WO2023216729A1 - 一种回收废水中亚磷酸根离子的方法 - Google Patents

一种回收废水中亚磷酸根离子的方法 Download PDF

Info

Publication number
WO2023216729A1
WO2023216729A1 PCT/CN2023/083279 CN2023083279W WO2023216729A1 WO 2023216729 A1 WO2023216729 A1 WO 2023216729A1 CN 2023083279 W CN2023083279 W CN 2023083279W WO 2023216729 A1 WO2023216729 A1 WO 2023216729A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrotalcite
adsorption
phosphite ions
modified
phosphite
Prior art date
Application number
PCT/CN2023/083279
Other languages
English (en)
French (fr)
Inventor
关伟
谢志刚
袁菱
黄浩
Original Assignee
重庆文理学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆文理学院 filed Critical 重庆文理学院
Publication of WO2023216729A1 publication Critical patent/WO2023216729A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to the technical field of wastewater treatment, and in particular to a method for recovering phosphite ions in wastewater.
  • electroless nickel plating the principle of electroless nickel plating using hypophosphite as a reducing agent is:
  • the electroless nickel plating waste liquid generally contains 80-200g/L Na 2 HPO 3 , producing a large amount of phosphite. Cause great pollution to the environment.
  • phosphite is still dynamically stable in the absence of strong oxidants (such as [O 2 ] and [OH]). Based on this, traditional phosphate removal methods (such as chemical precipitation and biological treatment) are not suitable for phosphite removal and recovery. Therefore, in the prior art, a two-step "oxidation-precipitation" solution is used to remove phosphite, that is, phosphite is first oxidized to phosphate, and then chemical precipitation and flocculation are performed.
  • Hydrotalcite-based compounds are often used to treat adsorbent materials contaminated with anionic ions.
  • Hydrotalcite compounds also called layered double hydroxides (LDH)
  • LDH layered double hydroxides
  • the effect is not ideal, and in the presence of other anions In a water environment, its adsorption performance for phosphite ions is seriously disturbed and drops significantly.
  • Nano-TiO 2 has very efficient photocatalytic performance and can catalytically degrade various types of chemical substances under light conditions (ultraviolet light or even visible light). TiO 2 is often used as a catalyst.
  • the object of the present invention is to provide an efficient and stable method for recovering phosphite.
  • a method for recovering phosphite ions in waste water characterized by: including the preparation of modified magnesium iron hydrotalcite and the adsorption of phosphite ions.
  • the modified magnesium iron hydrotalcite is made by dissolving Mg 2+ and Fe 3+ in go In the ionized water, TiCl 4 is added, then NaOH is added to adjust the pH to 11-12, and then the intermediate is obtained by hydrothermal treatment, which is then calcined at high temperature under a nitrogen atmosphere to obtain TiO 2 modified hydrotalcite.
  • the usage ratio of the above-mentioned Mg 2+ , Fe 3+ and TiCl 4 is 2-3mol:1mol:2.4-7.2g.
  • NaOH is added under stirring at 150rpm, and the stirring time is 0.5-1h.
  • the temperature of the above-mentioned hydrothermal treatment is 120-150°C, and the hydrothermal time is 1-3 hours. After the hydrothermal treatment is completed, the pH is adjusted to 7-9.
  • the temperature of the above-mentioned high-temperature calcination is 560-600°C, and the calcination time is 1-2 hours.
  • the main purpose of using TiO 2 to modify magnesia hydrotalcite in the present invention is to improve the adsorption stability performance of the composite material through TiO 2 and prevent the interference of other anions in electroplating wastewater from causing a decrease in adsorption performance.
  • Mg 2+ , Fe 3+ , and TiO 2 are dissolved and reacted in an alkaline environment, an anion structure is formed inside the hydrotalcite layer, and CO 2 is present in the air, causing the anions in the layer to be impure.
  • TiCl 4 is added before the hydrotalcite structure is formed in an alkaline environment.
  • TiCl 4 reacts with alkali to generate Ti(OH) 4 simultaneously, making it uniform Distributed between the layers and on the surface of magnesia hydrotalcite, during the calcination process at a temperature of 560-610°C, Ti(OH) 4 decomposes in situ to generate TiO 2 , ensuring the uniform dispersion of TiO 2 and inhibiting its agglomeration; Due to the decomposition reaction of Ti(OH) 4 occurring between the hydrotalcite layers, the heat inside the hydrotalcite is absorbed, further inhibiting the irreversible damage to the layered structure of magnesium iron hydrotalcite caused by high temperature and high heat.
