CN112604647A - 一种赤泥基锶磁性NaP沸石吸附材料的制备方法 - Google Patents

一种赤泥基锶磁性NaP沸石吸附材料的制备方法 Download PDF

Info

Publication number
CN112604647A
CN112604647A CN202011466482.1A CN202011466482A CN112604647A CN 112604647 A CN112604647 A CN 112604647A CN 202011466482 A CN202011466482 A CN 202011466482A CN 112604647 A CN112604647 A CN 112604647A
Authority
CN
China
Prior art keywords
nap
srfe
red mud
magnetic
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011466482.1A
Other languages
English (en)
Inventor
徐龙君
成勇
刘成伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202011466482.1A priority Critical patent/CN112604647A/zh
Publication of CN112604647A publication Critical patent/CN112604647A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种赤泥基锶磁性NaP沸石吸附材料的制备方法,其属于无机吸附材料领域。本发明先用水热法制备了硬磁性材料锶铁氧体SrFe12O19,再对工业固体废物赤泥进行酸浸和碱熔融预处理,然后通过水热法制备出了磁性NaP沸石吸附材料(SrFe12O19@NaP)。本发明方法合成原料来源丰富,制备操作方法简单,所需设备少,能耗低。制备的SrFe12O19@NaP磁性能稳定、吸附性能高,比表面积大,在SrFe12O19@NaP剂量为1g/L、吸附温度为25℃的条件下,赤泥基锶磁性沸石SrFe12O19@NaP吸附100mL的pH为7和初始浓度为50mg/g的亚甲基蓝溶液,120min后赤泥基锶磁性沸石SrFe12O19@NaP对亚甲基蓝的去除率和吸附量分别是95.4%和47.9mg/g;在外加磁场作用下能快速回收,且吸附饱和后的赤泥基锶磁性沸石SrFe12O19@NaP经0.5mol/L氯化钠(NaCl)溶液3次脱附使用后的吸附量仍达到33.2mg/g。本发明制备出的产品可广泛用于去除水中有机污染物领域。

