WO2020218850A1 - 발광 다이오드 디스플레이 패널, 그것을 갖는 디스플레이 장치 및 그것을 제조하는 방법 - Google Patents

발광 다이오드 디스플레이 패널, 그것을 갖는 디스플레이 장치 및 그것을 제조하는 방법 Download PDF

Info

Publication number
WO2020218850A1
WO2020218850A1 PCT/KR2020/005382 KR2020005382W WO2020218850A1 WO 2020218850 A1 WO2020218850 A1 WO 2020218850A1 KR 2020005382 W KR2020005382 W KR 2020005382W WO 2020218850 A1 WO2020218850 A1 WO 2020218850A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
pads
circuit board
material layer
Prior art date
Application number
PCT/KR2020/005382
Other languages
English (en)
French (fr)
Inventor
장성규
이섬근
신찬섭
이호준
Original Assignee
서울바이오시스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스주식회사 filed Critical 서울바이오시스주식회사
Priority to MX2021012963A priority Critical patent/MX2021012963A/es
Priority to CN202080030011.8A priority patent/CN113711120A/zh
Priority to KR1020217025297A priority patent/KR20210145724A/ko
Priority to EP20795899.2A priority patent/EP3961299A4/en
Priority to BR112021021218A priority patent/BR112021021218A2/pt
Priority to JP2021562103A priority patent/JP2022530370A/ja
Publication of WO2020218850A1 publication Critical patent/WO2020218850A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1351Light-absorbing or blocking layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1354Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied having a particular photoconducting structure or material
    • G02F1/1355Materials or manufacture processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present disclosure relates to a light emitting diode display panel capable of safely transferring a plurality of light emitting elements for displays, an apparatus having the same, and a method of manufacturing the same.
  • Light-emitting diodes are inorganic light sources and are used in various fields such as display devices, vehicle lamps, and general lighting. Light-emitting diodes have the advantages of long lifespan, low power consumption, and fast response speed, so they are rapidly replacing existing light sources.
  • a display device implements various colors using a mixed color of blue, green, and red.
  • a display device includes a plurality of pixels to implement various images, and each pixel includes blue, green, and red sub-pixels, and a color of a specific pixel is determined through the colors of these sub-pixels, and a combination of these pixels.
  • the LED can emit light of various colors according to its material, and thus individual LED chips emitting blue, green, and red colors can be arranged on a two-dimensional plane to provide a display device.
  • LEDs used in conventional large-sized electronic boards are manufactured as packages, and then light-emitting diode packages are arranged in pixel units, so individual packages have been mounted on circuit boards.
  • a display of a small electronic product such as a smart watch, a mobile phone, a VR headset, or AR glasses, or a display such as a TV needs to be equipped with micro LEDs having a smaller size than that of a conventional LED package in order to realize clear image quality.
  • the sub-pixels are arranged on a 2D plane, an area occupied by one pixel including blue, green, and red sub-pixels is relatively wide. Therefore, in order to arrange sub-pixels within a limited area, the area of each LED chip must be reduced. However, the reduction in the size of the LED chip may make it difficult to mount the LED chip, and furthermore, a reduction in the light emitting area is caused.
  • the problem to be solved by the present disclosure is to provide an LED display device capable of safely transferring a plurality of light emitting elements to a circuit board.
  • Another problem to be solved by the present disclosure is to provide a light emitting device transfer method capable of easily transferring light emitting devices manufactured from a wafer to a circuit board as a group.
  • Another problem to be solved by the present disclosure is to provide a method and a display apparatus for safely transferring a light emitting device for a display capable of increasing the area of each sub-pixel within a limited pixel area.
  • a display panel includes: a circuit board having pads; Light-emitting elements electrically connected to the pads and arranged on the circuit board; And a buffer material layer disposed between the circuit board and the light-emitting elements to fill a space between the circuit board and the light-emitting elements, wherein the buffer material layer is located under the upper surfaces of the light-emitting elements.
  • a display device includes a display panel, the display panel comprising: a circuit board having pads; Light-emitting elements electrically connected to the pads and arranged on the circuit board; And a buffer material layer disposed between the circuit board and the light-emitting elements to fill a space between the circuit board and the light-emitting elements, wherein the buffer material layer is located under the upper surfaces of the light-emitting elements.
  • FIG. 1 is a schematic perspective view illustrating display devices according to exemplary embodiments of the present disclosure.
  • FIG. 2 is a schematic plan view illustrating a display panel according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is a schematic enlarged cross-sectional view taken along the cut line A-A of FIG. 2.
  • FIG. 4 is a schematic plan view illustrating a light emitting device according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view taken along line B-B of FIG. 4 to describe a light emitting device according to an exemplary embodiment of the present disclosure.
  • FIG. 6 is a schematic circuit diagram of a light emitting device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic circuit diagram of a light emitting device according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic plan view illustrating a light emitting device according to another exemplary embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view taken along line C-C of FIG. 8 to describe a light emitting device according to another exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic circuit diagram of a light emitting device according to another exemplary embodiment of the present disclosure.
  • FIG. 11 is a schematic circuit diagram of a light emitting device according to another embodiment of the present disclosure.
  • 12A, 12B, 12C, 12D, and 12E are schematic cross-sectional views illustrating a method of manufacturing a display panel according to an exemplary embodiment of the present disclosure.
  • 13A, 13B, 13C, 13D, and 13E are schematic cross-sectional views illustrating a method of manufacturing a display panel according to another exemplary embodiment of the present disclosure.
  • 14A, 14B, 14C, and 14D are schematic cross-sectional views illustrating a method of manufacturing a display panel according to still another exemplary embodiment of the present disclosure.
  • 15A, 15B, 15C, and 15D are schematic cross-sectional views illustrating a method of manufacturing a display panel according to another exemplary embodiment of the present disclosure.
  • 16A, 16B, 16C, 16D, and 16E are schematic cross-sectional views illustrating a method of manufacturing a display panel according to another exemplary embodiment of the present disclosure.
  • 17A, 17B, 17C, 17D, and 17E are schematic cross-sectional views illustrating a method of manufacturing a display panel according to still another exemplary embodiment of the present disclosure.
  • 18A, 18B, 18C, and 18D are schematic cross-sectional views illustrating a method of manufacturing a display panel according to still another exemplary embodiment of the present disclosure.
  • a display panel includes: a circuit board having pads; Light-emitting elements electrically connected to the pads and arranged on the circuit board; And a buffer material layer disposed between the circuit board and the light-emitting elements to fill a space between the circuit board and the light-emitting elements, wherein the buffer material layer is located under the upper surfaces of the light-emitting elements.
  • the light-emitting elements can be safely collectively transferred to the circuit board.
  • the buffer material layer may cover a surface of the circuit board positioned between the light emitting devices, and may have a plurality of grooves in a region between the two light emitting devices.
  • each light emitting device may include electrode pads, and the electrode pads may be electrically connected to the pads. Furthermore, the grooves may have a shape corresponding to the shape of the electrode pads.
  • the display panel may further include conductive particles disposed between pads on the circuit board and electrode pads of the light emitting device, and the pads and the electrode pads are formed on the conductive particles. Can be electrically connected by
  • the buffer material layer may further include conductive particles spaced apart from each other in a region between the light emitting devices.
  • the display panel may further include a light blocking material layer disposed in a region between the light emitting devices to block light emitted through side surfaces of the light emitting devices.
  • the contrast ratio of the display panel may be improved by the light blocking material layer.
  • the light blocking material layer may cover a part of the upper surface of the buffer material layer.
  • the display panel may further include a solder layer formed between the pads and the electrode pads, and the pads and the electrode pads may be electrically connected by the solder layer.
  • the light emitting devices include: a first LED stack, a second LED stack, and a third LED stack for emitting light of different wavelengths; Electrode pads electrically connected to the first to third LED stacks; And bump pads disposed on the electrode pads, and the bump pads may be electrically connected to pads on the circuit board.
  • the plurality of grooves may have a shape corresponding to the shape of the bump pads.
  • the display panel may further include a bonding layer between the pads of the circuit board and the bump pads, and the bonding layer may include In, Pb, AuSn, CuSn, or solder.
  • the buffer material layer may be cured resin, polymer, BCB, or SOG.
  • Each of the light emitting devices may include a first LED stack, a second LED stack, and a third LED stack, and the first to third LED stacks may emit light having different wavelengths.
  • the light emitting devices may emit light generated by the stacking of the first to third LEDs through the stacking of the third LEDs.
  • the third LED stack may be separated from the growth substrate. That is, the light emitting devices may not include the growth substrate used to grow the third LED stack.
  • a gap between the light emitting devices may be greater than a width of the light emitting devices.
  • the buffer material layer may cover the surface of the circuit board positioned between the light emitting devices, and may include conductive particles. Furthermore, the conductive particles may be located more densely in a region between the circuit board and the light emitting device than in the region between the light emitting devices.
  • a display device includes a display panel, the display panel comprising: a circuit board having pads; Light-emitting elements electrically connected to the pads and arranged on the circuit board; And a buffer material layer disposed between the circuit board and the light-emitting elements to fill a space between the circuit board and the light-emitting elements, wherein the buffer material layer is located under the upper surfaces of the light-emitting elements.
  • the buffer material layer may cover a surface of the circuit board positioned between the light emitting devices, and may have a plurality of grooves in a region between the two light emitting devices.
  • each light-emitting device may include electrode pads, and the electrode pads may be electrically connected to the pads.
  • the grooves may correspond to the shape of the electrode pads.
  • the light emitting devices may each include a first LED stack, a second LED stack, and a third LED stack, and the first to third LED stacks may emit light of different wavelengths, and the light emitting device They may emit light generated from the first to third LED stacks through the third LED stack.
  • the third LED stack may be separated from the growth substrate.
  • the display device may further include a growth substrate disposed on the third LED stack.
  • the display device may further include a light blocking material layer disposed in a region between the light emitting elements to block light emitted to the side of the light emitting elements.
  • FIG. 1 is a schematic perspective view illustrating display devices according to exemplary embodiments of the present disclosure.
  • the light emitting device of the present disclosure is not particularly limited, but may be particularly used in a VR display device such as a smart watch 1000a, a VR headset 1000b, or an AR display device such as augmented reality glasses 1000c.
  • a display panel for implementing an image is mounted in the display device.
  • 2 is a schematic plan view illustrating a display panel 1000 according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view taken along a cut line A-A of FIG. 2.
  • the display panel includes a circuit board 1001, light-emitting elements 100, and a buffer material layer 1005.
  • the circuit board 1001 or the panel board may include a circuit for passive matrix driving or active matrix driving.
  • the circuit board 1001 may include wirings and resistors therein.
  • the circuit board 1001 may include wiring, transistors, and capacitors.
  • the circuit board 1001 may also have pads 1003 on its upper surface for allowing electrical connection to a circuit disposed therein.
  • the plurality of light emitting devices 100 are arranged on the circuit board 1001.
  • the light-emitting elements 100 may be small-sized light-emitting elements having a size of a micro unit, and the width W1 may be 300 ⁇ m or less, further, 200 ⁇ m or less, and more specifically 100 ⁇ m or less.
  • the light-emitting elements 100 may have a size of, for example, 200 ⁇ m ⁇ 200 ⁇ m or less, and further, 100 ⁇ m ⁇ 100 ⁇ m or less.
  • the distance L1 between the light emitting elements 100 in the direction in which the light emitting elements 100 are aligned may be wider than the width W1 of the light emitting element 100 in that direction.
  • the light-emitting element 100 has electrode pads 101, and the electrode pads 101 are electrically connected to the circuit board 1001.
  • the electrode pads 101 may be bonded to the pads 1003 exposed on the circuit board 1001.
  • the electrode pads 101 may have the same size or different sizes.
  • the electrode pads 101 have a relatively large area, and the maximum width of each electrode pad may be about 1/4 to about 3/4 of the maximum width of the light emitting device 100. Meanwhile, the minimum width of each electrode pad may be about 1/5 to 3/4 or less of the minimum width of the light emitting device 100.
  • the spacing between the electrode pads 101 may be about 3 ⁇ m or more, specifically 5 ⁇ m or more, and further 10 ⁇ m or more.
  • Each light-emitting element 100 constitutes one pixel.
  • each light emitting device 100 may include blue, green, and red subpixels.
  • 4 is a schematic plan view illustrating a light emitting device 100 according to an embodiment of the present disclosure
  • FIG. 5 is a cut line BB of FIG. 4 to describe the light emitting device 100 according to an embodiment of the present disclosure.
  • It is a schematic cross-sectional view taken along the line
  • FIG. 6 is a schematic circuit diagram for explaining the light emitting device 100 according to an embodiment of the present disclosure.
  • the electrode pads 101a, 101b, 101c, and 101d are shown and described as being disposed above in FIGS. 4 and 5, but the light emitting device 100 is a circuit board as shown in FIG. It is flip-bonded on the (1001), in this case, the electrode pads (101a, 101b, 101c, 101d) are disposed below.
  • the light emitting device 100 includes a first LED stack 23, a second LED stack 33, a third LED stack 43, a first bonding layer 30, and 2 A bonding layer 40, a first insulating layer 51, and electrode pads 101a, 101b, 101c, and 101d may be included.
  • the first to third LED stacks 23, 33 and 43 are formed using semiconductor layers grown on different growth substrates, respectively, and the growth substrates are all first to third LED stacks 23 and 33 , 43). Accordingly, the light emitting device 100 may not include a substrate used to grow the first to third LED stacks 23, 33, and 43. However, the present disclosure is not necessarily limited thereto, and at least one growth substrate may remain without being removed.
  • the first to third LED stacks 23, 33 and 43 are stacked in a vertical direction.
  • the first LED stack 23, the second LED stack 33, and the third LED stack 43 are each of a first conductive type semiconductor layer 23a, 33a, or 43a, and a second conductive type semiconductor layer 23c, 33c. , Or 43c) and the active layers 23b, 33b, and 43b interposed therebetween.
  • the active layer may in particular have a multiple quantum well structure.
  • the second LED stack 33 is disposed under the first LED stack 23, and the third LED stack 43 is disposed under the second LED stack 33.
  • the second LED stack 33 is disposed under the first LED stack 23 and the third LED stack 43 is disposed under the second LED stack 33, but it should be noted that, the light emitting element can be flip bonded, and thus, the top and bottom positions of these first to third LED stacks can be reversed.
  • the first LED stack 23 emits light of a longer wavelength compared to the second and third LED stacks 33 and 43
  • the second LED stack 33 has a longer wavelength than the third LED stack 43
  • the first LED stack 23 may be an inorganic light emitting diode emitting red light
  • the second LED stack 33 is an inorganic light emitting diode emitting green light
  • the third LED stack 43 is an inorganic light emitting diode emitting blue light. It may be a light emitting diode.
  • the first LED stack 23 may include an AlGaInP-based well layer
  • the second LED stack 33 may include an AlGaInP-based or AlGaInN-based well layer
  • the third LED stack 43 may include AlGaInN It may include a series of well layers.
  • the light generated from the first LED stack 23 is the second and third LED stacks. (33, 43) can be transmitted to the outside.
  • the second LED stack 33 emits light of a longer wavelength compared to the third LED stack 43
  • the light generated by the second LED stack 33 passes through the third LED stack 43 to the outside. Can be released.
  • the first conductivity-type semiconductor layers 23a, 33a, and 43a of each LED stack 23, 33, or 43 are n-type semiconductor layers, and the second conductivity-type semiconductor layers 23c, 33c, and 43c are p-type. It may be a semiconductor layer.
  • the lower surfaces of the first to third LED stacks 23, 33, and 43 are all the first conductivity type semiconductor layers and the upper surfaces are both the second conductivity type semiconductor layers, but at least one The order of the LED stacking can be reversed.
  • the top surface of the first LED stack 23 is a first conductivity type semiconductor layer 23a
  • the top surfaces of the second LED stack 33 and the third LED stack 43 are both second conductivity type semiconductor layers. (33c, 43c).
  • the first LED stack 23, the second LED stack 33 and the third LED stack 43 overlap each other.
  • the first LED stack 23, the second LED stack 33, and the third LED stack 43 may have a light emitting area of substantially the same size.
  • the first and second LED stacks 23 and 33 may have through holes for allowing electrical connection, and thus, may have a relatively small area compared to the third LED stack 43.
  • the first bonding layer 30 bonds the first LED stack 23 to the second LED stack 33.
  • the first bonding layer 30 may be disposed between the first conductivity type semiconductor layer 23a and the second conductivity type semiconductor layer 33c.
  • the first bonding layer 30 may be formed of a transparent organic material layer or a transparent inorganic material layer.
  • the organic material layer may include SU8, poly(methylmethacrylate: PMMA), polyimide, parylene, benzocyclobutene (BCB), and the like, and the inorganic material layer may include Al2O3, SiO2, SiNx, etc. Can be lifted.
  • the first bonding layer 30 may be formed of spin-on-glass (SOG).
  • the second bonding layer 40 couples the second LED stack 33 to the third LED stack 43. As shown, the second bonding layer 40 may be disposed between the first conductivity type semiconductor layer 33a and the second conductivity type semiconductor layer 43c. The second bonding layer 40 may be formed of the same material as the material described for the first bonding layer 30 above, and detailed descriptions will be omitted to avoid redundancy.
  • the first insulating layer 51 may cover the first LED stack 23.
  • the first insulating layer 51 may also cover side surfaces of the first to third LED stacks 23, 33, 43.
  • the first insulating layer 51 may be formed of a silicon oxide film or a silicon nitride film.
  • the electrode pads 101 may be disposed on the first insulating layer 51.
  • the electrode pads 101a, 101b, 101c, and 101d may be electrically connected to the first to third LED stacks 23, 33 and 43 through the first insulating layer 51.
  • the electrode pads 101a, 101b, and 101c are electrically connected to the anodes of the first to third LED stacks 23, 33, and 43, respectively, and the electrode pads 101d are first to It may be commonly connected to cathodes of the third LED stacks 23, 33, and 43.
  • the first to third LED stacks 23, 33, 43 A transparent electrode may be formed on at least one of the second conductivity type semiconductor layers 23c, 33c, and 43c.
  • the electrode pad 101d is commonly connected to the cathodes of the first to third LED stacks 23, 33, 43, but as shown in FIG. 101d) may be commonly connected to anodes of the first to third LEdD stacks 23, 33, and 43.
  • the electrode pads 101a, 101b, and 10c may be connected to the cathodes of the first to third LED stacks 23, 33, and 43, respectively.
  • the first to third LED stacks 23, 33, and 43 may be individually driven by the electrode pads 101a, 101b, 101c, and 101d.
  • the electrode pads 101a, 101b, 101c, and 101d may be formed to have a relatively large area for stable electrical connection.
  • each of the electrode pads 101a, 101b, 101c, and 101d may have an area larger than 1/4 of the top surface of the light emitting device 100.
  • the buffer material layer 1005 fills a region between the light emitting devices 100 and the circuit board 1001. Further, the buffer material layer 1005 may cover the circuit board 1001 between the light emitting devices 100. The buffer material layer 1005 may cover side surfaces of the electrode pads 101 and may contact the lower surface of the light emitting device 100. The upper surface of the buffer material layer 1005 is generally located under the upper surface of the light emitting devices 100. A part of the buffer material layer 1005 may partially cover the side surface of the light emitting device 100. However, a portion of the buffer material layer 1005 covering the side surfaces of the light emitting devices does not exceed the height of the top surfaces of the light emitting devices 100.
  • the buffer material layer 1005 may include conductive particles 1005a and 1005b dispersed in a matrix.
  • the conductive particles 1005a are disposed apart from each other in a region between the pads 1003 and thus do not provide an electrical path.
  • the conductive particles 1005a may have a generally spherical shape, but are not limited thereto.
  • the conductive particles 1005b are disposed between the pads 1003 and the electrode pads 101 to electrically connect them.
  • the conductive particles 1005b may have a shape having a larger width in the horizontal direction than the thickness in the vertical direction by being pressed by pressure.
  • the conductive particles 1005b may be spaced apart from each other, but may contact each other.
  • the conductive particles 1005a and 1005b may be, for example, metal particles such as Ni, Au, and Sn, or conductive nanoparticles such as nanotubes or nanowires.
  • the conductive particles 1005a and 1005b may be conductive particles coated with a metal layer on the polymer particles.
  • the conductive particles coated with the polymer with a metal layer are easily deformed by pressure, they are suitable for electrically connecting them between the pads 1003 and the electrode pads 101.
  • the buffer material layer 1005 may also include a light-transparent matrix, but the present disclosure is not limited thereto.
  • the buffer material layer 1005 may reflect or absorb light, and for this purpose, a matrix having a light reflecting property or a matrix having a light absorbing property may be used.
  • a light absorbing material such as carbon black or a light scattering material such as silica may be contained in the matrix.
  • the buffer material layer 1005 may have grooves 101g formed concave in a region between the light emitting devices 100.
  • the grooves 101g correspond to the shape of the electrode pads 101.
  • the grooves 101g may be formed by the electrode pads 101.
  • the present disclosure is not limited thereto, and the buffer material layer 1005 may be removed in a region between the light emitting devices 100.
  • the buffer material layer 1005 may be formed of, for example, an anisotropic conductive film (ACF).
  • ACF anisotropic conductive film
  • the conductive particles 1005a may be substantially uniformly distributed over the entire area of the buffer material layer 1005.
  • the conductive particles 1005b are disposed closer to each other and are disposed more densely than the conductive particles 1005a.
  • the buffer material layer 1005 may be formed using an anisotropic conductive paste (ACP), and further, the buffer material layer 1005 is self-assembled anisotropic including solder particles. It may be formed using a conductive paste (self assembly anisotropic conductive paste; SAP). Accordingly, the conductive particles 1005a may be aggregated between the pads 1003 and the electrode pads 101, and the conductive particles 1005a rarely remain or remain in the region between the light emitting devices 100. I can't.
  • ACP anisotropic conductive paste
  • SAP self assembly anisotropic conductive paste
  • the buffer material layer 1005 may be a non-conductive material layer not including the conductive particles 1005a and 1005b, and the pads 1003 and the electrode pads 101 are In, Pb, AuSn. , CuSn or solder may be used to bond.
