WO2023221809A1 - 多层板生产线及多层线路板加工方法 - Google Patents

多层板生产线及多层线路板加工方法 Download PDF

Info

Publication number
WO2023221809A1
WO2023221809A1 PCT/CN2023/092897 CN2023092897W WO2023221809A1 WO 2023221809 A1 WO2023221809 A1 WO 2023221809A1 CN 2023092897 W CN2023092897 W CN 2023092897W WO 2023221809 A1 WO2023221809 A1 WO 2023221809A1
Authority
WO
WIPO (PCT)
Prior art keywords
frcc
circuit board
alignment
board
roller
Prior art date
Application number
PCT/CN2023/092897
Other languages
English (en)
French (fr)
Inventor
李龙凯
Original Assignee
世大新材料(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世大新材料(深圳)有限公司 filed Critical 世大新材料(深圳)有限公司
Publication of WO2023221809A1 publication Critical patent/WO2023221809A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4638Aligning and fixing the circuit boards before lamination; Detecting or measuring the misalignment after lamination; Aligning external circuit patterns or via connections relative to internal circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/166Alignment or registration; Control of registration

Definitions

  • the invention relates to the field of circuit board processing, and in particular to a multilayer board production line and a multilayer circuit board processing method.
  • Traditional multi-layer circuit board products are mainly made of single-sided copper clad laminates and double-layer circuit boards or multi-layer circuit boards.
  • the layers are composed of release film, semi-cured glue and release film from top to bottom.
  • the bonding material is bonded, and the process includes incoming, cutting, and drilling of single-sided copper clad laminates; incoming bonding materials, cutting and drilling; and peeling off the release film of the bonding material through laminating equipment.
  • the semi-cured adhesive is then bonded to the single-sided copper-clad board.
  • the other layer of release film of the bonding material is peeled off through the laminating equipment, and then bonded to the double-layer circuit board or multi-layer circuit board.
  • the process includes: The processes of dry film application, exposure, development, etching and electroplating are used to make multi-layer circuit boards with the required number of layers; the process is cumbersome and the equipment structure is complex, requiring a lot of manual work and consuming a lot of water and electricity. Each process is independent of each other. , often a certain process or several processes are operated separately, resulting in rising labor costs, waste of raw materials, uneven product quality, huge investment in production equipment, and large factory floor space.
  • Multi-layer board lamination Single-sided FCCL (Flexible Copper Clad Laminate) ⁇ Cut the material ⁇ Open holes ⁇ Align with semi-cured glue and laminate at low temperature ⁇ Tear off the release paper ⁇ Align and laminate on the inner FPC ⁇ High temperature lamination ;
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art, provide a multi-layer board production line, and use a new structure of FRCC (flexible resin coated copper) material to simplify the multi-layer circuit board processing process and simplify the multi-layer circuit board.
  • FRCC flexible resin coated copper
  • the decapping process improves the processing accuracy and efficiency of multi-layer circuit boards. It can also reduce the use of auxiliary materials such as release films and manual work, effectively reducing production costs, reducing water and electricity consumption, and reducing the generation and discharge of industrial waste.
  • a multilayer board production line including:
  • At least one FRCC material processing unit it includes an unwinding roller arranged sequentially along the processing direction, and a conveying device.
  • the unwinding roller conveys the FRCC material to the conveying device.
  • the unwinding roller is provided at the conveying device.
  • a multi-layer board composite unit it includes a circuit board conveying device, a positioning device, a pre-pressing device, and a hot pressing device sequentially arranged along the processing direction.
  • the circuit board conveying device transmits the circuit board to the pre-pressing device.
  • At least one peeling device includes a guide unwinding roller, a peeling positioning roller, and a release film winding roller. After the punched and/or cut FRCC material is transported to the peeling positioning roller through the guide unwinding roller, it is released. The film is peeled off and sent to the release film winding roller for winding, and the FRCC material after peeling off the release film is sent to the alignment device.
  • the conveying device includes a pair of conveying rollers arranged oppositely along the processing direction, and a conveying belt sleeved on the outside of the two conveying rollers, wherein the load is carried between the two conveying rollers and away from the conveying belt.
  • a support plate is provided on one side of the conveyor belt, and evenly distributed tooth-shaped stripes are formed on the carrying surface of the conveyor belt.
  • the cutting device is located at the support plate to punch and/or cut the FRCC material according to the circuit board pattern.
  • the FRCC material processing unit also includes a laminating roller respectively provided at both ends of the conveying device, wherein the lower end of the laminating roller is lower than the upper end of the conveying roller and the upper end of the unwinding roller respectively.
  • the FRCC material turning device includes at least two rollers arranged up and down. The punched and/or cut FRCC material is turned over in sequence through the two rollers. Transferred to the peeling device.
  • the FRCC material processing unit also includes at least one FRCC material winding roller.
  • the punched and or cut FRCC material is transferred to the FRCC material winding roller for winding; the FRCC material after winding is transferred to the guide unwinding roller for unwinding.
  • the present invention also includes at least one leak detection and leak repair system for inspecting the cut surface of the FRCC material after peeling off the release film.
  • the leak detection and leak repair system includes a pattern detection device and a visual detection device; visual detection The device is equipped with a leak-repairing manipulator.
  • the alignment device includes at least one horizontal positioning roller, at least one horizontal guide roller, an alignment system and an alignment detection system.
  • the horizontal positioning roller and the horizontal guide roller are arranged horizontally, and the peeling The FRCC material after the film passes through the horizontal positioning roller and the horizontal guide roller in sequence.
  • the horizontal positioning rollers and horizontal guide rollers enable the FRCC material to be transported horizontally and parallel to the circuit board, and the alignment system is used to align the positioning holes and/or opening patterns of the FRCC material with the positioning holes and/or opening patterns of the circuit board;
  • the alignment detection system includes a detection platform, and the detection platform is communicated with an acquisition module, an offset detection module, an alignment analysis module and a storage module;
  • the collection module includes a searchlight and a camera arranged on the upper side of the core board;
  • the offset detection module is used to detect the offset of the release film after each core board alignment is completed.
  • the offset detection process includes: before the alignment begins, turn on the searchlight and image the lower core board through the camera.
  • Shoot and mark the captured image as the initial image enlarge the initial image into a pixel grid image and perform image processing on the pixel grid image to obtain the grayscale value of each pixel grid, and obtain the grayscale threshold HDmin through the storage module.
  • the pixel grid of the initial image as the initial pixel grid, mark the total number of initial pixel grids as u, compare the grayscale values of the initial pixel grid with the grayscale threshold HDmin one by one, and set the grayscale value smaller than the grayscale threshold HDmin
  • the initial number of pixels is marked as m, and the ratio of m to u is marked as the standard ratio BZ;
  • the standard thresholds BZmin and BZmax are obtained by numerically calculating the standard ratio BZ, where BZmin is the minimum standard threshold and BZmax is the maximum standard threshold, as The minimum standard threshold BZmin and the maximum standard threshold BZmax constitute the standard range;
  • a camera is used to capture an image of the upper core board, and the obtained image is marked as a comparison image.
  • the comparison image is enlarged into a pixel grid image and image processing is performed on the pixel grid image to obtain each pixel grid.
  • Grayscale value mark the pixel grid of the contrast image as a contrast pixel grid, compare the grayscale value of the contrast pixel grid one by one with the grayscale threshold, and mark the number of contrasting pixel grids with a grayscale value less than the grayscale threshold as e , mark the ratio of e and u as the offset ratio PY, and compare the offset ratio with the standard thresholds BZmin and BZmax: if PY ⁇ BZmin or PY ⁇ BZmax, it is determined that the core board alignment is unqualified, and the alignment detection module The detection platform sends an alignment failure signal; if BZmin ⁇ PY ⁇ BZmax, it is determined that the core board alignment is qualified, and the alignment detection module sends an alignment qualified signal to the detection platform;
  • the detection platform After receiving the alignment failure signal, the detection platform sends an alignment analysis signal to the alignment analysis module. After receiving the alignment analysis signal, the alignment analysis module detects and analyzes the rotational speed of the horizontal guide roller:
  • the storage module obtains the rotational speed range ZSmin and ZSmax, where ZSmin is the minimum rotational speed threshold and ZSmax is the maximum rotational speed threshold.
  • the rotational speed value ZS of the horizontal guide roller is compared with the rotational speed thresholds ZSmin and ZSmax. Through the rotational speed value ZS and the rotational speed thresholds ZSmin and ZSmax The comparison results are used to determine the reasons for unqualified alignment;
  • the value ZSi establishes a rotational speed set ⁇ ZS1, ZS2,...,ZSn ⁇ , performs average calculation and variance calculation on the rotational speed set to obtain the rotational speed mean and difference coefficient respectively, and determines whether the values of the rotational speed mean and difference coefficient meet the requirements.
  • the pre-pressing device is a pair of pre-pressing rollers, and the aligned FRCC material and circuit board pass through the pre-pressing rollers at the same time, so that the FRCC material fits on the circuit board.
  • a circuit board detection device is provided between the circuit board conveying device and the pre-pressure roller for detecting the circuit board.
  • the multi-layer board composite unit also includes a tunnel oven, and the multi-layer board pressed by the hot pressing device is baked in the tunnel oven.
  • a punching inspection system is also included, which is used to punch and/or cut the multi-layer boards baked in the tunnel oven to form through holes and/or Or blind holes, and check and confirm the holes or graphics on the multi-layer board.
  • the cutting device includes at least one or more of at least an intelligent laser cutting device, a circular knife die cutting device, and a punching and die cutting device.
  • the FRCC material processing unit also includes a protective film unwinding device, which includes a protective film unwinding roller and a protective film rewinding roller.
  • the protective film unwinding roller moves towards the pre-pressure device. Transfer the protective film.
  • the protective film covers the FRCC material and passes through the pre-pressing device and the hot pressing device together with the FRCC material and circuit board to complete the lamination of the FRCC material and circuit board to form a multi-layer board. Then, the protective film is transferred to the protective film
  • the winding roller performs winding.
  • the protective film is a PET film, a silica gel film or TPX (polymer of 4-methylpentene-1).
  • the hot pressing device includes at least a pair of hot pressing rollers or a flat plate A hot-pressing device, wherein the flat-plate hot-pressing device includes at least one set of hot-pressing flat plates arranged oppositely up and down, and an annular track arranged corresponding to the hot-pressing flat plates.
  • the flat plate moves along the processing direction of the multi-layer board composite unit, and continues to move along the circular track back to the initial position after the lamination is completed.
  • the present invention also includes a multi-layer board rewinding roller or a multi-layer board cutting device.
  • the multi-layer board processed by the multi-layer board laminating unit is transferred to the multi-layer board rewinding roller or the multi-layer board cutting device.
  • Cutting device, the multi-layer board rewinding roller rolls up the multi-layer board; or the multi-layer board cutting device cuts the multi-layer board into sheets, and stacks the sheet-shaped multi-layer boards in sequence through a robot;
  • the rolled multi-layer boards or multi-layer boards cut into sheets are then subjected to a process including dry film application, exposure, development, etching and electroplating to form circuits on the FRCC material to make a multi-layer circuit board.
  • the invention also discloses a multilayer circuit board processing method, which includes the following steps:
  • FRCC material preprocessing first place the rolled FRCC material on the unwinding roller, start the FRCC material processing unit, and transfer the FRCC material to the conveyor and the cutting device to punch and/or cut the FRCC material;
  • Release film peeling Transfer the FRCC material processed in step S1 to the peeling device.
  • the peeling device peels off the release film on the FRCC material, and sends the FRCC material after peeling off the release film to the alignment device;
  • Multilayer board lamination When the FRCC material after peeling off the release film is transferred to the alignment device, the circuit board conveying device simultaneously transfers the circuit board to the alignment device. At this time, the semi-cured adhesive layer of the FRCC material faces the circuit board. The alignment of the FRCC material and the circuit board is completed through the alignment device, and then sent to the pre-pressing device and the hot pressing device for lamination to form a multi-layer board.
  • step S1 after drilling and/or cutting by the cutting device, positioning holes and/or opening patterns are formed on the FRCC material.
  • opening patterns When it is necessary to form opening patterns on the FRCC material, When the unwinding roller transfers the FRCC material to the conveyor, the release film of the FRCC material faces the cutting device, and the cutting device only cuts the contour line of the corresponding shape on the release film according to the opening pattern; when only the FRCC material needs to be When positioning holes are formed on the material, there is no limit on the direction of the release film during the transfer of the FRCC material.
  • step S2 when the release film of the FRCC material has The contour line of the cover opening graphic, the release film of the corresponding shape remains on the FRCC material after the release film is peeled off and is located at the cover opening position.
