WO2023211083A1 - 나노 입자가 적용된 led 로드 정렬 구조, 및 나노 입자가 적용된 led 로드 정렬 구조의 제조 방법 - Google Patents

나노 입자가 적용된 led 로드 정렬 구조, 및 나노 입자가 적용된 led 로드 정렬 구조의 제조 방법 Download PDF

Info

Publication number
WO2023211083A1
WO2023211083A1 PCT/KR2023/005534 KR2023005534W WO2023211083A1 WO 2023211083 A1 WO2023211083 A1 WO 2023211083A1 KR 2023005534 W KR2023005534 W KR 2023005534W WO 2023211083 A1 WO2023211083 A1 WO 2023211083A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
alignment
led
led rod
polymer layer
Prior art date
Application number
PCT/KR2023/005534
Other languages
English (en)
French (fr)
Inventor
이인환
김태환
조영훈
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023211083A1 publication Critical patent/WO2023211083A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures

Definitions

  • the present invention relates to an LED rod alignment structure, and more specifically, to a process for applying nanoparticles to the LED rod alignment structure after aligning the LED rod.
  • the plasmonic effect is a phenomenon in which free electrons in a metal collectively vibrate due to external light, and corresponds to the photo-electronic effect that appears in metals.
  • This plasmonic effect is caused by a resonance phenomenon in which most of the light energy in incident light of a specific wavelength is transferred to free electrons.
  • This electric field can be generated when light energy is converted by surface plasmons and accumulated on the surface of metal nanoparticles. Additionally, the generation of an electric field may mean that light control is possible in an area smaller than the diffraction limit of light.
  • Metal nanoparticles have a strong and characteristic interaction with electromagnetic waves, such as surface plasmon resonance, and this allows amplification and control of the light absorption band, which can be used in various fields such as fluorescence spectroscopy, various types of sensors, and optoelectronic devices. Application is expected.
  • the method of coating metal nanoparticles according to the prior art had limitations in semi-permanently coating the metal nanoparticles on the LED rod, or there was a problem in that the process steps were complicated by applying the metal nanoparticles before the LED rod was aligned.
  • One object of the present invention is to provide an LED alignment structure coated with nanoparticles that cause surface plasmon resonance after the LED rod is aligned.
  • One object of the present invention is to provide an LED rod alignment structure in which nanoparticles are semi-permanently coated to continuously increase internal quantum efficiency.
  • Another object of the present invention is to provide a method of manufacturing the LED rod alignment structure.
  • an LED rod alignment structure includes an LED rod including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, and the LED rod is aligned.
  • the LED rod is semi-permanently coated on the surface of the active layer and may include nanoparticles that cause surface plasmon resonance. After the LED rod is aligned to the alignment pad, the nanoparticles are coated using at least one of a first coating method using an electrophoresis process and a second coating method using a dewetting process. Can be coated.
  • the LED rod may be horizontally aligned to the alignment pad.
  • the first coating method may attach the nanoparticles to the surface of the LED rod by moving the prepared nanoparticles under electric field conditions.
  • the nanoparticles may be at least one of core nanoparticles and core-shell nanoparticles.
  • the first coating method involves coating a first polymer layer between the alignment pads, performing a metalization process to electrically connect the alignment pad and the LED rod, and forming the first polymer layer. may be removed, the nanoparticles that generate surface plasmon resonance may be attached to the LED rod and the alignment pad by electrophoresis, and the protective film may be formed on the LED rod and the alignment pad.
  • the first coating method includes removing the first polymer layer, coating a second polymer layer on the alignment pad, and attaching the nanoparticles, then applying the second polymer layer on the alignment pad. can be removed.
  • the first coating method controls the position at which the nanoparticles are attached to the LED rod by controlling the coating area of the second polymer layer when coating the second polymer layer on the alignment pad. can do.
  • the second coating method may form the nanoparticles by forming a metal layer on the surface of the LED rod and heat-treating the metal layer to granulate it.
  • the second coating method involves coating a first polymer layer between the alignment pads, performing a metalization process to electrically connect the alignment pad and the LED rod, and forming the first polymer layer. Remove, deposit an insulating film on the LED rod and the alignment pad, form the metal layer on the surface of the LED rod, heat treat the metal layer to form the nanoparticles that cause surface plasmon resonance, and And the protective film may be formed on the alignment pad.
  • the second coating method includes removing the first polymer layer, coating the alignment pad with a second polymer layer, and forming the metal layer, then applying the second polymer layer on the alignment pad. It can be removed.
  • the second coating method controls the position at which the nanoparticles are attached to the LED rod by controlling the coating area of the second polymer layer when coating the second polymer layer on the alignment pad. can do.
  • the nanoparticles may be coated at intervals of 1 nm to 150 nm from the surface of the LED rod.
  • the LED rod may be vertically aligned to the alignment pad.
  • a protective film formed on the LED rod and the alignment pad may be further included.
  • the protective film may include at least one of SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 .
  • a method of manufacturing an LED alignment structure includes aligning an LED rod on an alignment pad, and applying nanoparticles that cause surface plasmon resonance to the surface of the LED rod. It may include a semi-permanent coating step.
  • the step of semi-permanently coating the nanoparticles on the surface of the LED rod includes, after the LED rod is aligned on the alignment pad, a first coating method using an electrophoresis process and a dewetting process.
  • the nanoparticles may be coated using at least one of the second coating methods used.
  • nanoparticles that cause surface plasmon resonance can be coated after the LED rod is aligned on the alignment pad, so the LED rod alignment structure
  • the manufacturing process can be simplified, and the manufacturing cost of the LED rod alignment structure can be lowered.
  • nanoparticles can be semi-permanently attached to the surface of the LED rod using an electrophoresis process or a dewetting process. Therefore, since the nanoparticles are continuously fixed to the LED rod surface, the internal quantum efficiency of the LED rod alignment structure can be increased.
  • FIG. 1 is a diagram showing an LED rod alignment structure according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a method of manufacturing the LED rod alignment structure of FIG. 1 using electrophoresis.
  • Figure 3 is a diagram showing a process for coating a first polymer layer between alignment pads.
  • Figure 4 is a diagram showing the metal process and the first polymer layer removal process.
  • Figures 5a and 5b are diagrams showing a process for coating a second polymer layer on an alignment pad.
  • Figures 6a and 6b are diagrams showing the process of coating nanoparticles on an LED rod alignment structure by electrophoresis.
  • Figures 7a and 7b are diagrams showing a process for removing the second polymer layer of the alignment pad.
  • FIGS. 8A and 8B are diagrams showing the process of forming a protective film.
  • Figure 9 is a diagram showing an LED rod alignment structure according to an embodiment of the present invention.
  • FIG. 10 is a flowchart showing a method of manufacturing the LED rod alignment structure of FIG. 9 using a dewetting process.
  • Figure 11 is a diagram showing the process of coating the first polymer layer between alignment pads.
  • Figure 12 is a diagram showing the metal process and the first polymer layer removal process.
  • Figures 13a and 13b are diagrams showing a process for coating a second polymer layer on an alignment pad.
  • Figures 14a and 14b are diagrams showing a process for depositing an insulating film on an LED rod alignment structure.
  • Figures 15a and 15b are diagrams showing a process for forming a metal layer and a process for removing the second polymer layer of the alignment pad.
  • Figures 16a and 16b are diagrams showing a process for forming nanoparticles by heat treating a metal layer.
  • 17A and 17B are diagrams showing the process of forming a protective film.
  • Figure 18 is a diagram showing an LED rod alignment structure according to another embodiment of the present invention.
  • first or second may be used to describe various components, but the components should not be limited by the terms.
  • the above terms are used only for the purpose of distinguishing one component from another component, for example, a first component may be named a second component, without departing from the scope of rights according to the concept of the present invention, Similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a diagram showing an LED rod alignment structure according to an embodiment of the present invention
  • FIG. 2 is a flowchart showing a method of manufacturing the LED rod alignment structure of FIG. 1 using electrophoresis.
  • the LED rod alignment structure may include an LED rod 100, an alignment pad 200, and a protective film 300.
  • the LED rod 100 may include a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer.
  • the LED rod 100 may include a first conductivity type semiconductor layer, an active layer formed on the first conductivity type semiconductor layer, and a second conductivity type semiconductor layer formed on the active layer.
  • the first conductivity type semiconductor layer and the second conductivity type semiconductor layer may be made of a material such as GaN, AlGaN, or InGaN. Si, Ge, Se, Te, etc. may be used as the n-type impurities. Mg, Zn, Be, etc. may be used as the p-type impurity.
  • the first conductivity type semiconductor layer and the second conductivity type semiconductor layer may be formed through a MOCVD process, MBE process, HVPE process, etc.
  • the active layer can emit light with a predetermined energy by recombination of electrons and holes.
  • the active layer may be a layer made of a single material such as InGaN.
  • the active layer may be formed in a multiple quantum well (MQW) structure in which quantum barrier layers and quantum well layers are alternately arranged.
  • MQW multiple quantum well
  • the diameter of the LED rod 100 may be 10 nm to 100 ⁇ m.
  • the length from the bottom of the first conductivity type semiconductor layer to the top of the second conductivity type semiconductor layer may be 10 nm to 100 ⁇ m.
  • the LED rod 100 may be a nanorod.
  • the LED rod 100 may be aligned on the alignment pad 200.
  • the LED rod 100 may be horizontally aligned with the alignment pad 200.
  • the LED rod 100 may be vertically aligned with the alignment pad 200.
  • the alignment pad 200 may be composed of a metal pad electrically connected to the LED rod 100.
  • the alignment pad 200 may serve as a metal wire that supplies current to the LED load 100 through metalization.
  • a protective film 300 may be formed on the LED rod 100 and the alignment pad 200.
  • the protective film 300 may have the function of protecting the LED rod 100 and the alignment pad 200 from the outside.
  • nanoparticles may be semi-permanently coated on the surface of the LED rod 100.
  • Nanoparticles can cause surface plasmon resonance.
  • Nanoparticles are materials suitable for using the surface plasmon phenomenon, and can be composed of metals that easily emit electrons by external stimulation and have a negative dielectric constant.
  • nanoparticles may be composed of at least one of Ag, Au, Al, Ni, Ti, and Pt, or a combination thereof.
  • nanoparticles (NPs) may have various shapes such as spheres, cuboids, and octahedrons.
  • Nanoparticles (NP) may be coated on the surface of the LED rod 100 so that the distance from the surface of the LED rod 100 is 1 nm to 150 nm.
  • the nanoparticles (NP) may be coated at intervals of 1 nm to 150 nm from the surface of the LED rod 100.
  • nanoparticles may be coated on the surface of the LED rod 100 after the LED rod 100 is aligned to the alignment pad 200.
  • the nanoparticles (NP) according to embodiments of the present invention are not coated before the LED rod 100 is aligned to the alignment pad 200, but rather after the LED rod 100 is aligned to the alignment pad 200. Afterwards, it can be coated on the surface of the LED rod 100 through a separate process.
  • the nanoparticles (NP) may be coated using a first coating method using an electrophoresis process after the LED rod 100 is aligned to the alignment pad 200.
  • the first coating method can attach the nanoparticles (NP) to the surface of the LED rod 100 by moving the prepared nanoparticles (NP) under electric field conditions.
  • the nanoparticles may be at least one of core nanoparticles (NPs) and core-shell nanoparticles (NPs).
  • the first coating method coats a first polymer layer between the alignment pads 200 (S110), and uses a metal layer to electrically connect the alignment pad 200 and the LED rod 100.
  • Perform a process metalization
  • the protective film 300 may be formed on the alignment pad 200 (S160).
  • Figure 3 is a diagram showing a process of coating the first polymer layer between the alignment pads 200
  • Figure 4 is a diagram showing the metal process and the first polymer layer removal process.
  • the first polymer layer may be coated between the alignment pads 200.
  • the first polymer layer may be coated on the area between the alignment pads 200 where the LED rod 100 is disposed, excluding the alignment pad 200.
  • the first polymer layer may be a polymer layer.
  • the first polymer layer may be composed of photoresist, resin, polyimide, etc.
  • the first polymer layer may be spin-on-glass.
  • the alignment pad 200 may serve as a metal wire that supplies current to the LED load 100 through metalization.
  • a metal process can electrically connect the alignment pad 200 and the LED load 100.
  • the alignment pad 200 is electrically connected to the LED rod 100 through a metal process and can supply current to the LED rod 100.
  • the first polymer layer may be removed.
  • Figures 5a and 5b are diagrams showing the process of coating the second polymer layer on the alignment pad 200.
