WO2016018109A1 - 발광 다이오드 - Google Patents

발광 다이오드 Download PDF

Info

Publication number
WO2016018109A1
WO2016018109A1 PCT/KR2015/008010 KR2015008010W WO2016018109A1 WO 2016018109 A1 WO2016018109 A1 WO 2016018109A1 KR 2015008010 W KR2015008010 W KR 2015008010W WO 2016018109 A1 WO2016018109 A1 WO 2016018109A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor layer
light emitting
disposed
layer
Prior art date
Application number
PCT/KR2015/008010
Other languages
English (en)
French (fr)
Inventor
인치현
김상민
박대석
박은지
조홍석
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140098641A external-priority patent/KR102256590B1/ko
Priority claimed from KR1020140131604A external-priority patent/KR102288376B1/ko
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to US15/329,993 priority Critical patent/US9812616B2/en
Priority to CN201580040828.2A priority patent/CN106663730B/zh
Priority to CN201910940819.9A priority patent/CN110676367B/zh
Priority to JP2017504022A priority patent/JP6760921B2/ja
Publication of WO2016018109A1 publication Critical patent/WO2016018109A1/ko
Priority to US15/722,826 priority patent/US10177281B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Definitions

  • the present invention relates to a light emitting diode. More specifically, the present invention relates to a light emitting diode having improved reliability.
  • Light emitting diodes are inorganic semiconductor devices that emit light generated by recombination of electrons and holes. Recently, light emitting diodes are used in various fields such as displays, automobile lamps, and general lighting.
  • the light emitting diode may include an electrode, a bump electrically connected to the electrode, and an insulating layer around the bump. At this time, a constant gap occurs between the bump and the insulating layer, so that the reliability of the light emitting diode may be a problem.
  • due to the horizontal arrangement of the electrodes may cause a problem that the current is concentrated in a specific region during high current driving.
  • the problem to be solved by the present invention is to provide a light emitting diode with improved reliability and structural stability.
  • Another object of the present invention is to provide a light emitting diode which is prevented from deteriorating light emission characteristics in a high temperature and / or high humidity environment.
  • Another problem to be solved by the present invention is to provide a light emitting diode having a stronger bonding force between the substrate and the bump.
  • Another object of the present invention is to provide a light emitting diode in which light efficiency is improved and a variation in light emission intensity according to a region in an active layer is eliminated.
  • Another object of the present invention is to provide a light emitting diode including a structure capable of improving current spreading in the light emitting diode, and improving light extraction efficiency by using light reflection through the structure.
  • a light emitting diode includes a substrate; A light emitting cell disposed on the substrate and including a lower semiconductor layer, an upper semiconductor layer disposed on a region of the lower semiconductor layer, and an active layer disposed between the lower semiconductor layer and the upper semiconductor layer; A first electrode disposed on the upper semiconductor layer; A second electrode disposed on the lower semiconductor layer; A first insulating layer including a first open area exposing a portion of the first electrode; A second insulating layer disposed on the first insulating layer; And a first bump in ohmic contact with a first electrode through the first open area, wherein the first bump includes a first concave portion and a first convex portion at an upper portion thereof, and the first bump is formed on the upper surface of the first bump.
  • an area of the bottom surface of the first concave portion may be proportional to an area of the first electrode exposed through the first open area.
  • the depth of the first concave portion may be proportional to the thickness of the first insulating layer and the second insulating layer disposed on the first electrode.
  • the sum of the area of the upper surface of the first convex portion and the area of the bottom surface of the first concave portion may be larger than the area of the first electrode exposed through at least the first open area.
  • first insulating layer and the second insulating layer may be disposed between the first electrode and the first bump.
  • At least a portion of a side surface of the first insulating layer and the second insulating layer surrounding the first open area and a lower side surface of the first bump may be in contact with each other.
  • first convex portion may surround the first concave portion.