  • step S2 the pattern detection device is also used to detect the opening pattern on the FRCC material after peeling off the release film and the detection result is recorded, and then the visual detection device is used to detect the distance at the opening position. Whether the molding film has fallen off, and control the leak-proofing robot to replenish the release film of the corresponding shape at the falling position.
  • the circuit board detection device detects the circuit board transported by the circuit board conveying device and records the detection results.
  • the horizontal positioning roller and the horizontal guide roller make the FRCC material after peeling off the release film level. Transport and parallel to the circuit board, at the same time, use the alignment system to align the positioning holes and/or opening patterns on the FRCC material with the positioning holes and/or opening patterns on the circuit board, and align the completed FRCC material with the circuit
  • the plate passes between two pre-pressing rollers for pre-pressing, and then is sent to the hot pressing device for hot pressing.
  • step S2 the protective film is also transported to the pre-pressing device through the protective film unwinding roller, so that the protective film covers the FRCC material and passes through the pre-pressing device and hot pressing together with the FRCC material and circuit board.
  • the device completes the lamination of the FRCC material and the circuit board to form a multi-layer board.
  • the protective film is transferred to the protective film winding roller for winding, and the multi-layer board formed by the hot pressing device is then passed through the tunnel oven. Bake to form a multi-layer board with stable performance.
  • the multi-layer board is sent to the punching inspection system.
  • the punching inspection system punches holes in the FRCC material of the multi-layer board to form through holes and blind holes and checks the holes on the multi-layer board and the Check and confirm the graphics; finally roll or cut the multi-layer board into sheets.
  • the multilayer circuit board processing method also includes the following steps:
  • the multi-layer board is then formed on the FRCC material through processes including dry film application, exposure, development, electroplating and etching lines to obtain a multi-layer circuit board.
  • the copper layer on the FRCC material and located at the opening position is Etching forms an opening corresponding to the opening pattern, and the release film retained on the FRCC material corresponds to the opening one-to-one;
  • the semi-cured adhesive layer is The new FRCC material is compounded with the traditional single panel, and cooperates with the multi-layer board production line of the present invention to realize the automated production of multi-layer circuit boards, improve the processing accuracy and yield of multi-layer boards, and simplify the production process of multi-layer circuit boards. process, reduce the amount of release film, effectively save material costs and labor costs, reduce water and electricity consumption, and reduce the generation and discharge of industrial waste;
  • the alignment detection module is used to detect and analyze the coincidence degree of the core boards to avoid deviation after the core boards are pressed.
  • Each alignment detection uses the results of the first alignment detection.
  • the standard range is used as a reference to prevent the problem that a single alignment test is qualified but the overall multi-layer board has a large offset due to the accumulation of layers.
  • the FRCC material uncapping process is used to remove the cover by using high-temperature PET instead of PI.
  • the process flow includes: laser pattern on PET ⁇ peeling off the PET outside the pattern ⁇ peeling bit ⁇ multi-layer lamination ⁇ etching ⁇ cutting ⁇ uncovering, the advantages are as follows:
  • Figure 1 is a schematic plan view of the FRCC material processing unit of the present invention
  • Figure 2 is a schematic plan view of a multi-layer board composite unit using a hot pressing roller according to the present invention
  • Figure 3 is a schematic plan view of the cutting surface of the FRCC material of the present invention.
  • Figure 4 is an enlarged view of the position to be opened after the FRCC material of the present invention peels off the release film;
  • Figure 5 is a schematic structural diagram of the transmission device of the present invention.
  • Figure 6 is a schematic structural diagram of the ring conveyor device of the present invention.
  • Figure 7 is a schematic structural diagram of the peeling device of the present invention.
  • Figure 8 is a schematic diagram of the hole structure of each step in the multilayer circuit board of the present invention.
  • Figure 9 is a schematic plan view of the cutting device using a circular knife die according to the present invention.
  • Figure 10 is a schematic plan view of a stamping die cutting device used in the cutting device of the present invention.
  • Figure 11 is a schematic plan view of a flat plate hot pressing device used in the multi-layer board composite unit of the present invention.
  • Figures 12 to 15 are diagrams illustrating the cap opening process of the present invention.
  • Figure 16 is a schematic plan view of the FRCC material processing unit according to another embodiment of the present invention.
  • Figure 17 is a schematic plan view of the FRCC material processing unit in Embodiment 2 of the present invention.
  • Figure 18 is a schematic plan view of a multi-layer board composite unit in Embodiment 2 of the present invention.
  • Figure 19 is a flow chart of uncapping a multi-layer circuit board in the prior art.
  • This embodiment provides a multilayer board production line, including:
  • At least one FRCC material processing unit 1 It includes an unwinding roller 11 and a conveying device 12 arranged sequentially along the processing direction.
  • the unwinding roller 11 conveys the FRCC material 3 to the conveying device 12, and a device for processing the material is provided at the conveying device 12.
  • a multi-layer board composite unit 2 It includes a circuit board conveying device 21, a positioning device 22, a pre-pressing device 23, and a hot pressing device 24 arranged sequentially along the processing direction.
  • the circuit board conveying device 21 is aligned toward the Device 23 transfers circuit board 6;
  • At least one peeling device 4 includes a guide unwinding roller 41, a peeling positioning roller 42, and a release film winding roller 43.
  • the punched and/or cut FRCC material 4 is transported to the peeling device through the guide unwinding roller 41. After positioning the roller 42, the release film is peeled off and sent to the release film winding roller 43 for winding, and the FRCC material 3 after the release film is peeled off is sent to the alignment device 22.
  • the FRCC material 3 includes a copper layer 31, a cured film layer 32, a semi-cured glue layer 33, and a release film layer 34 from bottom to top.
  • the semi-cured adhesive layer 33 is made through a coating process; in this way, the cured film layer 32 and the semi-cured adhesive layer 33 are closely combined, and bubbles are not easily generated between the layers.
  • the release film layer 34 is made of high-temperature PET material. When high-temperature PET is cut, it will not be carbonized due to temperature increase, thus avoiding the introduction of impurities on the FRCC material 3.
  • the FRCC material 3 is transferred sequentially on the multilayer board production line, and the FRCC material 3 is first punched and/or cut through the FRCC material processing unit 1 to form positioning holes corresponding to the circuit board pattern on the FRCC material 3 and/or open the cover pattern, and then peel off the release film 34 on the FRCC material 3 through the peeling device 4, as shown in Figures 3 and 4; the FRCC material 3 after peeling off the release film is transported to the multilayer board composite unit 2 , at this time, the FRCC material 3 and the circuit board 6 are aligned and pressed through the circuit board conveying device 21, the alignment device 22, and the pre-pressing device 23, and then hot pressing is performed through the hot pressing device 24 to completely solidify the semi-cured adhesive layer.
  • the peeling device 4 enables the FRCC material 3 to be stably transported forward while also recycling the peeled off release film 34.
  • the recycled release film 34 can be reused, reducing costs and improving competitiveness.
  • the semi-cured adhesive layer is bonded to the traditional single panel through a coating process.
  • the new FRCC material 3 is composited and combined with the multilayer board production line of this embodiment to realize the automated production of multilayer circuit boards, improve the processing accuracy and yield of multilayer boards, and simplify the production process of multilayer circuit boards.
  • Reduce the amount of release film effectively save material and labor costs, reduce water and electricity consumption, and reduce the generation and emission of industrial waste;
  • FRCC material 3 is directly attached to the circuit board, and the air bubbles pressed between the layers can be removed from the circuit board.
  • Through-hole discharge solves the problem of air bubbles easily being pressed between the layers of multi-layer boards and improves the performance reliability of multi-layer circuit boards.
  • the conveying device 12 includes a pair of conveying rollers 121 arranged oppositely along the processing direction, and a conveying belt 122 sleeved on the outside of the two conveying rollers 121 , wherein between the two conveying rollers A support plate 123 is provided between 121 and on the side away from the bearing surface of the conveyor belt 122. Evenly distributed toothed stripes are formed on the bearing surface of the conveyor belt 122.
  • the cutting device 13 cuts the FRCC material 3 according to the circuit board pattern at the support plate 123. Punch and/or cut. Compared with directly pulling and conveying the FRCC material 3, by setting the conveying device 12 for conveying, the shaking and dislocation of the FRCC material 3 during the conveying process can be avoided, so that the cutting device 13 can accurately punch holes and/or cutting.
  • the FRCC material processing unit 1 also includes a laminating roller 14 respectively provided at both ends of the conveying device 12, wherein the lower end of the laminating roller 14 is lower than the upper end and the lower end of the conveying roller 121 respectively.
  • the pressing rollers 14 press down the FRCC material 3 at both ends of the conveying device 12 so that the FRCC material 3 is tightly attached to the conveying belt 122 to avoid relative movement between the FRCC material 3 and the conveying belt 122 during the conveying process, causing the FRCC material to 3.
  • Stable transmission is beneficial to improving the accuracy of drilling and/or cutting of FRCC materials 3 by the cutting device 13.
  • At least one FRCC material turning device 15 is also included.
  • the FRCC material turning device 15 includes at least two rollers 151 arranged up and down.
  • the punched and/or cut FRCC material 3 passes through the two rollers 151 in sequence. After being turned over, it is transferred to the peeling device 4.
  • the orientation of the cutting surface of the cut FRCC material 3 is changed, so that half of the FRCC material 3 can be made during subsequent processing.
  • the cured adhesive layer 33 faces the circuit board 6 to achieve the bonding of the FRCC material 3 and the circuit board 6.
  • the entire production line has a compact structure and can be continuously Production.
  • the FRCC material processing unit 1 also includes at least one FRCC material winding roller 16, and the punched and or cut FRCC material 3 is transferred to the FRCC material winding roller 16 for winding. Roll; the rolled FRCC material 3 is transferred to the guide unwinding roller 41 for unwinding. In this way, there is no need to set up the FRCC material turning device 15 to change the orientation of the cutting surface of the FRCC material.
  • the leak detection and leak repair system 5 includes a pattern detection device 51 and a visual detection device 52 ;
  • the visual inspection device 52 is provided with a leak-repairing manipulator.
  • the pattern detection device 51 is used to check whether the pattern on the cutting surface of the FRCC material 3 is complete and the results are recorded. At the same time, it is checked whether the release film 34' falls off at the position where the cover is to be opened.
  • the visual inspection device 52 controls the leak-filling robot to fall off at the position where the cover is to be opened.
  • the release film 34' is used to repair leaks.
  • the pattern detection device 51 may be an AOI pattern detection device
  • the visual detection device 52 may be a CCD visual detection device.
  • the positioning device 22 includes at least one horizontal positioning roller 221 , at least one horizontal guide roller 222 , a positioning system 223 and a positioning detection system.
  • the horizontal positioning roller 221 and the horizontal guide roller 222 is set horizontally.
  • the FRCC material 3 after peeling off the release film passes through the horizontal positioning roller 221 and the horizontal guide roller 222 in sequence.
  • the horizontal positioning roller 221 and the horizontal guide roller 22 make the FRCC material 3 horizontally transported and parallel to the circuit board 6.
  • the system 223 aligns the positioning holes and/or opening patterns of the FRCC material 3 with the positioning holes and/or opening patterns of the circuit board 6 to achieve precise alignment of the FRCC material 3 and the circuit board 6, which is beneficial to improving the multi-layer circuit board. machining accuracy.
  • the alignment system 223 is a CCD visual auxiliary alignment system.
  • the alignment detection system includes a detection platform, and the detection platform is connected with an acquisition module, an offset detection module, an alignment analysis module and a storage module.
  • the acquisition module includes a searchlight and a camera set on the upper side of the core board.
  • the offset detection module is used to detect the offset of the release film after each core board alignment is completed.
  • the offset detection process includes: before the alignment starts, turn on the searchlight, take an image of the lower core board through the camera, and Mark the captured image as an initial image, enlarge the initial image into a pixel grid image and perform image processing on the pixel grid image to obtain the grayscale value of each pixel grid, and store the model
  • a camera is used to capture an image of the upper core board, and the obtained image is marked as a comparison image.
  • the comparison image is enlarged into a pixel grid image and image processing is performed on the pixel grid image to obtain each pixel grid.
  • Grayscale value mark the pixel grid of the contrast image as a contrast pixel grid, compare the grayscale value of the contrast pixel grid one by one with the grayscale threshold, and mark the number of contrasting pixel grids with a grayscale value less than the grayscale threshold as e , mark the ratio of e and u as the offset ratio PY.
  • the deviation degree of the offset ratio PY from the standard range indicates the offset degree of the upper core board and the lower core board after the alignment.
  • the alignment detection module sends an alignment unqualified signal to the detection platform.