  • the second polymer layer may be formed on the alignment pad 200. Specifically, the second polymer layer may be formed on the alignment pad 200 without the need for nanoparticles (NPs) to be coated.
  • NPs nanoparticles
  • the second polymer layer may be a polymer layer.
  • the second polymer layer may be composed of photoresist, resin, polyimide, etc.
  • the second polymer layer may be spin-on-glass.
  • the first coating method is to adjust the coating area of the second polymer layer when coating the second polymer layer on the alignment pad 200 to form the nanoparticles on the LED rod 100.
  • the position where (NP) is attached can be controlled.
  • the second polymer layer may be coated only on the alignment pad 200 with the same area as the alignment pad 200.
  • the second polymer layer may be coated on a portion of the alignment pad 200 and the first conductive semiconductor layer of the LED rod 100 in an area larger than that of the alignment pad 200.
  • nanoparticles can be efficiently attached only to positions close to the active layer of the LED rod 100.
  • FIGS. 6B, 7B, and 8B show each process of the first coating method when the second polymer layer is coated with an area larger than the alignment pad 200, as shown in FIG. 5B.
  • the second polymer layer may not be coated on the alignment pad 200.
  • the step of coating the second polymer layer may be omitted.
  • the step of removing the second polymer layer which will be described later, can also be omitted.
  • nanoparticles may be entirely attached to the LED rod 100 and the alignment pad 200.
  • Figures 6a and 6b are diagrams showing the process of coating nanoparticles (NPs) on an LED rod alignment structure by electrophoresis.
  • nanoparticles may be coated on the LED rod 100 and the alignment pad 200 by electrophoresis.
  • the first coating method can attach the nanoparticles (NPs) to the surface of the LED rod 100 by moving the prepared nanoparticles (NPs) under electric field conditions.
  • the nanoparticles may be at least one of core nanoparticles (NPs) and core-shell nanoparticles (NPs).
  • the first coating method is to transfer the prepared core nanoparticles (NPs) or core-shell nanoparticles (NPs) by electrophoresis, thereby forming the core nanoparticles (NPs) or core-shell nanoparticles (NPs). It can be coated on the LED rod 100 and the alignment pad 200.
  • FIG. 7A and 7B are diagrams showing a process for removing the second polymer layer of the alignment pad 200.
  • the second polymer layer can be removed after the nanoparticles (NPs) are coated by electrophoresis.
  • nanoparticles can be formed at the target location of the LED rod 100 where the nanoparticles (NPs) need to be attached.
  • FIGS. 8A and 8B are diagrams showing the process of forming the protective film 300.
  • the protective film 300 may be formed on the LED rod 100 and the alignment pad 200.
  • the protective film 300 may function to protect the LED rod 100 and the alignment pad 200. Additionally, the protective film 300 may protect the nanoparticles (NPs) so that the nanoparticles (NPs) can be semi-permanently coated on the LED rod 100.
  • the protective film 300 may be composed of SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 .
  • the manufacturing process of the LED rod alignment structure to which the nanoparticles (NPs) are applied is The manufacturing cost of the LED load alignment structure can be simplified and lowered.
  • nanoparticles can be semi-permanently attached to the surface of the LED rod 100 using an electrophoresis process.
  • the nanoparticles (NP) are continuously fixed to the surface of the LED rod 100, the internal quantum efficiency of the LED rod alignment structure can be increased.
  • FIG. 9 is a diagram showing an LED rod alignment structure according to an embodiment of the present invention
  • FIG. 10 is a flowchart showing a method of manufacturing the LED rod alignment structure of FIG. 9 using a dewetting process.
  • the LED rod alignment structure may include an LED rod 100, an alignment pad 200, and a protective film 300.
  • the LED rod 100 may include a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer.
  • the LED rod 100 may include a first conductivity type semiconductor layer, an active layer formed on the first conductivity type semiconductor layer, and a second conductivity type semiconductor layer formed on the active layer.
  • the first conductivity type semiconductor layer and the second conductivity type semiconductor layer may be made of a material such as GaN, AlGaN, or InGaN. Si, Ge, Se, Te, etc. may be used as the n-type impurities. Mg, Zn, Be, etc. may be used as the p-type impurity.
  • the first conductivity type semiconductor layer and the second conductivity type semiconductor layer may be formed through a MOCVD process, MBE process, HVPE process, etc.
  • the active layer can emit light with a predetermined energy by recombination of electrons and holes.
  • the active layer may be a layer made of a single material such as InGaN.
  • the active layer may be formed in a multiple quantum well (MQW) structure in which quantum barrier layers and quantum well layers are alternately arranged.
  • MQW multiple quantum well
  • the diameter of the LED rod 100 may be 10 nm to 100 ⁇ m.
  • the length from the bottom of the first conductivity type semiconductor layer to the top of the second conductivity type semiconductor layer may be 10 nm to 100 ⁇ m.
  • the LED rod 100 may be a nanorod.
  • the LED rod 100 may be aligned on the alignment pad 200.
  • the LED rod 100 may be horizontally aligned with the alignment pad 200.
  • the LED rod 100 may be vertically aligned with the alignment pad 200.
  • the alignment pad 200 may be composed of a metal pad electrically connected to the LED rod 100.
  • the alignment pad 200 may serve as a metal wire that supplies current to the LED load 100 through metalization.
  • a protective film 300 may be formed on the LED rod 100 and the alignment pad 200.
  • the protective film 300 may have the function of protecting the LED rod 100 and the alignment pad 200 from the outside.
  • nanoparticles may be semi-permanently coated on the surface of the LED rod 100.
  • Nanoparticles can cause surface plasmon resonance.
  • Nanoparticles are materials suitable for using the surface plasmon phenomenon, and can be composed of metals that easily emit electrons by external stimulation and have a negative dielectric constant.
  • nanoparticles may be composed of at least one of Ag, Au, Al, Ni, Ti, and Pt, or a combination thereof.
  • nanoparticles (NPs) may have various shapes such as spheres, cuboids, and octahedrons.
  • Nanoparticles (NP) may be coated on the surface of the LED rod 100 so that the distance from the surface of the LED rod 100 is 1 nm to 150 nm.
  • the nanoparticles (NP) may be coated at intervals of 1 nm to 150 nm from the surface of the LED rod 100.
  • nanoparticles may be coated on the surface of the LED rod 100 after the LED rod 100 is aligned to the alignment pad 200.
  • the nanoparticles (NP) according to embodiments of the present invention are not coated before the LED rod 100 is aligned to the alignment pad 200, but rather after the LED rod 100 is aligned to the alignment pad 200. Afterwards, it can be coated on the surface of the LED rod 100 through a separate process.
  • the nanoparticles (NP) may be coated using a second coating method using a dewetting process after the LED rod 100 is aligned to the alignment pad 200.
  • the second coating method forms a metal layer on the surface of the LED rod 100, and heat-treats the metal layer to form particles, thereby forming the nanoparticles (NPs).
  • the second coating method is a metalization process (Metalization) that coats the first polymer layer between the alignment pads 200 (S210) and electrically connects the alignment pad 200 and the LED rod. ), removing the first polymer layer (S220), coating the second polymer layer on the alignment pad 200 (S230), and coating the LED rod 100 and the alignment pad 200 with a second polymer layer (S230).
  • An insulating film is deposited (S240), the metal layer is formed on the surface of the LED rod 100, the second polymer layer on the alignment pad 200 is removed (S250), and the metal layer is heat treated to generate surface plasmon resonance.
  • the nanoparticles (NP) that cause can be formed (S260), and the protective film 300 can be formed on the LED rod 100 and the alignment pad 200 (S270).
  • FIG. 11 is a diagram showing a process of coating the first polymer layer between the alignment pads 200
  • FIG. 12 is a diagram showing a metal process and a process of removing the first polymer layer.
  • a first polymer layer may be coated between the alignment pads 200.
  • the first polymer layer may be coated on the area between the alignment pads 200 where the LED rod 100 is disposed, excluding the alignment pad 200.
  • the first polymer layer may be a polymer layer.
  • the first polymer layer may be composed of photoresist, resin, polyimide, etc.
  • the first polymer layer may be spin-on-glass.
  • the alignment pad 200 may serve as a metal wire that supplies current to the LED load 100 through metalization.
  • a metal process can electrically connect the alignment pad 200 and the LED load 100.
  • the alignment pad 200 is electrically connected to the LED rod 100 through a metal process and can supply current to the LED rod 100.
  • the first polymer layer may be removed.
  • Figures 13a and 13b are diagrams showing the process of coating the second polymer layer on the alignment pad 200.
  • the second polymer layer may be formed on the alignment pad 200. Specifically, the second polymer layer may be formed on the alignment pad 200 without the need for nanoparticles (NPs) to be coated.
  • NPs nanoparticles
  • the second polymer layer may be a polymer layer.
  • the second polymer layer may be composed of photoresist, resin, polyimide, etc.
  • the second polymer layer may be spin-on-glass.
  • the second coating method is to adjust the coating area of the second polymer layer when coating the second polymer layer on the alignment pad 200 to form the nanoparticles on the LED rod 100.
  • the position where (NP) is attached can be controlled.
  • the second polymer layer may be coated only on the alignment pad 200 with the same area as the alignment pad 200.
  • the second polymer layer may be coated on a portion of the alignment pad 200 and the first conductive semiconductor layer of the LED rod 100 in an area larger than that of the alignment pad 200.
  • nanoparticles can be efficiently attached only to positions close to the active layer of the LED rod 100.
  • FIGS. 14b, 15b, 16b, and 17b show each process of the first coating method when the second polymer layer is coated with an area larger than the alignment pad 200, as shown in FIG. 13b.
  • the second polymer layer may not be coated on the alignment pad 200.
  • the step of coating the second polymer layer may be omitted.
  • the step of removing the second polymer layer which will be described later, can also be omitted.
  • nanoparticles may be entirely attached to the LED rod 100 and the alignment pad 200.
  • Figures 14a and 14b are diagrams showing a process for depositing an insulating film on an LED rod alignment structure.
  • an insulating film may be deposited on the LED rod 100, the alignment pad 200, and the second polymer layer.
  • the insulating film may function to form an appropriate distance between the LED rod 100 and the nanoparticles (NPs).
  • the insulating film may have a thickness of 1 nm to 150 nm.
  • the insulating film may include at least one of SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 .
  • FIGS. 15A and 15B are diagrams showing a process of forming a metal layer and a process of removing the second polymer layer of the alignment pad 200.
  • a metal layer may be formed on the LED rod 100.
  • the metal layer may be composed of a metal material capable of causing surface plasmon resonance.
  • the second polymer layer may be removed after the metal layer is formed. In this way, by removing the second polymer layer, nanoparticles (NPs) can be formed at the target location of the LED rod 100 where the nanoparticles (NPs) need to be attached.
  • a metal layer may be formed on the alignment pads 200 and the LED rod 100.
  • FIG. 16a and 16b is a diagram showing the process of forming nanoparticles (NPs) by heat treating a metal layer.
  • nanoparticles may be formed on the surface of the LED rod 100 by a dewetting method.
  • the nanoparticles can be formed by forming a metal layer on the surface of the LED rod 100 and heat-treating the metal layer to granulate it.
  • the second coating method can heat-treat the metal layer to form the nanoparticles (NPs) that generate surface plasmon resonance.
  • the first coating method can form a plurality of nanoparticles (NPs) having the shape of water droplets by heat treating the metal layer.
  • NPs nanoparticles
  • 17A and 17B are diagrams showing the process of forming the protective film 300.
  • the protective film 300 may be formed on the LED rod 100 and the alignment pad 200.
  • the protective film 300 may function to protect the LED rod 100 and the alignment pad 200. Additionally, the protective film 300 may protect the nanoparticles (NPs) so that the nanoparticles (NPs) can be semi-permanently coated on the LED rod 100.
  • the protective film 300 may be composed of SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 .
  • the manufacturing process of the LED rod alignment structure to which the nanoparticles (NPs) are applied is The manufacturing cost of the LED load alignment structure can be simplified and lowered.
  • nanoparticles can be semi-permanently attached to the surface of the LED rod 100 using a dewetting process.
  • the nanoparticles (NP) are continuously fixed to the surface of the LED rod 100, the internal quantum efficiency of the LED rod alignment structure can be increased.
  • Figure 18 is a diagram showing an LED rod alignment structure according to another embodiment of the present invention.
  • the LED rod may be vertically aligned to the alignment pad.
  • the LED rod alignment structure may include an alignment substrate, a polymer layer including an inclined surface, an LED rod, and a bonding metal.
  • the LED rod can be vertically aligned to the alignment substrate through the bonding metal.
  • nanoparticles may be coated on the LED rod alignment structure. That is, nanoparticles can be attached on the surface of a vertically aligned LED rod.
  • nanoparticles are applied after the LED rod is vertically aligned to the alignment substrate, using a first coating method using an electrophoresis process or a second coating method using a dewetting process. It can be coated using .
  • nanoparticles that cause surface plasmon resonance can be coated after the LED rod is aligned on the alignment pad.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