  • the buffer material layer 1005 may be formed of spin-on-glass (SOG) or BCB.
  • a light blocking material layer may be disposed in a region between the light emitting devices 100.
  • the light-blocking material layer absorbs or reflects light, and thus prevents optical interference between light-emitting elements, thereby improving the contrast ratio of the display.
  • the light blocking material layer may cover the light emitting devices 100. The light blocking material layer will be described in detail later through a method of manufacturing a display panel.
  • FIG. 8 is a schematic plan view for explaining a light emitting device 100a according to another exemplary embodiment of the present disclosure
  • FIG. 9 is a schematic cross-sectional view taken along line C-C of FIG. 8.
  • the second insulating layer 61 may cover the first insulating layer 51 and the electrode pads 101a, 101b, 101c, and 101d.
  • the second insulating layer 61 may be formed of a silicon oxide film or a silicon nitride film.
  • the second insulating layer 61 may have openings exposing the electrode pads 101a, 101b, 101c, and 101d, and may be disposed on the exposed electrode pads of the bump pads 103a, 103b, 103c, and 103d. I can.
  • the bump pads 103a, 103b, 103c, and 103d may be disposed in openings of the second insulating layer 61, and upper surfaces of the bump pads may be flat surfaces.
  • the bump pads 103a, 103b, 103c, and 103d may be formed of Au/In, for example, Au may be formed to a thickness of 3 ⁇ m, and In may be formed to a thickness of about 1 ⁇ m.
  • the light emitting device 100 may be bonded to the pads 1003 on the circuit board 1001 using In. In the present embodiment, bonding of the bump pads using In will be described, but the bonding is not limited to In, and may be bonded using Pb or AuSn.
  • the upper surfaces of the bump pads 103a, 103b, 103c, and 103d are described and illustrated as being flat, but the present disclosure is not limited thereto.
  • upper surfaces of the bump pads 103a, 103b, 103c, and 103d may be irregular, and some of the bump pads may be located on the second insulating layer 61.
  • the first LED stack 23 is electrically connected to the bump pads 103a and 103d
  • the second LED stack 33 is electrically connected to the bump pads 103b and 103d
  • the third LED stack 43 may be electrically connected to the bump pads 103c and 103d. That is, the cathodes of the first LED stack 23, the second LED stack 33, and the third LED stack 43 are electrically connected to the bump pad 103d in common, and the anodes are the bump pads 103a and 103b, Connect electrically to 103c). Accordingly, the first to third LED stacks 23, 33, and 43 can be independently driven.
  • the anodes of the first LED stack 23, the second LED stack 33, and the third LED stack 43 are electrically connected to the bump pad 103d in common, and the cathodes are the bump pads. Each of them may be electrically connected to each of 103a, 103b, and 103c.
  • the bump pads 103a, 103b, 103c, and 103d may be connected to the pads 1003 of the circuit board 1001.
  • 12A, 12B, 12C, 12D, and 12E are schematic cross-sectional views illustrating a method of manufacturing a display panel according to an exemplary embodiment of the present disclosure.
  • a plurality of light emitting devices 100 are formed on a substrate 41.
  • the light-emitting elements 100 include electrode pads 101. Since the light emitting device 100 is the same as described with reference to FIGS. 4 and 5, detailed descriptions are omitted to avoid redundancy.
  • the substrate 41 may be a growth substrate for growing the semiconductor layers 43a, 43b, and 43c of the third LED stack 43.
  • the substrate 41 may be a gallium nitride substrate, a SiC substrate, a sapphire substrate, or a patterned sapphire substrate.
  • the second LED stack 33 may be bonded to the third LED stack 43 through the second bonding layer 40, and the first LED stack 23 is a second LED through the first bonding layer 30. It may be bonded to the stack 33.
  • a patterning process may be performed to separate them into a plurality of light emitting device regions. Subsequently, the first insulating layer 51 and electrode pads 101 may be formed. Further, although not shown and described in detail, the first and second LED stacks 23 and 33 are used to electrically connect the electrode pads 101 and the first to third LED stacks 23, 33, and 43. ) May be formed through holes, and the second conductivity-type semiconductor layer 43c and the active layer 43b of the third LED stack 43 may be partially patterned. Also, as described above, a transparent electrode may be formed on the second conductive semiconductor layers 23c, 33c, and 43c of the first to third LED stacks 23, 33, and 43.
  • an anisotropic conductive film 1005 is attached on a circuit board 1001 on which pads 1003 are formed in each pixel area.
  • the anisotropic conductive film 1005 includes conductive particles 1005a and 1005b in a matrix.
  • the anisotropic conductive film 1005 covers the pads 1003 on the circuit board 1001.
  • the conductive particles 1005b in the anisotropic conductive film 1005 are positioned on the pads 1003.
  • the conductive particles 1005a represent conductive particles located outside the upper region of the pads 1003, and the conductive particles 1005b represent conductive particles located above the pads 1003.
  • the conductive particles 1005a and 1005b have the same structure and shape. Meanwhile, the thickness of the anisotropic conductive film 1005 positioned on the pads 1003 is similar to or greater than that of the electrode pads 101.
  • the light emitting devices 100 formed on the substrate 41 are bonded to the pads 1003 through the anisotropic conductive film 1005.
  • the light emitting elements 100 of the substrate 41 may be disposed more densely than the pixel regions. Accordingly, as shown, some of the light emitting devices 100 on the substrate 41 may be located between pixel regions and are not bonded to the pads 1003.
  • the pad 1003 and the electrode pad 101 are electrically connected by conductive particles 1005b in the anisotropic conductive film 1005.
  • the substrate 41 may be pressed toward the circuit board 1001, and thus, the conductive particles 1005b may be deformed in shape by the pressure.
  • heat may be applied while the light emitting devices 100 are adhered to the anisotropic conductive film 1005.
  • the matrix of the anisotropic conductive film 1005 may be cured by heat.
  • a part of the anisotropic conductive film 1005 may at least partially fill the gaps between the light emitting devices 100, and thus, may at least partially cover the side surfaces of the light emitting devices 100.
  • a laser is irradiated to the light-emitting elements 100 connected to the pads 1003 through the substrate 41 so that the light-emitting elements 100 It is separated from the substrate 41.
  • the display panel 1000 in which the light emitting elements 100 are bonded to the pixel regions of the circuit board 1001 is manufactured.
  • grooves 101g due to the electrode pads 101 may be formed on the surface of the anisotropic conductive film 1005.
  • a light blocking material layer 1007 filling an area between the light emitting devices 100 may be further formed.
  • the light-blocking material layer 1007 may cover side surfaces of the light-emitting elements 100, and further, may cover an upper surface of the light-emitting elements 100.
  • the light blocking material layer 1007 may cover the buffer material layer 1005 covering the circuit board 1001 and may fill the grooves 101g.
  • the light blocking material layer 1007 absorbs or reflects light emitted through the side surfaces of the light-emitting elements 100 to prevent light interference between the light-emitting elements.
  • the light blocking material layer 1007 may be formed of, for example, a black molding material such as black epoxy or black silicon.
  • the light blocking material layer 1007 may be formed of a light reflective material such as white epoxy or white silicon.
  • the light-blocking material layer 1007 is shown to cover the upper surfaces of the light-emitting elements 100, but the light-blocking material layer 1007 fills the area between the light-emitting elements 100 It may be formed to expose the upper surface of the field (100). In this case, the height of the light blocking material layer 1007 may match the height of the top surfaces of the light emitting devices 100.
  • the anisotropic conductive film 1005 by using the anisotropic conductive film 1005, the impact applied to the light emitting devices 100 while irradiating the laser for laser lift-off can be alleviated by the anisotropic conductive film 1005. That is, the anisotropic conductive film 1005 is used as a buffer material layer that mitigates the impact applied to the light emitting devices 100, and therefore, it is possible to prevent device failure from occurring while transferring the light emitting devices 100. have.
  • the anisotropic conductive film 1005 is shown and described to be attached to the circuit board 1001 side, but the anisotropic conductive film 1005 is on the substrate 41 so as to cover the light-emitting elements 100. It can also be attached.
  • anisotropic conductive film 1005 is attached to the circuit board 1001 side, but an anisotropic conductive paste may be used.
  • 13A, 13B, 13C, 13D, and 13E are schematic cross-sectional views illustrating a method of manufacturing a display panel according to another exemplary embodiment of the present disclosure.
  • a plurality of light emitting devices 100 are formed on a substrate 41.
  • a self-assembled anisotropic conductive paste (SAP) 2005 is formed on a circuit board 1001 on which pads 1003 are formed in each pixel area.
  • SAP (2005) has a structure in which conductive particles (2005a) are dispersed in a resin such as epoxy.
  • the SAP 2005 may be formed on the circuit board 1001 using, for example, screen printing technology.
  • the conductive particles 2005a may be, for example, solder particles.
  • the solder particles contain Sn, and may contain at least one selected from Au, Ag, Bi, Cu, and In.
  • the melting point of the solder particles may be lower than the curing temperature of the resin.
  • a substrate 41 on which the light emitting elements 100 are formed is placed on the SAP 2005. It is not necessary to apply additional pressure to the substrate 41. Subsequently, heat is applied to the SAP (2005). Heat may be applied by the oven using a hot plate, or may be applied locally using spot heating. As heat is applied to the SAP 2005, the conductive particles 2005a are aggregated on the pads 1003 and the electrode pads 101 to form an aggregated conductive particle layer 2005c. The temperature at which the conductive particles 2005a are aggregated may be lower than the curing temperature of the resin, and thus, the conductive particles are aggregated before the resin is cured.
  • a part of the SAP 2005 may at least partially fill the gap between the light-emitting elements 100, and thus, may at least partially cover the side surfaces of the light-emitting elements 100.
  • the pads 1003 and the electrode pads 101 are electrically connected.
  • the conductive particles 2005a may remain in the region between the light emitting devices 100, but as a large number of conductive particles 2005a are aggregated on the pads 1003, the density becomes thin.
  • the light-emitting elements 100 are attached to the SAP 2005 by curing the resin.
  • the conductive particle layer 2005c aggregated between the pads 1003 and the electrode pads 101 may maintain a particle shape, but the shape of the particles is maintained by maintaining a temperature higher than the melting point of the conductive particles 2005a. It can disappear and become a layer.
  • the light-emitting elements 100 are then separated from the substrate 41 by separating the light-emitting elements 100 connected to the pads 1003 using a laser lift-off technique that selectively irradiates the laser. It is transferred to the circuit board 1001.
  • the light emitting devices 100 not connected to the pads 1003 are separated from the SAP 2005 together with the substrate 41, and thus, grooves 101g may be formed on the surface of the SAP 2005. have.
  • the light blocking material layer 1007 may fill a region between the light emitting devices 100.
  • the height of the top surface of the light blocking material layer 1007 may be the same as the height of the top surfaces of the light emitting devices 100.
  • the light blocking material layer 1007 may cover the upper surfaces of the light emitting devices 100.
  • the pads 1003 and the electrode pads 101 can be stably electrically connected, and the occurrence of an electrical short can be prevented.
  • the impact can be alleviated by using the SAP (2005), it is possible to prevent defects such as cracks from occurring in the light emitting elements 100 due to the impact caused by laser lift-off. It can be safely and collectively transferred onto the circuit board 1001.
  • 14A, 14B, 14C, and 14D are schematic cross-sectional views illustrating a method of manufacturing a display panel according to still another exemplary embodiment of the present disclosure.
  • a plurality of light emitting devices 100 are formed on a substrate 41.
  • an insulating material layer 3005 is formed on a circuit board 1001 having pads 1003.
  • the insulating material layer 3005 may be formed of epoxy, polymer, spin-on-glass (SOG), BCB, or the like.
  • the insulating material layer 3005 is formed to expose the pads 1003.
  • the insulating material layer 3005 may be patterned using photographic and etching techniques.
  • a substrate 41 on which light-emitting elements 100 are formed is disposed on a circuit board 1001.
  • the pads 1003 and the electrode pads 101 may be bonded to each other by the bonding layer 3007.
  • the bonding layer 3007 may be formed of, for example, AuIn, AuSn, CuSn, Au, Ni, or the like.
  • the bonding layer 3007 may be formed by forming a bonding material on the pads 1003 or on the electrode pads 101 and bonding the pads and the electrode pads to each other.
  • the insulating material layer 3005 may be cured after the pads 1003 and the electrode pads 101 are bonded to each other. A portion of the insulating material layer 3005 may at least partially fill a gap between the light emitting devices 100.
  • the light emitting devices 100 may be separated from the substrate 41 and transferred onto the circuit board 1001 by using a selective laser lift-off technique.
  • grooves 101g may be formed on the surface of the insulating material layer 3005.
  • the light blocking material layer 1007 may fill a region between the light emitting devices 100.
  • the impact applied to the light-emitting elements 100 while irradiating the laser can be alleviated by the insulating material layer 3005, and thus, defects such as cracks occur in the light-emitting elements 100 Can be prevented.
  • 15A, 15B, 15C, and 15D are schematic cross-sectional views illustrating a method of manufacturing a display panel according to another exemplary embodiment of the present disclosure.
  • a plurality of light emitting devices 100 are formed on a substrate 41.
  • a substrate 41 on which light-emitting elements 100 are formed is disposed on a circuit board 1001 on which pads 1003 are formed in pixel regions.
  • the electrode pads 101 of the light emitting devices 100 may be bonded to the pads 1003 by the bonding layer 3007.
  • the bonding layer 3007 may be formed of, for example, AuIn, AuSn, CuSn, Au, Ni, or the like.
  • the bonding layer 3007 may be formed by forming a bonding material on the pads 1003 or on the electrode pads 101 and bonding the pads and the electrode pads to each other.
  • the area between the substrate 41 and the circuit board 1001 is filled with an insulating material layer 4005.
  • the insulating material layer 4005 may be formed of epoxy, polymer, BCB, or the like.
  • the insulating material layer 4005 may contact the lower surfaces of the light emitting devices 100 and may cover the side surfaces of the pads 1003 and the electrode pads 101. Further, a part of the insulating material layer 4005 may at least partially fill the gap between the light emitting devices 100. Subsequently, the insulating material layer 4005 may be cured.
  • the light emitting devices 100 may be separated from the substrate 41 and transferred onto the circuit board 1001 using a selective laser lift-off technique.
  • grooves 101g may be formed on the surface of the insulating material layer 4005.
  • the light blocking material layer 1007 may fill a region between the light emitting devices 100.
  • the impact applied to the light emitting devices 100 while irradiating the laser can be alleviated by the insulating material layer 4005, and thus, defects such as cracks are generated in the light emitting devices 100 Can be prevented.
  • 16A, 16B, 16C, 16D, and 16E are schematic cross-sectional views illustrating a method of manufacturing a display panel according to another exemplary embodiment of the present disclosure.
  • a plurality of light emitting devices 100 are formed on a substrate 41.
  • an insulating material layer 3005 is formed on a circuit board 1001 having pads 1003.
  • the insulating material layer 3005 may be formed of epoxy, polymer, spin-on-glass (SOG), BCB, or the like.
  • the insulating material layer 3005 may be formed to expose a part of the circuit board 1001 as well as the pads 1003.
  • the insulating material layer 3005 may be patterned so that the circuit board 1001 is exposed in a region between the pads 1003, and thus, an opening 3005a may be formed.
  • the insulating material layer 3005 may be patterned using photographic and etching techniques.
  • a substrate 41 on which light-emitting elements 100 are formed is disposed on a circuit board 1001.
  • the pads 1003 and the electrode pads 101 may be bonded to each other by the bonding layer 3007.
  • the bonding layer 3007 may be formed of, for example, AuIn, AuSn, CuSn, Au, Ni, or the like.
  • the bonding layer 3007 may be formed by forming a bonding material on the pads 1003 or on the electrode pads 101 and bonding the pads and the electrode pads to each other.
  • the insulating material layer 3005 may be cured after the pads 1003 and the electrode pads 101 are bonded to each other. A part of the insulating material layer 3005 may at least partially cover side surfaces of the light emitting devices 100.
  • a light-emitting element positioned between the light-emitting elements 100 bonded to the circuit board 1001 is positioned on the opening 3005a of the insulating material layer 3005 on the circuit board 1001.
  • the light emitting devices 100 may be separated from the substrate 41 and transferred onto the circuit board 1001 using a selective laser lift-off technique.
  • the light emitting devices 100 are removed from the circuit board 1001 together with the board 41.
  • the light emitting elements 100 removed together with the substrate 41 are disposed above the opening 3005a of the insulating material layer 3005, the grooves 101g as in the previous embodiments are in the insulating material layer 3005. ) Is not formed.
  • a light blocking material layer 1007 may fill a region between the light emitting devices 100.
  • the light blocking material layer 1007 may cover a part of the upper surface of the insulating material layer 3005.
  • the light blocking material layer 1007 may cover the upper surfaces of the light emitting devices 100.
  • the impact applied to the light-emitting elements 100 while irradiating the laser can be alleviated by the insulating material layer 3005, and thus, defects such as cracks occur in the light-emitting elements 100 Can be prevented.
  • 17A, 17B, 17C, 17D, and 17E are schematic cross-sectional views illustrating a method of manufacturing a display panel according to still another exemplary embodiment of the present disclosure.
  • FIGS. 12A, 12B, 12C, 12D, and 12E a method of manufacturing a display panel according to the present embodiment is described with reference to FIGS. 12A, 12B, 12C, 12D, and 12E.
  • FIGS. 12A, 12B, 12C, 12D, and 12E Although generally similar to, there is a difference in patterning of the anisotropic conductive film 1005 or the anisotropic conductive paste before bonding the light emitting devices 100.
  • the manufacturing method of the present embodiment different matters from the previous embodiment will be described in detail in order to avoid duplication of description.
  • the anisotropic conductive film 1005 or the anisotropic conductive paste may be patterned to have an opening 1005c exposing the surface of the circuit board 1001 between the pads 1003.
  • an anisotropic conductive paste when used, it may be patterned using a screen printing technique or the like.
  • an anisotropic conductive film 1005 or an anisotropic conductive paste may be formed of a photosensitive polymer or the like, and patterned using photographic and etching techniques.
  • the anisotropic conductive film 1005 or the anisotropic conductive paste may be patterned to have a width wider than that of the light emitting device 100, and thus, the lower surface of the light emitting device 100 is an anisotropic conductive film 1005) or both can be attached to the anisotropic conductive paste. Further, the side surface of the light emitting device 100 may be partially covered with an anisotropic conductive film 1005 or an anisotropic conductive paste.
  • the light-emitting element 100 Since all the lower surfaces of the light-emitting elements 100 are in contact with the anisotropic conductive film 1005 or the anisotropic conductive paste, when the laser is irradiated to the light-emitting elements 100, the light-emitting element is formed by the anisotropic conductive film 1005 or the anisotropic conductive paste The impact applied to the field 100 can be alleviated.
  • the light emitting devices 100 are transferred onto the circuit board 1001, and the circuit board 1001 may be exposed in a region between the light emitting devices 100. Therefore, unlike the previous embodiment, the grooves 101g are not formed.
  • a region between the light emitting devices 100 may be filled with a light blocking material layer 1007.
  • the light blocking material layer 1007 may contact the surface of the circuit board 1001. Further, the light blocking material layer 1007 may partially cover the upper surface of the anisotropic conductive film 1005 or the anisotropic conductive paste. Further, although not shown, the light blocking material layer 1007 may cover the upper surfaces of the light emitting devices 100 as described with reference to FIG. 12E.
  • 18A, 18B, 18C, and 18D are schematic cross-sectional views illustrating a method of manufacturing a display panel according to still another exemplary embodiment of the present disclosure.
  • the above-described embodiments are directed to manufacturing a display panel by selectively transferring the light emitting elements 100 positioned on the substrate 41 onto the circuit board 1001 using a laser lift-off technique.
  • the substrate 41 may be a growth substrate, for example, a sapphire substrate used to grow the third LED stack 43.
  • the present disclosure is not limited to transferring the light-emitting elements 100 using a laser lift-off technique. That is, the individual light emitting device chips may be rearranged according to the spacing of the pads 1003 in advance, and then the light emitting devices may be transferred to the circuit board 1001 using a temporary tape.
  • 18A, 18B, 18C, and 18D show a method of transferring the previously rearranged light emitting device chips to the circuit board 1001 using a tape.
  • light emitting device chips on which the light emitting device 100 is formed on a substrate 41 are arranged and prepared on a tape 121.
  • the light emitting device chips may be arranged to correspond to the spacing of the pads 1003 of the circuit board 1001.
  • the tape 121 may be provided on a temporary substrate (not shown).
  • the light emitting device chips may be provided by forming the light emitting devices 100 on the substrate 41 and then dividing the substrate 41 into individual chip units.
  • an anisotropic conductive film 1005 is formed on the circuit board 1001.
  • An anisotropic conductive paste may be used instead of the anisotropic conductive film 1005.
  • the light emitting device chips attached to the tape 121 are bonded to the pads 1003 through the anisotropic conductive film 1005.
  • the light emitting device chips are bonded to the pads 1003 corresponding to the pixel regions.
  • the pad 1003 and the electrode pad 101 are electrically connected by conductive particles 1005b in the anisotropic conductive film 1005.
  • the substrate 41 may be pressed toward the circuit board 1001, and thus, the conductive particles 1005b may be deformed in shape by the pressure.
  • heat may be applied while the light emitting devices 100 are adhered to the anisotropic conductive film 1005.
  • the matrix of the anisotropic conductive film 1005 may be cured by heat.
  • a part of the anisotropic conductive film 1005 may at least partially cover the side surfaces of the light emitting devices 100.
  • the light emitting device chips are transferred onto the circuit board 1001, and accordingly, the light emitting device chips are bonded to the pixel regions of the circuit board 1001.
  • the display panel 1000 is manufactured.
  • the light emitting device chips may each include a light emitting device 100 and a substrate 41.
  • a light blocking material layer may be disposed in a region between the light emitting device chips.
  • the light blocking material layer covers the side surfaces of the light emitting devices 100 and may further cover the side surfaces of the substrate 41.
  • the light blocking material layer may cover the surface of the substrate 41.
  • the light emitting device chips arranged on the tape 121 are transferred to the circuit board 1001 using the anisotropic conductive film 1005 or an anisotropic conductive paste, but the present disclosure is not limited thereto.
  • alignment on the tape 121 also in the previous embodiments described with reference to FIGS. 13A to 13E, 14A to 14D, 15A to 15D, 16A to 16E, and 17A to 17E.
  • a method of transferring the light emitting device chips may be applied.
  • the electrode pads 101 are illustrated and described as being connected to the pads 1003, but the present disclosure is not limited thereto.
  • the light emitting devices 100a as described with reference to FIGS. 8 and 9 may be transferred to the circuit board 1001, and thus, the bump pads 103a, 103b, and 103c of the light emitting device 100a , 103d) may be connected to the pads 1003.
  • the grooves 101g formed in the buffer material layers 1005, 2005, 3005, and 4005 between the light emitting devices 100 may be formed by the bump pads 103a, 103b, 103c, and 103d.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Devices (AREA)