  • the alignment analysis module is used. Analyze the causes of unqualified alignment; if BZmin ⁇ PY ⁇ BZmax, it is determined that the core board alignment is qualified, and the alignment detection module sends an alignment qualified signal to the detection platform.
  • the alignment detection module is used to detect the deflection of the core board to ensure that the lamination position of each core board can meet the requirements, and the first time is used for each alignment detection.
  • the standard range is used as a reference during alignment inspection to avoid the phenomenon of gradual deviation when the upper core board is used as a reference, causing the multi-layer board to fail.
  • the searchlight is turned on when not being inspected as an auxiliary, eliminating the impact of normal lighting differences on the inspection results. , further ensuring the accuracy of alignment detection.
  • the detection platform After receiving the alignment failure signal, the detection platform sends an alignment analysis signal to the alignment analysis module. After receiving the alignment analysis signal, the alignment analysis module detects and analyzes the rotational speed of the horizontal guide roller:
  • the number of horizontal guide rollers is one, directly obtain the rotational speed value ZS of the horizontal guide roller, and obtain the rotational speed range ZSmin and ZSmax through the storage module, where ZSmin is the minimum rotational speed threshold and ZSmax is the maximum rotational speed threshold.
  • the rotational speed of the horizontal guide roller is The value ZS is compared with the speed thresholds ZSmin and ZSmax. Comparison: If ZS ⁇ ZSmin or ZS ⁇ ZSmax, it is determined that the rotation speed of the horizontal guide roller is unqualified. The reason for the unqualified alignment is caused by the failure of the alignment device 22.
  • the alignment analysis module sends an alignment maintenance signal to the detection platform; if ZSmin ⁇ ZS ⁇ ZSmax, then it is determined that the rotational speed of the horizontal guide roller is qualified, and the reason for the unqualified alignment is caused by the failure of the circuit board conveying device 21, and the alignment analysis module sends a conveying detection signal to the detection platform;
  • the reason for the unqualified alignment is caused by the failure of the alignment device 22.
  • the alignment analysis module sends an alignment maintenance signal to the detection platform; if the average rotation speed and the value of the difference coefficient meet the requirements at the same time, it is determined that the rotation speed of the horizontal guide roller is qualified.
  • the reason for the unqualified alignment is caused by the failure of the circuit board conveying device 21.
  • the alignment analysis module sends a conveying detection signal to the detection platform.
  • the alignment analysis module is used to detect and analyze the reasons for the unqualified alignment, and different detection schemes are matched according to the different structural designs of the alignment device 22 , and faults of the circuit board conveying device 21 are detected based on the detection and analysis results. Or the fault of the alignment device 22 is determined, thereby avoiding the impact of the equipment failure on the subsequent core board alignment, and at the same time, the efficiency of repairing the equipment failure can be improved.
  • the pre-pressing device 23 is a pair of pre-pressing rollers 231.
  • the aligned FRCC material 3 and the circuit board 6 pass through the space of the pre-pressing rollers 231 at the same time, so that the FRCC material 3 is attached to the circuit board 6. .
  • a circuit board detection device 28 is provided between the circuit board conveying device 21 and the pre-pressing device 23 for detecting the circuit board.
  • the circuit board detection device 28 is an AOI circuit board detection device.
  • the multilayer board composite unit 2 also includes a tunnel oven 27.
  • the multilayer board pressed by the hot pressing device 24 is dried in the tunnel oven 27. bake.
  • This embodiment also includes a punching inspection system 7 for punching and/or cutting the multi-layer board baked in the tunnel oven 27 and rolled by the pressure roller 29 to form through holes and/or blind holes. , and to many Check the holes or patterns on the laminate.
  • the punching inspection system 7 is an ESI punching inspection system.
  • the cutting device 13 includes at least one or more of at least one intelligent laser cutting device 131 , a circular knife die-cutting device 132 , and a stamping and die-cutting device 133 .
  • the intelligent laser cutting device 131 moves above the conveyor 12 and punches and/or cuts the FRCC material 3 according to the circuit board pattern.
  • Laser cutting has the characteristics of high precision. Using laser cutting can effectively improve the drilling and/or cutting efficiency. Or the accuracy of cutting graphics, while the circular knife die-cutting device 132 and the stamping die-cutting device 133 have lower equipment costs and improve the cutting efficiency when used to punch and/or cut graphics with larger apertures or larger cutting areas. Higher, with obvious advantages.
  • the cutting device can be selected according to the precision of the cutting pattern and the cutting area.
  • one of the intelligent laser cutting device 131, the circular knife die-cutting device 132, and the stamping and die-cutting device 133 can also be used. The two are used together to ensure the accuracy of drilling and/or cutting graphics, and at the same time, improve production efficiency.
  • the FRCC material processing unit also includes a protective film unwinding device 26, which includes a protective film unwinding roller 261 and a protective film rewinding roller 262.
  • the protective film unwinding roller 261 transmits to the pre-pressing device 23
  • the protective film covers the FRCC material 3 and passes through the pre-pressing device 23 and the hot pressing device 24 together with the FRCC material 3 and the circuit board 6 to complete the lamination and lamination of the FRCC material 3 and the circuit board 6 to form a multi-layer board.
  • the protective film is transferred to the protective film winding roller 262 for winding.
  • the protective film is PET film, silicone film or TPX.
  • the material of the protective film is relatively soft or softens when heated.
  • a pattern matching the circuit board pattern is formed during the hot pressing process.
  • the lamination pattern will drive the FRCC material 3 to deform, so that the semi-cured adhesive layer 33 on the FRCC material 3 can fully fill the gaps between the circuits, thereby making the FRCC material 3 and the circuit board 6 closely fit.
  • a protective film made of soft material or softened by heat is used for isolation between the FRCC material 3 and the hot-pressing device 24 , and the lamination effect is better.
  • the hot pressing device 24 includes at least a pair of hot pressing rollers 241 or a flat plate hot pressing device 242, wherein the flat plate hot pressing device 242 includes at least one group of hot pressing flat plates arranged oppositely up and down. 2421, and an annular track 2422 corresponding to the hot pressing plate 2421.
  • the hot pressing flat plate 2421 is movably connected to the annular track 2422.
  • the annular track 2422 makes the hot pressing flat plate 2421 move along the multi-layer board.
  • the composite unit 2 moves in the processing direction, and continues to move along the circular track 2422 back to the initial position after the lamination is completed.
  • the two opposite hot pressing flat plates 2421 are pressed toward each other to hot press the FRCC material 3 and the circuit board 6, and along the The circular track 2422 moves forward synchronously with the FRCC material 3 and circuit board 6 until the lamination time reaches the preset time. At this time, the hot pressed flat plate 2421 pressed together separates and continues to move along the circular track 2422 back to the initial state.
  • the hot-pressed flat plates 2421 Continuous movement and pressing along the circular track 2422 prevents pressure leakage and effectively improves the pressing effect.
  • a multi-layer board rewinding roller 251 or a multi-layer board cutting device 252 is also included.
  • the multi-layer boards processed by the multi-layer board composite unit 2 are transferred to the multi-layer board rewinding device.
  • the roller 251 or the multi-layer plate cutting device 252, the multi-layer plate winding roller 251 winds up the multi-layer plate; or the multi-layer plate cutting device 252 cuts the multi-layer plate into sheets, and the sheet is cut into pieces by a robot.
  • the multi-layer boards are stacked in sequence; the rolled-up multi-layer boards or multi-layer boards cut into sheets are then exposed, developed and etched to form a multi-layer circuit board.
  • Embodiment 2 the main difference between Embodiment 2 and Embodiment 1 is that in the material processing unit 1, the release film of the FRCC material is transported away from the cutting device, and the cutting device punches/and Or cutting, only positioning holes are formed on the FRCC material, so that the punched and/or cut FRCC material is directly transported to the peeling device 4 through at least one guide roller 17 to peel off the protective film, and then transported to the multilayer board composite unit 2 Alignment, pre-pressing and hot pressing are performed in sequence to press the FRCC material 3 and the circuit board 6 to form a multi-layer board. There is no need to turn or rewind the FRCC material after punching and drilling, and there is no need to set up leak detection The leak repair system 5 checks the cutting surface of the FRCC material.
  • Embodiment 3 discloses a multilayer circuit board processing method, which includes the following steps:
  • FRCC material preprocessing first place the rolled FRCC material 3 on the unwinding roller 11, start the FRCC material processing unit 1, transfer the FRCC material 3 to the conveyor 12, and punch the FRCC material 3 by the cutting device 13 and/or cutting;
  • Release film peeling Send the FRCC material 3 processed in step S1 to the peeling device 4.
  • the peeling device 4 peels off the release film on the FRCC material 3, and sends the FRCC material 3 after peeling off the release film to Alignment device 22;
  • Multi-layer board lamination When the FRCC material 3 after peeling off the release film 34 is transferred to the alignment device 22, the circuit board conveying device 21 simultaneously conveys the circuit board to the alignment device 22. At this time, the FRCC material 3 is semi-cured. The adhesive layer 33 faces the circuit board 6, and the alignment of the FRCC material 3 and the circuit board 6 is completed through the alignment device 22, and then transferred to the pre-pressing device and the hot pressing device 24 for lamination to form a multi-layer board, as shown in Figure 13 Show.
  • step S1 after drilling and/or cutting by the cutting device 13, positioning holes and/or opening patterns are formed on the FRCC material 3.
  • the release film of the FRCC material 3 faces the cutting device 13, and the cutting device 13 only cuts the contour line of the corresponding shape on the release film 34 according to the opening pattern;
  • step S2 when only positioning holes need to be formed on the FRCC material 3, there is no limit to the direction of the release film 34 during the transportation of the FRCC material 3; at the same time, in step S2, when the release film 34 of the FRCC material 3 has an opening As for the contour line of the figure, the release film 34' of the corresponding shape remains on the FRCC material 3 after the release film is peeled off and is located at the opening position, as shown in Figure 12.
  • step S2 the pattern detection device 5 is also used to detect the opening pattern on the FRCC material 3 after the release film is peeled off and the detection result is recorded, and then the visual detection device 52 is used to detect the release pattern at the opening position. Check whether the film 34' is peeled off, and control the leak-repairing robot to replenish the release film of the corresponding shape at the peeled off position.
  • step S2 the circuit board detection device 28 detects the circuit board conveyed by the circuit board conveying device 21 and records the detection results.
  • the horizontal positioning roller 221 and the horizontal guide roller 222 remove the release film from the FRCC material 3. Transmit it horizontally and parallel to the circuit board 6.
  • the FRCC material 3 and circuit board 6 pass through two pre-pressure rollers 231 It is pre-pressed during the process, and then sent to the hot pressing device 24 for hot pressing.
  • step S2 the protective film is also transported to the pre-pressing device 23 through the protective film unwinding roller 261, so that the protective film covers the FRCC material 3 and passes through the pre-pressing device 23 and the heat pressing device together with the FRCC material 3 and the circuit board 6. 24.
  • the protective film is transferred to the protective film winding roller 262 for winding, and the multi-layer board formed by the hot pressing device 24 is then passed through The tunnel oven 27 bakes to form a multilayer board with stable performance.
  • the multilayer board is transferred to the punching inspection system 7.
  • the punching inspection system 7 punches holes in the FRCC material 3 of the multilayer board to form through holes and blind holes. Check and confirm the holes and patterns on the multi-layer board; finally, roll or cut the multi-layer board into sheets.
  • a protective film is used for isolation between the hot pressing device 24 and the FRCC material 3, which facilitates the semi-cured adhesive layer 33 on the FRCC material 3 to fully fill the gap between the circuits, so that the FRCC material 3 and the circuit board 6 are closely connected. , the lamination effect is better.
  • the multilayer circuit board processing method also includes the following steps:
  • the multilayer board is then subjected to a process including dry film application, exposure, development, electroplating and etching to form circuits on the FRCC material 3 to obtain a multilayer circuit board.
  • a process including dry film application, exposure, development, electroplating and etching to form circuits on the FRCC material 3 to obtain a multilayer circuit board.
  • the copper on the FRCC material 3 and located at the opening position It is etched to form an opening 9 corresponding to the opening pattern, and the release film 34' retained on the FRCC material 3 corresponds to the opening 9 one-to-one;
  • the lid opening method in the multilayer circuit board processing method of this embodiment can not only form ordinary through holes 81 in the multilayer circuit board, but also solve the problem of first-order holes 82 and second-order holes 82 in the multilayer circuit board. It is difficult to process the wrong hole 83 and the two-stage stacked hole 84, and the processing accuracy is not high.
  • the existing multi-layer flexible circuit board uncapping method is used to open the multi-layer flexible circuit board made of a single panel 10 and a double panel 30. The method includes the following steps:
  • the FRCC material decapping process is used to remove the cap by using high-temperature PET instead of PI.
  • the process flow includes: laser pattern on PET ⁇ peeling off the PET outside the pattern ⁇ alignment ⁇ multiple Lamination ⁇ etching ⁇ cutting ⁇ uncovering, the advantages are as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