LED 로드 정렬 구조는 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 LED 로드, 및 상기 LED 로드가 정렬된 정렬 패드를 포함할 수 있다. 상기 LED 로드는 상기 활성층의 표면에 반영구적으로 코팅되고, 표면 플라즈몬 공명을 일으키는 나노 입자를 포함할 수 있다. 상기 LED 로드가 상기 정렬 패드에 정렬된 이후, 상기 나노 입자는 전기영동(electrophoresis) 공정을 사용하는 제1 코팅방식, 및 디웨팅(dewetting) 공정을 사용하는 제2 코팅방식 중 적어도 하나를 이용하여 코팅될 수 있다.

Description

나노 입자가 적용된 LED 로드 정렬 구조, 및 나노 입자가 적용된 LED 로드 정렬 구조의 제조 방법
본 발명은 LED 로드 정렬 구조에 관한 것으로, 보다 상세하게는 LED 로드를 정렬한 이후, LED 로드 정렬 구조에 나노 입자를 적용하는 공정 프로세스에 관한 것이다.
플라즈모닉(Plasnmonic) 효과는 외부의 빛에 의해 금속 내의 자유전자가 집단적으로 진동하는 현상으로 금속에서 나타나는 광-전자효과에 해당한다. 이러한 플라즈모닉 효과는 특정 파장의 입사광에서 대부분의 광 에너지가 자유전자로 전이되는 공명 현상에 의한다.
나노 사이즈의 금속 입자의 경우 가시광선 내지 근적외선 대역 빛의 전기장과 플라즈몬이 짝지어지면서 광흡수가 일어나 선명한 색을 띠게 된다. 이러한 현상을 표면 플라스몬 공명(surface plasmon resonance)이라고 하며, 표면 플라즈몬 공명은 국소적으로 매우 증가된 전기장을 발생시킬 수 있다.
이러한 전기장은 빛 에너지가 표면 플라즈몬에 의해 변환되어 금속의 나노 입자 표면에 축적됨으로써 발생할 수 있다. 또한, 전기장의 발생은 빛의 회절 한계보다 작은 영역에서 광 제어가 가능함을 의미할 수 있다.
금속 나노 입자는 표면 플라즈몬 공명 현상 등, 전자기파와의 강하고 특징적인 상호 작용을 하며, 이에 의해 광흡수 대역의 증폭과 제어가 가능하므로, 형광 분광학, 다양한 종류의 센서, 광전자소자 등, 다양한 분야로의 적용이 예상된다.
다만, 종래기술에 따른 금속 나노 입자를 코팅 방식은, 금속 나노 입자를 LED 로드에 반영구적으로 코팅하는데 한계가 있거나, LED 로드가 정렬되기 전에 금속 나노 입자를 적용하여 공정 단계가 복잡한 문제가 있었다.
본 발명의 일 목적은 LED 로드가 정렬된 이후 표면 플라즈몬 공명을 일으키는 나노 입자를 코팅한 LED 정렬 구조를 제공하는 것이다.
본 발명의 일 목적은 나노 입자가 반영구적으로 코팅되어 내부 양자효율이 지속적으로 증가한 LED 로드 정렬 구조를 제공하는 것이다.
본 발명의 다른 목적은 상기 LED 로드 정렬 구조의 제조 방법을 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급된 과제에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.
본 발명의 일 목적을 달성하기 위하여, 본 발명의 실시예들에 따른 LED 로드 정렬 구조는 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 LED 로드, 및 상기 LED 로드가 정렬된 정렬 패드를 포함할 수 있다. 상기 LED 로드는 상기 활성층의 표면에 반영구적으로 코팅되고, 표면 플라즈몬 공명을 일으키는 나노 입자를 포함할 수 있다. 상기 LED 로드가 상기 정렬 패드에 정렬된 이후, 상기 나노 입자는 전기영동(electrophoresis) 공정을 사용하는 제1 코팅방식, 및 디웨팅(dewetting) 공정을 사용하는 제2 코팅방식 중 적어도 하나를 이용하여 코팅될 수 있다.
일 실시예에서, 상기 LED 로드는 상기 정렬 패드에 수평 정렬될 수 있다.
일 실시예에서, 상기 제1 코팅방식은 기제조된 상기 나노 입자를 전기장 조건에서 이동시킴으로써, 상기 LED 로드 표면에 상기 나노 입자를 부착할 수 있다.
일 실시예에서, 상기 나노 입자는 코어 나노 입자, 및 코어-쉘 나노 입자 중 적어도 하나일 수 있다.
일 실시예에서, 상기 제1 코팅방식은 상기 정렬 패드 사이에 제1 고분자층을 코팅하고, 상기 정렬 패드와 상기 LED 로드를 전기적으로 접속하는 금속 공정(Metalization)을 수행하고, 상기 제1 고분자층을 제거하고, 상기 LED 로드 및 상기 정렬 패드 상에 전기영동으로 표면 플라즈몬 공명을 일으키는 상기 나노 입자를 부착하고, 상기 LED 로드 및 상기 정렬 패드 상에 상기 보호막을 형성할 수 있다.
일 실시예에서, 상기 제1 코팅방식은, 상기 제1 고분자층을 제거한 이후, 상기 정렬 패드에 제2 고분자층을 코팅하고, 상기 나노 입자를 부착한 이후, 상기 정렬 패드 상의 상기 제2 고분자층을 제거할 수 있다.
일 실시예에서, 상기 제1 코팅방식은 상기 정렬 패드에 상기 제2 고분자층을 코팅할 때, 상기 제2 고분자층의 코팅 영역을 조절함으로써 상기 LED 로드 상에 상기 나노 입자가 부착되는 위치를 제어할 수 있다.
일 실시예에서, 상기 제2 코팅방식은 상기 LED 로드의 표면에 금속층을 형성하고, 상기 금속층을 열처리하여 입자화함으로써 상기 나노 입자를 형성할 수 있다.
일 실시예에서, 상기 제2 코팅방식은 상기 정렬 패드 사이에 제1 고분자층을 코팅하고, 상기 정렬 패드와 상기 LED 로드를 전기적으로 접속하는 금속 공정(Metalization)을 수행하고, 상기 제1 고분자층을 제거하고, 상기 LED 로드 및 상기 정렬 패드 상에 절연막을 증착하고, 상기 LED 로드의 표면에 상기 금속층을 형성하고, 상기 금속층을 열처리하여 표면 플라즈몬 공명을 일으키는 상기 나노 입자를 형성하고, 상기 LED 로드 및 상기 정렬 패드 상에 상기 보호막을 형성할 수 있다.
일 실시예에서, 상기 제2 코팅방식은, 상기 제1 고분자층을 제거한 이후, 상기 정렬 패드에 제2 고분자층을 코팅하고, 상기 금속층을 형성한 이후, 상기 정렬 패드 상의 상기 제2 고분자층을 제거할 수 있다.
일 실시예에서, 상기 제2 코팅방식은 상기 정렬 패드에 상기 제2 고분자층을 코팅할 때, 상기 제2 고분자층의 코팅 영역을 조절함으로써 상기 LED 로드 상에 상기 나노 입자가 부착되는 위치를 제어할 수 있다.
일 실시예에서, 상기 나노 입자는 상기 LED 로드의 표면으로부터 1nm 내지 150nm의 간격을 두고 코팅될 수 있다.
일 실시예에서, 상기 LED 로드는 상기 정렬 패드에 수직 정렬될 수 있다.
일 실시예에서, 상기 LED 로드 및 상기 정렬 패드 상에 형성된 보호막을 더 포함할 수 있다. 상기 보호막은 SiO2, TiO2, ZrO2, 및 Al2O3 중 적어도 하나를 포함할 수 있다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명의 실시예들에 따른 LED 정렬 구조의 제조 방법은 LED 로드를 정렬 패드 상에 정렬하는 단계, 및 표면 플라즈몬 공명을 일으키는 나노 입자를 상기 LED 로드의 표면에 반영구적으로 코팅하는 단계를 포함할 수 있다. 상기 나노 입자를 상기 LED 로드의 표면에 반영구적으로 코팅하는 단계는 상기 LED 로드가 상기 정렬 패드에 정렬된 이후, 전기영동(electrophoresis) 공정을 사용하는 제1 코팅방식, 및 디웨팅(dewetting) 공정을 사용하는 제2 코팅방식 중 적어도 하나를 이용하여 하나를 이용하여 상기 나노 입자를 코팅할 수 있다.
본 발명의 실시예들에 따른 LED 로드 정렬 구조 및 LED 로드 정렬 구조의 제조 방법에 의하면, LED 로드가 정렬 패드 상에 정렬된 이후 표면 플라즈몬 공명을 일으키는 나노 입자를 코팅할 수 있으므로, LED 로드 정렬 구조의 제조 공정이 단순화되고, LED 로드 정렬 구조의 제조 비용이 낮아질 수 있다.
또한, LED 로드 정렬 구조 및 LED 로드 정렬 구조의 제조 방법에 의하면, 전기영동 공정 또는 디웨팅 공정을 사용하여 나노 입자가 LED 로드의 표면에 반영구적으로 부착될 수 있다. 따라서, 나노 입자가 LED 로드 표면에 지속적으로 고정되어 있으므로, LED 로드 정렬 구조의 내부 양자효율이 증가할 수 있다.
다만, 본 발명의 효과는 상술한 효과에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 LED 로드 정렬 구조를 나타내는 도면이다.
도 2는 전기영동을 이용하여 도 1의 LED 로드 정렬 구조를 제조하는 방법을 나타내는 순서도이다.
도 3은 정렬 패드 사이에 제1 고분자층을 코팅하는 공정을 나타내는 도면이다.
도 4는 금속 공정 및 제1 고분자층 제거 공정을 나타내는 도면이다.
도 5a 및 5b는 정렬 패드에 제2 고분자층을 코팅하는 공정을 나타내는 도면이다.
도 6a 및 6b는 LED 로드 정렬 구조에 전기영동으로 나노 입자를 코팅하는 공정을 나타내는 도면이다.
도 7a 및 7b는 정렬 패드의 제2 고분자층을 제거하는 공정을 나타내는 도면이다.
도 8a 및 8b는 보호막을 형성하는 공정을 나타내는 도면이다.
도 9는 본 발명의 일 실시예에 따른 LED 로드 정렬 구조를 나타내는 도면이다.
