현대자동차주식회사 침상형 황화물계 고체 전해질의 제조 방법
KR20190066792A (ko) * 2017-12-06 2019-06-14 현대자동차주식회사 아지로다이트형 결정구조를 갖는 전고체 전지용 황화물계 고체 전해질의 제조 방법
KR20190074484A (ko) * 2017-12-20 2019-06-28 현대자동차주식회사 단일 원소로부터 유래된 아지로다이트형 결정구조를 갖는 전고체 전지용 황화물계 고체전해질 및 이의 제조방법
JP6721669B2 (ja) * 2016-02-19 2020-07-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102452005B1 (ko) 2017-12-27 2022-10-06 현대자동차주식회사 질소가 첨가된 전고체 전지용 황화물계 고체전해질

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985489B2 (ja) * 2008-03-11 2012-07-25 住友電気工業株式会社 Liイオン伝導性固体電解質
JP6721669B2 (ja) * 2016-02-19 2020-07-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
KR20190041735A (ko) * 2017-10-13 2019-04-23 현대자동차주식회사 침상형 황화물계 고체 전해질의 제조 방법
KR20190066792A (ko) * 2017-12-06 2019-06-14 현대자동차주식회사 아지로다이트형 결정구조를 갖는 전고체 전지용 황화물계 고체 전해질의 제조 방법
KR20190074484A (ko) * 2017-12-20 2019-06-28 현대자동차주식회사 단일 원소로부터 유래된 아지로다이트형 결정구조를 갖는 전고체 전지용 황화물계 고체전해질 및 이의 제조방법

Also Published As

Publication number Publication date
KR20220069203A (ko) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2019107879A1 (ko) 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
WO2015065101A1 (ko) 겔 폴리머 전해질 및 이를 포함하는 전기화학소자
WO2014084502A1 (ko) 규소계 복합체 및 이의 제조방법
WO2019107878A1 (ko) 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
WO2010016727A2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
WO2010058901A2 (en) Secondary zinc alkaline battery including surface-modified negative electrodes and separators
WO2015065102A1 (ko) 리튬 이차전지
WO2014204141A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2015133692A1 (ko) 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
WO2017142295A1 (ko) 황화물계 고체 전해질의 제조방법, 이로부터 제조된 황화물계 고체 전해질 및 이를 포함하는 전고체 리튬 이차전지
WO2018088735A1 (ko) 음극 및 상기 음극의 제조방법
WO2019103311A1 (ko) 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
WO2019098660A2 (ko) 음극 활물질, 그의 제조 방법 및 이러한 음극 활물질을 구비한 비수계 리튬이차전지 및 그의 제조 방법
WO2019004714A1 (ko) 황화물계 고체전해질 재료 및 그 제조방법, 황화물계 고체전해질 재료를 포함하는 고체전해질층 및 전극복합체층의 제조방법, 및 이를 포함하는 전고체전지
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2009134047A1 (ko) 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지
WO2022108118A1 (ko) 에스터계 유기용매를 이용한 황화물계 고체전해질의 제조 방법, 그 제조 방법으로 제조된 황화물계 고체전해질 및 전고체전지
WO2014133372A1 (ko) 리튬 황 전지용 양극 및 이를 포함하는 리튬 황 전지
WO2020040338A1 (ko) 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법
WO2023229121A1 (ko) 습식 및 건식 공정을 통한 고순도 황화리튬의 제조방법
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2019088345A1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20220069204A (ko) 염화물계 고체전해질, 전고체전지 및 그의 제조 방법
WO2020059902A1 (ko) 실리콘산화물 코팅층이 형성된 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법
WO2013065918A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894890

Country of ref document: EP

Kind code of ref document: A1