Description

一种赤泥基锶磁性NaP沸石吸附材料的制备方法
技术领域
本发明涉及一种以赤泥为原料制备赤泥基锶磁性NaP沸石(SrFe12O19@NaP)吸附材料的方法,属于无机环境吸附材料技术领域。
背景技术
赤泥是氧化铝厂利用拜耳法生产氧化铝过程中排出的强碱性固体废物,其主要化学成分是Al2O3和SiO2,它们的成分与沸石的构成成分相似,因此赤泥是成为合成沸石的重要潜在原料。沸石是一种水化结构的铝硅酸盐晶体,具有特定的骨架结构,由二氧化硅和氧化铝四面体组成,四面体由共享的氧原子连接。沸石由于其带负电荷的表面、内部孔隙、化学成分及特殊的性质,在过滤、离子交换、催化和吸附过程中有着重要应用。NaP沸石(Na6Al6SiO32·12H2O)因具有较高的CEC,常作为吸附剂处理重金属离子和有机污染物。NaP沸石制备的常用方法包括水热法和碱熔融水热法等。吸附剂在吸附污染物后会分散于液体中,分离和回收困难制约着吸附材料的实际应用。复合磁性吸附材料通过外加磁场实现吸附剂的回收再利用,克服了常规离心或过滤等回收方式能耗高、耗时长和工艺复杂的缺点,同时避免了对环境造成二次污染。
锶铁氧体(SrFe12O19)属于硬磁性材料,因具有较高的磁化强度、较高矫顽力和较强的抗退磁能力,而常用于磁性复合材料的磁性基体。目前,常见的SrFe12O19制备方法包括浸渍焙烧法、原位水解法、溶胶-凝胶法和化学沉淀法等。
目前,对NaP沸石的研究主要集中在提高其吸附性能方面,而忽略了NaP沸石的工艺和回收再利用。如“环境工程学报”2016年第10卷中的“以粉煤灰为原料制备高纯度NaP型分子筛”(对比文件1),采用水热法制备出纯NaP沸石。该方法的不足之处在于:(1)NaP沸石的制备是先将粉煤灰与活化剂碳酸钠(Na2CO3)混合均匀后在马弗炉中焙烧,然后用盐酸(HCl)处理研磨的烧结产物,离心得到粗氯化铝溶液和粗硅酸沉淀,再向粗硅酸沉淀中加入浓氢氧化钠溶液(NaOH)溶解、连续通入二氧化碳(CO2)和滴加氢氧化钠溶液(NaOH)以生成偏铝酸钠(NaAlO2)溶液,制备中连续通入CO2,不仅成本高、能耗高,而且会产生安全隐患,并且大量加入NaOH也不利于工业化;(2)制备的NaP沸石需要外加NaAlO2溶液调节硅铝摩尔比,在高压反应釜中120℃水热反应12h,制备成本高和耗能;(3)制备的NaP沸石虽能在45℃下对铜离子(Cu2+)吸附120min的去除率可达到98.3%,但吸附Cu2+的NaP沸石回收(离心或抽滤)成本较高,且容易因回收不彻底造成二次污染。
又如发明专利“一种磁性P型沸石分子筛的制备方法”(公开号:CN109336186A)(对比文件2),先以水热法制备四氧化三铁(Fe3O4)磁性基体,然后再利用水热法将煅烧活化的粉煤灰和Fe3O4制备磁性Fe3O4@NaP沸石。该方法的不足之处在于:(1)Fe3O4磁性基体具有低矫顽力和低剩磁的缺点,不易作为永久性磁性材料,这将影响磁性沸石的回收利用次数(2)粉煤灰需要在500~800℃焙烧2~6h活化,能耗高;(3)磁性Fe3O4@NaP沸石在70~100℃水热10~48h制备,周期长。
发明内容
本发明的目的是为了高附加值的利用工业固体废物赤泥,解决NaP沸石制备工艺复杂且难以回收再利用的问题,提出一种以赤泥为原料制备磁性SrFe12O19@NaP沸石的制备方法,制备方法简单、成本低。制备的磁性SrFe12O19@NaP沸石在具有较高的比表面积和优良的吸附性能,且能通过外加磁场从液相体系中分离和回收,回收后的吸附材料仍具有较高的吸附性能。该方法简易、高效地实现了固体废弃的资源化利用,吸附材料便于回收重复利用避免了吸附材料回收不全可能带来的二次污染。
本发明SrFe12O19@NaP沸石的制备方法如下:
(1)SrFe12O19的制备
采用水热法制备SrFe12O19,按照摩尔比Sr:Fe=1:4分别称取0.53g SrCl2·6H2O和2.16g FeCl3·6H2O同时溶解于20mL去离子水中,超声搅拌10min,直至固体完全溶解形成混合溶液;按照摩尔比OH-1:Cl-1=3:1,称取3.3598g NaOH溶于15mL去离子水制备NaOH溶液;在剧烈磁力搅拌下,向上述混合溶液中缓慢滴加NaOH溶液,获得混合的红棕色溶液;然后将混合的红棕色溶液置于50mL内衬聚四氟乙烯瓶的不锈钢高压反应釜中,将其密闭于不锈钢反应釜中后置于温度为200℃的烘箱中反应24h;反应结束后,抽滤得到的滤饼用浓盐酸浸泡后用蒸馏水反复洗涤至中性,然后在60℃下干燥24h,最后研磨得到SrFe12O19