도 10은 디웨팅 공정을 이용하여 도 9의 LED 로드 정렬 구조를 제조하는 방법을 나타내는 순서도이다.
도 11은 정렬 패드 사이에 제1 고분자층을 코팅하는 공정을 나타내는 도면이다.
도 12는 금속 공정 및 제1 고분자층 제거 공정을 나타내는 도면이다.
도 13a 및 13b는 정렬 패드에 제2 고분자층을 코팅하는 공정을 나타내는 도면이다.
도 14a 및 14b는 LED 로드 정렬 구조에 절연막을 증착하는 공정을 나타내는 도면이다.
도 15a 및 15b는 금속층을 형성하는 공정 및 정렬 패드의 제2 고분자층을 제거하는 공정을 나타내는 도면이다.
도 16a 및 16b는 금속층을 열처리하여 나노 입자를 형성하는 공정을 나타내는 도면이다.
도 17a 및 17b는 보호막을 형성하는 공정을 나타내는 도면이다.
도 18은 본 발명의 다른 실시예에 따른 LED 로드 정렬 구조를 나타내는 도면이다.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시예들에 대해서 특정한 구조적 또는 기능적 설명들은 단지 본 발명의 개념에 따른 실시예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며 본 명세서에 설명된 실시예들에 한정되지 않는다.
본 발명의 개념에 따른 실시예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시예들을 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 변경, 균등물, 또는 대체물을 포함한다.
제1 또는 제2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만, 예를 들어 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 표현들, 예를 들어 "~사이에"와 "바로~사이에" 또는 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 일 실시예에 따른 LED 로드 정렬 구조를 나타내는 도면이고, 도 2는 전기영동을 이용하여 도 1의 LED 로드 정렬 구조를 제조하는 방법을 나타내는 순서도이다.
도 1을 참조하면, 본 발명의 실시예들에 따른 LED 로드 정렬 구조는 LED 로드(100), 정렬 패드(200), 및 보호막(300)을 포함할 수 있다.
LED 로드(100)는 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함할 수 있다. 예를 들어, LED 로드(100)는 제1 도전형 반도체층, 제1 도전형 반도체층 상에 형성된 활성층, 및 활성층 상에 형성된 제2 도전형 반도체층을 포함할 수 있다.
제1 도전형 반도체층 및 제2 도전형 반도체층은 GaN, AlGaN, InGaN 등의 물질로 구성될 수 있다. 상기 n형 불순물로 Si, Ge, Se, Te 등이 사용될 수 있다. 상기 p형 불순물로는 Mg, Zn, Be 등이 사용될 수 있다.
예를 들어, 제1 도전형 반도체층 및 제2 도전형 반도체층은 MOCVD 공정, MBE 공정, HVPE 공정 등으로 형성될 수 있다.
활성층은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출할 수 있다. 예를 들어, 활성층은 InGaN 등의 단일 물질로 이루어진 층일 수도 있다. 다른 예를 들어, 활성층은 양자장벽층과 양자우물층이 서로 교대로 배치된 다중 양자우물(MQW) 구조로 형성될 수도 있다.
LED 로드(100)의 직경은 10nm 내지 100μm 일 수 있다. 예를 들어, 제1 도전형 반도체층의 하부에서 제2 도전형 반도체층의 상부까지의 길이는 10nm 내지 100μm일 수 있다. 예를 들어, LED 로드(100)는 나노 로드일 수 있다.
정렬 패드(200)에는 상기 LED 로드(100)가 정렬될 수 있다. 예를 들어, 상기 LED 로드(100)는 상기 정렬 패드(200)에 수평 정렬될 수 있다. 예를 들어, 상기 LED 로드(100)는 상기 정렬 패드(200)에 수직 정렬될 수 있다.
정렬 패드(200)는 LED 로드(100)와 전기적으로 연결되는 메탈 패드로 구성될 수 있다. 예를 들어, 정렬 패드(200)는 금속 공정(Metalization)을 통해 LED 로드(100)에 전류를 공급하는 금속 배선 역할을 할 수 있다.
보호막(300)은 상기 LED 로드(100) 및 상기 정렬 패드(200) 상에 형성될 수 있다. 보호막(300)은 상기 LED 로드(100) 및 상기 정렬 패드(200)를 외부로부터 보호하는 기능을 가질 수 있다.
일 실시예에서, 나노 입자(NP)는 LED 로드(100)의 표면에 반영구적으로 코팅될 수 있다. 나노 입자(NP)는 표면 플라즈몬 공명을 일으킬 수 있다. 나노 입자(NP)는 표면 플라스몬 현상을 이용하기에 적합한 물질로서, 외부 자극에 의해 전자의 방출이 쉽고 음의 유전상수를 갖는 금속들로 구성될 수 있다.
예를 들어, 나노 입자(NP)는 Ag, Au, Al, Ni, Ti, 및 Pt 중 적어도 하나 또는 이들의 결합으로 구성될 수 있다. 예를 들어, 나노 입자(NP)는 구형, 직육면체, 정팔면체 등 다양한 형태를 가질 수 있다.
나노 입자(NP)는 LED 로드(100)의 표면과의 거리가 1nm 내지 150nm가 되도록 LED 로드(100)의 표면에 코팅될 수 있다. 예를 들어, 상기 나노 입자(NP)는 상기 LED 로드(100)의 표면으로부터 1nm 내지 150nm의 간격을 두고 코팅될 수 있다.
본 발명의 실시예들에서, 나노 입자(NP)는 LED 로드(100)가 상기 정렬 패드(200)에 정렬된 이후, LED 로드(100) 표면 상에 코팅될 수 있다.
즉, 본 발명의 실시예들에 따른 나노 입자(NP)는 LED 로드(100)가 정렬 패드(200)에 정렬되기 전에 코팅되는 것이 아니라, LED 로드(100)가 정렬 패드(200)에 정렬된 이후 별도의 공정을 통해 LED 로드(100) 표면 상에 코팅될 수 있다.
예를 들어, 상기 나노 입자(NP)는 상기 LED 로드(100)가 상기 정렬 패드(200)에 정렬된 이후, 전기영동(electrophoresis) 공정을 사용하는 제1 코팅방식을 이용하여 코팅될 수 있다.
도 2를 참조하면, 제1 코팅방식은 기제조된 상기 나노 입자(NP)를 전기장 조건에서 이동시킴으로써, 상기 LED 로드(100) 표면에 상기 나노 입자(NP)를 부착할 수 있다.
예를 들어, 상기 나노 입자(NP)는 코어 나노 입자(NP), 및 코어-쉘 나노 입자(NP) 중 적어도 하나일 수 있다.
도 2에서 보듯이, 상기 제1 코팅방식은 상기 정렬 패드(200) 사이에 제1 고분자층을 코팅(S110)하고, 상기 정렬 패드(200)와 상기 LED 로드(100)를 전기적으로 접속하는 금속 공정(Metalization)을 수행하고, 상기 제1 고분자층을 제거(S120)하고, 상기 정렬 패드(200)에 제2 고분자층을 코팅(S130)하고, 상기 LED 로드(100) 및 상기 정렬 패드(200) 상에 전기영동으로 표면 플라즈몬 공명을 일으키는 상기 나노 입자(NP)를 부착(S140)하고, 상기 정렬 패드(200) 상의 상기 제2 고분자층을 제거(S150)하고, 상기 LED 로드(100) 및 상기 정렬 패드(200) 상에 상기 보호막(300)을 형성(S160)할 수 있다.
도 3은 정렬 패드(200) 사이에 제1 고분자층을 코팅하는 공정을 나타내는 도면이고, 도 4는 금속 공정 및 제1 고분자층 제거 공정을 나타내는 도면이다.
도 3을 참조하면, 제1 고분자층은 정렬 패드(200) 사이에 코팅될 수 있다. 예를 들어, 제1 고분자층은 정렬 패드(200)를 제외한 LED 로드(100)가 배치된 상기 정렬 패드(200) 사이 영역에 코팅될 수 있다.
제1 고분자층은 폴리머층일 수 있다. 예를 들어, 상기 제1 고분자층은 포토레지스트, 레진, 폴리이미드 등으로 구성될 수 있다. 상기 제1 고분자층은 스핀-온-글래스(spin-on-glass)일 수 있다. 다만, 이는 제1 고분자층 소재의 일 예시들일 뿐, 본 발명의 제1 고분자층의 소재를 한정하지는 않는다.
도 4을 참조하면, 정렬 패드(200)는 금속 공정(Metalization)을 통해 LED 로드(100)에 전류를 공급하는 금속 배선 역할을 할 수 있다.
예를 들어, 금속 공정은 정렬 패드(200)와 LED 로드(100)를 전기적으로 접속시킬 수 있다.
즉, 정렬 패드(200)는 금속 공정을 통해 LED 로드(100)와 전기적으로 연결되고, LED 로드(100)에 전류를 공급할 수 있다.
상기 정렬 패드(200)의 금속 공정 이후, 제1 고분자층은 제거될 수 있다.
도 5a 및 5b는 정렬 패드(200)에 제2 고분자층을 코팅하는 공정을 나타내는 도면이다.
제2 고분자층은 정렬 패드(200) 상에 형성될 수 있다. 구체적으로, 제2 고분자층은 나노 입자(NP)가 코팅될 필요가 없는 정렬 패드(200) 상에 형성될 수 있다.