Abstract

일 실시예에 따른 디스플레이 패널은, 패드들을 갖는 회로 기판; 상기 패드들에 전기적으로 접속되어 상기 회로 기판 상에 정렬된 발광 소자들; 및 상기 회로 기판과 상기 발광 소자들 사이에 배치되어 상기 회로 기판과 상기 발광 소자들 사이의 공간을 채우는 완충 물질층을 포함하되, 상기 완충 물질층은 상기 발광 소자들의 상면 아래에 위치한다.

Description

발광 다이오드 디스플레이 패널, 그것을 갖는 디스플레이 장치 및 그것을 제조하는 방법
본 개시는 복수의 디스플레이용 발광 소자를 안전하게 전사할 수 있는 발광 다이오드 디스플레이 패널, 그것을 갖는 장치 및 그것을 제조하는 방법에 관한 것이다.
발광 다이오드는 무기 광원으로서, 디스플레이 장치, 차량용 램프, 일반 조명과 같은 여러 분야에 다양하게 이용되고 있다. 발광 다이오드는 수명이 길고, 소비 전력이 낮으며, 응답속도가 빠른 장점이 있어 기존 광원을 빠르게 대체하고 있다.
한편, 종래의 발광 다이오드는 디스플레이 장치에서 백라이트 광원으로 주로 사용되어 왔다. 그러나 최근 발광 다이오드를 이용하여 직접 이미지를 구현하는 LED 디스플레이가 개발되고 있다.
디스플레이 장치는 일반적으로 청색, 녹색 및 적색의 혼합 색을 이용하여 다양한 색상을 구현한다. 디스플레이 장치는 다양한 이미지를 구현하기 위해 복수의 픽셀을 포함하고, 각 픽셀은 청색, 녹색 및 적색의 서브 픽셀을 구비하며, 이들 서브 픽셀들의 색상을 통해 특정 픽셀의 색상이 정해지고, 이들 픽셀들의 조합에 의해 이미지가 구현된다.
LED는 그 재료에 따라 다양한 색상의 광을 방출할 수 있어, 청색, 녹색 및 적색을 방출하는 개별 LED 칩들을 2차원 평면상에 배열하여 디스플레이 장치를 제공할 수 있다.
종래의 대형 전광판에 사용되는 LED는 패키지로 제작된 후 발광 다이오드 패키지가 픽셀 단위로 정렬되므로, 개별 패키지들을 회로 기판에 실장하여 왔다. 그러나, 스마트 워치나 모바일 폰 또는 VR 헤드 셋이나 AR 안경 등 소형 전자 제품의 디스플레이나 TV 등의 디스플레이는 선명한 화질을 구현하기 위해 종래의 LED 패키지보다 더 작은 크기의 마이크로 LED들이 실장될 필요가 있다.
작은 크기의 LED들은 핸들링이 어렵기 때문에 회로 기판 상에 개별적으로 실장하는 것이 곤란하다. 이 때문에, 기판 상에 성장된 반도체층들을 이용하여 복수의 LED들을 형성하고, 이들을 픽셀 간격에 맞추어 디스플레이 회로 기판 상으로 집단으로 전사하는 방법이 연구되고 있다. 그런데, 복수의 LED들을 집단으로 전사하는 동안 일부 LED들에 불량이 발생할 경우, 이를 대체하는 것이 곤란하다. 특히, 레이저 리프트 오프와 같은 기술을 이용하여 성장 기판으로부터 LED들을 분리할 경우, 레이저에 의한 충격에 의해 LED에 크랙과 같은 결함이 발생할 수 있다. 따라서, 집단으로 전사되는 LED들을 회로 기판으로 불량 발생 없이 안전하게 전사할 수 있는 디스플레이 장치가 요구된다.
한편, 서브 픽셀들을 2차원 평면상에 배열하기 때문에, 청색, 녹색 및 적색 서브 픽셀들을 포함하는 하나의 픽셀이 점유하는 면적이 상대적으로 넓어진다. 따라서, 제한된 면적 내에 서브 픽셀들을 배열하기 위해서는 각 LED 칩의 면적을 줄여야 한다. 그러나 LED 칩의 크기 감소는 LED 칩의 실장을 어렵게 만들 수 있으며, 나아가, 발광 면적의 감소를 초래한다.
본 개시가 해결하고자 하는 과제는, 복수의 발광 소자를 회로 기판으로 안전하게 전사할 수 있는 LED 디스플레이 장치를 제공하는 것이다.
본 개시가 해결하고자 하는 또 다른 과제는, 웨이퍼에서 제조된 발광 소자들을 집단으로 쉽게 회로 기판에 전사할 수 있는 발광 소자 전사 방법을 제공하는 것이다.
본 개시가 해결하고자 하는 또 다른 과제는, 제한된 픽셀 면적 내에서 각 서브 픽셀의 면적을 증가시킬 수 있는 디스플레이용 발광 소자를 안전하게 전사하는 방법 및 디스플레이 장치를 제공하는 것이다.
본 개시의 일 실시예에 따른 디스플레이 패널은, 패드들을 갖는 회로 기판; 상기 패드들에 전기적으로 접속되어 상기 회로 기판 상에 정렬된 발광 소자들; 및 상기 회로 기판과 상기 발광 소자들 사이에 배치되어 상기 회로 기판과 상기 발광 소자들 사이의 공간을 채우는 완충 물질층을 포함하되, 상기 완충 물질층은 상기 발광 소자들의 상면 아래에 위치한다.
본 개시의 일 실시예에 따른 디스플레이 장치는, 디스플레이 패널을 포함하며, 상기 디스플레이 패널은, 패드들을 갖는 회로 기판; 상기 패드들에 전기적으로 접속되어 상기 회로 기판 상에 정렬된 발광 소자들; 및 상기 회로 기판과 상기 발광 소자들 사이에 배치되어 상기 회로 기판과 상기 발광 소자들 사이의 공간을 채우는 완충 물질층을 포함하되, 상기 완충 물질층은 상기 발광 소자들의 상면 아래에 위치한다.
도 1은 본 개시의 실시예들에 따른 디스플레이 장치들을 설명하기 위한 개략적인 사시도들이다.
도 2는 본 개시의 일 실시예에 따른 디스플레이 패널을 설명하기 위한 개략적인 평면도이다.
도 3은 도 2의 절취선 A-A를 따라 취해진 개략적인 확대 단면도이다.
도 4는 본 개시의 일 실시예에 따른 발광 소자를 설명하기 위한 개략적인 평면도이다.
도 5는 본 개시의 일 실시예에 따른 발광 소자를 설명하기 위해 도 4의 절취선 B-B를 따라 취해진 개략적인 단면도이다.
도 6은 본 개시의 일 실시예에 따른 발광 소자의 개략적인 회로도이다.
도 7은 본 개시의 또 다른 실시예에 따른 발광 소자의 개략적인 회로도이다.
도 8은 본 개시의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 개략적인 평면도이다.
도 9는 본 개시의 또 다른 실시예에 따른 발광 소자를 설명하기 위해 도 8의 절취선 C-C를 따라 취해진 개략적인 단면도이다.
도 10은 본 개시의 또 다른 실시예에 따른 발광 소자의 개략적인 회로도이다.
도 11은 본 개시의 또 다른 실시예에 따른 발광 소자의 개략적인 회로도이다.
도 12a, 도 12b, 도 12c, 도 12d 및 도 12e는 본 개시의 일 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 13a, 도 13b, 도 13c, 도 13d 및 도 13e는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 14a, 도 14b, 도 14c 및 도 14d는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 15a, 도 15b, 도 15c 및 도 15d는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 16a, 도 16b, 도 16c, 도 16d 및 도 16e는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 17a, 도 17b, 도 17c, 도 17d 및 도 17e는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 18a, 도 18b, 도 18c 및 도 18d는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
이하, 첨부한 도면들을 참조하여 본 개시의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 개시가 속하는 기술분야의 통상의 기술자에게 본 개시의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 개시는 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 개재된 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
본 개시의 일 실시예에 따른 디스플레이 패널은, 패드들을 갖는 회로 기판; 상기 패드들에 전기적으로 접속되어 상기 회로 기판 상에 정렬된 발광 소자들; 및 상기 회로 기판과 상기 발광 소자들 사이에 배치되어 상기 회로 기판과 상기 발광 소자들 사이의 공간을 채우는 완충 물질층을 포함하되, 상기 완충 물질층은 상기 발광 소자들의 상면 아래에 위치한다.
발광 소자들 사이의 공간을 완충 물질층으로 채움으로써 상기 발광 소자들을 회로 기판으로 전사할 때 발광 소자들에 가해지는 충격을 완화할 수 있다. 이에 따라, 발광 소자들을 안전하게 집단으로 회로 기판으로 전사할 수 있다.
상기 완충 물질층은 상기 발광 소자들 사이에 위치하는 상기 회로 기판의 표면을 덮을 수 있으며, 두 개의 발광 소자들 사이의 영역에 복수의 홈들을 가질 수 있다.
일 실시예에서, 각각의 발광 소자는 전극 패드들을 포함할 수 있으며, 상기 전극 패드들이 상기 패드들에 전기적으로 접속할 수 있다. 나아가, 상기 홈들은 상기 전극 패드들의 형상에 대응하는 형상을 가질 수 있다.
일 실시예에 있어서, 상기 디스플레이 패널은 상기 회로 기판 상의 패드들과 상기 발광 소자의 전극 패드들 사이에 배치된 도전성 입자들을 더 포함할 수 있으며, 상기 패드들과 상기 전극 패드들은 상기 도전성 입자들에 의해 전기적으로 연결될 수 있다.
나아가, 상기 완충 물질층은 상기 발광 소자들 사이의 영역에 서로 이격된 도전성 입자들을 더 포함할 수 있다.
한편, 상기 디스플레이 패널은 상기 발광 소자들 사이의 영역에 배치되어 발광 소자들의 측면을 통해 방출되는 광을 차단하는 광 차단 물질층을 더 포함할 수 있다.
상기 광 차단 물질층에 의해 디스플레이 패널의 명암비를 향상시킬 수 있다.
상기 광 차단 물질층은 상기 완충 물질층의 상면 일부를 덮을 수 있다.
일 실시예에 있어서, 상기 디스플레이 패널은, 상기 패드들과 전극 패드들 사이에 형성된 솔더층을 더 포함할 수 있으며, 상기 패드들과 상기 전극 패드들은 상기 솔더층에 의해 전기적으로 연결될 수 있다.
한편, 상기 발광 소자들은 서로 다른 파장의 광을 방출하는 제1 LED 적층, 제2 LED 적층, 제3 LED 적층들; 상기 제1 내지 제3 LED 적층들에 전기적으로 접속된 전극 패드들; 및 상기 전극 패드들 상에 배치된 범프 패드들을 포함할 수 있으며, 상기 범프 패드들이 상기 회로 기판 상의 패드들에 전기적으로 접속될 수 있다. 상기 복수의 홈들은 상기 범프 패드들의 형상에 대응하는 형상을 가질 수 있다.
나아가, 상기 디스플레이 패널은, 상기 회로 기판의 패드들과 상기 범프 패드들 사이에 본딩층을 더 포함할 수 있으며, 상기 본딩층은 In, Pb, AuSn, CuSn 또는 솔더를 포함할 수 있다.
상기 완충 물질층은 경화된 레진, 폴리머, BCB, 또는 SOG일 수 있다.
상기 발광 소자들은 각각 제1 LED 적층, 제2 LED 적층 및 제3 LED 적층을 포함할 수 있으며, 제1 내지 제3 LED 적층들은 서로 다른 파장의 광을 방출할 수 있다.
또한, 상기 발광 소자들은 상기 제1 내지 제3 LED 적층에서 생성된 광을 상기 제3 LED 적층을 통해 방출할 수 있다.
한편, 상기 제3 LED 적층은 성장 기판으로부터 분리된 것일 수 있다. 즉, 상기 발광 소자들은 상기 제3 LED 적층을 성장하기 위해 사용된 성장 기판을 포함하지 않을 수 있다.
일 실시예에 있어서, 상기 발광 소자들 사이의 간격은 상기 발광 소자의 폭보다 더 클 수 있다.
한편, 상기 완충 물질층은 상기 발광 소자들 사이에 위치하는 상기 회로 기판의 표면을 덮을 수 있으며, 도전성 입자들을 포함할 수 있다. 나아가, 상기 도전성 입자들은 상기 발광 소자들 사이의 영역에 비해 상기 회로 기판과 상기 발광 소자 사이의 영역에 더 조밀하게 위치할 수 있다.
본 개시의 일 실시예에 따른 디스플레이 장치는, 디스플레이 패널을 포함하며, 상기 디스플레이 패널은, 패드들을 갖는 회로 기판; 상기 패드들에 전기적으로 접속되어 상기 회로 기판 상에 정렬된 발광 소자들; 및 상기 회로 기판과 상기 발광 소자들 사이에 배치되어 상기 회로 기판과 상기 발광 소자들 사이의 공간을 채우는 완충 물질층을 포함하되, 상기 완충 물질층은 상기 발광 소자들의 상면 아래에 위치한다.
상기 완충 물질층은 상기 발광 소자들 사이에 위치하는 상기 회로 기판의 표면을 덮을 수 있으며, 두 개의 발광 소자들 사이의 영역에 복수의 홈들을 가질 수 있다.
한편, 각각의 발광 소자는 전극 패드들을 포함할 수 있으며, 상기 전극 패드들이 상기 패드들에 전기적으로 접속할 수 있다.
일 실시예에 있어서, 상기 홈들은 상기 전극 패드들의 형상에 대응할 수 있다.
또한, 상기 발광 소자들은 각각 제1 LED 적층, 제2 LED 적층 및 제3 LED 적층을 포함할 수 있으며, 상기 제1 내지 제3 LED 적층들은 서로 다른 파장의 광을 방출할 수 있고, 상기 발광 소자들은 상기 제1 내지 제3 LED 적층에서 생성된 광을 상기 제3 LED 적층을 통해 방출할 수 있다.
일 실시예에 있어서, 상기 제3 LED 적층은 성장 기판으로부터 분리된 것일 수 있다. 다른 실시예에 있어서, 상기 디스플레이 장치는 상기 제3 LED 적층 상에 배치된 성장 기판을 더 포함할 수 있다.
상기 디스플레이 장치는, 상기 발광 소자들 사이의 영역에 배치되어 상기 발광 소자들의 측면으로 방출되는 광을 차단하는 광 차단 물질층을 더 포함할 수 있다.
이하 도면을 참조하여 본 개시의 실시예들에 대해 구체적으로 설명한다.
도 1은 본 개시의 실시예들에 따른 디스플레이 장치들을 설명하기 위한 개략적인 사시도들이다.
본 개시의 발광 소자는, 특별히 한정되는 것은 아니나, 특히, 스마트 워치(1000a), VR 헤드셋(1000b)과 같은 VR 디스플레이 장치, 또는 증강 현실 안경(1000c)과 같은 AR 디스플레이 장치 내에 사용될 수 있다.
디스플레이 장치 내에는 이미지를 구현하기 위한 디스플레이 패널이 실장된다. 도 2는 본 개시의 일 실시예에 따른 디스플레이 패널(1000)을 설명하기 위한 개략적인 평면도이고, 도 3은 도 2의 절취선 A-A를 따라 취해진 단면도이다.
도 2 및 도 3을 참조하면, 디스플레이 패널은 회로 기판(1001), 발광 소자들(100) 및 완충 물질층(1005)을 포함한다.
회로 기판(1001) 또는 패널 기판은 수동 매트릭스 구동 또는 능동 매트릭스 구동을 위한 회로를 포함할 수 있다. 일 실시예에서, 회로 기판(1001)은 내부에 배선 및 저항을 포함할 수 있다. 다른 실시예에 있어서, 회로 기판(1001)은 배선, 트랜지스터들 및 커패시터들을 포함할 수 있다. 회로 기판(1001)은 또한 내부에 배치된 회로에 전기적 접속을 허용하기 위한 패드들(1003)을 상면에 가질 수 있다.
복수의 발광 소자들(100)은 회로 기판(1001) 상에 정렬된다. 발광 소자들(100)은 마이크로 단위의 크기를 갖는 소형의 발광 소자일 수 있으며, 폭(W1)은 300㎛ 이하, 나아가, 200㎛ 이하, 더 구체적으로는 100㎛ 이하일 수 있다. 발광 소자들(100)은 예를 들어, 200㎛×200㎛ 이하, 나아가, 100㎛×100㎛ 이하의 크기를 가질 수 있다. 일 실시예에 있어서, 발광 소자들(100)이 정렬된 방향에서 발광 소자들(100) 사이의 간격(L1)은 그 방향에서 발광 소자(100)의 폭(W1)보다 넓을 수 있다.