  • the first insulating layer may include a second open area exposing a portion of the second electrode, and further include a second bump to ohmic contact the second electrode through the second open area.
  • the second bump includes a second concave portion and a second convex portion at an upper portion, and the second bump includes a third region including a bottom surface of the second concave portion on an upper surface and an upper surface of the second convex portion on an upper surface thereof.
  • a fourth region at least a portion of the third region may be disposed on the second open region, and at least a portion of the fourth region may be disposed on the second insulating layer.
  • an area of the bottom surface of the second concave portion may be proportional to an area of the second electrode exposed through the second open area.
  • the depth of the second concave portion may be proportional to the thickness of the first insulating layer and the second insulating layer disposed on the second electrode.
  • the sum of the area of the upper surface of the second convex portion and the area of the bottom surface of the second concave portion may be larger than the area of the second electrode exposed through at least the second open area.
  • a portion of the first insulating layer and the second insulating layer may be disposed between the second electrode and the second bump.
  • At least a portion of a side surface of the first insulating layer and the second insulating layer surrounding the second open area and a side surface of the lower end of the second bump may be in contact with each other.
  • the second convex portion may surround the second concave portion.
  • the second insulating layer may include a silicon nitride layer.
  • the light emitting cell may emit light in an ultraviolet wavelength region.
  • the substrate may include one surface on which the light emitting cells are disposed, and the other surface opposite to the one surface, and the other surface may include an uneven portion.
  • the substrate may be a transparent sapphire substrate.
  • the first insulating layer may include a distributed Bragg reflector.
  • a light emitting diode includes: a substrate; A lower semiconductor layer disposed on the substrate; A light emitting cell including a first upper semiconductor layer disposed on one region of the lower semiconductor layer and an active layer disposed between the lower semiconductor layer and the first upper semiconductor layer; A second current spreader including a third upper semiconductor layer disposed on another region of the lower semiconductor layer and an active layer disposed between the lower semiconductor layer and the third upper semiconductor layer; A first electrode disposed on the light emitting cell and electrically connected to the first upper semiconductor layer; And a second electrode spaced apart from the light emitting cell, wherein the second electrode is electrically connected to the lower semiconductor layer, wherein the second electrode extends to cover at least a portion of the second current spreading unit, and at least a part of the light emitting cell.
  • the contact resistance between the second electrode and the third upper semiconductor layer may be greater than the contact resistance between the second electrode and the lower semiconductor layer.
  • a first current spreader further disposed in another region of the lower semiconductor layer facing one region of the lower semiconductor layer with respect to another region of the lower semiconductor layer, wherein the first current spreader is the lower semiconductor And a second upper semiconductor layer disposed on another region of the layer, and an active layer disposed between the lower semiconductor layer and the second upper semiconductor layer.
  • the contact resistance between the second electrode and the second upper semiconductor layer may be greater than the contact resistance between the second electrode and the lower semiconductor layer.
  • the second electrode may be disposed on the first current spreader.
  • the second current spreader may be disposed closer to the first current spreader than the light emitting cell.
  • the first current spreader may have the same height as the light emitting cell.
  • the sum of the area of the upper surface of each of the first current spreading unit and the second current spreading unit may be 10 to 40% of the second electrode area.
  • the second current spreader may include a plurality of dispersions, and the dispersions may be spaced apart from each other at a uniform interval.
  • the semiconductor device may further include an insulating layer disposed on the first electrode and the second electrode, the insulating layer including a first open area exposing the first electrode and a second open area exposing the second electrode.
  • the insulating layer may include at least one of a silicon nitride layer and a silicon oxide layer.
  • the insulating layer may include a distributed Bragg reflector.
  • the first bump includes a first concave portion and a first convex portion at an upper portion thereof, and the first bump includes a first area including a bottom surface of the first concave portion on an upper surface thereof and an upper surface of the first convex portion on an upper surface thereof. And a second region, at least a portion of the first region may be disposed on the first open region, and at least a portion of the second region may be disposed on the insulating layer.