제2 고분자층은 폴리머층일 수 있다. 예를 들어, 상기 제2 고분자층은 포토레지스트, 레진, 폴리이미드 등으로 구성될 수 있다. 상기 제2 고분자층은 스핀-온-글래스(spin-on-glass)일 수 있다.
일 실시예에서, 상기 제1 코팅방식은 상기 정렬 패드(200)에 상기 제2 고분자층을 코팅할 때, 상기 제2 고분자층의 코팅 영역을 조절함으로써 상기 LED 로드(100) 상에 상기 나노 입자(NP)가 부착되는 위치를 제어할 수 있다.
예를 들어, 도 5a에서 보듯이, 제2 고분자층은 정렬 패드(200)와 동일한 면적으로 정렬 패드(200)에만 코팅될 수 있다.
예를 들어, 도 5b에서 보듯이, 제2 고분자층은 정렬 패드(200)보다 큰 면적으로 정렬 패드(200) 및 LED 로드(100)의 제1 도전형 반도체층의 일부에 코팅될 수 있다.
도 5b와 같이, 제2 고분자층이 정렬 패드(200)보다 큰 면적으로 코팅되는 경우, 나노 입자(NP)를 LED 로드(100)의 활성층과 가까운 위치에만 효율적으로 부착시킬 수 있다.
한편, 후술하는 도 6b, 7b, 및 8b는 도 5b와 같이, 제2 고분자층이 정렬 패드(200)보다 큰 면적으로 코팅되는 경우에 제1 코팅방식의 각 공정을 도시하였다.
일 실시예에서, 제2 고분자층은 정렬 패드(200) 상에 코팅되지 않을 수 있다.
예를 들어, 제1 코팅방식에서, 제2 고분자층을 코팅하는 단계는 생략될 수 있다. 또한, 이 경우, 후술하는 제2 고분자층을 제거하는 단계도 생략될 수 있다.
제2 고분자층이 정렬 패드(200) 상에 코팅되지 않는 경우, LED 로드(100) 및 정렬 패드(200)에 전체적으로 나노 입자가 부착될 수 있다.
이와 같이, 제2 고분자층이 코팅되는 공정과 제2 고분자층이 제거되는 공정이 생략되는 경우, 제1 코팅방식의 전체적인 공정이 간소화되므로, LED 로드 정렬 구조를 제조하는데 소요되는 시간 및 비용이 감소할 수 있다.
도 6a 및 6b는 LED 로드 정렬 구조에 전기영동으로 나노 입자(NP)를 코팅하는 공정을 나타내는 도면이다.
도 6a 및 6b를 참조하면, 나노 입자(NP)는 전기영동에 의해 LED 로드(100) 및 정렬 패드(200)에 코팅될 수 있다.
구체적으로, 제1 코팅방식은 기제조된 상기 나노 입자(NP)를 전기장 조건에서 이동시킴으로써, 상기 LED 로드(100) 표면에 상기 나노 입자(NP)를 부착할 수 있다.
상기 나노 입자(NP)는 코어 나노 입자(NP), 및 코어-쉘 나노 입자(NP) 중 적어도 하나일 수 있다.
예를 들어, 제1 코팅방식은 기제조된 코어 나노 입자(NP) 또는 코어-쉘 나노 입자(NP)를 전기영동으로 이동시킴으로써, 코어 나노 입자(NP) 또는 코어-쉘 나노 입자(NP)를 LED 로드(100) 및 정렬 패드(200)에 코팅할 수 있다.
도 7a 및 7b는 정렬 패드(200)의 제2 고분자층을 제거하는 공정을 나타내는 도면이다.
도 7a 및 7b를 참조하면, 제2 고분자층은 전기영동으로 나노 입자(NP)가 코팅된 이후 제거될 수 있다.
이와 같이, 제2 고분자층이 제거됨으로써, 나노 입자(NP)의 부착이 필요한 LED 로드(100)의 타겟 위치에 나노 입자(NP)가 형성될 수 있다.
도 8a 및 8b는 보호막(300)을 형성하는 공정을 나타내는 도면이다.
도 8a 및 8b을 참조하면, 보호막(300)은 LED 로드(100) 및 정렬 패드(200) 상에 형성될 수 있다.
보호막(300)은 LED 로드(100) 및 정렬 패드(200)를 보호하는 기능을 할 수 있다. 또한, 보호막(300)은 나노 입자(NP)가 LED 로드(100) 상에 반영구적으로 코팅될 수 있도록 나노 입자(NP)를 보호할 수 있다.
예를 들어, 보호막(300)은 SiO2, TiO2, ZrO2, 및 Al2O3 등으로 구성될 수 있다.
이와 같이, LED 로드(100)가 정렬 패드(200) 상에 정렬된 이후, LED 로드 정렬 구조에 나노 입자(NP)를 코팅하는 경우, 나노 입자(NP)가 적용된 LED 로드 정렬 구조의 제조 공정이 단순화되고, LED 로드 정렬 구조의 제조 비용이 낮아질 수 있다.
또한, LED 로드 정렬 구조 및 LED 로드 정렬 구조의 제조 방법에 의하면, 전기영동 공정을 사용하여 나노 입자(NP)가 LED 로드(100)의 표면에 반영구적으로 부착될 수 있다.
따라서, 나노 입자(NP)가 LED 로드(100) 표면에 지속적으로 고정되어 있으므로, LED 로드 정렬 구조의 내부 양자효율이 증가할 수 있다.
도 9는 본 발명의 일 실시예에 따른 LED 로드 정렬 구조를 나타내는 도면이고, 도 10은 디웨팅 공정을 이용하여 도 9의 LED 로드 정렬 구조를 제조하는 방법을 나타내는 순서도이다.
본 발명의 실시예들에 따른 LED 로드 정렬 구조는 LED 로드(100), 정렬 패드(200), 및 보호막(300)을 포함할 수 있다.
LED 로드(100)는 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함할 수 있다. 예를 들어, LED 로드(100)는 제1 도전형 반도체층, 제1 도전형 반도체층 상에 형성된 활성층, 및 활성층 상에 형성된 제2 도전형 반도체층을 포함할 수 있다.
제1 도전형 반도체층 및 제2 도전형 반도체층은 GaN, AlGaN, InGaN 등의 물질로 구성될 수 있다. 상기 n형 불순물로 Si, Ge, Se, Te 등이 사용될 수 있다. 상기 p형 불순물로는 Mg, Zn, Be 등이 사용될 수 있다.
예를 들어, 제1 도전형 반도체층 및 제2 도전형 반도체층은 MOCVD 공정, MBE 공정, HVPE 공정 등으로 형성될 수 있다.
활성층은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출할 수 있다. 예를 들어, 활성층은 InGaN 등의 단일 물질로 이루어진 층일 수도 있다. 다른 예를 들어, 활성층은 양자장벽층과 양자우물층이 서로 교대로 배치된 다중 양자우물(MQW) 구조로 형성될 수도 있다.
LED 로드(100)의 직경은 10nm 내지 100μm 일 수 있다. 예를 들어, 제1 도전형 반도체층의 하부에서 제2 도전형 반도체층의 상부까지의 길이는 10nm 내지 100μm일 수 있다. 예를 들어, LED 로드(100)는 나노 로드일 수 있다.
정렬 패드(200)에는 상기 LED 로드(100)가 정렬될 수 있다. 예를 들어, 상기 LED 로드(100)는 상기 정렬 패드(200)에 수평 정렬될 수 있다. 예를 들어, 상기 LED 로드(100)는 상기 정렬 패드(200)에 수직 정렬될 수 있다.
정렬 패드(200)는 LED 로드(100)와 전기적으로 연결되는 메탈 패드로 구성될 수 있다. 예를 들어, 정렬 패드(200)는 금속 공정(Metalization)을 통해 LED 로드(100)에 전류를 공급하는 금속 배선 역할을 할 수 있다.
보호막(300)은 상기 LED 로드(100) 및 상기 정렬 패드(200) 상에 형성될 수 있다. 보호막(300)은 상기 LED 로드(100) 및 상기 정렬 패드(200)를 외부로부터 보호하는 기능을 가질 수 있다.
일 실시예에서, 나노 입자(NP)는 LED 로드(100)의 표면에 반영구적으로 코팅될 수 있다. 나노 입자(NP)는 표면 플라즈몬 공명을 일으킬 수 있다. 나노 입자(NP)는 표면 플라스몬 현상을 이용하기에 적합한 물질로서, 외부 자극에 의해 전자의 방출이 쉽고 음의 유전상수를 갖는 금속들로 구성될 수 있다.
예를 들어, 나노 입자(NP)는 Ag, Au, Al, Ni, Ti, 및 Pt 중 적어도 하나 또는 이들의 결합으로 구성될 수 있다. 예를 들어, 나노 입자(NP)는 구형, 직육면체, 정팔면체 등 다양한 형태를 가질 수 있다.
나노 입자(NP)는 LED 로드(100)의 표면과의 거리가 1nm 내지 150nm가 되도록 LED 로드(100)의 표면에 코팅될 수 있다. 예를 들어, 상기 나노 입자(NP)는 상기 LED 로드(100)의 표면으로부터 1nm 내지 150nm의 간격을 두고 코팅될 수 있다.
본 발명의 실시예들에서, 나노 입자(NP)는 LED 로드(100)가 상기 정렬 패드(200)에 정렬된 이후, LED 로드(100) 표면 상에 코팅될 수 있다.
즉, 본 발명의 실시예들에 따른 나노 입자(NP)는 LED 로드(100)가 정렬 패드(200)에 정렬되기 전에 코팅되는 것이 아니라, LED 로드(100)가 정렬 패드(200)에 정렬된 이후 별도의 공정을 통해 LED 로드(100) 표면 상에 코팅될 수 있다.
예를 들어, 상기 나노 입자(NP)는 상기 LED 로드(100)가 상기 정렬 패드(200)에 정렬된 이후, 디웨팅(dewetting) 공정을 사용하는 제2 코팅방식을 이용하여 코팅될 수 있다.
도 10을 참조하면, 상기 제2 코팅방식은 상기 LED 로드(100)의 표면에 금속층을 형성하고, 상기 금속층을 열처리하여 입자화함으로써 상기 나노 입자(NP)를 형성할 수 있다.