  • the adsorption of phosphite ions involves adding modified magnesium iron hydrotalcite to the wastewater containing phosphite, adjusting the pH to 2-8, and stirring the reaction at 120-150 rpm at room temperature for 5-60 minutes.
  • the modified mafic hydrotalcite is put into wastewater containing phosphite ions, the pH is adjusted to 5-6, the temperature is 25-30°C, and the stirring reaction time is 20-30 minutes.
  • the mass concentration ratio of the modified magnesia hydrotalcite and phosphite ions is 1-1.5:1.
  • a method for recovering phosphite ions in waste water is characterized by following the following steps:
  • step (2) Place the intermediate prepared in step (1) in a nitrogen atmosphere and calcine at 560-610°C for 1-2 hours;
  • modified magnesium iron hydrotalcite added to the wastewater containing phosphite ions, adjust the pH to 2-8, and stir the reaction at 120-150 rpm at room temperature for 5-60 minutes. After adding the wastewater, the modified magnesium iron hydrotalcite and phosphite ions The mass concentration ratio is 1-1.5:1.
  • the precipitate is filtered, desorbed with ammonia water, and then washed and dried for use in the next adsorption.
  • TiO 2 modified magnesia hydrotalcite prepared by the present invention TiO 2 is efficiently and evenly distributed inside the layered structure of the iron-free hydrotalcite, which improves the adsorption activity of the magnesia hydrotalcite, and the adsorption capacity of phosphite ions reaches 157.4mg/g. And the equilibrium adsorption time is only 30 minutes. In the presence of a large number of interfering ions, it has excellent adsorption stability, and the adsorption performance remains stable without degradation during recycling.
  • Figure 1 XRD pattern of modified mafic hydrotalcite prepared by the present invention.
  • Figure 2 The effect of the phosphite recovery time on the adsorption capacity of the modified mafic hydrotalcite prepared in the present invention.
  • Figure 3 The effect of interfering ions on the adsorption amount when recovering phosphite from the modified mafic hydrotalcite prepared in the present invention.
  • Figure 4 The effect of pH on the adsorption capacity of recovered phosphite from the modified mafic hydrotalcite prepared in the present invention.
  • Figure 5 The effect of temperature on the adsorption amount of phosphite recovered from the modified mafic hydrotalcite prepared by the present invention.
  • a method for recovering phosphite ions in waste water is carried out as follows:
  • step (2) Place the intermediate prepared in step (1) in a nitrogen atmosphere and calcine at 580°C for 1.5h;
  • the modified magnesium iron hydrotalcite to the wastewater containing phosphite ions, adjust the pH to 5, and stir the reaction at 150 rpm for 60 minutes at room temperature. After adding the wastewater, the mass concentration ratio of the modified magnesium iron hydrotalcite and phosphite ions is 1 :1.
  • the XRD of magnesia hydrotalcite loaded with TiO 2 is shown in Figure 1. It can be seen from the figure that after hydrothermal synthesis combined with high-temperature calcination, the structure of magnesia hydrotalcite loaded with TiO 2 is basically maintained, and the crystallinity has not changed, but It can be found that the higher the magnesium iron ion content, the better the crystallinity is maintained, which is directly related to the crystallinity of the precursor.
  • the 2 ⁇ angles of the diffraction peaks of the (003), (006), (012), and (110) crystal planes before and after loading are basically unchanged, and there are titanium dioxide anatase at 25.6°, 48.9°, and 55.1°. Characteristic peaks, This shows that the structure of the hydrotalcite has not been damaged, and TiO 2 has been successfully loaded onto the mafic hydrotalcite.
  • magnesia hydrotalcite In order to compare the impact of TiO 2 modification on the properties of magnesia hydrotalcite, in the process of preparing magnesia hydrotalcite, the addition of titanium tetrachloride and step (2) were removed on the basis of Example 1, and the remaining steps were the same as in Example 1 Similarly, the prepared magnesia-iron hydrotalcite was used as the control group, and the prepared magnesia-iron hydrotalcite was recorded as Mg-Fe-LDH.