  • An area of the bottom surface of the first concave portion may be proportional to an area of the first electrode exposed through the first open area.
  • the depth of the first concave portion may be proportional to the thickness of the insulating layer disposed on the first electrode.
  • the sum of the area of the upper surface of the first convex portion and the area of the bottom surface of the first concave portion may be larger than the area of the first electrode exposed through at least the first opening area.
  • the first convex portion may surround the first concave portion.
  • a portion of the insulating layer may be disposed between the first electrode and the first bump and between the second electrode and the second bump.
  • At least a portion of the side surface of the insulating layer surrounding the first open area and the side surface of the first bump may be in contact with each other.
  • the second electrode may include a reflective layer reflecting light emitted from the active layer of the light emitting cell.
  • the light emitting diode according to the present invention has improved reliability in a high temperature and / or high humidity environment as well as room temperature, thereby preventing the deterioration of light emitting characteristics.
  • the bonding force between the substrate and the bump is enhanced, separation of the LED and the substrate can be prevented even when a load is repeatedly applied to the bonding region of the substrate and the bump.
  • the light emitting diode according to the present invention includes a current spreading part serving as a current spreading structure. Therefore, the current spreading in the light emitting diode can be improved by inducing a current flow mainly in the electrode metal and dispersing the current. Therefore, the light efficiency of the light emitting diode can be improved, and the variation in light emission intensity can be reduced.
  • the current spreader may be manufactured without a separate additional process, thereby reducing manufacturing cost and time.
  • 1 is a plan view and a cross-sectional view for describing a light emitting diode.
  • FIG. 2 is a plan view and a cross-sectional view for describing a light emitting diode according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view for describing a light emitting device according to an embodiment of the present invention.
  • FIG. 4 is a plan view and a cross-sectional view for describing a light emitting diode according to another embodiment of the present invention.
  • FIG. 5 is a perspective view illustrating a light emitting diode package according to an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view for describing a light emitting diode.
  • FIG 8 is a plan view and a cross-sectional view for describing a light emitting diode according to an embodiment of the present invention.
  • FIG. 9 is a plan view and a cross-sectional view for describing a light emitting diode according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
  • FIG. 11 is a perspective view illustrating a light emitting diode package according to an embodiment of the present invention.
  • 1 is a cross-sectional view illustrating a light emitting diode.
  • the light emitting diode includes an H-type contact layer 14. Subsequently, a bump for applying current may be formed on the contact layer 14, and an insulating layer may be formed on the upper layer 16 except the bump forming region.
  • a bump for applying current may be formed on the contact layer 14, and an insulating layer may be formed on the upper layer 16 except the bump forming region.
  • This gap exists for reasons of the manufacturing process of the light emitting diode, but this may cause a problem of the reliability of the light emitting diode.
  • Light-emitting diodes, in particular ultraviolet light-emitting diodes are vulnerable to high temperatures and / or high humidity, whereby reliability of the light emitting diodes is a problem.
  • the gap present in the light emitting diode has a problem that can be used as a passage of moisture and / or outside air.
  • the light emitting diode has n-type and p-type bumps, and the bumps are mounted on the sub-mount substrate.
  • the coupling force between the bumps and the sub-mount substrate may be weakened and the light emitting diode and the substrate may be separated. Therefore, the development of a light emitting diode having improved reliability and structural stability by solving the above problems is required.
  • the light emitting diode may be classified into a horizontal light emitting diode, a vertical light emitting diode, or a flip-chip light emitting diode according to a position where an electrode is disposed or a method in which the electrode is connected to an external lead.
  • Horizontal light emitting diodes are most widely used because of their relatively simple manufacturing method.
  • the growth substrate is formed as it is.
  • a sapphire substrate is most widely used as the growth substrate of the light emitting diode, and the sapphire substrate has low thermal conductivity, which makes heat emission of the light emitting diode difficult. As a result, the junction temperature of the light emitting diode is increased and the internal quantum efficiency is lowered.