도 10에서 보듯이, 상기 제2 코팅방식은 상기 정렬 패드(200) 사이에 제1 고분자층을 코팅(S210)하고, 상기 정렬 패드(200)와 상기 LED 로드를 전기적으로 접속하는 금속 공정(Metalization)을 수행하고, 상기 제1 고분자층을 제거(S220)하고, 상기 정렬 패드(200)에 제2 고분자층을 코팅(S230)하고, 상기 LED 로드(100) 및 상기 정렬 패드(200) 상에 절연막을 증착(S240)하고, 상기 LED 로드(100)의 표면에 상기 금속층을 형성하고, 상기 정렬 패드(200) 상의 상기 제2 고분자층을 제거(S250)하고, 상기 금속층을 열처리하여 표면 플라즈몬 공명을 일으키는 상기 나노 입자(NP)를 형성(S260)하고, 상기 LED 로드(100) 및 상기 정렬 패드(200) 상에 상기 보호막(300)을 형성(S270)할 수 있다.
도 11은 정렬 패드(200) 사이에 제1 고분자층을 코팅하는 공정을 나타내는 도면이고, 도 12는 금속 공정 및 제1 고분자층 제거 공정을 나타내는 도면이다.
도 11을 참조하면, 제1 고분자층은 상기 정렬 패드(200) 사이에 코팅될 수 있다. 예를 들어, 제1 고분자층은 정렬 패드(200)를 제외한 LED 로드(100)가 배치된 상기 정렬 패드(200) 사이 영역에 코팅될 수 있다.
제1 고분자층은 폴리머층일 수 있다. 예를 들어, 상기 제1 고분자층은 포토레지스트, 레진, 폴리이미드 등으로 구성될 수 있다. 상기 제1 고분자층은 스핀-온-글래스(spin-on-glass)일 수 있다. 다만, 이는 제1 고분자층 소재의 일 예시들일 뿐, 본 발명의 제1 고분자층의 소재를 한정하지는 않는다.
도 12를 참조하면, 정렬 패드(200)는 금속 공정(Metalization)을 통해 LED 로드(100)에 전류를 공급하는 금속 배선 역할을 할 수 있다.
예를 들어, 금속 공정은 정렬 패드(200)와 LED 로드(100)를 전기적으로 접속시킬 수 있다.
즉, 정렬 패드(200)는 금속 공정을 통해 LED 로드(100)와 전기적으로 연결되고, LED 로드(100)에 전류를 공급할 수 있다.
상기 정렬 패드(200)의 금속 공정 이후, 제1 고분자층은 제거될 수 있다.
도 13a 및 13b는 정렬 패드(200)에 제2 고분자층을 코팅하는 공정을 나타내는 도면이다.
제2 고분자층은 정렬 패드(200) 상에 형성될 수 있다. 구체적으로, 제2 고분자층은 나노 입자(NP)가 코팅될 필요가 없는 정렬 패드(200) 상에 형성될 수 있다.
제2 고분자층은 폴리머층일 수 있다. 예를 들어, 상기 제2 고분자층은 포토레지스트, 레진, 폴리이미드 등으로 구성될 수 있다. 상기 제2 고분자층은 스핀-온-글래스(spin-on-glass)일 수 있다.
일 실시예에서, 상기 제2 코팅방식은 상기 정렬 패드(200)에 상기 제2 고분자층을 코팅할 때, 상기 제2 고분자층의 코팅 영역을 조절함으로써 상기 LED 로드(100) 상에 상기 나노 입자(NP)가 부착되는 위치를 제어할 수 있다.
예를 들어, 도 13a에서 보듯이, 제2 고분자층은 정렬 패드(200)와 동일한 면적으로 정렬 패드(200)에만 코팅될 수 있다.
예를 들어, 도 13b에서 보듯이, 제2 고분자층은 정렬 패드(200)보다 큰 면적으로 정렬 패드(200) 및 LED 로드(100)의 제1 도전형 반도체층의 일부에 코팅될 수 있다.
도 13b와 같이, 제2 고분자층이 정렬 패드(200)보다 큰 면적으로 코팅되는 경우, 나노 입자(NP)를 LED 로드(100)의 활성층과 가까운 위치에만 효율적으로 부착시킬 수 있다.
한편, 후술하는 도 14b, 15b, 16b 및 17b는 도 13b와 같이, 제2 고분자층이 정렬 패드(200)보다 큰 면적으로 코팅되는 경우에 제1 코팅방식의 각 공정을 도시하였다.
일 실시예에서, 제2 고분자층은 정렬 패드(200) 상에 코팅되지 않을 수 있다.
예를 들어, 제1 코팅방식에서, 제2 고분자층을 코팅하는 단계는 생략될 수 있다. 또한, 이 경우, 후술하는 제2 고분자층을 제거하는 단계도 생략될 수 있다.
제2 고분자층이 정렬 패드(200) 상에 코팅되지 않는 경우, LED 로드(100) 및 정렬 패드(200)에 전체적으로 나노 입자가 부착될 수 있다.
이와 같이, 제2 고분자층이 코팅되는 공정과 제2 고분자층이 제거되는 공정이 생략되는 경우, 제1 코팅방식의 전체적인 공정이 간소화되므로, LED 로드 정렬 구조를 제조하는데 소요되는 시간 및 비용이 감소할 수 있다.
도 14a 및 14b는 LED 로드 정렬 구조에 절연막을 증착하는 공정을 나타내는 도면이다.
도 14a 및 14b를 참조하면, 절연막은 LED 로드(100), 정렬 패드(200), 및 제2 고분자층 상에 증착될 수 있다.
절연막은 LED 로드(100)와 나노 입자(NP) 사이에 적절한 거리를 형성하는 기능을 할 수 있다. 예를 들어, 절연막은 1nm 내지 150nm 두께를 가질 수 있다.
일 실시예에서, 절연막은 SiO2, TiO2, ZrO2, 및 Al2O3 중 적어도 하나를 포함할 수 있다.
도 15a 및 15b는 금속층을 형성하는 공정 및 정렬 패드(200)의 제2 고분자층을 제거하는 공정을 나타내는 도면이다.
도 15a 및 15b를 참조하면, 금속층은 LED 로드(100) 상에 형성될 수 있다.
금속층은 표면 플라즈몬 공명을 일으킬 수 있는 금속 물질로 구성될 수 있다.
일 실시예에서, 제2 고분자층은 금속층이 형성된 이후 제거될 수 있다. 이와 같이, 제2 고분자층이 제거됨으로써, 나노 입자(NP)의 부착이 필요한 LED 로드(100)의 타겟 위치에 나노 입자(NP)가 형성될 수 있다.
일 실시예에서, 제2 고분자층이 정렬 패드(200) 사이에 형성되지 않는 경우, 금속층은 정렬 패드(200) 및 LED 로드(100) 상에 형성될 수 있다.
금속층은 정렬 패드(200) 및 LED 로드(100) 상에 형성되는 경우, 후술하는 디웨팅 공정에 의해 LED 로드(100) 및 정렬 패드(200)에 전체적으로 나노 입자가 부착될 수 있다.도 16a 및 16b는 금속층을 열처리하여 나노 입자(NP)를 형성하는 공정을 나타내는 도면이다.
도 16a 및 16b를 참조하면, 나노 입자(NP)는 디웨팅 방식으로 LED 로드(100)의 표면에 형성될 수 있다.
제2 코팅방식은 상기 LED 로드(100)의 표면에 금속층을 형성하고, 상기 금속층을 열처리하여 입자화함으로써 상기 나노 입자(NP)를 형성할 수 있다.
구체적으로, 제2 코팅방식은 상기 금속층을 열처리하여 표면 플라즈몬 공명을 일으키는 상기 나노 입자(NP)를 형성할 수 있다.
예를 들어, 제1 코팅방식은 금속층을 열처리함으로써 물방물 형상을 가지는 복수의 나노 입자(NP)를 형성할 수 있다.
도 17a 및 17b는 보호막(300)을 형성하는 공정을 나타내는 도면이다.
도 17a 및 17b을 참조하면, 보호막(300)은 LED 로드(100) 및 정렬 패드(200) 상에 형성될 수 있다.
보호막(300)은 LED 로드(100) 및 정렬 패드(200)를 보호하는 기능을 할 수 있다. 또한, 보호막(300)은 나노 입자(NP)가 LED 로드(100) 상에 반영구적으로 코팅될 수 있도록 나노 입자(NP)를 보호할 수 있다.
예를 들어, 보호막(300)은 절연막과 마찬가지로 SiO2, TiO2, ZrO2, 및 Al2O3 등으로 구성될 수 있다.
이와 같이, LED 로드(100)가 정렬 패드(200) 상에 정렬된 이후, LED 로드 정렬 구조에 나노 입자(NP)를 코팅하는 경우, 나노 입자(NP)가 적용된 LED 로드 정렬 구조의 제조 공정이 단순화되고, LED 로드 정렬 구조의 제조 비용이 낮아질 수 있다.
또한, LED 로드 정렬 구조 및 LED 로드 정렬 구조의 제조 방법에 의하면, 디웨팅 공정을 사용하여 나노 입자(NP)가 LED 로드(100)의 표면에 반영구적으로 부착될 수 있다.
따라서, 나노 입자(NP)가 LED 로드(100) 표면에 지속적으로 고정되어 있으므로, LED 로드 정렬 구조의 내부 양자효율이 증가할 수 있다.
도 18은 본 발명의 다른 실시예에 따른 LED 로드 정렬 구조를 나타내는 도면이다.
일 실시예에서, 상기 LED 로드는 상기 정렬 패드에 수직 정렬될 수 있다.
구체적으로, LED 로드 정렬 구조는, 정렬 기판, 경사면을 포함하는 고분자층, LED 로드, 및 결합 금속을 포함할 수 있다. LED 로드는 결합 금속을 통해 정렬 기판에 수직으로 정렬될 수 있다.
LED 로드가 정렬 패드 상에 수직 정렬된 이후, LED 로드 정렬 구조에 나노 입자가 코팅될 수 있다. 즉, 나노 입자는 수직 정렬된 LED 로드의 표면 상에 부착될 수 있다.
예를 들어, 나노 입자(NP)는 상기 LED 로드가 상기 정렬 기판에 수직 정렬된 이후, 전기영동(electrophoresis) 공정을 사용하는 제1 코팅방식 또는 디웨팅(dewetting) 공정을 사용하는 제2 코팅방식을 이용하여 코팅될 수 있다.
이와 같이, 본 발명의 실시예들에 따른 LED 로드 정렬 구조 및 LED 로드 정렬 구조의 제조 방법에 의하면, LED 로드가 정렬 패드 상에 정렬된 이후 표면 플라즈몬 공명을 일으키는 나노 입자를 코팅할 수 있다. 다만, 이에 대하여는 상술한 바 있으므로, 그에 대한 중복되는 설명은 생략하기로 한다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (15)