本发明涉及线路板加工领域,用于解决多层板加工中存在多次的对位,这样多张芯板在对位过程中会造成累积误差较大的问题,具体是一种多层板生产线,包括:至少一FRCC材料加工单元;一多层板复合单元;至少一剥离装置。本发明还公开了多层线路板加工方法。本发明的多层板生产线,配合新型结构的FRCC材料,简化多层线路板加工流程,简化多层线路板开盖工艺,提升多层线路板加工精度和效率,还可以减少离型膜等辅材的用量、及人工作业,有效降低生产成本,减少水电气用量,减少工业垃圾的产生和排放。

Description

多层板生产线及多层线路板加工方法 技术领域
本发明涉及线路板加工领域,特别是涉及多层板生产线及多层线路板加工方法。
背景技术
传统的多层线路板产品,主要将单面覆铜板与双层线路板或多层线路板覆合制成,在层间通过由上至下包括离型膜、半固化胶、离型膜组成的粘接材料进行粘接,其工艺流程包括单面覆铜板来料、开料、钻孔;粘接材料来料、开料钻孔;通过覆膜设备将粘接材料的离型膜剥离,再将半固化胶贴合在单面覆铜板,最后,再通过覆膜设备将粘接材料的另一层离型膜剥离,再与双层线路板或多层线路板进行粘接,经过包括贴干膜、曝光、显影、蚀刻与电镀流程制成所需层数的多层线路板;工序繁琐且设备结构复杂,需要大量的人工进行作业、及耗费大量的水和电,各个流程相互独立,往往是某个工序、或者某几个工序单独作业,造成了人工成本的上升、原材料的浪费、产品质量参差不齐,生产设备投入巨大,厂房占用面积大等弊端。
上述过程造成了离型膜的浪费和人工的浪费,并且在作业过程中,由于每个工人的技能娴熟程度不同,导致产品质量有高有低,另外,多张内层芯板在铆合过程中需要进行准确对位,提高了加工的精度控制要求,且加工中存在多次的对位,这样多张芯板在对位过程中会造成累积误差较大,导致层间对位偏移量大。
上述多层板压合流程中容易在半固化胶片与覆铜板接触的表面上压入气泡,影响多层线路板的性能。
传统的多层线路板开盖工艺:
1.FPC(Flexible Printed Circuit board)上贴合开盖图形:模切开盖图形PI及耐高温保护膜→转帖PET保护膜上→转贴至FPC→去掉多余的PET保护膜保留FPC上开盖位置的PI保护膜及高耐温保护膜;
2.粘接材料(由上至下依次包括离型膜+半固化胶+离型膜)预加工:粘接材料开料→开孔或开窗→撕掉PET离型膜;
3.多层板复合:单面FCCL(Flexible Copper Clad Laminate)→开料→开孔→与半固化胶对位低温复合→撕掉离型纸→对位复合在内层FPC上→高温压合;
4.多层线路板制备:前处理→贴干膜→曝光图形→显影→电镀→蚀刻→脱图形干膜→表面形成多层板线路及连接内层孔结构→激光切割机所需开盖图形处→低粘胶带复合粘连开窗处去掉开窗处PI及高耐温保护膜。
上述开盖流程复杂,且生产效率低下。
发明内容
本发明的目的在于克服现有技术中的上述缺陷,提供了一种多层板生产线,并使用新型结构的FRCC(flexible resin coated copper)材料,简化多层线路板加工流程,简化多层线路板开盖工艺,提升多层线路板加工精度和效率,还可以减少离型膜等辅材的用量、及人工作业,有效降低生产成本,减少水电气用量,减少工业垃圾的产生和排放。
一种多层板生产线,包括:
至少一FRCC材料加工单元:其包括沿加工方向依次设置的一放卷辊、及一传送装置,所述放卷辊向传送装置传送FRCC材料,在传送装置处设置 有用于对FRCC材料进行打孔和/或切割的一切割装置;
一多层板复合单元:其包括沿加工方向依次设置的一线路板输送装置、一对位装置、一预压装置、及一热压装置,所述线路板输送装置向预压装置传送线路板;
至少一剥离装置,其包括导向放卷辊、一剥离定位辊、及一离型膜收卷辊,打孔和/或切割后的FRCC材料经导向放卷辊传送至剥离定位辊后,离型膜被剥离并传送至离型膜收卷辊进行收卷,剥离离型膜后的FRCC材料传送至对位装置。
作为本发明的进一步改进,所述传送装置包括沿加工方向相对设置的一对传送辊、及套设于两个传送辊外侧的一传送皮带,其中,在两个传送辊间且背离传送皮带承载面一侧设置有一支撑板,传送皮带承载面上形成有均匀分布的齿状条纹,所述切割装置在位于支撑板处按线路板图形对FRCC材料进行打孔和/或切割。
作为本发明的进一步改进,所述FRCC材料加工单元还包括分别设置于传送装置两端的一压膜辊,其中,压膜辊的下端分别低于传送辊的上端与放卷辊的上端。
作为本发明的进一步改进,还包括至少一FRCC材料翻转装置,该FRCC材料翻转装置包括上下设置的至少两个辊轮,打孔和/或切割后的FRCC材料依次经过两个辊轮进行翻转后传送至剥离装置。
作为本发明的进一步改进,所述FRCC材料加工单元还包括至少一FRCC材料收卷辊,打孔和或切割完成的FRCC材料传送至FRCC材料收卷辊进行收卷;收卷后的FRCC材料转移至导向放卷辊进行放卷。
作为本发明的进一步改进,还包括至少一查漏补漏系统,用于对剥离离型膜后FRCC材料的切割面进行检查,该查漏补漏系统包括一图形检测装置、一视觉检测装置;视觉检测装置设置有补漏机械手。
作为本发明的进一步改进,所述对位装置包括至少一水平定位辊、至少一水平导向辊、一对位系统及一对位检测系统,所述水平定位辊和水平导向辊水平设置,剥离离型膜后的FRCC材料依次通过水平定位辊、水平导向辊, 水平定位辊和水平导向辊使得FRCC材料水平传送并与线路板平行,使用对位系统将FRCC材料的定位孔和/或开盖图形与线路板的定位孔和/或开盖图形对位;
所述对位检测系统包括检测平台,检测平台通信连接有采集模块、偏移检测模块、对位分析模块以及存储模块;
所述采集模块包括设置在芯板上侧的探照灯以及摄像头;
所述偏移检测模块用于对每一次完成芯板对位后的离型膜进行偏移检测,偏移检测的过程包括:在对位开始之前,开启探照灯,通过摄像头对下层芯板进行图像拍摄并将拍摄到的图像标记为初始图象,将初始图象放大为像素格图像并对像素格图像进行图像处理得到每一个像素格的灰度值,通过存储模块获取到灰度阈值HDmin,将初始图象的像素格标记为初始像素格,将初始像素格的总数量标记为u,将初始像素格的灰度值逐一与灰度阈值HDmin进行比较,将灰度值小于灰度阈值HDmin的初始像素格数量标记为m,将m与u的比值标记为标准比BZ;通过对标准比BZ进行数值计算得到标准阈值BZmin、BZmax,其中BZmin为最小标准阈值,BZmax为最大标准阈值,由最小标准阈值BZmin与最大标准阈值BZmax构成标准范围;
在对位完成之后,采用摄像头对上层芯板进行图像拍摄,并将得到的图像标记为对比图象,将对比图象放大为像素格图像并对像素格图像进行图像处理得到每一个像素格的灰度值,将对比图象的像素格标记为对比像素格,将对比像素格的灰度值逐一与灰度阈值进行比较,将灰度值小于灰度阈值的对比像素格的数量标记为e,将e与u的比值标记为偏移比PY,将偏移比与标准阈值BZmin、BZmax进行比较:若PY≤BZmin或PY≥BZmax,则判定芯板对位不合格,对位检测模块向检测平台发送对位不合格信号;若BZmin<PY<BZmax,则判定芯板对位合格,对位检测模块对检测平台发送对位合格信号;
所述检测平台接收到对位不合格信号后向对位分析模块发送对位分析信号,对位分析模块接收到对位分析信号后对水平导向辊的转速进行检测分析:
若水平导向辊的数量为一,则直接获取水平导向辊的转速值ZS,通过存 储模块获取到转速范围ZSmin、ZSmax,其中ZSmin为最小转速阈值,ZSmax为最大转速阈值,将水平导向辊的转速值ZS与转速阈值ZSmin、ZSmax进行比较,通过转速值ZS与转速阈值ZSmin、ZSmax的比较结果对对位不合格的原因进行判定;
若水平导向辊的数量不为一,则将水平导向辊标记为i,i=1,2,…,n,n为正整数,获取水平导向辊的转速值并标记为ZSi,将n个转速值ZSi建立转速集合{ZS1,ZS2,…,ZSn},对转速集合进行平均值计算与方差计算分别得到转速均值与差异系数,对转速均值与差异系数的数值是否满足要求进行判定。
作为本发明的进一步改进,所述预压装置为一对预压压轮,对位完成的FRCC材料与线路板同时穿过预压压轮,使FRCC材料贴合在线路板上。
作为本发明的进一步改进,线路板输送装置与预压压轮间设置有一线路板检测装置用于检测线路板。
作为本发明的进一步改进,所述多层板复合单元还包括一隧道式烘箱,经热压装置压合完成的多层板通过隧道式烘箱进行烘烤。
作为本发明的进一步改进,还包括一打孔检查系统,还包括一打孔检查系统,用于对经隧道式烘箱烘烤后的多层板进行打孔和/或切割,形成通孔和/或盲孔,并对多层板上的孔或图形进行检查确认。
作为本发明的进一步改进,所述切割装置与包括至少一智能激光切割装置、一圆刀模切割装置、及一冲压模切装置中的至少一种或两种以上。
作为本发明的进一步改进,所述FRCC材料加工单元还包括一保护膜放卷装置,其包括一保护膜放卷辊、及一保护膜收卷辊,所述保护膜放卷辊向预压装置传送保护膜,保护膜覆盖在FRCC材料上并随FRCC材料与线路板一起通过预压装置与热压装置,完成FRCC材料与线路板的压合形成多层板,然后,保护膜传送至保护膜收卷辊进行收卷。
作为本发明的进一步改进,所述保护膜为PET膜、硅胶膜或TPX(4-methylpentene-1的聚合物)。
作为本发明的进一步改进,所述热压装置包括至少一对热压辊或一平板 热压装置,其中,所述平板热压装置包括上下相对设置的至少一组热压平板、及与热压平板对应设置的一环形轨道,热压平板与环形轨道活动连接,环形轨道使热压平板沿多层板复合单元加工方向移动,并在压合完成后继续沿环形轨道移动回到初始位置。
作为本发明的进一步改进,还包括一多层板收卷辊或一多层板裁切装置,经多层板覆合单元加工完成的多层板传送至多层板收卷辊或多层板裁切装置,所述多层板收卷辊将多层板进行收卷;或者所述多层板裁切装置将多层板裁切成片状,并通过机械手将片状多层板依次码放;收卷后的多层板或裁切成片状的多层板再经过包括贴干膜、曝光、显影、蚀刻与电镀流程在FRCC材料上形成线路,制成多层线路板。
本发明还公开了一种多层线路板加工方法,包括以下步骤:
S1.FRCC材料预加工:先将卷状FRCC材料放置于放卷辊上,启动FRCC材料加工单元,使FRCC材料传送至传送装置并由切割装置对FRCC材料进行打孔和/或切割;
S2.离型膜剥离:将步骤S1加工完成的FRCC材料传送至剥离装置,剥离装置对FRCC材料上的离型膜进行剥离,并将剥离离型膜后的FRCC材料传送至对位装置;
S3.多层板复合:当剥离离型膜后的FRCC材料传送至对位装置时,线路板输送装置同步向对位装置传送线路板,此时,FRCC材料的半固化胶层朝向线路板,通过对位装置完成FRCC材料与线路板的对位,然后依次传送至预压装置与热压装置进行压合,形成多层板。
作为本发明的进一步改进,在步骤S1中,经过切割装置进行打孔和/或切割后,在FRCC材料上形成定位孔和/或开盖图形,当需要在FRCC材料上形成开盖图形时,放卷辊在向传送装置传送FRCC材料过程中,FRCC材料的离型膜朝向切割装置,且切割装置仅在离型膜上按照开盖图形切割出对应形状的轮廓线;而当仅需要在FRCC材料上形成定位孔时,对FRCC材料传送过程中离型膜的朝向没有限定。
作为本发明的进一步改进,在步骤S2中,当FRCC材料的离型膜上具有 开盖图形的轮廓线,剥离离型膜后的FRCC材料上且位于开盖位置处保留有对应形状的离型膜。
作为本发明的进一步改进,在步骤S2中,还通过图形检测装置对剥离离型膜后的FRCC材料上的开盖图形进行检测并记录检测结果,然后通过视觉检测装置检测开盖位置处的离型膜是否有脱落,并控制补漏机械手对脱落位置处补充相应形状的离型膜。
作为本发明的进一步改进,在步骤S2中,线路板检测装置对由线路板输送装置传送的线路板进行检测并记录检测结果,水平定位辊与水平导向辊使剥离离型膜后的FRCC材料水平传送并与线路板平行,同时,使用对位系统将FRCC材料上的定位孔和/或开盖图形与线路板上的定位孔和/或开盖图形对位,对位完成的FRCC材料与线路板穿过两个预压压轮间进行预压,再传送至热压装置进行热压。