발광 소자(100)는 전극 패드들(101)을 가지며, 전극 패드들(101)이 회로 기판(1001)에 전기적으로 접속된다. 예컨대, 전극 패드들(101)은 회로 기판(1001) 상에 노출된 패드들(1003)에 본딩될 수 있다. 전극 패드들(101)은 서로 동일한 크기를 가질 수도 있으며, 서로 다른 크기를 가질 수도 있다. 전극 패드들(101)은 상대적으로 넓은 면적을 가지며, 각 전극 패드의 최대 폭은 발광 소자(100)의 최대 폭의 약 1/4 내지 약 3/4 이하일 수 있다. 한편, 각 전극 패드의 최소 폭은 발광 소자(100)의 최소 폭의 약 1/5 내지 3/4 이하일 수 있다. 전극 패드들(101) 사이의 간격은 약 3um 이상일 수 있으며, 구체적으로 5um 이상, 나아가 10um 이상일 수 있다.
각각의 발광 소자(100)는 하나의 픽셀을 구성한다. 예를 들어, 각각의 발광 소자(100)는 청색, 녹색 및 적색의 서브 픽셀들을 포함할 수 있다.
발광 소자(100)의 구체적인 구성에 대해 도 4, 도 5 및 도 6을 참조하여 설명한다. 도 4는 본 개시의 일 실시예에 따른 발광 소자(100)를 설명하기 위한 개략적인 평면도이고, 도 5는 본 개시의 일 실시예에 따른 발광 소자(100)를 설명하기 위해 도 4의 절취선 B-B를 따라 취해진 개략적인 단면도이며, 도 6은 본 개시의 일 실시예에 따른 발광 소자(100)를 설명하기 위한 개략적인 회로도이다. 설명의 편의를 위해, 도 4 및 도 5에서 전극 패드들(101a, 101b, 101c, 101d)이 위쪽에 배치된 것으로 도시 및 설명하지만, 발광 소자(100)는 도 3에 도시한 바와 같이 회로 기판(1001) 상에 플립 본딩되며, 이 경우, 전극 패드들(101a, 101b, 101c, 101d)이 아래쪽에 배치된다.
우선, 도 4 및 도 5를 참조하면, 발광 소자(100)는 제1 LED 적층(23), 제2 LED 적층(33), 제3 LED 적층(43), 제1 본딩층(30), 제2 본딩층(40), 제1 절연층(51), 전극 패드들(101a, 101b, 101c, 101d)을 포함할 수 있다.
제1 내지 제3 LED 적층들(23, 33, 43)은 각각 서로 다른 성장 기판들 상에 성장된 반도체층들을 이용하여 형성되며, 성장 기판들은 모두 제1 내지 제3 LED 적층들(23, 33, 43)로부터 제거될 수 있다. 따라서, 발광 소자(100)는 제1 내지 제3 LED 적층들(23, 33, 43)을 성장하기 위해 사용된 기판을 포함하지 않을 수 있다. 그러나 본 개시가 반드시 이에 한정되는 것은 아니며, 적어도 하나의 성장 기판이 제거되지 않고 잔류할 수도 있다.
본 개시의 실시예들에 있어서, 제1 내지 제3 LED 적층들(23, 33, 43)이 수직 방향으로 적층된다. 제1 LED 적층(23), 제2 LED 적층(33) 및 제3 LED 적층(43)은 각각 제1 도전형 반도체층(23a, 33a, 또는 43a), 제2 도전형 반도체층(23c, 33c, 또는 43c) 및 이들 사이에 개재된 활성층(23b, 33b, 43b)을 포함한다. 활성층은 특히 다중 양자우물 구조를 가질 수 있다.
제1 LED 적층(23) 아래에 제2 LED 적층(33)이 배치되고, 제2 LED 적층(33) 아래에 제3 LED 적층(43)이 배치된다. 본 명세서에서는 설명의 편의를 위해 제1 LED 적층(23) 아래에 제2 LED 적층(33)이 배치되고, 제2 LED 적층(33) 아래에 제3 LED 적층(43)이 배치된 것으로 설명하지만, 발광 소자는 플립 본딩될 수 있으며, 따라서, 이들 제1 내지 제3 LED 적층의 상하 위치가 뒤바뀔 수 있다는 것에 유의해야 한다.
제1 내지 제3 LED 적층(23, 33, 43)에서 생성된 광은 최종적으로 제3 LED 적층(43)을 통해 외부로 방출된다. 따라서, 제1 LED 적층(23)은 제2 및 제3 LED 적층들(33, 43)에 비해 장파장의 광을 방출하고, 제2 LED 적층(33)은 제3 LED 적층(43)에 비해 장파장의 광을 방출한다. 예를 들어, 제1 LED 적층(23)은 적색광을 발하는 무기 발광 다이오드일 수 있으며, 제2 LED 적층(33)은 녹색광을 발하는 무기 발광 다이오드이고, 제3 LED 적층(43)은 청색광을 발하는 무기 발광 다이오드일 수 있다. 제1 LED 적층(23)은 AlGaInP 계열의 우물층을 포함할 수 있으며, 제2 LED 적층(33)은 AlGaInP 계열 또는 AlGaInN 계열의 우물층을 포함할 수 있고, 제3 LED 적층(43)은 AlGaInN 계열의 우물층을 포함할 수 있다.
제1 LED 적층(23)은 제2 및 제3 LED 적층들(33, 43)에 비해 장파장의 광을 방출하므로, 제1 LED 적층(23)에서 생성된 광은 제2 및 제3 LED 적층들(33, 43)을 투과하여 외부로 방출될 수 있다. 또한, 제2 LED 적층(33)은 제3 LED 적층(43)에 비해 장파장의 광을 방출하므로, 제2 LED 적층(33)에서 생성된 광은 제3 LED 적층(43)을 투과하여 외부로 방출될 수 있다.
한편, 각 LED 적층(23, 33 또는 43)의 제1 도전형 반도체층(23a, 33a, 43a)은 각각 n형 반도체층이고, 제2 도전형 반도체층(23c, 33c, 43c)은 p형 반도체층일 수 있다. 또한, 본 실시예에 있어서, 제1 내지 제3 LED 적층(23, 33, 43)의 하면이 모두 제1 도전형 반도체층이고 상면이 모두 제2 도전형 반도체층인 것으로 도시하지만, 적어도 하나의 LED 적층의 순서가 뒤바뀔 수도 있다. 예를 들어, 제1 LED 적층(23)의 상면은 제1 도전형 반도체층(23a)이고, 제2 LED 적층(33) 및 제3 LED 적층(43)의 상면은 모두 제2 도전형 반도체층(33c, 43c)일 수 있다.
본 실시예에서, 제1 LED 적층(23), 제2 LED 적층(33) 및 제3 LED 적층(43)은 서로 중첩한다. 또한, 도시한 바와 같이, 제1 LED 적층(23), 제2 LED 적층(33) 및 제3 LED 적층(43)은 대체로 동일한 크기의 발광 면적을 가질 수 있다. 그러나 제1 및 제2 LED 적층들(23, 33)은 전기적 접속을 허용하기 위한 관통홀들을 가질 수 있으며, 이에 따라, 제3 LED 적층(43)에 비해 상대적으로 작은 면적을 가질 수 있다.
제1 본딩층(30)은 제1 LED 적층(23)을 제2 LED 적층(33)에 결합한다. 제1 본딩층(30)은 제1 도전형 반도체층(23a)과 제2 도전형 반도체층(33c) 사이에 배치될 수 있다. 제1 본딩층(30)은 투명 유기물층으로 형성되거나, 투명 무기물층으로 형성될 수 있다. 유기물층은 SU8, 폴리메틸메타아크릴레이트(poly(methylmethacrylate): PMMA), 폴리이미드, 파릴렌, 벤조시클로부틴(Benzocyclobutene:BCB) 등을 예로 들 수 있으며, 무기물층은 Al2O3, SiO2, SiNx 등을 예로 들 수 있다. 또한, 제1 본딩층(30)은 스핀-온-글래스(SOG)로 형성될 수도 있다.
제2 본딩층(40)은 제2 LED 적층(33)을 제3 LED 적층(43)에 결합한다. 도시한 바와 같이, 제2 본딩층(40)은 제1 도전형 반도체층(33a)과 제2 도전형 반도체층(43c) 사이에 배치될 수 있다. 제2 본딩층(40)은 앞서 제1 본딩층(30)에 대해 설명한 재료와 동일한 재료로 형성될 수 있으며, 중복을 피하기 위해 상세한 설명은 생략한다.
제1 절연층(51)이 제1 LED 적층(23)을 덮을 수 있다. 제1 절연층(51)은 또한 제1 내지 제3 LED 적층들(23, 33, 43)의 측면들을 덮을 수도 있다. 제1 절연층(51)은 실리콘 산화막 또는 실리콘 질화막으로 형성될 수 있다.
전극 패드들(101: 101a, 101b, 101c, 101d)은 제1 절연층(51) 상에 배치될 수 있다. 전극 패드들(101a, 101b, 101c, 101d)은 제1 절연층(51)을 통해 제1 내지 제3 LED 적층들(23, 33, 43)에 전기적으로 접속될 수 있다.
도 6을 참조하면, 전극 패드들(101a, 101b, 101c)은 각각 제1 내지 제3 LED 적층들(23, 33, 43)의 애노드에 전기적으로 접속하며, 전극 패드(101d)는 제1 내지 제3 LED 적층들(23, 33, 43)의 캐소드들에 공통 접속될 수 있다. 전극 패드들(101a, 101b, 101c)과 제1 내지 제3 LED 적층들(23, 33, 43)의 애노드를 전기적으로 접속하기 위해 제1 내지 제3 LED 적층들(23, 33, 43)의 제2 도전형 반도체층들(23c, 33c, 43c) 중 적어도 하나 상에 투명 전극이 형성될 수 있다.
한편, 본 실시예에서, 전극 패드(101d)가 제1 내지 제3 LED 적층들(23, 33, 43)의 캐소드들에 공통 접속된 것을 설명하지만, 도 7에 도시한 바와 같이, 전극 패드(101d)가 제1 내지 제3 LEdD 적층들(23, 33, 43)의 애노드들에 공통 접속될 수도 있다. 이 경우, 전극 패드들(101a, 101b, 10c)은 제1 내지 제3 LED 적층들(23, 33, 43)의 캐소드들에 각각 접속될 수 있다.
본 실시예에 있어서, 전극 패드들(101a, 101b, 101c, 101d)에 의해 제1 내지 제3 LED 적층들(23, 33, 43)이 개별적으로 구동될 수 있다. 전극 패드들(101a, 101b, 101c, 101d)은 안정한 전기적 접속을 위해 상대적으로 넓은 면적을 갖도록 형성될 수 있다. 예를 들어, 전극 패드들(101a, 101b, 101c, 101d)은 각각 발광 소자(100) 상면의 1/4보다 넓은 면적을 가질 수 있다.
다시, 도 2 및 도 3을 참조하면, 완충 물질층(1005)은 발광 소자들(100)과 회로 기판(1001) 사이의 영역을 채운다. 또한, 완충 물질층(1005)은 발광 소자들(100) 사이의 회로 기판(1001)을 덮을 수 있다. 완충 물질층(1005)은 전극 패드들(101)의 측면을 덮으며 발광 소자(100)의 하면에 접할 수 있다. 완충 물질층(1005)의 상면은 대체로 발광 소자들(100)의 상면 아래에 위치한다. 완충 물질층(1005)의 일부는 부분적으로 발광 소자(100)의 측면을 덮을 수도 있다. 그러나 발광 소자의 측면을 덮는 완충 물질층(1005)의 일부도 발광 소자들(100)의 상면 높이를 초과하지 않는다.
도 3에 도시한 바와 같이, 완충 물질층(1005)은 매트릭스 내에 분산된 도전성 입자들(1005a, 1005b)을 포함할 수 있다. 도전성 입자들(1005a)은 패드들(1003) 사이의 영역에 서로 떨어져 배치되며, 따라서 전기적 경로를 제공하지 않는다. 도전성 입자들(1005a)은 대체로 구형 형상을 가질 수 있으나, 반드시 이에 한정되는 것은 아니다.
한편, 도전성 입자들(1005b)은 패드들(1003)과 전극 패드들(101) 사이에 배치되어 이들을 전기적으로 접속한다. 도전성 입자들(1005b)은 압력에 의해 눌려서 수직 방향의 두께에 비해 수평 방향의 폭이 더 큰 형상을 가질 수 있다. 도전성 입자들(1005b)은 서로 이격될 수도 있으나, 서로 접촉할 수도 있다.
도전성 입자들(1005a, 1005b)은 예를 들어 Ni, Au, Sn 등의 금속 입자, 나노 튜브나 나노 와이어 등의 도전성 나노 입자 등일 수 있다. 또한, 도전성 입자들(1005a, 1005b)은 폴리머 입자 상에 금속층이 코팅된 도전 입자일 수도 있다.
폴리머를 금속층으로 코팅한 도전 입자는 압력에 의해 형상이 쉽게 변형되므로, 패드들(1003)과 전극 패드들(101) 사이에서 이들을 전기적으로 연결하기에 적합하다.
완충 물질층(1005)은 또한 광에 투명한 매트릭스를 포함할 수 있으나, 본 개시가 이에 한정되는 것은 아니다. 예를 들어, 완충 물질층(1005)은 광을 반사하거나 광을 흡수할 수 있으며, 이를 위해 광 반사 특성을 갖는 매트릭스 또는 광 흡수 특성을 갖는 매트릭스가 사용될 수도 있다. 또는, 카본 블랙과 같은 광 흡수 물질이나, 실리카와 같은 광 산란 물질이 매트릭스 내에 함유될 수도 있다.
일 실시예에 있어서, 완충 물질층(1005)은 발광 소자들(100) 사이의 영역에 오목하게 형성된 홈들(101g)을 가질 수 있다. 홈들(101g)은 전극 패드들(101)의 형상에 대응한다. 특히, 홈들(101g)은 전극 패드들(101)에 의해 형성된 것일 수 있다. 예를 들어, 발광 소자(100)가 도 4에 도시한 바와 같이 4개의 전극 패드들(101a, 101b, 101c, 101d)을 갖는 경우, 2개의 발광 소자들(100) 사이에 적어도 4개의 홈들(101g)이 형성될 수 있다. 그러나 본 개시가 이에 한정되는 것은 아니며, 발광 소자들(100) 사이의 영역에서 완충 물질층(1005)은 제거될 수도 있다.
한편, 일 실시예에 있어서, 상기 완충 물질층(1005)은 예를 들어 이방성 도전 필름(anisotropic conductive film; ACF)으로 형성될 수 있다. 도전성 입자들(1005a)은 완충 물질층(1005)의 전 영역에 걸쳐 대체로 균일하게 분포될 수 있다. 도전성 입자들(1005b)은 서로 가까이 배치되어 도전성 입자들(1005a)에 비해 더 조밀하게 배치된다.
다른 실시예에 있어서, 상기 완충 물질층(1005)은 이방성 도전 페이스트(anisotropic conductive paste; ACP)를 이용하여 형성될 수 있으며, 나아가, 상기 완충 물질층(1005)은 솔더 입자들을 포함하는 자기 조립 이방성 도전 페이스트(self assembly anisotropic conductive paste; SAP)를 이용하여 형성될 수 있다. 따라서, 도전성 입자들(1005a)이 패드들(1003)과 전극 패드들(101) 사이에 응집될 수 있으며, 발광 소자들(100) 사이의 영역에는 도전성 입자들(1005a)은 극히 드물게 잔류하거나 잔류하지 않을 수 있다.
또 다른 실시예에서, 완충 물질층(1005)은 도전성 입자들(1005a, 1005b)을 포함하지 않는 비도전성 물질층일 수 있으며, 패드들(1003)과 전극 패드들(101)은 In, Pb, AuSn, CuSn 또는 솔더를 이용하여 본딩될 수 있다. 예컨대, 완충 물질층(1005)은 스핀-온-글래스(SOG) 또는 BCB 등으로 형성될 수 있다.
한편, 도 2 및 도 3에 도시하지는 않았지만, 발광 소자들(100) 사이의 영역에 광 차단 물질층이 배치될 수 있다. 광 차단 물질층은 광을 흡수하거나 반사하며, 따라서 발광 소자들 사이의 광 간섭이 발생하는 것을 방지하여 디스플레이의 명암비를 향상시킨다. 광 차단 물질층은 발광 소자들(100)을 덮을 수도 있다. 광 차단 물질층에 대해서는 디스플레이 패널 제조 방법을 통해 뒤에서 상세하게 설명된다.