(2)赤泥基锶磁性沸石SrFe12O19@NaP的制备
赤泥在盐酸浓度为5mol/L、液固比为7mL/g、温度为70℃条件下酸浸处理120min;将处理后的酸浸赤泥在酸浸赤泥与氢氧化钠质量比为1:1.5、650℃下碱熔60min;称取3g碱熔融赤泥于200mL烧杯中,加入30mL蒸馏水,再称取质量分数为2.5%~10.0%的步骤(1)自制的SrFe12O19加入烧杯中,悬浊液经机械搅拌3h后转移到100mL的聚四氟乙烯内胆中,将其密闭于不锈钢反应釜中后置于温度为120℃的烘箱中反应7h;反应结束后抽滤得到的滤饼用蒸馏水洗涤数次后于60℃下烘干12h,冷却至室温后经研磨得到赤泥基锶磁性沸石SrFe12O19@NaP吸附材料。
本发明采用上述技术方案,主要有以下效果:
(1)本发明方法制备的赤泥基锶磁性沸石SrFe12O19@NaP具有较高的比表面积(78.9m2·g-1)和吸附性能,在吸附剂量为1g/L、吸附温度为25℃的条件下,磁性沸石SrFe12O19@NaP对100mL、pH为7和初始浓度为50mg/g的亚甲基蓝溶液中吸附120min,亚甲基蓝的去除率和吸附量分别是95.4%和47.9mg/g。
(2)本发明方法制备的赤泥基锶磁性沸石SrFe12O19@NaP在外加磁场作用下能快速回收,且吸附饱和后的磁性沸石SrFe12O19@NaP经0.5mol/L氯化钠(NaCl)溶液3次脱附使用后的吸附量仍达到33.2mg/g。
(3)本发明方法制备的赤泥基锶磁性沸石SrFe12O19@NaP吸附材料,合成原料来源丰富,制备操作方法简单,所需设备少,能耗低。
附图说明
图1为NaP沸石、SrFe12O19和SrFe12O19@NaP的X射线衍射图谱。
图2为SrFe12O19@NaP的扫描电子显微镜图。
图3为SrFe12O19和SrFe12O19@NaP的磁滞回线图。
具体实施方式
下面结合具体实施方式,进一步说明本发明。
实施例1
一种制备赤泥基锶磁性沸石SrFe12O19@NaP吸附材料的制备,具体步骤如下:
(1)SrFe12O19的制备
按照摩尔比Sr:Fe=1:4分别称取0.53g SrCl2·6H2O和2.16g FeCl3·6H2O同时溶解于20mL去离子水中,超声搅拌10min,直至固体完全溶解形成混合溶液;按照摩尔比OH-1:Cl-1=3:1,称取3.3598g NaOH溶于15mL去离子水制备NaOH溶液;在剧烈磁力搅拌下,向上述混合溶液中缓慢滴加NaOH溶液,获得混合的红棕色溶液;然后将混合的红棕色溶液置于50mL内衬聚四氟乙烯瓶的不锈钢高压反应釜中,将其密闭于不锈钢反应釜中后置于温度为200℃的烘箱中反应24h;反应结束后,抽滤得到的滤饼用浓盐酸浸泡后用蒸馏水反复洗涤至中性,然后在60℃下干燥24h,最后研磨得到SrFe12O19
(2)赤泥基锶磁性沸石SrFe12O19@NaP的制备
赤泥在盐酸浓度为5mol/L、液固比为7mL/g、温度为70℃条件下酸浸处理120min;将处理后的酸浸赤泥在酸浸赤泥与氢氧化钠质量比为1:1.5、650℃下碱熔60min;称取3g碱熔融赤泥于200mL烧杯中,加入30mL蒸馏水,再称取质量分数为2.5%的步骤(1)自制的SrFe12O19加入烧杯中,悬浊液经机械搅拌3h后转移到100mL的聚四氟乙烯内胆中,将其密闭于不锈钢反应釜中后置于温度为120℃的烘箱中反应7h;反应结束后抽滤得到的滤饼用蒸馏水洗涤数次后于60℃下烘干12h,冷却至室温后经研磨得到磁性沸石SrFe12O19@NaP吸附材料。
实施例2
一种制备赤泥基锶磁性沸石SrFe12O19@NaP吸附材料的制备,具体步骤如下:
(1)SrFe12O19的制备
同实施例1中(1)。
(2)赤泥基锶磁性沸石SrFe12O19@NaP的制备
赤泥在盐酸浓度为5mol/L、液固比为7mL/g、温度为70℃条件下酸浸处理120min;将处理后的酸浸赤泥在酸浸赤泥与氢氧化钠质量比为1:1.5、650℃下碱熔60min;称取3g碱熔融赤泥于200mL烧杯中,加入30mL蒸馏水,再称取质量分数为5.0%的自制的SrFe12O19加入烧杯中,悬浊液经机械搅拌3h后转移到100mL的聚四氟乙烯内胆中,将其密闭于不锈钢反应釜中后置于温度为120℃的烘箱中反应7h;反应结束后抽滤得到的滤饼用蒸馏水洗涤数次后于60℃下烘干12h,冷却至室温后经研磨得到磁性沸石SrFe12O19@NaP吸附材料。