  • hydrotalcite Because in the process of adsorbing phosphite ions by modified hydrotalcite, the hydrotalcite itself is very important and plays a leading role in the adsorption performance of phosphite ions. Therefore, when looking for hydrotalcites with good adsorption properties for phosphite ions, multiple groups of hydrotalcites with different components were made. Their adsorption properties for phosphite ions are shown in Table 1.
  • a method for recovering phosphite ions in waste water The difference from Example 1 is that TiO 2 is added instead of TiCl 4 in step (1).
  • the preparation steps for preparing modified magnesium iron hydrotalcite are as follows:
  • Step (1) Add Mg 2+ , Fe 3+ and TiO 2 in a dosage ratio of 2mol:1mol:1g, stir at 150rpm at room temperature, and add NaOH to adjust the pH to 12, the stirring time is 0.5h, and mix the prepared solution, add it to polytetrafluoroethylene, react hydrothermally at 150°C for 2 hours, then adjust the pH to 8, dry and grind.
  • Example 1 Through XRD testing, TiO 2 in Comparative Example 1 was also successfully loaded onto magnesia hydrotalcite.
  • the interlayer structure When trying to calcine above 550°C, the interlayer structure is irreversibly distorted and destroyed, and the structure cannot be restored. As a result, its specific surface area and pore structure are damaged and decreased, and ultimately the adsorption performance is severely reduced.
  • the TiO 2 modified hydrotalcite prepared in the present invention was subjected to an adsorption test on simulated wastewater containing anions CO 3 2- , NO 3 - , SO 4 2- and Cl - simultaneously in phosphite ions, and the adsorption performance was determined when adsorbing for 30 minutes. As shown in table 2.
  • Table 2 Saturated adsorption performance of phosphite ions in different anionic environments of TiO 2 modified hydrotalcite prepared by the present invention
  • the TiO 2 modified hydrotalcite prepared by the present invention can achieve better adsorption effect in both acidic and weakly alkaline environments. As shown in Figure 4, when the pH is larger, it has a greater impact on the adsorption effect. This is because When the pH is larger, OH - increases and there is ion competition. There is little change in the adsorption of phosphorous acid within 25-65°C. As shown in Figure 5, it can be seen that the temperature has little effect on the adsorption performance of the modified hydrotalcite of the present invention for phosphorous acid. In order to To save costs, you can choose to adsorb at room temperature. The above shows that the TiO2 - modified magnesia hydrotalcite prepared by the present invention has excellent stability.
  • a method for recovering phosphite ions in waste water is carried out as follows:
  • step (2) Place the intermediate prepared in step (1) in a nitrogen atmosphere and calcine at 610°C for 1 hour;
  • the modified magnesium iron hydrotalcite to the wastewater containing phosphite ions, adjust the pH to 8, and stir the reaction at 130 rpm for 30 minutes at room temperature. After adding the wastewater, the mass concentration ratio of the modified magnesium iron hydrotalcite and phosphite ions is 1.5 :1.
  • the adsorption capacity of the modified magnesia hydrotalcite in this example for phosphite ions reaches 154.2 mg/g.
  • a method for recovering phosphite ions in waste water is carried out as follows:
  • step (2) Place the intermediate prepared in step (1) in a nitrogen atmosphere and calcine at 560°C for 2 hours;
  • the modified magnesium iron hydrotalcite to the wastewater containing phosphite ions, adjust the pH to 2, and stir the reaction at 120 rpm for 5 minutes at room temperature. After adding the wastewater, the mass concentration ratio of the modified magnesium iron hydrotalcite and phosphite ions is 1.2 :1.
  • the adsorption capacity of the modified magnesia hydrotalcite in this example for phosphite ions reaches 155.9 mg/g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种回收废水中亚磷酸根离子的方法,包括改性镁铁水滑石的制备和亚磷酸根离子的吸附,所述改性镁铁水滑石是将Mg2+和Fe3+溶解于去离子水中,再加入TiCl4,然后加入NaOH调节pH为11-12,然后水热处理得中间体,再在氮气氛围下进行高温煅烧制得TiO2改性的水滑石。本发明制备的TiO2改性的镁铁水滑石,TiO2高效均匀分布在没铁水滑石的层状结构内部,提高了镁铁水滑石的吸附活性,对于亚磷酸根离子吸附量达到157.4mg/g,且平衡吸附时间仅仅为30min,在存在大量干扰离子的情况下,具有优异的吸附稳定性,在循环使用过程中吸附性能保持稳定不下降。