作为本发明的进一步改进,在步骤S2中,还通过保护膜放卷辊向预压装置传送保护膜,使保护膜覆盖在FRCC材料上并随FRCC材料与线路板一起通过预压装置及热压装置,完成FRCC材料与线路板的压合形成多层板,此时,保护膜传送至保护膜收卷辊进行收卷,而经过热压装置压合形成的多层板再经过隧道式烘箱进行烘烤,形成性能稳定的多层板,多层板传送至打孔检查系统,打孔检查系统在多层板的FRCC材料上打孔形成通孔与盲孔并对多层板上的孔与图形进行检查确认;最后对多层板进行收卷或裁切成片状。
所述多层线路板加工方法还包括以下步骤:
S4.将多层板再经过包括贴干膜、曝光、显影、电镀与蚀刻线流程在FRCC材料上形成线路,获得多层线路板,同时,在FRCC材料上且位于开盖位置处的铜被蚀刻形成与开盖图形对应的开口,FRCC材料上保留的离型膜与该开口一一对应;
S5.开盖:沿步骤S4中蚀刻形成的开口边缘对FRCC材料进行切断,并剥除切断处剩余的FRCC材料,即完成开盖;
S6.开盖完成后的多层线板重复步骤S2、步骤S3、步骤S4、及S5,直到获得所需层数的多层线路板。
本发明的有益效果在于:
(1)相比于传统的在单面板与双面板间使用包括离型膜、半固化胶、离型膜组成的材料进行覆膜粘接的工艺相比,通过涂布工艺将半固化胶层与传统单面板复合制成新型的FRCC材料,配合本发明的多层板生产线,实现多层线路板的自动化生产,提高了多层板加工精度与良率,简化了多层线路板的生产工艺流程,减少离型膜用量,有效节省材料成本及人工成本,减少水电气用量,减少工业垃圾的产生和排放;
(2)FRCC材料直接与线路板贴合,在层间压入的气泡可以从线路板上的通孔排出,解决了多层板层间容易压入气泡的问题,提高多层线路板性能可靠性;
(3)在每一次对位之后均采用对位检测模块对芯板的重合度进行检测分析,避免芯板压合之后出现偏移现象,每一次对位检测均采用第一次对位检测的标准范围作为参考,从而防止出现单次对位检测合格但由于层层累加导致多层板整体存在偏移量较大的问题。
(4)与现有多层线路板开盖工艺相比,采用FRCC材料开盖工艺,通过使用高温PET代替PI进行揭盖,其工艺流程包括:PET上激光图形→剥离图形外的PET→对位→多层压合→蚀刻→切割→揭盖,优点如下:
a.节省材料成本:省去内层CVL覆盖膜+PI保护膜成本;
b.节省工艺流程:省去覆盖膜+PI保护膜贴合流程;
c.提升工艺精度:开盖区的对位仅受线路精度影响,相较于传统工艺对位精度有质的提升;
d.采用高温离型膜生产的材料,可以直接用激光切割后适用于揭盖,离型膜重复利用,能够减少成本,提高竞争力。
附图说明
为了更清楚地说明本实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明FRCC材料加工单元平面示意图;
图2为本发明多层板复合单元采用热压辊的平面示意图;
图3为本发明FRCC材料切割面平面示意图;
图4为本发明FRCC材料剥离离型膜后待开盖位置处放大图;
图5为本发明传送装置结构示意图;
图6为本发明环形传送装置结构示意图;
图7为本发明剥离装置结构示意图;
图8为本发明多层线路板内各阶孔结构示意图;
图9为本发明切割装置采用圆刀模切割装置平面示意图;
图10为本发明切割装置采用冲压模切割装置平面示意图;
图11为本发明多层板复合单元采用平板热压装置的平面示意图;
图12至图15为本发明开盖工艺说明图;
图16为本发明另一实施例FRCC材料加工单元平面示意图;
图17为本发明实施例二FRCC材料加工单元平面示意图;
图18为本发明实施例二多层板复合单元平面示意图;
图19为现有技术中多层线路板开盖流程图。
具体实施方式
为使本实施例的目的、技术方案和优点更加清楚,下面将对本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
请参照图1与图2,本实施例提供一种多层板生产线,包括:
至少一FRCC材料加工单元1:其包括沿加工方向依次设置的一放卷辊11、及一传送装置12,放卷辊11向传送装置12传送FRCC材料3,在传送装置12处设置有用于对FRCC材料3进行打孔和/或切割的一切割装置13;
一多层板复合单元2:其包括沿加工方向依次设置的一线路板输送装置21、一对位装置22、一预压装置23、及一热压装置24,线路板输送装置21向对位装置23传送线路板6;
至少一剥离装置4,其包括导向放卷辊41、一剥离定位辊42、及一离型膜收卷辊43,打孔和/或切割后的FRCC材料4经导向放卷辊41传送至剥离定位辊42后,离型膜被剥离并传送至离型膜收卷辊43进行收卷,剥离离型膜后的FRCC材料3传送至对位装置22。
本实施例中,如图12所示,FRCC材料3由下至上依次包括一铜层31、一固化薄膜层32、一半固化胶层33、及一离型膜层34。
具体的,半固化胶层33通过涂布工艺制成;这样,固化薄膜层32与半固化胶层33紧密结合,在层间不容易产生气泡。
离型膜层34为高温PET材料。高温PET在进行切割时,不会因温度升高而发生碳化,避免在FRCC材料3上引入杂质。
具体的,FRCC材料3在该多层板生产线上依次传送,通过FRCC材料加工单元1先对FRCC材料3进行打孔和/或切割,使FRCC材料3上形成与线路板图形相对应的定位孔和/或开盖图形,然后通过剥离装置4将FRCC材料3上的离型膜34剥离,如图3与图4所示;剥离离型膜后的FRCC材料3传送至多层板复合单元2处,此时,通过线路板输送装置21、对位装置22、及预压装置23实现FRCC材料3与线路板6对位压合,再通过热压装置24进行热压使半固化胶层完全固化形成多层板;剥离装置4使FRCC材料3稳定向前传送的同时,还对剥离的离型膜34进行回收,回收的离型膜34可以重复利用,减少成本,提高竞争力。
相比于传统的在单面板与双面板使用包括离型膜、半固化胶、离型膜组成的材料进行覆膜粘接的工艺相比,通过涂布工艺将半固化胶层与传统单面板复合制成新型的FRCC材料3,配合本实施例的多层板生产线,实现多层线路板的自动化生产,提升了多层板加工精度与良率,简化了多层线路板的生产工艺流程,减少离型膜用量,有效节省材料成本及人工成本,减少水电气用量,减少工业垃圾的产生和排放;FRCC材料3直接与线路板贴合,在层间压入的气泡可以从线路板上的通孔排出,解决了多层板层间容易压入气泡的问题,提高多层线路板性能可靠性。
如图5所示,本实施例中,传送装置12包括沿加工方向相对设置的一对传送辊121、及套设于两个传送辊121外侧的一传送皮带122,其中,在两个传送辊121间且背离传送皮带122承载面一侧设置有一支撑板123,传送皮带122承载面上形成有均匀分布的齿状条纹,切割装置13在位于支撑板123处按线路板图形对FRCC材料3进行打孔和/或切割。与直接对FRCC材料3进行牵拉传送相比,通过设置传送装置12进行传送,避免FRCC材料3在传送过程中出现晃动及错位现象,使得切割装置13对FRCC材料3进行精准打孔和/或切割。
本实施例中,如图1所示,FRCC材料加工单元1还包括分别设置于传送装置12两端的一压膜辊14,其中,压膜辊14的下端分别低于传送辊121的上端与放卷辊11的上端。压膜辊14将传送装置12两端的FRCC材料3向下压紧,使FRCC材料3紧紧贴合在传送皮带122上,避免传送过程中FRCC材料3与传送皮带122发生相对移动,使得FRCC材料3稳定传送,利于提高切割装置13对FRCC材料3打孔和/或切割的精确度。
本实施例中,还包括至少一FRCC材料翻转装置15,该FRCC材料翻转装置15包括上下设置的至少两个辊轮151,打孔和/或切割后的FRCC材料3依次经过两个辊轮151进行翻转后传送至剥离装置4,通过设置与FRCC材料加工单元1对应的至少一FRCC材料翻转装置15,来改变切割后FRCC材料3切割面的朝向,在后续加工过程中使FRCC材料3的半固化胶层33朝向线路板6,实现FRCC材料3与线路板6的贴合,整个生产线结构紧凑且能够连续 生产。
当然,在其他实施例中,如图16所示,FRCC材料加工单元1还包括至少一FRCC材料收卷辊16,打孔和或切割完成的FRCC材料3传送至FRCC材料收卷辊16进行收卷;收卷后的FRCC材料3转移至导向放卷辊41进行放卷,这样,就不需要设置FRCC材料翻转装置15来改变FRCC材料切割面的朝向。
本实施例中,还包括至少一查漏补漏系统5,用于对剥离离型膜后FRCC材料3的切割面进行检查,该查漏补漏系统5包括一图形检测装置51、一视觉检测装置52;视觉检测装置52设置有补漏机械手。通过图形检测装置51来检查FRCC材料3切割面上的图形是否完整并记录结果,同时,检查待开盖位置处离型膜34'是否脱落,视觉检测装置52控制补漏机械手对开盖位置处脱落的离型膜34'进行补漏。具体的,图形检测装置51可以为AOI图形检测装置,视觉检测装置52可以为CCD视觉检测装置。
本实施例中,如图2所示,对位装置22包括至少一水平定位辊221、至少一水平导向辊222、一对位系统223及一对位检测系统,水平定位辊221和水平导向辊222水平设置,剥离离型膜后的FRCC材料3依次通过水平定位辊221、水平导向辊222,水平定位辊221和水平导向辊22使得FRCC材料3水平传送并与线路板6平行,使用对位系统223将FRCC材料3的定位孔和/或开盖图形与线路板6的定位孔和/或开盖图形对位,实现FRCC材料3与线路板6的精准对位,利于提升多层线路板的加工精度。具体的,对位系统223为CCD视觉辅助对位系统。
对位检测系统包括检测平台,检测平台通信连接有采集模块、偏移检测模块、对位分析模块以及存储模块。
采集模块包括设置在芯板上侧的探照灯以及摄像头。
偏移检测模块用于对每一次完成芯板对位后的离型膜进行偏移检测,偏移检测的过程包括:在对位开始之前,开启探照灯,通过摄像头对下层芯板进行图像拍摄并将拍摄到的图像标记为初始图象,将初始图象放大为像素格图像并对像素格图像进行图像处理得到每一个像素格的灰度值,通过存储模 块获取到灰度阈值HDmin,将初始图象的像素格标记为初始像素格,将初始像素格的总数量标记为u,将初始像素格的灰度值逐一与灰度阈值HDmin进行比较,将灰度值小于灰度阈值HDmin的初始像素格数量标记为m,将m与u的比值标记为标准比BZ;通过公式BZmin=α1×BZ与BZmax=α2×BZ得到标准阈值BZmin、BZmax,α1与α2均为比例系数,且0.95≤α1≤0.98,1.02≤α2≤1.05,其中BZmin为最小标准阈值,BZmax为最大标准阈值,由最小标准阈值BZmin与最大标准阈值BZmax构成标准范围。
在对位完成之后,采用摄像头对上层芯板进行图像拍摄,并将得到的图像标记为对比图象,将对比图象放大为像素格图像并对像素格图像进行图像处理得到每一个像素格的灰度值,将对比图象的像素格标记为对比像素格,将对比像素格的灰度值逐一与灰度阈值进行比较,将灰度值小于灰度阈值的对比像素格的数量标记为e,将e与u的比值标记为偏移比PY,偏移比PY与标准范围的偏差程度表示对位之后上层芯板与下层芯板的偏移程度,对位完成之后,将偏移比与标准阈值BZmin、BZmax进行比较:若PY≤BZmin或PY≥BZmax,则判定芯板对位不合格,对位检测模块向检测平台发送对位不合格信号,对位不合格时采用对位分析模块对导致对位不合格的原因进行分析;若BZmin<PY<BZmax,则判定芯板对位合格,对位检测模块对检测平台发送对位合格信号。
在每一次对位完成之后均采用对位检测模块对芯板偏移程度进行检测,从而保证每一层芯板的压合位置均能够满足要求,且每一次对位检测时均采用第一次对位检测时的标准范围作为参考,避免出现以上层芯板作为参考时出现逐步偏离导致多层板不合格的现象,对未检测时开启探照灯作为辅助,排除了正常光照差异对检测结果的影响,进一步保证对位检测精度。
检测平台接收到对位不合格信号后向对位分析模块发送对位分析信号,对位分析模块接收到对位分析信号后对水平导向辊的转速进行检测分析:
若水平导向辊的数量为一,则直接获取水平导向辊的转速值ZS,通过存储模块获取到转速范围ZSmin、ZSmax,其中ZSmin为最小转速阈值,ZSmax为最大转速阈值,将水平导向辊的转速值ZS与转速阈值ZSmin、ZSmax进行 比较:若ZS≤ZSmin或ZS≥ZSmax,则判定水平导向辊的转速不合格,对位不合格的原因由对位装置22故障引起,对位分析模块向检测平台发送对位检修信号;若ZSmin<ZS<ZSmax,则判定水平导向辊的转速合格,对位不合格的原因由线路板输送装置21故障引起,对位分析模块向检测平台发送输送检测信号;
若水平导向辊的数量不为一,则将水平导向辊标记为i,i=1,2,…,n,n为正整数,获取水平导向辊的转速值并标记为ZSi,将n个转速值ZSi建立转速集合{ZS1,ZS2,…,ZSn},对转速集合进行平均值计算与方差计算分别得到转速均值与差异系数,对转速均值与差异系数的数值是否满足要求进行判定,若转速均值与差异系数的数值不同时满足要求,则判定水平导向辊的转速不合格,对位不合格的原因由对位装置22故障引起,对位分析模块向检测平台发送对位检修信号;若转速均值与差异系数的数值同时满足要求,则判定水平导向辊的转速合格,对位不合格的原因由线路板输送装置21故障引起,对位分析模块向检测平台发送输送检测信号。
在对位不合格时采用对位分析模块对导致对位不合格的原因进行检测分析,并根据对位装置22不同的结构设计搭配不同的检测方案,通过检测分析结果对线路板输送装置21故障或对位装置22故障进行判定,从而避免设备故障对后续芯板对位造成影响,同时也可以提高对设备故障的检修效率。
本实施例中,预压装置23为一对预压压轮231,对位完成的FRCC材料3与线路板6同时穿过预压压轮231间,使FRCC材料3贴合在线路板6上。
本实施例中,线路板输送装置21与预压装置23间设置有一线路板检测装置28用于检测线路板。具体的,该线路板检测装置28为AOI线路板检测装置。
为了使半固化胶层33充分固化,提高线路板性能可靠性,多层板复合单元2还包括一隧道式烘箱27,经热压装置24压合完成的多层板通过隧道式烘箱27进行烘烤。
本实施例中,还包括一打孔检查系统7,用于对经隧道式烘箱27烘烤与压辊29辊压完成的多层板进行打孔和或切割,形成通孔和/或盲孔,并对多 层板上的孔或图形进行检查确认。具体的该打孔检查系统7为ESI打孔检查系统。
如图1、图9与图10所示,切割装置13包括至少一智能激光切割装置131、圆刀模切装置132、及冲压模切装置133中的至少一种或两种以上。具体的,智能激光切割装置131在传送装置12的上方移动并按照线路板图形对FRCC材料3进行打孔和/或切割,激光切割具有精度高的特点,采用激光切割能有效提高打孔和/或切割图形的精度,而圆刀模切装置132与冲压模切装置133,设备成本较低,在用于对孔径较大或切割面积较大的图形进行打孔和/或切割时,切割效率较高,具有明显的优势。
在实际生产中,可以根据切割图形的精密度及切割面积对切割装置进行选用,当然,也可以将智能激光切割装置131与圆刀模切装置132、及冲压模切装置133中的一种或两种一起配合使用,保证打孔和/或切割图形的精度,同时,提高生产效率。
本实施例中,FRCC材料加工单元还包括一保护膜放卷装置26,其包括一保护膜放卷辊261、及一保护膜收卷辊262,保护膜放卷辊261向预压装置23传送保护膜,保护膜覆盖在FRCC材料3上并随FRCC材料3与线路板6一起通过预压装置23与热压装置24,完成FRCC材料3与线路板6的贴合与压合形成多层板,然后,保护膜传送至保护膜收卷辊262进行收卷。具体的,保护膜为PET膜、硅胶膜或TPX,上述保护膜材质较软或在受热情况下发生软化,因此,在经过热压装置24时,在热压过程中形成与线路板图形相匹配的压合图形,并带动FRCC材料3变形,使FRCC材料3上的半固化胶层33充分填充线路间的间隙,从而使FRCC材料3与线路板6紧密贴合,相比于热压装置24直接对FRCC材料3进行热压相比,在FRCC材料3与热压装置24间使用材质较软或受热发生软化的保护膜进行隔离,压合效果更好。
如图2、图6与图11所示,热压装置24包括至少一对热压辊241或一平板热压装置242,其中,平板热压装置242包括上下相对设置的至少一组热压平板2421、及与热压平板2421对应设置的一环形轨道2422,热压平板2421与环形轨道2422活动连接,环形轨道2422使热压平板2421沿多层板 复合单元2加工方向移动,并在压合完成后继续沿环形轨道2422移动回到初始位置。具体的,当预压完成的FRCC材料3与线路板6传送至平板热压装置242时,相对的两个热压平板2421相向压合对FRCC材料3与线路板6进行热压,并沿着环形轨道2422与FRCC材料3及线路板6同步向前移动,直到压合时间达到预设的时间,此时,压合在一起的热压平板2421分离,并继续沿环形轨道2422移动回到初始位置,等待由预压装置23传送过来的FRCC材料3与线路板6,并重复上述动作,通过合理设置热压平板2421的数量,并根据多层板复合单元2传送频率,使热压平板2421沿环形轨道2422不断的移动与压合,不会出现漏压现象,且有效提高压合效果。
如图2所示,根据生产工艺要求,还包括一多层板收卷辊251或一多层板裁切装置252,经过多层板复合单元2加工完成的多层板传送至多层板收卷辊251或多层板裁切装置252,多层板收卷辊251将多层板进行收卷;或者多层板裁切装置252将多层板裁切成片状,并通过机械手将片状多层板依次码放;收卷后的多层板或裁切成片状的多层板再经过曝光显影与蚀刻线路板制作流程形成多层线路板。
实施例二
如图7与图18所示,实施例二与实施例一的主要区别在于,在材料加工单元1中,FRCC材料的离型膜背离切割装置进行传送,切割装置对FRCC材料进行打孔/和或切割,在FRCC材料上仅形成定位孔,这样经过打孔和/或切割完成的FRCC材料经过至少一导向辊17直接传送至剥离装置4对保护膜进行剥离,然后传送至多层板复合单元2依次进行对位、预压与热压,使FRCC材料3与线路板6压合形成多层板,不需要对打孔和钻孔后的FRCC材料进行翻转或收卷,也不需要设置查漏补漏系统5对FRCC材料的切割面进行检查。
实施例三
实施例三公开了一种多层线路板加工方法,包括以下步骤:
S1.FRCC材料预加工:先将卷状FRCC材料3放置于放卷辊11上,启动FRCC材料加工单元1,使FRCC材料3传送至传送装置12并由切割装置13对FRCC材料3进行打孔和/或切割;
S2.离型膜剥离:将步骤S1加工完成的FRCC材料3传送至剥离装置4,剥离装置4对FRCC材料3上的离型膜进行剥离,并将剥离离型膜后的FRCC材料3传送至对位装置22;
S3.多层板复合:当剥离离型膜34后的FRCC材料3传送至对位装置22时,线路板输送装置21同步向对位装置22传送线路板,此时,FRCC材料3的半固化胶层33朝向线路板6,通过对位装置22完成FRCC材料3与线路板6的对位,然后依次传送至预压装置与热压装置24进行压合,形成多层板,如图13所示。
具体的,在步骤S1中,经过切割装置13进行打孔和/或切割后,在FRCC材料3上形成定位孔和/或开盖图形,当需要在FRCC材料3上形成开盖图形时,放卷辊11在向传送装置12传送FRCC材料3过程中,FRCC材料3的离型膜朝向割装置13,且切割装置13仅在离型膜34上按照开盖图形切割出对应形状的轮廓线;而当仅需要在FRCC材料3上形成定位孔时,对FRCC材料3传送过程中离型膜34的朝向没有限定;同时,在步骤S2中,当FRCC材料3的离型膜34上具有开盖图形的轮廓线,剥离离型膜后的FRCC材料3上且位于开盖位置处保留有对应形状的离型膜34',如图12所示。
具体的,在步骤S2中,还通过图形检测装置5对剥离离型膜后的FRCC材料3上的开盖图形进行检测并记录检测结果,然后通过视觉检测装置52检测开盖位置处的离型膜34'是否有脱落,并控制补漏机械手对脱落位置处补充相应形状的离型膜。
具体的,在步骤S2中,线路板检测装置28对由线路板输送装置21传送的线路板进行检测并记录检测结果,水平定位辊221与水平导向辊222使剥离离型膜后的FRCC材料3水平传送并与线路板6平行,同时,使用对位系统223将FRCC材料3上的定位孔和/或开盖图形与线路板6上的定位孔和/或开盖图形对位,对位完成的FRCC材料3与线路板6穿过两个预压压轮231 间进行预压,再传送至热压装置24进行热压。
在步骤S2中,还通过保护膜放卷辊261向预压装置23传送保护膜,使保护膜覆盖在FRCC材料3上并随FRCC材料3与线路板6一起通过预压装置23及热压装置24,完成FRCC材料3与线路板6的压合形成多层板,此时,保护膜传送至保护膜收卷辊262进行收卷,而经过热压装置24压合形成的多层板再经过隧道式烘箱27进行烘烤,形成性能稳定的多层板,多层板传送至打孔检查系统7,打孔检查系统7在多层板的FRCC材料3上打孔形成通孔与盲孔并对多层板上的孔与图形进行检查确认;最后对多层板进行收卷或裁切成片状。在热压过程中,在热压装置24与FRCC材料3间使用保护膜进行隔离,利于FRCC材料3上的半固化胶层33充分填充线路间的间隙,使FRCC材料3与线路板6紧密贴合,压合效果更好。
具体的,多层线路板加工方法还包括以下步骤:
S4.将多层板再经过包括贴干膜、曝光、显影、电镀与蚀刻流程在FRCC材料3上形成线路,获得多层线路板,同时,在FRCC材料3上且位于开盖位置处的铜被蚀刻形成与开盖图形对应的开口9,FRCC材料3上保留的离型膜34'与该开口9一一对应;
S5.开盖:沿步骤S4中蚀刻形成的开口边缘对FRCC材料进行切断,并剥除切断处剩余的FRCC材料,即完成开盖;在进行FRCC材料3与线路板6压合时,由于开口9对应的位置处,半固化胶33与线路板6间被保留下来的离型膜34'隔离,不会粘接在一起因此,在将固化绝缘膜层及胶层切断后,可以很容易的将剩余的FRCC材料剥除;
S6.开盖完成后的多层线板重复步骤S2、步骤S3、步骤S4、及S5,直到获得所需层数的多层线路板。
如图8所示,本实施例的多层线路板加工方法中开盖方法,不仅可以在多层线路板中形成普通通孔81,还解决了多层线路板中1阶孔82、2阶错孔83、及2阶叠孔84加工难度大,加工精确度不高的问题。如图19所示,现有的多层柔性线路板开盖方法,用于在由单面板10和双面板30贴合而成的多层柔性线路板上实现开盖,该方法包括以下步骤:
(1)刻蚀单面板10的铜层101形成第一开孔;
(2)将单面板10与组合胶20假接,并刻蚀单面板10的PI层和组合胶20而形成第二开孔,第二开孔的孔径小于第一开孔的孔径;
(3)将假接的单面板10和组合胶20与双面板30进行本接,使得第一开孔、第二开孔形成开盖区40,双面板30的一侧铜面形成开盖区40的底部,第一开孔的孔壁、第二开孔的孔壁形成开盖区40的侧壁;
(4)在开盖区40的底部和侧壁上镀铜层50;
(5)采用干膜60覆盖于第二开孔与第一开孔相连接的口部,使至少第二开孔的孔壁以及开盖区40的底部形成干膜6的覆盖区域;
(6)选镀未被干膜60覆盖的区域形成选镀层70;
(7)移除干膜60;
(8)刻蚀干膜60的覆盖区域中的铜层50。
与现有多层线路板开盖工艺相比,采用FRCC材料开盖工艺,通过使用高温PET代替PI进行揭盖,其工艺流程包括:PET上激光图形→剥离图形外的PET→对位→多层压合→蚀刻→切割→揭盖,优点如下:
a.节省材料成本:省去内层CVL覆盖膜+PI保护膜成本;
b.节省工艺流程:省去覆盖膜+PI保护膜贴合流程;
c.提升工艺精度:开盖区的对位仅受线路精度影响,相较于传统工艺对位精度有质的提升;
d.采用高温离型膜生产的材料,可以直接用激光切割后适用于揭盖,离型膜重复利用,能够减少成本,提高竞争力。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (21)