도 8은 본 개시의 또 다른 실시예에 따른 발광 소자(100a)를 설명하기 위한 개략적인 평면도이고, 도 9는 도 8의 절취선 C-C를 따라 취해진 개략적인 단면도이다.
도 8 및 도 9를 참조하면, 본 실시예에 따른 발광 소자(100a)는 범프 패드들(103a, 103b, 103c, 103d)이 전극 패드들(101a, 101b, 101c, 101d) 상에 각각 추가된 것에 차이가 있다. 나아가, 제2 절연층(61)이 제1 절연층(51) 및 전극 패드들(101a, 101b, 101c, 101d)을 덮을 수 있다. 제2 절연층(61)은 실리콘 산화막 또는 실리콘 질화막으로 형성될 수 있다.
제2 절연층(61)은 전극 패드들(101a, 101b, 101c, 101d)을 노출시키는 개구부들을 가질 수 있으며, 범프 패드들(103a, 103b, 103c, 103d) 노출된 전극 패드들 상에 배치될 수 있다.
범프 패드들(103a, 103b, 103c, 103d)은 제2 절연층(61)의 개구부들 내에 배치될 수 있으며, 범프 패드들의 상면은 평탄한 면일 수 있다. 일 예로, 범프 패드들(103a, 103b, 103c, 103d)은 Au/In으로 형성될 수 있으며, 예컨대 Au는 3um의 두께로 형성되고, In은 약 1um의 두께로 형성될 수 있다. 발광 소자(100)는 In을 이용하여 회로 기판(1001) 상의 패드들(1003)에 본딩될 수 있다. 본 실시예에 있어서, In을 이용하여 범프 패드들을 본딩하는 것에 대해 설명하지만, In에 한정되는 것은 아니며, Pb 또는 AuSn을 이용하여 본딩될 수도 있다.
본 실시예에 있어서, 범프 패드들(103a, 103b, 103c, 103d)의 상면이 평탄한 것으로 설명 및 도시하지만, 본 개시가 이에 한정되는 것은 아니다. 예컨대, 범프 패드들(103a, 103b, 103c, 103d)의 상면이 불규칙한 면일 수도 있고, 범프 패드들의 일부가 제2 절연층(61) 상에 위치할 수도 있다.
도 10에 도시한 바와 같이, 제1 LED 적층(23)은 범프 패드들(103a, 103d)에 전기적으로 연결되고, 제2 LED 적층(33)은 범프 패드들(103b, 103d)에 전기적으로 연결되며, 제3 LED 적층(43)은 범프 패드들(103c, 103d)에 전기적으로 연결될 수 있다. 즉, 제1 LED 적층(23), 제2 LED 적층(33) 및 제3 LED 적층(43)의 캐소드들이 범프 패드(103d)에 전기적으로 공통 접속되고, 애노드들이 범프 패드들(103a, 103b, 103c)에 각각 전기적으로 접속한다. 따라서, 제1 내지 제3 LED 적층들(23, 33, 43)은 독립적으로 구동될 수 있다.
도 11에 도시한 바와 같이, 제1 LED 적층(23), 제2 LED 적층(33) 및 제3 LED 적층(43)의 애노드들이 범프 패드(103d)에 전기적으로 공통 접속되고, 캐소드들이 범프 패드들(103a, 103b, 103c)에 각각 전기적으로 접속할 수도 있다.
이하에서 디스플레이 패널 제조 방법에 대해 설명되며, 이를 통해 디스플레이 패널(1000)의 구조에 대해 더 상세하게 이해될 것이다.
발광 소자(100)가 회로 기판(1001)으로 전사될 경우, 범프 패드들(103a, 103b, 103c, 103d)이 회로 기판(1001)의 패드들(1003)에 접속될 수 있다.
도 12a, 도 12b, 도 12c, 도 12d 및 도 12e는 본 개시의 일 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 12a를 참조하면, 기판(41) 상에 복수의 발광 소자들(100)이 형성된다. 발광 소자들(100)은 전극 패드들(101)을 포함한다. 발광 소자(100)는 도 4 및 도 5를 참조하여 설명한 바와 동일하므로, 중복을 피하기 위해 상세한 설명은 생략한다.
기판(41)은 제3 LED 적층(43)의 반도체층들(43a, 43b, 43c)을 성장시키기 위한 성장 기판일 수 있다. 예를 들어, 기판(41)은 질화갈륨 기판, SiC 기판, 사파이어 기판 또는 패터닝된 사파이어 기판일 수 있다.
제2 LED 적층(33)이 제2 본딩층(40)을 통해 제3 LED 적층(43)에 본딩될 수 있으며, 제1 LED 적층(23)이 제1 본딩층(30)을 통해 제2 LED 적층(33)에 본딩될 수 있다.
일 실시예에 있어서, 제1 내지 제3 LED 적층들(23, 33, 43)이 본딩된 후, 복수의 발광 소자 영역으로 분리되도록 패터닝 공정이 수행될 수 있다. 이어서, 제1 절연층(51) 및 전극 패드들(101)이 형성될 수 있다. 또한, 상세하게 도시 및 설명하지는 않지만, 전극 패드들(101)과 제1 내지 제3 LED 적층들(23, 33, 43)을 전기적으로 연결하기 위해 제1 및 제2 LED 적층들(23, 33)에 관통홀들이 형성될 수 있으며, 제3 LED 적층(43)의 제2 도전형 반도체층(43c) 및 활성층(43b)이 부분적으로 패터닝될 수 있다. 또한, 앞서 설명한 바와 같이, 제1 내지 제3 LED 적층(23, 33, 43)의 제2 도전형 반도체층들(23c, 33c, 43c) 상에 투명 전극이 형성될 수도 있다.
도 12b를 참조하면, 각 픽셀 영역에 패드들(1003)이 형성된 회로 기판(1001) 상에 이방성 도전 필름(1005)이 부착된다. 이방성 도전 필름(1005)은 매트릭스 내에 도전성 입자들(1005a, 1005b)을 포함한다. 이방성 도전 필름(1005)은 회로 기판(1001) 상의 패드들(1003)을 덮는다. 이방성 도전 필름(1005) 내의 도전성 입자들(1005b)은 패드들(1003) 상에 위치한다.
여기서 도전성 입자들(1005a)은 패드들(1003)의 상부 영역 바깥에 위치하는 도전성 입자를 나타내고, 도전성 입자들(1005b)은 패드들(1003) 상부에 위치하는 도전성 입자를 나타낸다. 도전성 입자들(1005a, 1005b)은 서로 동일한 구조 및 형상을 갖는다. 한편, 패드들(1003) 상부에 위치하는 이방성 도전 필름(1005)의 두께는 전극 패드들(101)의 두께와 유사하거나 그보다 더 크다.
도 12c를 참조하면, 기판(41) 상에 형성된 발광 소자들(100)이 이방성 도전 필름(1005)을 통해 패드들(1003)에 본딩된다. 이때, 기판(41)의 발광 소자들(100)이 픽셀 영역들보다 더 조밀하게 배치될 수 있다. 따라서, 도시된 바와 같이, 기판(41) 상의 발광소자들(100) 중 일부는 픽셀 영역들 사이에 위치할 수 있으며, 패드들(1003)에 본딩되지 않는다.
한편, 패드(1003)와 전극 패드(101)는 이방성 도전 필름(1005) 내의 도전성 입자들(1005b)에 의해 전기적으로 연결된다. 기판(41)은 회로 기판(1001)을 향해 가압될 수 있으며, 따라서, 도전성 입자들(1005b)은 압력에 의해 형상이 변형될 수 있다. 또한, 발광 소자들(100)을 이방성 도전 필름(1005)에 접착하는 동안 열이 가해질 수 있다. 예를 들어, 이방성 도전 필름(1005)의 매트릭스가 열에 의해 경화될 수 있다.
이방성 도전 필름(1005)의 일부는 발광 소자들(100) 사이의 간극을 적어도 부분적으로 채울 수 있으며, 따라서, 발광 소자들(100)의 측면을 적어도 부분적으로 덮을 수 있다.
발광 소자들(100)이 이방성 도전 필름(1005)에 부착된 후, 패드들(1003)에 접속된 발광 소자들(100)에 기판(41)을 통해 레이저가 조사되어 발광 소자들(100)이 기판(41)으로부터 분리된다.
도 12d를 참조하면, 기판(41)을 이방성 도전 필름(1005)으로부터 분리함으로써 패드들(1003)에 접속된 발광 소자들(100)이 회로 기판(1001) 상에 전사되고, 레이저가 조사되지 않은 발광 소자들(100)은 이방성 도전 필름(1005)으로부터 분리된다. 이에 따라, 회로 기판(1001)의 픽셀 영역들에 발광 소자들(100)이 본딩된 디스플레이 패널(1000)이 제조된다.
한편, 레이저가 조사되지 않은 발광 소자들(100)이 이방성 도전 필름(1005)으로부터 분리됨에 따라, 이방성 도전 필름(1005) 표면에 전극 패드들(101)에 의한 홈들(101g)이 형성될 수 있다.
추가적으로, 도 12e를 참조하면, 발광 소자들(100) 사이의 영역을 채우는 광 차단 물질층(1007)이 더 형성될 수 있다. 광 차단 물질층(1007)은 발광 소자들(100)의 측면을 덮으며, 나아가, 발광 소자들(100)의 상면을 덮을 수도 있다.
광 차단 물질층(1007)은 회로 기판(1001)을 덮는 완충 물질층(1005)을 덮을 수 있으며, 홈들(101g)을 채울 수 있다.
광 차단 물질층(1007)은 발광 소자들(100)의 측면을 통해 방출된 광을 흡수하거나 반사하여 발광 소자들 사이의 광 간섭을 방지한다. 이를 위해, 광 차단 물질층(1007)은 예를 들어 흑색 에폭시나 흑색 실리콘과 같은 블랙 몰딩제로 형성될 수 있다. 다른 실시예에 있어서, 광 차단 물질층(1007)은 백색 에폭시나 백색 실리콘과 같은 광 반사 물질로 형성될 수도 있다.
본 실시예에 있어서, 광 차단 물질층(1007)이 발광 소자들(100)의 상면을 덮는 것으로 도시하지만, 광 차단 물질층(1007)은 발광 소자들(100) 사이의 영역을 채우되 발광 소자들(100)의 상면을 노출시키도록 형성될 수 있다. 이때, 광 차단 물질층(1007)의 높이는 발광 소자들(100)의 상면의 높이와 일치할 수 있다.
본 실시예에 따르면, 이방성 도전 필름(1005)을 이용함으로써 레이저 리프트 오프를 위해 레이저를 조사하는 동안 발광 소자들(100)에 가해지는 충격이 이방성 도전 필름(1005)에 의해 완화될 수 있다. 즉, 이방성 도전 필름(1005)이 발광 소자들(100)에 가해지는 충격을 완화하는 완충 물질층으로 사용되며, 따라서, 발광 소자들(100)을 전사하는 동안 소자 불량이 발생하는 것을 방지할 수 있다.
본 실시예에 있어서, 이방성 도전 필름(1005)이 회로 기판(1001) 측에 부착되는 것을 도시 및 설명하지만, 이방성 도전 필름(1005)은 발광 소자들(100)을 덮도록 기판(41) 상에 부착될 수도 있다.
또한, 본 실시예에 있어서, 이방성 도전 필름(1005)이 회로 기판(1001) 측에 부착되는 것으로 설명하지만, 이방성 도전 페이스트가 사용될 수도 있다.
도 13a, 도 13b, 도 13c, 도 13d 및 도 13e는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 13a를 참조하면, 도 12a를 참조하여 설명한 바와 같이, 기판(41) 상에 복수의 발광 소자들(100)이 형성된다.
도 13b를 참조하면, 각 픽셀 영역에 패드들(1003)이 형성된 회로 기판(1001) 상에 자기 조립 이방성 도전 페이스트(SAP, 2005)가 형성된다. SAP(2005)는 에폭시와 같은 레진 내에 도전성 입자들(2005a)이 분산된 구조를 갖는다. SAP(2005)는 예를 들어 스크린 프린팅 기술을 이용하여 회로 기판(1001) 상에 형성될 수 있다.
도전성 입자들(2005a)은 예를 들어 솔더 입자들일 수 있다. 구체적으로, 솔더 입자는 Sn을 함유하며, Au, Ag, Bi, Cu, In에서 선택되는 적어도 하나를 함유할 수 있다. 솔더 입자의 녹는 점은 레진의 경화 온도보다 낮을 수 있다.
도 13c를 참조하면, SAP(2005) 상에 발광 소자들(100)이 형성된 기판(41)을 올려 놓는다. 기판(41)에 추가의 압력을 가할 필요는 없다. 이어서, SAP(2005)에 열이 가해진다. 열은 오븐이 핫 플레이트를 이용하여 가해질 수 있으며, 스폿 히팅을 이용하여 국부적으로 가해질 수도 있다. SAP(2005)에 열이 가해짐에 따라, 패드들(1003)과 전극 패드들(101)에 도전성 입자들(2005a)이 응집되어 응집된 도전성 입자층(2005c)이 형성된다. 도전성 입자들(2005a)이 응집되는 온도는 레진의 경화 온도보다 낮을 수 있으며, 따라서, 레진이 경화되기 전에 도전성 입자들이 응집된다.
한편, SAP(2005)의 일부는 발광 소자들(100) 사이의 간극을 적어도 부분적으로 채울 수 있으며, 따라서, 발광 소자들(100)의 측면을 적어도 부분적으로 덮을 수 있다.
도전성 입자들(2005a)이 응집됨에 따라 패드들(1003)과 전극 패드들(101)이 전기적으로 접속된다. 한편, 발광 소자들(100) 사이의 영역에 도전성 입자들(2005a)이 잔류할 수도 있으나, 많은 수의 도전성 입자들(2005a)이 패드들(1003) 상에 응집됨에 따라, 밀도가 희박해진다.
이어서, 레진을 경화함으로써 발광 소자들(100)이 SAP(2005)에 부착된다. 한편, 패드들(1003)과 전극 패드들(101) 사이에 응집된 도전성 입자층(2005c)은 입자 형상을 유지할 수도 있으나, 도전성 입자들(2005a)의 녹는점보다 높은 온도를 유지함으로써 입자들의 형상이 사라지고 하나의 층으로 변할 수 있다.
도 13d를 참조하면, 그 후 선택적으로 레이저를 조사하는 레이저 리프트 오프 기술을 이용하여 패드들(1003)에 접속된 발광 소자들(100)을 기판(41)으로부터 분리함으로써 발광 소자들(100)이 회로 기판(1001)에 전사된다.
한편, 패드들(1003)에 접속되지 않은 발광 소자들(100)은 기판(41)과 함께 SAP(2005)로부터 분리되며, 이에 따라, SAP(2005)의 표면에 홈들(101g)이 형성될 수 있다.
추가적으로, 도 13e를 참조하면, 도 12e를 참조하여 설명한 바와 같이, 광 차단 물질층(1007)이 발광 소자들(100) 사이의 영역을 채울 수 있다. 광 차단 물질층(1007)의 상면 높이는 발광 소자들(100)의 상면 높이와 동일할 수 있다. 다른 실시예에 있어서, 광 차단 물질층(1007)은 발광 소자들(100)의 상면을 덮을 수도 있다.
본 실시예에 따르면, 자기 조립 이방성 도전 페이스트(2005)를 이용함으로써 패드들(1003)과 전극 패드들(101)을 안정적으로 전기적으로 연결할 수 있으며, 전기적 단락이 발생하는 것을 방지할 수 있다. 또한, SAP(2005)를 이용하여 충격을 완화할 수 있으므로, 레이저 리프트 오프에 의한 충격에 의해 발광 소자들(100)에 크랙과 같은 결함이 발생되는 것을 방지할 수 있어 발광 소자들(100)을 안전하게 집단으로 회로 기판(1001) 상에 전사할 수 있다.
도 14a, 도 14b, 도 14c 및 도 14d는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 14a를 참조하면, 도 12a를 참조하여 설명한 바와 같이, 기판(41) 상에 복수의 발광 소자들(100)이 형성된다.