Description

一种回收废水中亚磷酸根离子的方法 技术领域
本发明涉及废水处理技术领域,具体涉及回收废水中亚磷酸根离子的方法。
背景技术
在化学镀镍中,利用次磷酸盐作为还原剂的化学镀镍的原理为:
NiSO4+6NaH2PO2→Ni+2P+2H2+Na2SO4+4NaH2PO3,化学镀镍废液中一般含有80~200g/L的Na2HPO3,产生大量亚磷酸盐,对环境造成极大的污染。
然而尽管它作为磷的还原形式,其热力学相对不稳定,但是在没有强氧化剂(如[O2]和[OH])的情况下,亚磷酸盐依然是动态稳定的。基于此,传统的磷酸盐去除方法(如化学沉淀和生物处理)并不适用于亚磷酸盐的去除回收。因此,现有技术中采用两步“氧化-沉淀”的方案去除亚磷酸盐,即先将亚磷酸盐氧化为磷酸盐,然后进行化学沉淀和絮凝处理。然而,在此复杂的两步方法中有三个实际限制:(1)增加系统复杂性和成本,(2)水体中磷酸盐浓度低导致动力学缓慢,(3)絮凝剂/基可能导致二次污染。而吸附法是一种很有前途且可负担得起的去除低浓度污染物的技术。
水滑石类化合物常常被用来处理阴离子离子污染的吸附材料。水滑石类化合物又叫层状双金属氢氧化物(LDH),是一类具有水滑石型结构的新型层状功能材料,但是吸附亚磷酸根离子时,效果不理想,且在其他阴离子存在的水体环境中,其对于亚磷酸根离子的吸附性能受到严重干扰,下降明显。
纳米TiO2光催化性能非常高效,能在光照条件下(紫外光甚至可见光)催化降解各种不同类型的化学物质,常常采用TiO2作为催化剂使用。
发明内容
本发明目的在于提供一种高效稳定的回收亚磷酸根的方法。
本发明目的通过如下技术方案实现:
一种回收废水中亚磷酸根离子的方法,其特征在于:包括改性镁铁水滑石的制备和亚磷酸根离子的吸附,所述改性镁铁水滑石是将Mg2+和Fe3+溶解于去 离子水中,再加入TiCl4,然后加入NaOH调节pH为11-12,然后水热处理得中间体,再在氮气氛围下进行高温煅烧制得TiO2改性的水滑石。
进一步,上述Mg2+、Fe3+和TiCl4的用量比为2-3mol:1mol:2.4-7.2g,在150rpm搅拌下加入NaOH,搅拌时间为0.5-1h。
进一步,上述水热处理的温度为120-150℃,水热时间为1-3h,水热结束后,调节pH至7-9。
进一步,上述高温煅烧的温度为560-600℃,煅烧时间为1-2h。
本发明中采用TiO2改性镁铁水滑石的主要目的是通过TiO2来提高复合材料的吸附稳定性能,防止电镀废水中其他阴离子的干扰导致吸附性能下降。但是,将Mg2+、Fe3+、TiO2溶解于碱性环境下反应时,由于水滑石层状内部形成阴离子结构,而空气中会存在CO2,使其造成层内阴离子不纯的情况,从而导致改性困难;其次,由于纳米TiO2自身的性质,使得其本身容易发生团聚,且在TiO2在水滑石的层状结构中分散困难,导致TiO2在层状结构中团聚、分布不均匀,从而导致其对于材料的吸附性能及材料的稳定性作用降低,合成材料性能不能完全达到预期效果。现有技术中会将水滑石进行煅烧,增强其吸附性能,但是在该过程中较高温度会导致其层状结构发生不可逆破坏,导致吸附性能下降,且TiO2的团聚会加重。
本发明在碱性环境中水滑石结构成型之前加入TiCl4,水热环境下,在形成层状性质的镁铁水滑石的同时,TiCl4与碱反应同步生成Ti(OH)4,使得其能均匀分布在镁铁水滑石的层间及表面,在560-610℃温度下煅烧过程中,Ti(OH)4分解原位生成了TiO2,保证了TiO2的分散均匀性,同时抑制了其团聚;由于水滑石层间发生存在Ti(OH)4的分解反应,吸收了水滑石内部的热量,进一步抑制了高温高热对镁铁水滑石层状结构产生不可逆破坏。在共沉淀法中,两种材料直接负载,使其两个能带位置互相交错形成异质结,可以使得电子和空穴从一个半导体迁移到另一个半导体,实现电子和空穴的分离,通过水滑石与TiO2半导体之间的能级差别提高了水滑石与TiO2半导体体系的电荷分离效率,从而提 高了吸附活性。在煅烧过程中,TiO2分散性均匀,水滑石层状结构内部阴离子被去除,且不破坏其结构。改性后的水滑石的吸附性能得到显著提升。
进一步,所述亚磷酸根离子的吸附是将改性镁铁水滑石加入含有亚磷酸根的废水中,调节pH至2-8,常温下在120-150rpm下搅拌反应5-60min。