实施例3
一种制备赤泥基锶磁性沸石SrFe12O19@NaP吸附材料的制备,具体步骤如下:
(1)SrFe12O19的制备
同实施例1中(1)。
(2)赤泥基锶磁性沸石SrFe12O19@NaP的制备
赤泥在盐酸浓度为5mol/L、液固比为7mL/g、温度为70℃条件下酸浸处理120min;将处理后的酸浸赤泥在酸浸赤泥与氢氧化钠质量比为1:1.5、650℃下碱熔60min;称取3g碱熔融赤泥于200mL烧杯中,加入30mL蒸馏水,再称取质量分数为10.0%的自制的SrFe12O19加入烧杯中,悬浊液经机械搅拌3h后转移到100mL的聚四氟乙烯内胆中,将其密闭于不锈钢反应釜中后置于温度为120℃的烘箱中反应7h;反应结束后抽滤得到的滤饼用蒸馏水洗涤数次后于60℃下烘干12h,冷却至室温后经研磨得到磁性沸石SrFe12O19@NaP吸附材料。
实验结果
实施例1制备的赤泥基锶磁性沸石SrFe12O19@NaP吸附材料的吸附性能最佳且磁性基体SrFe12O19添加量最少。为了方便对比,制备了NaP沸石样品。NaP沸石制备方法为实施例1步骤(2)中不加入SrFe12O19
NaP沸石的X射线衍射图谱如图1所示,所有衍射峰均能指标化为正方晶系的NaP沸石(JCPDS No.:39-0219),表明成功制备出了NaP沸石晶体,晶胞参数为
Figure BDA0002834424470000051
α=β=γ=90°,
Figure BDA0002834424470000052
图1中NaP沸石2θ为12.5°、17.6°、21.7°、28.1°、33.4°、40.0°、46.0°处出现的衍射峰分别与(101),(200),(211),(301),(312),(141),(511)晶面相对应,表明其结晶度良好,没有杂晶生成,利用谢乐公式计算得到NaP沸石的平均晶粒尺寸为32.6nm。
SrFe12O19的X射线衍射图谱如图1所示,所有衍射峰均能指标化为六边形的SrFe12O19(JCPDS No.:33-1340),晶胞参数为
Figure BDA0002834424470000053
α=β=90°,γ=120°,
Figure BDA0002834424470000054
Figure BDA0002834424470000055
图中2θ为30.3°、32.4°、34.2°、37.1°处出现的衍射峰分别与(008)、(107)、(114)、(203)晶面相对应;利用谢乐公式计算得到SrFe12O19样品的平均晶粒尺寸为55.1nm。
SrFe12O19@NaP的X射线衍射图谱如图1所示,SrFe12O19@NaP复合吸附材料的主要衍射峰与NaP沸石保持一致,且存在SrFe12O19的晶面(008)、(107)、(114)、(203),表明复合并没有改变NaP沸石晶体的偏好生长方向以及晶体结构以及复合物中存在SrFe12O19晶相。
SrFe12O19@NaP的扫描电镜图如图2所示,其中SrFe12O19的形貌为形状规则的六边形片状;NaP沸石的形貌是规则的块状,堆砌的薄片状和颗粒团聚而成的聚合体,在SrFe12O19@NaP中清楚地发现SrFe12O19六边形片与形状复杂的NaP沸石结合在一起,表明NaP沸石与SrFe12O19已经成功复合。
SrFe12O19和SrFe12O19@NaP的磁性参数测试如图3所示,SrFe12O19的饱和磁化强度为47.7emu/g,矫顽力为1048.0Oe,剩余磁化强度为0.66emu/g,表明SrFe12O19为硬磁性材料。SrFe12O19@NaP的饱和磁化强度为1.61emu/g,仍然能够被有效磁回收。
吸附结果表明,在SrFe12O19@NaP剂量为1g/L、吸附温度为25℃的条件下,磁性沸石SrFe12O19@NaP吸附100mL的pH为7和初始浓度为50mg/g的亚甲基蓝溶液,120min后磁性沸石SrFe12O19@NaP对亚甲基蓝的去除率和吸附量分别是95.4%和47.9mg/g;在外加磁场作用下能快速回收,且吸附饱和后的磁性沸石SrFe12O19@NaP经0.5mol/L氯化钠(NaCl)溶液3次脱附使用后的吸附量仍达到33.2mg/g,说明采用本发明制备的磁性沸石SrFe12O19@NaP吸附材料具有较高的吸附性能和稳定的磁回收性能。