도 14b를 참조하면, 패드들(1003)을 갖는 회로 기판(1001) 상에 절연 물질층(3005)이 형성된다. 절연 물질층(3005)은 에폭시, 폴리머, 스핀-온-글래스(SOG), BCB 등으로 형성될 수 있다. 절연 물질층(3005)은 패드들(1003)을 노출시키도록 형성된다. 예를 들어, 사진 및 식각 기술을 이용하여 절연 물질층(3005)이 패터닝될 수 있다.
도 14c를 참조하면, 회로 기판(1001) 상에 발광 소자들(100)이 형성된 기판(41)이 배치된다. 패드들(1003)과 전극 패드들(101)은 본딩층(3007)에 의해 서로 본딩될 수 있다. 본딩층(3007)은 예를 들어, AuIn, AuSn, CuSn, Au, Ni 등으로 형성될 수 있다.
본딩층(3007)은 패드들(1003) 상에 또는 전극 패드들(101) 상에 본딩 물질을 형성하고, 패드들과 전극 패드들을 서로 접합함으로써 형성될 수 있다.
절연 물질층(3005)은 패드들(1003)과 전극 패드들(101)이 본딩된 후, 경화될 수 있다. 절연 물질층(3005)의 일부는 발광 소자들(100) 사이의 간극을 적어도 부분적으로 채울 수 있다.
도 14d를 참조하면, 선택적 레이저 리프트 오프 기술을 이용하여 발광 소자들(100)이 기판(41)으로부터 분리되어 회로 기판(1001) 상으로 전사될 수 있다.
일부 발광 소자들(100)이 절연 물질층(3005)으로부터 분리되기 때문에, 절연 물질층(3005)의 표면에 홈들(101g)이 형성될 수 있다.
도시하지는 않았지만, 도 12e 또는 도 13e에 도시한 바와 같이, 광 차단 물질층(1007)이 발광 소자들(100) 사이의 영역을 채울 수 있다.
본 실시예에 따르면, 레이저를 조사하는 동안 발광 소자들(100)에 가해지는 충격이 절연 물질층(3005)에 의해 완화될 수 있으며, 따라서, 발광 소자들(100)에 크랙과 같은 결함이 발생하는 것을 방지할 수 있다.
도 15a, 도 15b, 도 15c 및 도 15d는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 15a를 참조하며, 도 12a를 참조하여 설명한 바와 같이, 기판(41) 상에 복수의 발광 소자들(100)이 형성된다.
도 15b를 참조하면, 픽셀 영역들에 패드들(1003)이 형성된 회로 기판(1001) 상에 발광 소자들(100)이 형성된 기판(41)이 배치된다. 발광 소자들(100)의 전극 패드들(101)은 본딩층(3007)에 의해 패드들(1003)에 본딩될 수 있다. 본딩층(3007)은 예를 들어, AuIn, AuSn, CuSn, Au, Ni 등으로 형성될 수 있다. 본딩층(3007)은 패드들(1003) 상에 또는 전극 패드들(101) 상에 본딩 물질을 형성하고, 패드들과 전극 패드들을 서로 접합함으로써 형성될 수 있다.
15c를 참조하면, 기판(41)과 회로 기판(1001) 사이의 영역을 절연 물질층(4005)로 채운다. 절연 물질층(4005)은 에폭시, 폴리머, BCB 등으로 형성될 수 있다. 절연 물질층(4005)은 발광 소자들(100)의 하면에 접할 수 있으며, 패드들(1003) 및 전극 패드들(101)의 측면을 덮을 수 있다. 나아가, 절연 물질층(4005)의 일부는 발광 소자들(100) 사이의 간극을 적어도 부분적으로 채울 수 있다. 이어서, 절연 물질층(4005)은 경화될 수 있다.
도 15d를 참조하면, 선택적 레이저 리프트 오프 기술을 이용하여 발광 소자들(100)이 기판(41)으로부터 분리되어 회로 기판(1001) 상으로 전사될 수 있다.
일부 발광 소자들(100)이 절연 물질층(4005)으로부터 분리되기 때문에, 절연 물질층(4005)의 표면에 홈들(101g)이 형성될 수 있다.
도시하지는 않았지만, 도 12e 또는 도 13e에 도시한 바와 같이, 광 차단 물질층(1007)이 발광 소자들(100) 사이의 영역을 채울 수 있다.
본 실시예에 따르면, 레이저를 조사하는 동안 발광 소자들(100)에 가해지는 충격이 절연 물질층(4005)에 의해 완화될 수 있으며, 따라서, 발광 소자들(100)에 크랙과 같은 결함이 발생하는 것을 방지할 수 있다.
도 16a, 도 16b, 도 16c, 도 16d 및 도 16e는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 16a를 참조하면, 도 12a를 참조하여 설명한 바와 같이, 기판(41) 상에 복수의 발광 소자들(100)이 형성된다.
도 16b를 참조하면, 도 14b를 참조하여 설명한 바와 같이, 패드들(1003)을 갖는 회로 기판(1001) 상에 절연 물질층(3005)이 형성된다. 절연 물질층(3005)은 에폭시, 폴리머, 스핀-온-글래스(SOG), BCB 등으로 형성될 수 있다. 다만, 본 실시예에 있어서, 절연 물질층(3005)은 패드들(1003) 뿐만 아니라 회로 기판(1001)의 일부를 노출시키도록 형성될 수 있다. 특히, 패드들(1003) 사이의 영역에서 회로 기판(1001)이 노출되도록 절연 물질층(3005)이 패터닝될 수 있으며, 이에 따라, 개구부(3005a)가 형성될 수 있다. 예를 들어, 사진 및 식각 기술을 이용하여 절연 물질층(3005)이 패터닝될 수 있다.
도 16c를 참조하면, 회로 기판(1001) 상에 발광 소자들(100)이 형성된 기판(41)이 배치된다. 패드들(1003)과 전극 패드들(101)은 본딩층(3007)에 의해 서로 본딩될 수 있다. 본딩층(3007)은 예를 들어, AuIn, AuSn, CuSn, Au, Ni 등으로 형성될 수 있다.
본딩층(3007)은 패드들(1003) 상에 또는 전극 패드들(101) 상에 본딩 물질을 형성하고, 패드들과 전극 패드들을 서로 접합함으로써 형성될 수 있다.
절연 물질층(3005)은 패드들(1003)과 전극 패드들(101)이 본딩된 후, 경화될 수 있다. 절연 물질층(3005)의 일부는 발광 소자들(100)의 측면을 적어도 부분적으로 덮을 수 있다.
한편, 회로 기판(1001)에 본딩되는 발광 소자들(100) 사이에 위치하는 발광 소자는 회로 기판(1001) 상의 절연 물질층(3005)의 개구부(3005a) 상에 위치한다.
도 16d를 참조하면, 선택적 레이저 리프트 오프 기술을 이용하여 발광 소자들(100)이 기판(41)으로부터 분리되어 회로 기판(1001) 상으로 전사될 수 있다.
한편, 일부 발광 소자들(100)은 기판(41)과 함께 회로 기판(1001)으로부터 제거된다. 여기서, 기판(41)과 함께 제거되는 발광 소자들(100)은 절연 물질층(3005)의 개구부(3005a) 상부에 배치되므로, 절연 물질층(3005)에 앞의 실시예들과 같은 홈들(101g)은 형성되지 않는다.
도 16e를 참조하면, 도 12e 또는 도 13e를 참조하여 설명한 바와 같이, 광 차단 물질층(1007)이 발광 소자들(100) 사이의 영역을 채울 수 있다. 광 차단 물질층(1007)은 절연 물질층(3005)의 상면 일부를 덮을 수도 있다. 또한, 앞서 설명한 바와 같이, 광 차단 물질층(1007)은 발광 소자들(100)의 상면을 덮을 수도 있다.
본 실시예에 따르면, 레이저를 조사하는 동안 발광 소자들(100)에 가해지는 충격이 절연 물질층(3005)에 의해 완화될 수 있으며, 따라서, 발광 소자들(100)에 크랙과 같은 결함이 발생하는 것을 방지할 수 있다.
도 17a, 도 17b, 도 17c, 도 17d 및 도 17e는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
도 17a, 도 17b, 도 17c, 도 17d 및 도 17e를 참조하면, 본 실시예에 따른 디스플레이 패널 제조 방법은 도 12a, 도 12b, 도 12c, 도 12d 및 도 12e를 참조하여 설명한 디스플레이 패널 제조 방법과 대체로 유사하나, 발광 소자들(100)을 본딩하기 전에 이방성 도전 필름(1005) 또는 이방성 도전 페이스트가 패터닝되는 것에 차이가 있다. 이하에서는 본 실시예의 제조 방법과 관련하여, 설명의 중복을 피하기 위해 앞의 실시예와 다른 사항에 대해 상세하게 설명한다.
도 17b에 도시한 바와 같이, 이방성 도전 필름(1005) 또는 이방성 도전 페이스트는 패드들(1003) 사이에 회로 기판(1001)의 표면을 노출하는 개구부(1005c)를 갖도록 패터닝될 수 있다. 특히, 이방성 도전 페이스트를 사용할 경우, 스크린 프린팅 기술 등을 이용하여 패터닝될 수 있다. 다른 실시예에 있어서, 이방성 도전 필름(1005) 또는 이방성 도전 페이스트를 감광성 폴리머 등으로 형성하여 사진 및 식각 기술을 이용하여 패터닝할 수도 있다.
도 17c에 도시한 바와 같이, 이방성 도전 필름(1005) 또는 이방성 도전 페이스트는 발광 소자(100)의 폭보다 넓은 폭을 갖도록 패터닝될 수 있으며, 따라서, 발광 소자(100)의 하면은 이방성 도전 필름(1005) 또는 이방성 도전 페이스트에 모두 부착될 수 있다. 나아가, 발광 소자(100)의 측면은 부분적으로 이방성 도전 필름(1005) 또는 이방성 도전 페이스트로 덮일 수 있다.
발광 소자(100)의 하면이 모두 이방성 도전 필름(1005) 또는 이방성 도전 페이스트에 접촉하므로, 발광 소자들(100)에 레이저를 조사할 때, 이방성 도전 필름(1005) 또는 이방성 도전 페이스트에 의해 발광 소자들(100)에 인가되는 충격을 완화할 수 있다.
도 17d를 참조하면, 발광 소자들(100)이 회로 기판(1001) 상으로 전사되며, 발광 소자들(100) 사이의 영역에서 회로 기판(1001)이 노출될 수 있다. 따라서, 앞의 실시예와 달리 홈들(101g)은 형성되지 않는다.
추가적으로, 도 17e를 참조하면, 발광 소자들(100) 사이의 영역은 광 차단 물질층(1007)으로 채워질 수 있다. 본 실시예에 있어서, 광 차단 물질층(1007)은 회로 기판(1001)의 표면에 접할 수 있다. 나아가, 광 차단 물질층(1007)은 이방성 도전 필름(1005) 또는 이방성 도전 페이스트의 상면을 부분적으로 덮을 수 있다. 또한, 도시하지는 않았지만, 광 차단 물질층(1007)은 도 12e를 참조하여 설명한 바와 같이, 발광 소자들(100)의 상면을 덮을 수도 있다.
도 18a, 도 18b, 도 18c 및 도 18d는 본 개시의 또 다른 실시예에 따른 디스플레이 패널을 제조하는 방법을 설명하기 위한 개략적인 단면도들이다.
앞서 설명한 실시예들은 기판(41) 상에 위치하는 발광 소자들(100)을 레이저 리프트 오프 기술을 이용하여 선택적으로 회로 기판(1001) 상으로 전사하여 디스플레이 패널을 제조하는 것에 대한 것이다. 여기서 기판(41)은 제3 LED 적층(43)을 성장시키기 위해 사용된 성장 기판, 예컨대 사파이어 기판일 수 있다.
그러나 본 개시는 레이저 리프트 오프 기술을 이용하여 발광 소자들(100)을 전사하는 것에 한정되지 않는다. 즉, 개별적인 발광 소자 칩들을 미리 패드들(1003)의 간격에 맞춰 재배열한 후, 임시 테이프를 이용하여 회로 기판(1001)으로 발광 소자들을 전사할 수도 있다. 도 18a, 도 18b, 도 18c 및 도 18d는 미리 재배열된 발광 소자 칩들을 테이프를 이용하여 회로 기판(1001)으로 전사하는 방법을 보여준다.
우선, 도 18a를 참조하면, 기판(41) 상에 발광 소자(100)가 형성된 발광 소자 칩들이 테이프(121) 상에 정렬되어 준비된다. 발광 소자 칩들은 회로 기판(1001)의 패드들(1003)의 간격에 대응하도록 정렬될 수 있다. 테이프(121)는 임시 기판(도시하지 않음) 상에 제공될 수도 있다. 발광 소자 칩들은 기판(41) 상에 발광 소자들(100)을 형성한 후, 기판(41)을 개별 칩 단위로 분할함으로써 제공될 수 있다.
도 18b를 참조하면, 도 12b를 참조하여 설명한 바와 같이, 회로 기판(1001) 상에 이방성 도전 필름(1005)이 형성된다. 이방성 도전 필름(1005) 대신에 이방성 도전 페이스트가 사용될 수도 있다.
도 18c를 참조하면, 테이프(121)에 부착된 발광 소자 칩들이 이방성 도전 필름(1005)을 통해 패드들(1003)에 본딩된다. 본 실시예에 있어서, 발광 소자 칩들은 픽셀 영역들에 대응하도록 미리 정렬되므로, 도시된 바와 같이, 발광 소자 칩들은 픽셀 영역들에 대응하여 패드들(1003)에 본딩된다.
한편, 패드(1003)와 전극 패드(101)는 이방성 도전 필름(1005) 내의 도전성 입자들(1005b)에 의해 전기적으로 연결된다. 기판(41)은 회로 기판(1001)을 향해 가압될 수 있으며, 따라서, 도전성 입자들(1005b)은 압력에 의해 형상이 변형될 수 있다. 또한, 발광 소자들(100)을 이방성 도전 필름(1005)에 접착하는 동안 열이 가해질 수 있다. 예를 들어, 이방성 도전 필름(1005)의 매트릭스가 열에 의해 경화될 수 있다. 이때, 도시한 바와 같이, 이방성 도전 필름(1005)의 일부는 발광 소자들(100)의 측면을 적어도 부분적으로 덮을 수 있다.
도 18d를 참조하면, 테이프(121)를 발광 소자 칩들로부터 분리함으로써 발광 소자 칩들이 회로 기판(1001) 상에 전사되고, 이에 따라, 회로 기판(1001)의 픽셀 영역들에 발광 소자 칩들이 본딩된 디스플레이 패널(1000)이 제조된다. 여기서, 발광 소자 칩들은 각각 발광 소자(100)와 기판(41)을 포함할 수 있다.
추가적으로, 광 차단 물질층이 발광 소자 칩들 사이의 영역에 배치될 수 있다. 광 차단 물질층은 발광 소자들(100)의 측면을 덮으며, 나아가 기판(41)의 측면을 덮을 수도 있다. 또한, 광 차단 물지층은 기판(41) 표면을 덮을 수도 있다.
본 실시예에 있어서, 테이프(121) 상에 정렬된 발광 소자 칩들이 이방성 도전 필름(1005) 또는 이방성 도전 페이스트를 이용하여 회로 기판(1001)으로 전사되는 것으로 설명하지만, 본 개시는 이에 한정되지 않는다. 예컨대, 도 13a 내지 도 13e, 도14a 내지 도 14d, 도 15a 내지 도 15d, 도 16a 내지 도 16e, 및, 도 17a 내지 도 17e를 참조하여 설명한 앞의 실시예들에도 테이프(121) 상에 정렬된 발광 소자 칩들을 전사하는 방법이 적용될 수 있다.
또한, 앞서 설명한 실시예들에 있어서, 전극 패드들(101)이 패드들(1003)에 접속하는 것으로 도시 및 설명하지만 본 개시가 이에 한정되는 것은 아니다. 예를 들어, 도 8 및 도 9를 참조하여 설명한 바와 같은 발광 소자들(100a)이 회로 기판(1001)으로 전사될 수도 있으며, 따라서, 발광 소자(100a)의 범프 패드들(103a, 103b, 103c, 103d)이 패드들(1003)에 접속할 수도 있다. 이 경우, 발광 소자들(100) 사이의 완충 물질층(1005, 2005, 3005, 4005)에 형성되는 홈들(101g)은 범프 패드들(103a, 103b, 103c, 103d)에 의해 형성될 수 있다.
이상에서, 본 개시의 다양한 실시예들에 대해 설명하였으나, 본 개시는 이들 실시예들에 한정되는 것은 아니다. 또한, 하나의 실시예에 대해서 설명한 사항이나 구성요소는 본 개시의 기술적 사상을 벗어나지 않는 한, 다른 실시예에도 적용될 수 있다.