优选的,改性镁铁型水滑石投入含亚磷酸离子废水中,调节pH为5-6,温度为25-30℃,搅拌反应时间为20-30min。
进一步,上述改性镁铁水滑石和亚磷酸根离子的质量浓度比为1-1.5:1。
最具体的,一种回收废水中亚磷酸根离子的方法,其特征在于,按如下步骤进行:
(一)改性镁铁水滑石的制备
(1)将Mg2+、Fe3+和TiCl4的用量比为2-3mol:1mol:2.4-7.2g混合加入去离子水中,常温下在150rpm搅拌下加入NaOH,调节pH为11-12,搅拌时间为0.5-1h,然后在120-150℃下水热反应1-3h,水热结束后调节pH为7-9,然后过滤、干燥并研磨形成中间体;
(2)将步骤(1)制备的中间体置于氮气氛围中,在560-610℃下煅烧1-2h;
(二)吸附亚磷酸根离子
将改性镁铁水滑石加入含有亚磷酸根离子的废水中,调节pH至2-8,常温下在120-150rpm下搅拌反应5-60min,加入废水后,改性镁铁水滑石和亚磷酸根离子的质量浓度比为1-1.5:1。
进一步,上述吸附亚磷酸根离子结束后,过滤沉淀,用氨水解吸,然后洗涤、干燥,用于下一次吸附使用。
本发明具有如下技术效果:
本发明制备的TiO2改性的镁铁水滑石,TiO2高效均匀分布在没铁水滑石的层状结构内部,提高了镁铁水滑石的吸附活性,对于亚磷酸根离子吸附量达到157.4mg/g,且平衡吸附时间仅仅为30min,在存在大量干扰离子的情况下,具有优异的吸附稳定性,在循环使用过程中吸附性能保持稳定不下降。
附图说明
图1:本发明制备的改性镁铁型水滑石的XRD图。
图2:本发明制备的改性镁铁型水滑石回收亚磷酸根时间对吸附量的影响。
图3:本发明制备的改性镁铁型水滑石回收亚磷酸根时干扰离子对吸附量的影响。
图4:本发明制备的改性镁铁型水滑石回收亚磷酸根pH对吸附量的影响。
图5:本发明制备的改性镁铁型水滑石回收亚磷酸根温度对吸附量的影响。
具体实施方式
下面通过实施例对本发明进行具体的描述。
实施例1
一种回收废水中亚磷酸根离子的方法,按如下步骤进行:
(一)改性镁铁水滑石制备
(1)将Mg2+、Fe3+和TiCl4的用量比为2mol:1mol:2.4g混合加入去离子水中,常温下在150rpm搅拌下加入NaOH调节pH为12,搅拌时间为0.5h,然后在150℃下水热2h,水热结束后调节pH为8,然后过滤、干燥并研磨形成中间体;
(2)将步骤(1)制备的中间体置于氮气氛围中,在580℃下煅烧1.5h;
(二)吸附亚磷酸根离子
将改性镁铁水滑石加入含有亚磷酸根离子的废水中,调节pH至5,常温下在150rpm下搅拌反应60min,加入废水后,改性镁铁水滑石和亚磷酸根离子的质量浓度比为1:1。
负载了TiO2的镁铁水滑石的XRD如图1所示,从图可以看出,经过水热合成法结合高温煅烧作用后,负载TiO2的镁铁水滑石结构基本保持,结晶度没有改变,但可发现,镁铁离子含量越高,结晶度保持的越好,这跟前体的结晶度有直接关系。负载前与负载后的(003),(006),(012),(110)晶面的衍射峰的2θ角基本没变化,而且在25.6°,48.9°,55.1°有二氧化钛的锐钛矿的特征峰, 说明水滑石的结构没有被破坏,且TiO2已成功负载到镁铁水滑石上。
为了对比TiO2改性镁铁水滑石后对其性能的影响,在制备镁铁水滑石过程中,在实施例1的基础上去掉四氯化钛的添加和步骤(2),其余步骤与实施例1相同,制备的镁铁水滑石作为对照组,制备的镁铁水滑石记为Mg-Fe-LDH。
因为在改性水滑石吸附亚磷酸根离子的过程中,水滑石本身对于亚磷酸根离子的吸附性能十分重要,且起主导作用。因此,在寻找对亚磷酸根离子具有很好吸附性能的水滑石时,做了多组不同组分的水滑石,其对于亚磷酸根离子的吸附性能如表1所示。
表1:不同水滑石对于亚磷酸根离子30min时的吸附量
对比例1
一种回收废水中亚磷酸根离子的方法,与实施例1不同的是步骤(一)中是加入的TiO2代替TiCl4,制备改性镁铁水滑石的制备步骤如下:
步骤(1):加入Mg2+、Fe3+和TiO2的用量比为2mol:1mol:1g,常温下以150rpm搅拌,并加入NaOH调节pH为12,搅拌时间为0.5h,将配制好的溶液,加入聚四氟乙烯中,在150℃下水热反应2h,然后调节PH为8,烘干,研磨。
其余步骤与实施例1相同。通过XRD测试,对比例1中TiO2也成功负载到镁铁水滑石上。
对比例1和实施例1制备的TiO2改性的镁铁水滑石对于亚磷酸根离子的吸附结果如图2所示:对比例1制备的改性镁铁水滑石,与未改性的镁铁水滑石相比,其吸附性能基本保持一致,可见,在该体系中,TiO2对于亚磷酸根离子的吸附没有起到任何促进作用,而实施例1制备的改性镁铁水滑石与未改性的镁铁水滑石相比,吸附性能有了一定的提高,即TiO2在该体系中对于亚磷酸根离子的吸附有一定的促进作用。
对比例2
在对比例1的基础上将TiO2改性的镁铁水滑石进行煅烧处理,选择在500℃下进行煅烧1.5h。
对比例2制备的煅烧后的镁铁水滑石,进行煅烧后,TiO2在镁铁水滑石层间的团聚进一步加重。虽然煅烧可以进行提高镁铁水滑石的吸附性能,但是其中TiO2的团聚导致内部TiO2的稳定及促进吸附的作用下降了。
尝试在550℃以上进行煅烧时,层间结构发生了不可逆的扭曲破坏,结构无法再恢复,导致其比表面积、孔道结构受到破坏而下降,最终吸附性能下降严重。
将本发明制备的TiO2改性水滑石对亚磷酸离子中同时含有阴离子CO3 2-、NO3 -、SO4 2-、Cl-的模拟废水中进行吸附试验,在吸附30min时的吸附性能如表2所示。
表2:本发明制备TiO2改性水滑石在不同阴离子环境中对亚磷酸根离子的饱和吸附性能
可见本发明制备的TiO2改性水滑石在同时含有其他阴离子时,对于亚磷酸离子的吸附效果略微下降,但是依然具有较高的吸附性能,所以具有优异的选择性,稳定性优异。而对照组Mg-Fe-LDH从原始的150.1mg/g降至最低的为103.2mg/g,而对比例1制备的TiO2改性的镁铁水滑石也从原始的147.4mg/g下降到116.9mg/g,具体如图3所示。
本发明制备的TiO2改性水滑石在酸性及弱碱性环境下,均能较好的吸附效果,如图4所示,pH较大时,对吸附效果有较大的影响,这是由于pH较大时,OH-增多,存在离子竞争。在25-65℃内对于亚磷酸根的吸附变化不大,如图5所示,可见温度对于本发明改性水滑石对于亚磷酸的吸附性能影响不大,为了 节省成本,可以选择在室温环境下进行吸附。以上表明本发明制备的TiO2改性的镁铁水滑石具有优异的稳定性。
实施例2
一种回收废水中亚磷酸根离子的方法,按如下步骤进行:
(一)改性镁铁水滑石制备
(1)将Mg2+、Fe3+和TiCl4的用量比为3mol:1mol:7.2g混合加入去离子水中,常温下在150rpm搅拌下加入NaOH,调节pH为11,搅拌时间为1h,然后在120℃下水热3h,水热结束后调节pH为7,然后过滤、干燥并研磨形成中间体;
(2)将步骤(1)制备的中间体置于氮气氛围中,在610℃下煅烧1h;
(二)吸附亚磷酸根离子
将改性镁铁水滑石加入含有亚磷酸根离子的废水中,调节pH至8,常温下在130rpm下搅拌反应30min,加入废水后,改性镁铁水滑石和亚磷酸根离子的质量浓度比为1.5:1。
吸附亚磷酸根离子结束后,过滤沉淀,用氨水解吸,然后洗涤、干燥,用于下一次吸附使用。
本实施例改性镁铁水滑石对于亚磷酸根离子的吸附量达到154.2mg/g。
实施例3
一种回收废水中亚磷酸根离子的方法,按如下步骤进行:
(一)改性镁铁水滑石制备
(1)将Mg2+、Fe3+和TiCl4的用量比为2.5mol:1mol:5g混合加入去离子水中,常温下在150rpm搅拌下加入NaOH,调节pH为12,搅拌时间为0.5h,然后在140℃下水热1h,水热结束后调节pH为9,然后过滤、干燥并研磨形成中间体;
(2)将步骤(1)制备的中间体置于氮气氛围中,在560℃下煅烧2h;
(二)吸附亚磷酸根离子
将改性镁铁水滑石加入含有亚磷酸根离子的废水中,调节pH至2,常温下在120rpm下搅拌反应5min,加入废水后,改性镁铁水滑石和亚磷酸根离子的质量浓度比为1.2:1。
吸附亚磷酸根离子结束后,过滤沉淀,用氨水解吸,然后洗涤、干燥,用于下一次吸附使用。
本实施例改性镁铁水滑石对于亚磷酸根离子的吸附量达到155.9mg/g。