  1. 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 LED 로드; 및
    상기 LED 로드가 정렬된 정렬 패드를 포함하고,
    상기 LED 로드는,
    상기 활성층의 표면에 반영구적으로 코팅되고, 표면 플라즈몬 공명을 일으키는 나노 입자를 포함하고,
    상기 LED 로드가 상기 정렬 패드에 정렬된 이후, 상기 나노 입자는,
    전기영동(electrophoresis) 공정을 사용하는 제1 코팅방식, 및 디웨팅(dewetting) 공정을 사용하는 제2 코팅방식 중 적어도 하나를 이용하여 코팅되는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  2. 제1항에 있어서,
    상기 LED 로드는,
    상기 정렬 패드에 수평 정렬되는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  3. 제1항에 있어서,
    상기 제1 코팅방식은,
    기제조된 상기 나노 입자를 전기장 조건에서 이동시킴으로써, 상기 LED 로드 표면에 상기 나노 입자를 부착하는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  4. 제3항에 있어서,
    상기 나노 입자는,
    코어 나노 입자, 및 코어-쉘 나노 입자 중 적어도 하나인 것을 특징으로 하는,
    LED 로드 정렬 구조.
  5. 제3항에 있어서,
    상기 제1 코팅방식은,
    상기 정렬 패드 사이에 제1 고분자층을 코팅하는 단계;
    상기 정렬 패드와 상기 LED 로드를 전기적으로 접속하는 금속 공정(Metalization)을 수행하는 단계;
    상기 제1 고분자층을 제거하는 단계;
    상기 LED 로드 및 상기 정렬 패드 상에 전기영동으로 표면 플라즈몬 공명을 일으키는 상기 나노 입자를 부착하는 단계;및
    상기 LED 로드 및 상기 정렬 패드 상에 보호막을 형성하는 단계를 포함하는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  6. 제5항에 있어서,
    상기 제1 코팅방식은,
    상기 제1 고분자층을 제거한 이후, 상기 정렬 패드에 제2 고분자층을 코팅하는 단계; 및
    상기 나노 입자를 부착한 이후, 상기 정렬 패드 상의 상기 제2 고분자층을 제거하는 단계를 더 포함하는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  7. 제6항에 있어서,
    상기 제1 코팅방식은,
    상기 정렬 패드에 상기 제2 고분자층을 코팅할 때, 상기 제2 고분자층의 코팅 영역을 조절함으로써 상기 LED 로드 상에 상기 나노 입자가 부착되는 위치를 제어하는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  8. 제1항에 있어서,
    상기 제2 코팅방식은,
    상기 LED 로드의 표면에 금속층을 형성하고, 상기 금속층을 열처리하여 입자화함으로써 상기 나노 입자를 형성하는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  9. 제8항에 있어서,
    상기 제2 코팅방식은,
    상기 정렬 패드 사이에 제1 고분자층을 코팅하는 단계;
    상기 정렬 패드와 상기 LED 로드를 전기적으로 접속하는 금속 공정(Metalization)을 수행하는 단계;
    상기 제1 고분자층을 제거하는 단계;
    상기 LED 로드 및 상기 정렬 패드 상에 절연막을 증착하는 단계;
    상기 LED 로드의 표면에 상기 금속층을 형성하는 단계;
    상기 금속층을 열처리하여 표면 플라즈몬 공명을 일으키는 상기 나노 입자를 형성하는 단계; 및
    상기 LED 로드 및 상기 정렬 패드 상에 보호막을 형성하는 단계를 포함하는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  10. 제9항에 있어서,
    상기 제2 코팅방식은,
    상기 제1 고분자층을 제거한 이후, 상기 정렬 패드에 제2 고분자층을 코팅하는 단계; 및
    상기 금속층을 형성한 이후, 상기 정렬 패드 상의 상기 제2 고분자층을 제거하는 단계를 더 포함하는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  11. 제10항에 있어서,
    상기 제2 코팅방식은,
    상기 정렬 패드에 상기 제2 고분자층을 코팅할 때, 상기 제2 고분자층의 코팅 영역을 조절함으로써 상기 LED 로드 상에 상기 나노 입자가 부착되는 위치를 제어하는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  12. 제1항에 있어서,
    상기 나노 입자는 상기 LED 로드의 표면으로부터 1nm 내지 150nm의 간격을 두고 코팅되는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  13. 제1항에 있어서,
    상기 LED 로드는,
    상기 정렬 패드에 수직 정렬되는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  14. 제1항에 있어서,
    상기 LED 로드 및 상기 정렬 패드 상에 형성된 보호막을 더 포함하고,
    상기 보호막은 SiO2, TiO2, ZrO2, 및 Al2O3 중 적어도 하나를 포함하는 것을 특징으로 하는,
    LED 로드 정렬 구조.
  15. LED 로드를 정렬 패드 상에 정렬하는 단계; 및
    표면 플라즈몬 공명을 일으키는 나노 입자를 상기 LED 로드의 표면에 반영구적으로 코팅하는 단계를 포함하고,
    상기 나노 입자를 상기 LED 로드의 표면에 반영구적으로 코팅하는 단계는,
    상기 LED 로드가 상기 정렬 패드에 정렬된 이후, 전기영동(electrophoresis) 공정을 사용하는 제1 코팅방식, 및 디웨팅(dewetting) 공정을 사용하는 제2 코팅방식 중 적어도 하나를 이용하여 하나를 이용하여 상기 나노 입자를 코팅하는 것을 특징으로 하는,
    LED 로드 정렬 구조의 제조 방법.
PCT/KR2023/005534 2022-04-28 2023-04-24 나노 입자가 적용된 led 로드 정렬 구조, 및 나노 입자가 적용된 led 로드 정렬 구조의 제조 방법 WO2023211083A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0052678 2022-04-28
KR1020220052678A KR20230153013A (ko) 2022-04-28 2022-04-28 나노 입자가 적용된 led 로드 정렬 구조, 및 나노 입자가 적용된 led 로드 정렬 구조의 제조 방법