Claims (2)

1.一种赤泥基锶磁性NaP沸石吸附材料的制备方法,其特征在于包括以下步骤:
赤泥在盐酸浓度为5mol/L、液固比为7mL/g、温度为70℃条件下酸浸处理120min;将处理后的酸浸赤泥在酸浸赤泥与氢氧化钠质量比为1:1.5、650℃下碱熔60min;称取3g碱熔融赤泥于200mL烧杯中,加入30mL蒸馏水,再称取质量分数为2.5%~10.0%的自制锶铁氧体SrFe12O19加入烧杯中,悬浊液经机械搅拌3h后转移到100mL的聚四氟乙烯内胆中,将其密闭于不锈钢反应釜中后置于温度为120℃的烘箱中反应7h;反应结束后抽滤得到的滤饼用蒸馏水洗涤数次后于60℃下烘干12h,冷却至室温后经研磨得到赤泥基锶磁性沸石SrFe12O19@NaP吸附材料。
2.根据权利要求1所述的赤泥基锶磁性NaP沸石吸附化材料的制备方法,其特征在于以工业固体废物赤泥为原料,采用水热法制备,实现了磁性基体SrFe12O19与活性组分NaP沸石的有效复合。
CN202011466482.1A 2020-12-14 2020-12-14 一种赤泥基锶磁性NaP沸石吸附材料的制备方法 Pending CN112604647A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011466482.1A CN112604647A (zh) 2020-12-14 2020-12-14 一种赤泥基锶磁性NaP沸石吸附材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011466482.1A CN112604647A (zh) 2020-12-14 2020-12-14 一种赤泥基锶磁性NaP沸石吸附材料的制备方法

Publications (1)

Publication Number Publication Date
CN112604647A true CN112604647A (zh) 2021-04-06

Family

ID=75233756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011466482.1A Pending CN112604647A (zh) 2020-12-14 2020-12-14 一种赤泥基锶磁性NaP沸石吸附材料的制备方法

Country Status (1)

Country Link
CN (1) CN112604647A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180588A (zh) * 2021-12-01 2022-03-15 山西大学 一种利用赤泥协同含碳铝硅废弃物制备磁性沸石的方法
CN117843011A (zh) * 2024-03-06 2024-04-09 南京农业大学 一种赤泥水热法合成NaP1沸石