Claims (4)

  1. 一种回收废水中亚磷酸根离子的方法,其特征在于:包括改性镁铁水滑石的制备和亚磷酸根离子的吸附,所述改性镁铁水滑石是将Mg2+和Fe3+溶解于去离子水中,再加入TiCl4,然后加入NaOH调节pH为11-12,然后水热处理得中间体,再在氮气氛围下进行高温煅烧制得TiO2改性的水滑石;
    所述Mg2+、Fe3+和TiCl4的用量比为2-3mol:1mol:2.4-7.2g,在150rpm搅拌下加入NaOH,搅拌时间为0.5-1h;所述水热处理的温度为120-150℃,水热时间为1-3h,水热结束后,调节pH至7-9;所述亚磷酸根离子的吸附是将改性镁铁水滑石加入含有亚磷酸根的废水中,调节pH至2-8,常温下在120-150rpm下搅拌反应5-60min。
  2. 如权利要求1所述的回收废水中亚磷酸根离子的方法,其特征在于:所述高温煅烧的温度为560-600℃,煅烧时间为1-2h。
  3. 如权利要求2所述的回收废水中亚磷酸根离子的方法,其特征在于:所述改性镁铁水滑石和亚磷酸根离子的质量浓度比为1-1.5:1。
  4. 一种回收废水中亚磷酸根离子的方法,其特征在于,按如下步骤进行:
    (一)改性镁铁水滑石的制备
    (1)将用量比为2-3mol:1mol:2.4-7.2g的Mg2+、Fe3+和TiCl4混合加入去离子水中,常温下在150rpm搅拌下加入NaOH,调节pH为11-12,搅拌时间为0.5-1h,然后在120-150℃下水热反应1-3h,水热结束后调节pH为7-9,然后过滤、干燥并研磨形成中间体;
    (2)将步骤(1)制备的中间体置于氮气氛围中,在560-610℃下煅烧1-2h;
    (二)吸附亚磷酸根离子
    将改性镁铁水滑石加入含有亚磷酸根离子的废水中,调节pH至2-8,常温下在120-150rpm下搅拌反应5-60min,加入废水后,改性镁铁水滑石和亚磷酸根离子的质量浓度比为1-1.5:1。
PCT/CN2023/083279 2022-05-12 2023-03-23 一种回收废水中亚磷酸根离子的方法 WO2023216729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210512836.4 2022-05-12
CN202210512836.4A CN114887582B (zh) 2022-05-12 2022-05-12 一种回收废水中亚磷酸根离子的方法

Publications (1)

Publication Number Publication Date
WO2023216729A1 true WO2023216729A1 (zh) 2023-11-16

Family

ID=82722402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083279 WO2023216729A1 (zh) 2022-05-12 2023-03-23 一种回收废水中亚磷酸根离子的方法

Country Status (3)

Country Link
JP (1) JP2023168179A (zh)
CN (1) CN114887582B (zh)
WO (1) WO2023216729A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114887582B (zh) * 2022-05-12 2023-08-15 重庆文理学院 一种回收废水中亚磷酸根离子的方法
CN117563550B (zh) * 2023-09-25 2024-07-12 中国长江三峡集团有限公司 一种层状双金属氢氧化物复合材料及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132636A (ja) * 2011-12-27 2013-07-08 Kyocera Chemical Corp リン吸着剤の製造方法及びリン吸着剤
JP2015013283A (ja) * 2013-06-04 2015-01-22 国立大学法人佐賀大学 イオン吸着材及びその製造方法
CN110028090A (zh) * 2019-04-08 2019-07-19 河北科技大学 一种类水滑石化合物及其制备方法和应用
CN114887582A (zh) * 2022-05-12 2022-08-12 重庆文理学院 一种回收废水中亚磷酸根离子的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731497B1 (en) * 2004-03-05 2016-04-27 Kyowa Chemical Industry Co., Ltd. Particles of aluminum salt hydroxide containing organic acid anion and use thereof
EA017527B1 (ru) * 2006-04-06 2013-01-30 Коммонвелт Сайентифик Энд Индастриал Рисерч Организейшн Очистка грунтовых вод
WO2011108195A1 (ja) * 2010-03-03 2011-09-09 国立大学法人大阪大学 ハイドロタルサイト様化合物の製造法ならびにハイドロタルサイト様化合物もしくは複合酸化物、陰イオン吸着剤および固体塩基触媒
CN105582881A (zh) * 2015-10-29 2016-05-18 钱中明 一种可重复使用的磷酸盐吸附剂及其制备方法
CN108479689A (zh) * 2018-04-23 2018-09-04 中国环境科学研究院 一种去除废水中砷酸根离子的吸附剂
CN108640332B (zh) * 2018-04-25 2021-03-16 华南农业大学 一种处理废水中次磷和亚磷的方法及其装置
CN109847768B (zh) * 2019-02-26 2021-10-12 武汉科技大学 一种钛渣的综合利用方法
JP2021032652A (ja) * 2019-08-22 2021-03-01 株式会社荏原製作所 放射性物質汚染水の除染装置及び除染方法
CN112844357B (zh) * 2020-12-08 2022-08-26 河北师范大学 一种二氧化钛包覆层状氧化物二维核壳材料的制备方法
CN113134339A (zh) * 2021-04-19 2021-07-20 北京化工大学 一种锆掺杂类水滑石吸附剂的制备及在处理含磷废水中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132636A (ja) * 2011-12-27 2013-07-08 Kyocera Chemical Corp リン吸着剤の製造方法及びリン吸着剤
JP2015013283A (ja) * 2013-06-04 2015-01-22 国立大学法人佐賀大学 イオン吸着材及びその製造方法
CN110028090A (zh) * 2019-04-08 2019-07-19 河北科技大学 一种类水滑石化合物及其制备方法和应用
CN114887582A (zh) * 2022-05-12 2022-08-12 重庆文理学院 一种回收废水中亚磷酸根离子的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DANHONG SHANG, WANG QI; ZHANG ZHISHENG: "Study on kinetic and thermodynamics for Mg/Fe layered double hydroxide adsorbing phosphate from aqueous solution", ENVIRONMENTAL POLLUTION & CONTROL, vol. 37, no. 4, 15 April 2015 (2015-04-15), pages 47 - 52, XP093106755 *
WEI XUEFENG, MIAO JUAN, LV ZHEN, WAN XIAOYANG, ZHANG NING, ZHANG RUICHANG, PENG SHUGE: "Phosphate Adsorption onto an Al-Ti Bimetal Oxide Composite in Neutral Aqueous Solution: Performance and Thermodynamics", APPLIED SCIENCES, vol. 12, no. 5, 23 February 2022 (2022-02-23), pages 2309, XP093106308, DOI: 10.3390/app12052309 *