Publications (1)

Publication Number Publication Date
WO2023211083A1 true WO2023211083A1 (ko) 2023-11-02

Family

ID=88519347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005534 WO2023211083A1 (ko) 2022-04-28 2023-04-24 나노 입자가 적용된 led 로드 정렬 구조, 및 나노 입자가 적용된 led 로드 정렬 구조의 제조 방법

Country Status (2)

Country Link
KR (1) KR20230153013A (ko)
WO (1) WO2023211083A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274209B1 (ko) * 2011-08-24 2013-06-17 삼성전자주식회사 발광 소자 및 그 제조 방법
JP2017508867A (ja) * 2014-01-20 2017-03-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 横方向に構造形成した蛍光体層を製造するための方法およびそのような蛍光体層を備えたオプトエレクトロニクス半導体部品
US20180287010A1 (en) * 2014-11-18 2018-10-04 Psi Co., Ltd. Electrode assembly comprising micro-led elements and method for manufacturing same
KR20190117179A (ko) * 2018-04-06 2019-10-16 상명대학교 천안산학협력단 그래핀 양자점 광증폭 발광소자 및 그의 제작방법
KR20200088948A (ko) * 2019-01-15 2020-07-24 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197741B1 (ko) 2010-05-18 2012-11-06 경희대학교 산학협력단 나노로드를 구비하는 표면 플라즈몬 공명 센서
KR102317872B1 (ko) 2015-03-19 2021-10-26 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 자외선 발광소자 및 조명시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101274209B1 (ko) * 2011-08-24 2013-06-17 삼성전자주식회사 발광 소자 및 그 제조 방법
JP2017508867A (ja) * 2014-01-20 2017-03-30 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 横方向に構造形成した蛍光体層を製造するための方法およびそのような蛍光体層を備えたオプトエレクトロニクス半導体部品
US20180287010A1 (en) * 2014-11-18 2018-10-04 Psi Co., Ltd. Electrode assembly comprising micro-led elements and method for manufacturing same
KR20190117179A (ko) * 2018-04-06 2019-10-16 상명대학교 천안산학협력단 그래핀 양자점 광증폭 발광소자 및 그의 제작방법
KR20200088948A (ko) * 2019-01-15 2020-07-24 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 장치

Also Published As

Publication number Publication date
KR20230153013A (ko) 2023-11-06

Similar Documents

Publication Publication Date Title
WO2014038794A1 (ko) 웨이퍼 레벨의 발광 다이오드 어레이
WO2009128669A2 (ko) 발광 소자 및 그 제조방법
WO2010114294A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2010038976A2 (en) Semiconductor light emitting device and method of manufacturing the same
WO2016133292A1 (ko) 광 추출 효율이 향상된 발광 소자
WO2016018109A1 (ko) 발광 다이오드
WO2014061906A1 (ko) 성장 기판 분리 방법, 발광 다이오드 제조 방법 및 그것에 의해 제조된 발광 다이오드
WO2011034259A1 (ko) 광소자 기판, 광소자 디바이스 및 그 제조 방법
WO2020218850A1 (ko) 발광 다이오드 디스플레이 패널, 그것을 갖는 디스플레이 장치 및 그것을 제조하는 방법
WO2021025436A1 (ko) 발광 다이오드 디스플레이 패널 및 그것을 갖는 디스플레이 장치
WO2021015385A1 (ko) 잉크젯 프린팅 장치, 쌍극성 소자 정렬 방법 및 표시 장치의 제조 방법
WO2013089417A1 (en) Semiconductor device and method of fabricating the same
WO2017078441A1 (ko) 반도체 소자
WO2020149512A1 (ko) 발광 소자 및 이를 포함하는 표시 장치
WO2024063481A1 (ko) 색변환 기법을 적용한 반도체 발광 소자의 제조 방법
WO2013176519A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2023211083A1 (ko) 나노 입자가 적용된 led 로드 정렬 구조, 및 나노 입자가 적용된 led 로드 정렬 구조의 제조 방법
WO2021091249A1 (ko) 반도체 공정 진단 센서 장치
WO2024034952A1 (ko) 옵티컬 솔더링을 이용한 이차원 박막 물질의 접합 및 결점 구조 형성 방법과, 그 접합 및 결점 구조
WO2021241896A1 (ko) 마이크로-나노핀 led 전극어셈블리, 이의 제조방법 및 이를 포함하는 광원
WO2014109506A1 (ko) 반도체 기판
WO2020036327A1 (ko) 쇼트 채널 tft 제작 방법 및 쇼트채널 tft 구조
WO2021242039A1 (ko) 발광 소자 및 그것을 갖는 디스플레이 장치
WO2016186389A1 (ko) 유기 발광 소자의 인라인 제조 시스템과, 인라인 제조 방법과, 유기막 장치 및 도너 기판 세트
WO2012039554A2 (ko) 봉지박막 및 유기전계발광표시장치의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796730

Country of ref document: EP

Kind code of ref document: A1