  1. 多层板生产线,其特征在于,包括:
    至少一FRCC材料加工单元:其包括沿加工方向依次设置的一放卷辊、及一传送装置,所述放卷辊向传送装置传送FRCC材料,在传送装置处设置有用于对FRCC材料进行打孔和/或切割的一切割装置;
    一多层板复合单元:其包括沿加工方向依次设置的一线路板输送装置、一对位装置、一预压装置、及一热压装置,所述线路板输送装置向预压装置传送线路板;
    至少一剥离装置,其包括导向放卷辊、一剥离定位辊、及一离型膜收卷辊,打孔和/或切割后的FRCC材料经导向放卷辊传送至剥离定位辊后,离型膜被剥离并传送至离型膜收卷辊进行收卷,剥离离型膜后的FRCC材料传送至对位装置;
    所述对位装置包括至少一水平定位辊、至少一水平导向辊、一对位系统及一对位检测系统,所述水平定位辊和水平导向辊水平设置,剥离离型膜后的FRCC材料依次通过水平定位辊、水平导向辊,水平定位辊和水平导向辊使得FRCC材料水平传送并与线路板平行,使用对位系统将FRCC材料的定位孔和/或开盖图形与线路板的定位孔和/或开盖图形对位;
    所述对位检测系统包括检测平台,检测平台通信连接有采集模块、偏移检测模块、对位分析模块以及存储模块;
    所述采集模块包括设置在芯板上侧的探照灯以及摄像头;
    所述偏移检测模块用于对每一次完成芯板对位后的离型膜进行偏移检测,偏移检测的过程包括:在对位开始之前,开启探照灯,通过摄像头对下层芯板进行图像拍摄并将拍摄到的图像标记为初始图象,将初始图象放大为像素格图像并对像素格图像进行图像处理得到每一个像素格的灰度值,通过存储模块获取到灰度阈值HDmin,将初始图象的像素格标记为初始像素格,将初始像素格的总数量标记为u,将初始像素格的灰度值逐一与灰度阈值HDmin进行比较,将灰度值小于灰度阈值HDmin的初始像素格数量标记为m,将m与u的比值标记为标准比BZ;通过对标准比BZ进行数值计算得到标准阈值BZmin、BZmax,其中BZmin为最小标准阈值,BZmax为最大标准阈值,由 最小标准阈值BZmin与最大标准阈值BZmax构成标准范围;
    在对位完成之后,采用摄像头对上层芯板进行图像拍摄,并将得到的图像标记为对比图象,将对比图象放大为像素格图像并对像素格图像进行图像处理得到每一个像素格的灰度值,将对比图象的像素格标记为对比像素格,将对比像素格的灰度值逐一与灰度阈值进行比较,将灰度值小于灰度阈值的对比像素格的数量标记为e,将e与u的比值标记为偏移比PY,将偏移比与标准阈值BZmin、BZmax进行比较:若PY≤BZmin或PY≥BZmax,则判定芯板对位不合格,对位检测模块向检测平台发送对位不合格信号;若BZmin<PY<BZmax,则判定芯板对位合格,对位检测模块对检测平台发送对位合格信号;
    所述检测平台接收到对位不合格信号后向对位分析模块发送对位分析信号,对位分析模块接收到对位分析信号后对水平导向辊的转速进行检测分析;
    若水平导向辊的数量为一,则直接获取水平导向辊的转速值ZS,通过存储模块获取到转速范围ZSmin、ZSmax,其中ZSmin为最小转速阈值,ZSmax为最大转速阈值,将水平导向辊的转速值ZS与转速阈值ZSmin、ZSmax进行比较,通过转速值ZS与转速阈值ZSmin、ZSmax的比较结果对对位不合格的原因进行判定;
    若水平导向辊的数量不为一,则将水平导向辊标记为i,i=1,2,…,n,n为正整数,获取水平导向辊的转速值并标记为ZSi,将n个转速值ZSi建立转速集合{ZS1,ZS2,…,ZSn},对转速集合进行平均值计算与方差计算分别得到转速均值与差异系数,对转速均值与差异系数的数值是否满足要求进行判定。
  2. 根据权利要求1所述的多层板生产线,其特征在于,所述传送装置包括沿加工方向相对设置的一对传送辊、及套设于两个传送辊外侧的一传送皮带,其中,在两个传送辊间且背离传送皮带承载面一侧设置有一支撑板,传送皮带承载面上形成有均匀分布的齿状条纹,所述切割装置在位于支撑板处按线路板图形对FRCC材料进行打孔和/或切割。
  3. 根据权利要求2所述的多层板生产线,其特征在于,所述FRCC材料加 工单元还包括分别设置于传送装置两端的一压膜辊,其中,压膜辊的下端分别低于传送辊的上端与放卷辊的上端。
  4. 根据权利要求1所述的多层板生产线,其特征在于,还包括至少一FRCC材料翻转装置,该FRCC材料翻转装置包括上下设置的至少两个辊轮,打孔和/或切割后的FRCC材料依次经过两个辊轮进行翻转后传送至剥离装置。
  5. 根据权利要求1所述的多层板生产线,其特征在于,所述FRCC材料加工单元还包括至少一FRCC材料收卷辊,打孔和或切割完成的FRCC材料传送至FRCC材料收卷辊进行收卷;收卷后的FRCC材料转移至导向放卷辊进行放卷。
  6. 根据权利要求1所述的多层板生产线,其特征在于,还包括至少一查漏补漏系统,用于对剥离离型膜后FRCC材料的切割面进行检查,该查漏补漏系统包括一图形检测装置、一视觉检测装置;视觉检测装置设置有补漏机械手。
  7. 根据权利要求1所述的多层板生产线,其特征在于,所述预压装置为一对预压压轮,对位完成的FRCC材料与线路板同时穿过预压压轮,使FRCC材料贴合在线路板上。
  8. 根据权利要求1所述的多层板生产线,其特征在于,线路板输送装置与预压压轮间设置有一线路板检测装置用于检测线路板。
  9. 根据权利要求1所述的多层板生产线,其特征在于,所述多层板复合单元还包括一隧道式烘箱,经热压装置压合完成的多层板通过隧道式烘箱进行烘烤。
  10. 根据权利要求8所述的多层板生产线,其特征在于,还包括一打孔检查系统,用于对经隧道式烘箱烘烤后的多层板进行打孔和/或切割,形成通孔和/或盲孔,并对多层板上的孔或图形进行检查确认。
  11. 根据权利要求1所述的多层板生产线,其特征在于,所述切割装置与包括至少一智能激光切割装置、一圆刀模切割装置、及一冲压模切装置中的至少一种或两种以上。
  12. 根据权利要求1所述的多层板生产线,其特征在于,所述FRCC材料加 工单元还包括一保护膜放卷装置,其包括一保护膜放卷辊、及一保护膜收卷辊,所述保护膜放卷辊向预压装置传送保护膜,保护膜覆盖在FRCC材料上并随FRCC材料与线路板一起通过预压装置与热压装置,完成FRCC材料与线路板的压合形成多层板,然后,保护膜传送至保护膜收卷辊进行收卷。
  13. 根据权利要求12所述的多层板生产线,其特征在于,所述保护膜为PET膜、硅胶膜或TPX。
  14. 根据权利要求1所述的多层板生产线,其特征在于,所述热压装置包括至少一对热压辊或一平板热压装置,其中,所述平板热压装置包括上下相对设置的至少一组热压平板、及与热压平板对应设置的一环形轨道,热压平板与环形轨道活动连接,环形轨道使热压平板沿多层板复合单元加工方向移动,并在压合完成后继续沿环形轨道移动回到初始位置。
  15. 根据权利要求1所述的多层板生产线,其特征在于,还包括一多层板收卷辊或一多层板裁切装置,经多层板覆合单元加工完成的多层板传送至多层板收卷辊或多层板裁切装置,所述多层板收卷辊将多层板进行收卷;或者所述多层板裁切装置将多层板裁切成片状,并通过机械手将片状多层板依次码放;收卷后的多层板或裁切成片状的多层板再经过包括贴干膜、曝光、显影、蚀刻与电镀流程在FRCC材料上形成线路,制成多层线路板。
  16. 一种多层线路板加工方法,其特征在于,包括以下步骤:
    S1.FRCC材料预加工:先将卷状FRCC材料放置于放卷辊上,启动FRCC材料加工单元,使FRCC材料传送至传送装置并由切割装置对FRCC材料进行打孔和/或切割;
    S2.离型膜剥离:将步骤S1加工完成的FRCC材料传送至剥离装置,剥离装置对FRCC材料上的离型膜进行剥离,并将剥离离型膜后的FRCC材料传送至对位装置;
    S3.多层板复合:当剥离离型膜后的FRCC材料传送至对位装置时,线路板输送装置同步向对位装置传送线路板,此时,FRCC材料的半固化胶层朝向线路板,通过对位装置完成FRCC材料与线路板的对位,然后依次传送至预压装置与热压装置进行压合,形成多层板;
    在步骤S1中,经过切割装置进行切割后,在FRCC材料上形成开盖图形,当需要在FRCC材料上形成开盖图形时,放卷辊在向传送装置传送FRCC材料过程中,FRCC材料的离型膜朝向切割装置,且切割装置仅在离型膜上按照开盖图形切割出对应形状的轮廓线;
    在步骤S2中,当FRCC材料的离型膜上具有开盖图形的轮廓线,剥离离型膜后的FRCC材料上且位于开盖位置处保留有对应形状的离型膜。
  17. 根据权利要求16所述的多层线路板加工方法,其特征在于,在步骤S1中,经过切割装置进行打孔后,在FRCC材料上形成定位孔,当仅需要在FRCC材料上形成定位孔时,对FRCC材料传送过程中离型膜的朝向没有限定。
  18. 根据权利要求16所述的多层线路板加工方法,其特征在于,在步骤S2中,还通过图形检测装置对剥离离型膜后的FRCC材料上的开盖图形进行检测并记录检测结果,然后通过视觉检测装置检测开盖位置处的离型膜是否有脱落,并控制补漏机械手对脱落位置处补充相应形状的离型膜。
  19. 根据权利要求16所述的多层线路板加工方法,其特征在于,在步骤S2中,线路板检测装置对由线路板输送装置传送的线路板进行检测并记录检测结果,水平定位辊与水平导向辊使剥离离型膜后的FRCC材料水平传送并与线路板平行,同时,使用对位系统将FRCC材料上的定位孔和/或开盖图形与线路板上的定位孔和/或开盖图形对位,对位完成的FRCC材料与线路板穿过两个预压压轮间进行预压,再传送至热压装置进行热压。
  20. 根据权利要求16所述的多层线路板加工方法,其特征在于,在步骤S2中,还通过保护膜放卷辊向预压装置传送保护膜,使保护膜覆盖在FRCC材料上并随FRCC材料与线路板一起通过预压装置及热压装置,完成FRCC材料与线路板的压合形成多层板,此时,保护膜传送至保护膜收卷辊进行收卷,而经过热压装置压合形成的多层板再经过隧道式烘箱进行烘烤,形成性能稳定的多层板,多层板传送至打孔检查系统,打孔检查系统在多层板的FRCC材料上打孔形成通孔与盲孔并对多层板上的孔与图形进行检查确认;最后对多层板进行收卷或裁切成片状。
  21. 根据权利要求16所述的多层线路板加工方法,其特征在于,还包括以下步骤:
    S4.将多层板再经过包括贴干膜、曝光、显影、电镀与蚀刻线流程在FRCC材料上形成线路,获得多层线路板,同时,在FRCC材料上且位于开盖位置处的铜被蚀刻形成与开盖图形对应的开口;
    S5.开盖:沿步骤S4中蚀刻形成的开口边缘对FRCC材料进行切断,并剥除切断处剩余的FRCC材料,即完成开盖;
    S6.开盖完成后的多层线板重复步骤S2、步骤S3、步骤S4、及S5,直到获得所需层数的多层线路板。
PCT/CN2023/092897 2022-05-19 2023-05-09 多层板生产线及多层线路板加工方法 WO2023221809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210545619.5A CN115529747B (zh) 2022-05-19 2022-05-19 多层板生产线及多层线路板加工方法
CN202210545619.5 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023221809A1 true WO2023221809A1 (zh) 2023-11-23