Claims (21)

  1. 패드들을 갖는 회로 기판;
    상기 패드들에 전기적으로 접속되어 상기 회로 기판 상에 정렬된 발광 소자들; 및
    상기 회로 기판과 상기 발광 소자들 사이에 배치되어 상기 회로 기판과 상기 발광 소자들 사이의 공간을 채우는 완충 물질층을 포함하되,
    상기 완충 물질층은 상기 발광 소자들의 상면 아래에 위치하는 디스플레이 패널.
  2. 청구항 1에 있어서,
    상기 완충 물질층은 상기 발광 소자들 사이에 위치하는 상기 회로 기판의 표면을 덮되, 두 개의 발광 소자들 사이의 영역에 복수의 홈들을 갖는 디스플레이 패널.
  3. 청구항 1에 있어서,
    각각의 발광 소자는 전극 패드들을 포함하며,
    상기 전극 패드들이 상기 패드들에 전기적으로 접속하는 디스플레이 패널.
  4. 청구항 3에 있어서,
    상기 회로 기판 상의 패드들과 상기 발광 소자의 전극 패드들 사이에 배치된 도전성 입자들을 더 포함하되,
    상기 패드들과 상기 전극 패드들은 상기 도전성 입자들에 의해 전기적으로 연결된 디스플레이 패널.
  5. 청구항 4에 있어서,
    상기 완충 물질층은 상기 발광 소자들 사이의 영역에 서로 이격된 도전성 입자들을 더 포함하는 디스플레이 패널.
  6. 청구항 3에 있어서,
    상기 발광 소자들 사이의 영역에 배치되어 발광 소자들의 측면을 통해 방출되는 광을 차단하는 광 차단 물질층을 더 포함하는 디스플레이 패널.
  7. 청구항 6에 있어서,
    상기 광 차단 물질층은 상기 완충 물질층의 상면 일부를 덮는 디스플레이 패널.
  8. 청구항 3에 있어서,
    상기 패드들과 전극 패드들 사이에 형성된 솔더층을 더 포함하되,
    상기 패드들과 상기 전극 패드들은 상기 솔더층에 의해 전기적으로 연결된 디스플레이 패널.
  9. 청구항 1에 있어서,
    서로 다른 파장의 광을 방출하는 제1 LED 적층, 제2 LED 적층, 제3 LED 적층들;
    상기 발광 소자들은 상기 제1 내지 제3 LED 적층들에 전기적으로 접속된 전극 패드들; 및
    상기 전극 패드들 상에 배치된 범프 패드들을 포함하고,
    상기 범프 패드들이 상기 회로 기판 상의 패드들에 전기적으로 접속된 디스플레이 패널.
  10. 청구항 9에 있어서,
    상기 회로 기판의 패드들과 상기 범프 패드들 사이에 본딩층을 더 포함하되,
    상기 본딩층은 In, Pb, AuSn, CuSn 또는 솔더를 포함하는 디스플레이 패널.
  11. 청구항 1에 있어서,
    상기 완충 물질층은 경화된 레진, 폴리머, BCB, 또는 SOG인 디스플레이 패널.
  12. 청구항 1에 있어서,
    상기 발광 소자들은 각각 제1 LED 적층, 제2 LED 적층 및 제3 LED 적층을 포함하되, 제1 내지 제3 LED 적층들은 서로 다른 파장의 광을 방출하는 디스플레이 패널.
  13. 청구항 12에 있어서,
    상기 발광 소자들은 상기 제1 내지 제3 LED 적층에서 생성된 광을 상기 제3 LED 적층을 통해 방출하는 디스플레이 패널.
  14. 청구항 13에 있어서,
    상기 제3 LED 적층은 성장 기판으로부터 분리된 디스플레이 패널.
  15. 청구항 1에 있어서,
    상기 발광 소자들 사이의 간격은 상기 발광 소자의 폭보다 더 큰 디스플레이 패널.
  16. 청구항 1에 있어서,
    상기 완충 물질층은 상기 발광 소자들 사이에 위치하는 상기 회로 기판의 표면을 덮으며,
    상기 완충 물질층은 도전성 입자들을 포함하되,
    상기 도전성 입자들은 상기 발광 소자들 사이의 영역에 비해 상기 회로 기판과 상기 발광 소자 사이의 영역에 더 조밀하게 위치하는 디스플레이 패널.
  17. 디스플레이 패널을 포함하는 디스플레이 장치로서,
    상기 디스플레이 패널은,
    패드들을 갖는 회로 기판;
    상기 패드들에 전기적으로 접속되어 상기 회로 기판 상에 정렬된 발광 소자들; 및
    상기 회로 기판과 상기 발광 소자들 사이에 배치되어 상기 회로 기판과 상기 발광 소자들 사이의 공간을 채우는 완충 물질층을 포함하되,
    상기 완충 물질층은 상기 발광 소자들의 상면 아래에 위치하는 디스플레이 장치.
  18. 청구항 17에 있어서,
    상기 완충 물질층은 상기 발광 소자들 사이에 위치하는 상기 회로 기판의 표면을 덮되, 두 개의 발광 소자들 사이의 영역에 복수의 홈들을 갖는 디스플레이 장치.
  19. 청구항 17에 있어서,
    각각의 발광 소자는 전극 패드들을 포함하며,
    상기 전극 패드들이 상기 패드들에 전기적으로 접속하는 디스플레이 장치.
  20. 청구항 17에 있어서,
    상기 발광 소자들은 각각 제1 LED 적층, 제2 LED 적층 및 제3 LED 적층을 포함하되, 제1 내지 제3 LED 적층들은 서로 다른 파장의 광을 방출하고,
    상기 발광 소자들은 상기 제1 내지 제3 LED 적층에서 생성된 광을 상기 제3 LED 적층을 통해 방출하는 디스플레이 장치.
  21. 청구항 17에 있어서,
    상기 발광 소자들 사이의 영역에 배치되어 상기 발광 소자들의 측면으로 방출되는 광을 차단하는 광 차단 물질층을 더 포함하는 디스플레이 장치.
PCT/KR2020/005382 2019-04-24 2020-04-23 발광 다이오드 디스플레이 패널, 그것을 갖는 디스플레이 장치 및 그것을 제조하는 방법 WO2020218850A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2021012963A MX2021012963A (es) 2019-04-24 2020-04-23 Panel de visualizacion de diodos emisores de luz, dispositivo de visualizacion que tiene el mismo y su metodo de fabricacion.
CN202080030011.8A CN113711120A (zh) 2019-04-24 2020-04-23 发光二极管显示面板、具有其的显示装置及制造其的方法
KR1020217025297A KR20210145724A (ko) 2019-04-24 2020-04-23 발광 다이오드 디스플레이 패널, 그것을 갖는 디스플레이 장치 및 그것을 제조하는 방법
EP20795899.2A EP3961299A4 (en) 2019-04-24 2020-04-23 DISPLAY PANEL WITH LIGHT EMITTING DIODE, DISPLAY DEVICE THEREFOR AND METHOD OF MANUFACTURE THEREOF
BR112021021218A BR112021021218A2 (pt) 2019-04-24 2020-04-23 Painel de exibição e aparelho de exibição compreendendo o mesmo
JP2021562103A JP2022530370A (ja) 2019-04-24 2020-04-23 発光ダイオードディスプレイパネル、それを有するディスプレイ装置及びそれを製造する方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962837800P 2019-04-24 2019-04-24
US62/837,800 2019-04-24
US16/855,258 US11424224B2 (en) 2019-04-24 2020-04-22 LED display panel, LED display apparatus having the same and method of fabricating the same
US16/855,258 2020-04-22