Also Published As

Publication number Publication date
CN114887582A (zh) 2022-08-12
JP2023168179A (ja) 2023-11-24
CN114887582B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
WO2023216729A1 (zh) 一种回收废水中亚磷酸根离子的方法
Zhu et al. Preforming abundant surface cobalt hydroxyl groups on low crystalline flowerlike Co3 (Si2O5) 2 (OH) 2 for enhancing catalytic degradation performances with a critical nonradical reaction
JPH0620540B2 (ja) ガス流からSOxを除去するための複合体粘土物質
CN111359580A (zh) 一种多孔结构的碳铁复合材料的制备方法及应用
CN114425340B (zh) 一种生物炭修饰钴铁双金属复合催化剂的制备及在催化降解四环素中应用
CN108543516B (zh) 一种锂离子选择性吸附剂、制备方法以及从卤水提锂的工艺
CN112978983B (zh) 基于铁基生物炭的重金属络合废水处理及其资源化工艺
CN112607785B (zh) 一种MnFe2O4/C纳米复合微球及其制备方法
CN112934164A (zh) 一种磁性除磷吸附剂及其制备方法和应用
CN109692648B (zh) 高效吸附水中硫酸根离子的吸附剂及其制备方法
CN113231033A (zh) 一种有机酸根离子柱撑类水滑石吸附剂的制备方法
CN106669592A (zh) 用于微污染水处理的铁镍负载纳米过氧化钙的制备方法
CN111592150A (zh) 一种处理羟基亚乙基二膦酸镀铜废水的方法
JP6644805B2 (ja) 陰イオン吸着方法
CN115041127B (zh) 一种磁性铈基金属氧化物吸附剂及其制备方法和应用
CN110711553B (zh) 一种水滑石拟薄水铝石复合薄膜及其制备方法和应用
CN112604647A (zh) 一种赤泥基锶磁性NaP沸石吸附材料的制备方法
WO2023160105A1 (zh) 一种硅-铝-铁复合材料及其制备方法和应用
CN107442107B (zh) 一种二氧化锰-阴离子粘土复合材料及其制备方法与应用
GB2622157A (en) Wastewater adsorbent, and preparation method therefor and use thereof
CN109607501A (zh) 一种黄磷的提纯工艺
CN113289570A (zh) 一种砷吸附材料及其制备方法和应用
CN113058542A (zh) 一种氧化铜@水滑石杂化材料的制备方法及应用
Bah et al. Coupling the Batch Adsorption Enrichment using Ternary LDHs with Struvite Crystallization in a Fluidized Bed Reactor for High-efficiency Phosphorus Recovery from Wastewater
Yang et al. KOH-modified bamboo charcoal loaded with α-FeOOH for efficient adsorption of copper and fluoride ions from aqueous solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802505

Country of ref document: EP

Kind code of ref document: A1