Family

ID=84695625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092897 WO2023221809A1 (zh) 2022-05-19 2023-05-09 多层板生产线及多层线路板加工方法

Country Status (2)

Country Link
CN (1) CN115529747B (zh)
WO (1) WO2023221809A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117601548A (zh) * 2023-12-27 2024-02-27 苏州市华扬电子有限公司 一种高精度模切贴合装置及自动贴合方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115529747B (zh) * 2022-05-19 2023-04-07 世大新材料(深圳)有限公司 多层板生产线及多层线路板加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209363A (ja) * 2002-01-16 2003-07-25 Mitsui Mining & Smelting Co Ltd 多層プリント配線板の構成材料及び両面プリント配線板の製造方法、その製造方法で得られた多層プリント配線板の構成材料及び両面プリント配線板、並びにそれらを用いて得られる多層プリント配線板
CN101472404A (zh) * 2007-12-25 2009-07-01 富葵精密组件(深圳)有限公司 多层电路板及其制作方法
CN206389630U (zh) * 2017-01-04 2017-08-08 嘉联益电子(昆山)有限公司 卷对卷线路板压合设备
CN115529747A (zh) * 2022-05-19 2022-12-27 世大新材料(深圳)有限公司 多层板生产线及多层线路板加工方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI336603B (en) * 2004-12-03 2011-01-21 Ngk Spark Plug Co Method and apparatus for producing a wiring board, including film-peeling
CN108215370B (zh) * 2016-12-09 2019-09-13 松本涂层科技(昆山)有限公司 一种柔性线路板压合阻胶用离型纸及制造工艺
CN107241865B (zh) * 2017-07-19 2023-09-12 广东力兹微电气技术有限公司 制造柔性线路板的设备及其工艺
JP2019140286A (ja) * 2018-02-13 2019-08-22 日本メクトロン株式会社 フレキシブルプリント基板の製造方法およびフレキシブルプリント基板の製造装置
CN109435422B (zh) * 2018-11-21 2020-08-21 安徽鸿海新材料股份有限公司 一种覆铜板生产设备及覆铜板加工方法
CN110177434B (zh) * 2019-02-20 2021-11-23 淳华科技(昆山)有限公司 软性线路板揭盖设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209363A (ja) * 2002-01-16 2003-07-25 Mitsui Mining & Smelting Co Ltd 多層プリント配線板の構成材料及び両面プリント配線板の製造方法、その製造方法で得られた多層プリント配線板の構成材料及び両面プリント配線板、並びにそれらを用いて得られる多層プリント配線板
CN101472404A (zh) * 2007-12-25 2009-07-01 富葵精密组件(深圳)有限公司 多层电路板及其制作方法
CN206389630U (zh) * 2017-01-04 2017-08-08 嘉联益电子(昆山)有限公司 卷对卷线路板压合设备
CN115529747A (zh) * 2022-05-19 2022-12-27 世大新材料(深圳)有限公司 多层板生产线及多层线路板加工方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117601548A (zh) * 2023-12-27 2024-02-27 苏州市华扬电子有限公司 一种高精度模切贴合装置及自动贴合方法
CN117601548B (zh) * 2023-12-27 2024-05-28 苏州市华扬电子有限公司 一种高精度模切贴合装置及自动贴合方法

Also Published As

Publication number Publication date
CN115529747B (zh) 2023-04-07
CN115529747A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2023221809A1 (zh) 多层板生产线及多层线路板加工方法
JPH058419B2 (zh)
CN116489892B (zh) 采用激光切割生产柔性电路板的制备系统及制备工艺
CN211806567U (zh) 一种标准双面胶模切测试件的模切系统
KR20050032465A (ko) 반도체 패키지용 플렉시블피시비 필름의 커버레이필름라미네이션 방법 및 커버레이필름 라미네이션 장치
CN112272454A (zh) 一种防止pcb压合熔合流胶的方法
WO2023221808A1 (zh) 多用途线路板生产线、多用途生产线的应用及其制备方法
CN114340156A (zh) 一种pet材质模切工艺柔性单面板制造方法
CN110027744A (zh) 一种柔性印刷电路板包装检测设备
CN110839316A (zh) 三层分层软板及其制作方法
CN102717576B (zh) 一种多层结构的柔性薄膜的连续层合方法及设备
CN112969314B (zh) 一种fpc多层板卷对卷生产工艺
JPH01239898A (ja) 多層―配線板を連続的に製造する装置
CN112389072B (zh) Oca光学胶面内漏排废防呆生产系统及方法
CN111385982A (zh) 一种多层pcb线路板层压结构改进方法
CN112492747A (zh) 一种三层板结构的封装基板及其制作方法
CN118067050A (zh) 检测多层芯板、检测方法、芯板制造方法及检测设备
CN114786352B (zh) 一种防翘曲电路板的制造方法
CN115966634A (zh) 电池串输送方法及电池组件生产装置
CN116371752A (zh) 模切不良品剔除装置以及对应的剔除方法
CN114698269A (zh) 一种lcp多层板及其低温组合方法
CN106653571A (zh) 键盘电路生产工艺
CN108260305A (zh) 一种pcb板自动叠板棕化方法
CN110691475B (zh) 一种pcb板层偏检测反馈系统及其检测装置
CN206394186U (zh) 一种多层结构柔性电子连续复合系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806761

Country of ref document: EP

Kind code of ref document: A1