Publications (1)

Publication Number Publication Date
WO2020218850A1 true WO2020218850A1 (ko) 2020-10-29

Family

ID=72921821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005382 WO2020218850A1 (ko) 2019-04-24 2020-04-23 발광 다이오드 디스플레이 패널, 그것을 갖는 디스플레이 장치 및 그것을 제조하는 방법

Country Status (8)

Country Link
US (3) US11424224B2 (ko)
EP (1) EP3961299A4 (ko)
JP (1) JP2022530370A (ko)
KR (1) KR20210145724A (ko)
CN (2) CN113711120A (ko)
BR (1) BR112021021218A2 (ko)
MX (1) MX2021012963A (ko)
WO (1) WO2020218850A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022080301A (ja) * 2020-11-17 2022-05-27 エルジー ディスプレイ カンパニー リミテッド 表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213343B1 (ko) * 2019-07-01 2021-02-08 한국과학기술원 다색 픽셀 어레이를 갖는 마이크로 led 디스플레이 및 그의 구동 회로와 결합에 따른 제조 방법
KR20240031716A (ko) * 2022-09-01 2024-03-08 삼성전자주식회사 발광 다이오드와 기판 사이를 연결하는 접합 부재를 포함하는 디스플레이 모듈
WO2024058282A1 (ko) * 2022-09-14 2024-03-21 엘지전자 주식회사 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
WO2024071456A1 (ko) * 2022-09-26 2024-04-04 엘지전자 주식회사 디스플레이 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017117814A (ja) * 2015-12-21 2017-06-29 スタンレー電気株式会社 半導体発光装置、及び、半導体発光装置の製造方法
US20170263593A1 (en) * 2015-04-01 2017-09-14 Goertek.Inc Transferring method, manufacturing method, device and electronic apparatus of micro-led
KR20170115142A (ko) * 2016-04-04 2017-10-17 삼성전자주식회사 Led 광원 모듈 및 디스플레이 장치
KR20190006430A (ko) * 2017-07-10 2019-01-18 삼성전자주식회사 마이크로 엘이디 디스플레이 및 그 제작 방법
KR20190010223A (ko) * 2017-07-21 2019-01-30 한국광기술원 마이크로 led칩 전사방법 및 전사장치
JP2019015899A (ja) * 2017-07-10 2019-01-31 株式会社ブイ・テクノロジー 表示装置の製造方法、チップ部品の転写方法、および転写部材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2880840T3 (es) * 2010-05-06 2021-11-25 Immunolight Llc Composición de unión adhesiva y método de uso
KR102227085B1 (ko) * 2014-03-05 2021-03-12 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
JP2016038581A (ja) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 表示パネル、表示装置および表示装置の駆動方法
TWI696300B (zh) * 2016-03-15 2020-06-11 晶元光電股份有限公司 半導體裝置及其製造方法
US20180019234A1 (en) * 2016-07-13 2018-01-18 Innolux Corporation Display devices and methods for forming the same
US10340256B2 (en) * 2016-09-14 2019-07-02 Innolux Corporation Display devices
US10483434B2 (en) * 2017-01-03 2019-11-19 Innolux Corporation Display devices and methods for forming display devices
KR102060471B1 (ko) * 2017-02-01 2019-12-30 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
CN207637833U (zh) * 2017-02-17 2018-07-20 首尔伟傲世有限公司 具有侧面反射层的发光二极管
US20190088196A1 (en) * 2017-09-21 2019-03-21 Innolux Corporation Display device
US10854566B2 (en) * 2017-09-25 2020-12-01 Ultra Display Technology Corp. Pre-conductive array disposed on target circuit substrate and conductive structure array thereof
US20190181122A1 (en) * 2017-12-13 2019-06-13 Innolux Corporation Electronic device and method of manufacturing the same
US10193042B1 (en) * 2017-12-27 2019-01-29 Innolux Corporation Display device
US10529773B2 (en) * 2018-02-14 2020-01-07 Cree, Inc. Solid state lighting devices with opposing emission directions
TW201947737A (zh) * 2018-05-14 2019-12-16 晶元光電股份有限公司 一種發光裝置及其製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170263593A1 (en) * 2015-04-01 2017-09-14 Goertek.Inc Transferring method, manufacturing method, device and electronic apparatus of micro-led
JP2017117814A (ja) * 2015-12-21 2017-06-29 スタンレー電気株式会社 半導体発光装置、及び、半導体発光装置の製造方法
KR20170115142A (ko) * 2016-04-04 2017-10-17 삼성전자주식회사 Led 광원 모듈 및 디스플레이 장치
KR20190006430A (ko) * 2017-07-10 2019-01-18 삼성전자주식회사 마이크로 엘이디 디스플레이 및 그 제작 방법
JP2019015899A (ja) * 2017-07-10 2019-01-31 株式会社ブイ・テクノロジー 表示装置の製造方法、チップ部品の転写方法、および転写部材
KR20190010223A (ko) * 2017-07-21 2019-01-30 한국광기술원 마이크로 led칩 전사방법 및 전사장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961299A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022080301A (ja) * 2020-11-17 2022-05-27 エルジー ディスプレイ カンパニー リミテッド 表示装置
JP7245889B2 (ja) 2020-11-17 2023-03-24 エルジー ディスプレイ カンパニー リミテッド 表示装置

Also Published As

Publication number Publication date
JP2022530370A (ja) 2022-06-29
EP3961299A4 (en) 2023-01-25
CN211789018U (zh) 2020-10-27
US20240105686A1 (en) 2024-03-28
BR112021021218A2 (pt) 2021-12-21
US11842987B2 (en) 2023-12-12
CN113711120A (zh) 2021-11-26
US11424224B2 (en) 2022-08-23
MX2021012963A (es) 2022-01-04
US20220367427A1 (en) 2022-11-17
US20200343227A1 (en) 2020-10-29
EP3961299A1 (en) 2022-03-02
KR20210145724A (ko) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2020218850A1 (ko) 발광 다이오드 디스플레이 패널, 그것을 갖는 디스플레이 장치 및 그것을 제조하는 방법
WO2020204512A1 (ko) 발광 소자를 갖는 유닛 픽셀, 픽셀 모듈 및 디스플레이 장치
WO2020141845A1 (ko) 발광 소자 패키지 및 이를 포함한 표시 장치
WO2021085935A1 (ko) 디스플레이용 발광 소자 및 그것을 갖는 led 디스플레이 장치
WO2021086026A1 (ko) Led 디스플레이 장치
WO2020166985A1 (ko) 디스플레이용 발광 소자 전사 방법 및 디스플레이 장치
WO2017142315A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2021137535A1 (ko) 디스플레이용 발광 소자 및 그것을 가지는 유닛 픽셀
WO2021125780A1 (ko) 발광 소자 복구 방법 및 복구된 발광 소자를 포함하는 디스플레이 패널
WO2021118139A1 (ko) 디스플레이용 발광 소자 및 그것을 가지는 디스플레이 장치
WO2021256787A1 (ko) 복수의 유닛 픽셀을 갖는 발광 모듈, 그것을 제조하는 방법, 및 그것을 갖는 디스플레이 장치
WO2016148424A1 (ko) 금속 벌크를 포함하는 발광 소자
WO2021060878A1 (ko) 디스플레이용 발광 소자 및 그것을 가지는 디스플레이 장치
WO2019146819A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법 및 디스플레이 장치
WO2021080311A1 (ko) Led 디스플레이 장치
WO2021025436A1 (ko) 발광 다이오드 디스플레이 패널 및 그것을 갖는 디스플레이 장치
WO2021033949A1 (ko) 디스플레이용 발광 소자 및 그것을 가지는 디스플레이 장치
WO2020235857A1 (ko) 디스플레이용 발광 소자 및 그것을 가지는 디스플레이 장치
WO2020149602A1 (ko) 발광 소자 패키지 및 이를 포함한 표시 장치
WO2021162414A1 (ko) 발광 소자를 갖는 유닛 픽셀, 픽셀모듈 및 디스플레이 장치
WO2021085993A1 (ko) 디스플레이용 발광 소자 및 그것을 갖는 led 디스플레이 장치
WO2021230630A1 (ko) 디스플레이용 발광 소자 및 그것을 가지는 디스플레이 장치
WO2020122694A2 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021235869A1 (ko) 유닛 픽셀 및 디스플레이 장치
WO2022177328A1 (ko) 다중 몰딩층을 갖는 몰딩부를 채택한 픽셀 모듈 및 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021021218

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020795899

Country of ref document: EP

Effective date: 20211124

ENP Entry into the national phase

Ref document number: 112021021218

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211022