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480384A (zh) * 2013-09-18 2014-01-01 重庆大学 一种锶铁氧体负载的钒酸铋复合光催化剂的制备方法
CN108722345A (zh) * 2018-05-24 2018-11-02 重庆大学 一种利用粉煤灰合成的沸石及其处理高浓度氨氮废水的方法
CN110090652A (zh) * 2019-05-07 2019-08-06 重庆大学 一种制备氯四氧化三铋/锶铁氧体复合磁性光催化材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480384A (zh) * 2013-09-18 2014-01-01 重庆大学 一种锶铁氧体负载的钒酸铋复合光催化剂的制备方法
CN108722345A (zh) * 2018-05-24 2018-11-02 重庆大学 一种利用粉煤灰合成的沸石及其处理高浓度氨氮废水的方法
CN110090652A (zh) * 2019-05-07 2019-08-06 重庆大学 一种制备氯四氧化三铋/锶铁氧体复合磁性光催化材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG, Y ET AL.: ""Feasible low-cost conversion of red mud into magnetically separated and recycled hybrid SrFe12O19@NaP1 zeolite as a novel wastewater adsorbent"", 《CHEMICAL ENGINEERING JOURNAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180588A (zh) * 2021-12-01 2022-03-15 山西大学 一种利用赤泥协同含碳铝硅废弃物制备磁性沸石的方法
CN117843011A (zh) * 2024-03-06 2024-04-09 南京农业大学 一种赤泥水热法合成NaP1沸石

Similar Documents

Publication Publication Date Title
Cui et al. Synthesis of a novel magnetic Caragana korshinskii biochar/Mg–Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions
CN111203180B (zh) 一种磁性生物炭复合吸附剂及其制备方法和应用
CN108212074B (zh) 一种可磁性分离的偏钛酸型锂离子筛、制备方法及其应用
Marthi et al. Application and limitations of a H2TiO3–Diatomaceous earth composite synthesized from titania slag as a selective lithium adsorbent
Rahimi et al. Removal of toxic metal ions from sungun acid rock drainage using mordenite zeolite, graphene nanosheets, and a novel metal–organic framework
CN103191699B (zh) 一种铁氧体/石墨烯复合吸附剂及其制备、使用方法
Cheng et al. Feasible low-cost conversion of red mud into magnetically separated and recycled hybrid SrFe12O19@ NaP1 zeolite as a novel wastewater adsorbent
Zou et al. Sorption capacity and mechanism of Cr3+ on tobermorite derived from fly ash acid residue and carbide slag
Li et al. Oxygen defects of MgLa-LDH enhancing electrostatic attraction and inner-sphere complexation during phosphate adsorption from wastewater
CN112604647A (zh) 一种赤泥基锶磁性NaP沸石吸附材料的制备方法
CN112169748B (zh) 一种吸附剂及其制备方法和应用
Mi et al. Lanthanum activated palygorskite for selective phosphate separation from aqueous media: Comprehensive understanding of adsorptive behavior and mechanism affected by interfering substances
Chai et al. Low-cost Y-type zeolite/carbon porous composite from coal gasification fine slag and its application in the phenol removal from wastewater: fabrication, characterization, equilibrium, and kinetic studies
CN114425340A (zh) 一种生物炭修饰钴铁双金属复合催化剂的制备及在催化降解四环素中应用
CN115475606A (zh) 改性硫化钼/生物炭材料及其制备方法和在共吸附抗生素与重金属离子中的应用
Fan et al. Stabilization of fluorine-contaminated soil in aluminum smelting site with biochar loaded iron-lanthanide and aluminum-lanthanide bimetallic materials
CN112125349A (zh) 高耐久的铁酸钴材料及其应用
Pei et al. Stellerite-seeded facile synthesis of zeolite X with excellent aqueous Cd2+ and Ni2+ adsorption performance
Rao et al. Facile synthesis of NaY molecular sieve by low-temperature ultrasonic gelling method for efficient adsorption of rare-earth elements
Chen et al. A novel and cost-effective synthesis of magnetic zeolite 4A using kaolinite and red mud for Sr (II) removal
CN112607785A (zh) 一种MnFe2O4/C纳米复合微球及其制备方法
CN111701605A (zh) 一种制备磁性碘七氧化五铋复合光催化材料的方法
CN109847768B (zh) 一种钛渣的综合利用方法
Panda et al. Preparation of fly ash based zeolite for fluoride removal
GB2622157A (en) Wastewater adsorbent, and preparation method therefor and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210406

RJ01 Rejection of invention patent application after publication