  • FIG. 2 is a plan view and a cross-sectional view for describing a light emitting diode according to an embodiment of the present invention.
  • FIG. 2A is a plan view of the light emitting diode
  • FIG. 2B is a cross-sectional view taken along the line A-A of the plan view of FIG.
  • the light emitting diode includes a growth substrate 100, a lower semiconductor layer 115, an active layer 113, and an upper semiconductor layer 111.
  • the contact layer 121, the pad layer 123, and the electrode layer 125 are disposed on the lower semiconductor layer 115.
  • the second electrode 120b may include a contact layer 121, a pad layer 123, and an electrode layer 125.
  • the second electrode 120b is disposed, and the second bump 130b is disposed on the second electrode 120b.
  • the first electrode 120a may be formed through the reflective layer 127 and the barrier layer 129.
  • a first bump 130a is disposed on the first electrode 120a. Except for the region in which the first bump 130a and the second bump 130b are disposed, the front surface of the light emitting diode may be covered with the first insulating layer 128 and the second insulating layer 129. Meanwhile, the light emitting cell 110 may be formed through the lower semiconductor layer 115, the active layer 113, and the upper semiconductor layer 111.
  • the growth substrate 100 is a substrate having a hexagonal crystal structure, and may be a growth substrate for growing a gallium nitride-based epitaxial layer such as sapphire, silicon carbide, and gallium nitride substrate.
  • the growth substrate 100 may be a sapphire substrate to provide a deep ultraviolet light emitting diode.
  • the growth substrate 100 includes one surface, the other surface opposite to the one surface, and a side surface connecting the one surface and the other surface.
  • the one surface is a surface on which semiconductor layers are grown, and the other surface is a surface on which light generated in the active layer 113 is emitted to the outside.
  • the side surface of the growth substrate 100 may be a surface perpendicular to the one surface and the other surface, but may also include an inclined surface.
  • a buffer layer (not shown) including AlN or GaN may be formed to reduce lattice mismatch with the sapphire substrate.
  • the growth substrate 100 may be generally rectangular in shape, but the shape of the substrate is not limited thereto.
  • the thickness of the growth substrate 100 may be greater than the thickness of the growth substrate 100 is 100 ⁇ m, in particular may have a value within the range of 150 ⁇ m to 400 ⁇ m. As the growth substrate 100 is thicker, light extraction efficiency is improved. Meanwhile, the side surface of the growth substrate 100 may include a breaking surface.
  • the lower semiconductor layer 115 is located on one surface of the growth substrate 100.
  • the lower semiconductor layer 115 may cover the entire surface of one surface of the growth substrate 100, but is not limited thereto.
  • the lower semiconductor layer 115 may extend the growth substrate (eg, the first surface of the growth substrate 100) to expose one surface along the edge of the growth substrate 100. It may be located within the upper region of 100).
  • the upper semiconductor layer 111 is positioned above an area of the lower semiconductor layer 115, and an active layer 113 is positioned between the lower semiconductor layer 115 and the upper semiconductor layer 111.
  • the upper semiconductor layer 111 may have an H shape or a dumbbell shape having a narrow waist, and thus may exhibit excellent light output characteristics under high current density conditions.
  • the lower semiconductor layer 115 and the upper semiconductor layer 111 may include a III-V-based compound semiconductor, and may include, for example, a nitride semiconductor such as (Al, Ga, In) N.
  • the lower semiconductor layer 115 may include an n-type semiconductor layer doped with n-type impurities (for example, Si), and the upper semiconductor layer 111 may be doped with p-type impurities (for example, Mg). It may include a p-type semiconductor layer. It may also be the reverse.
  • the lower semiconductor layer 115 and / or the upper semiconductor layer 111 may be a single layer or may include multiple layers.
  • the lower semiconductor layer 115 and / or the upper semiconductor layer 111 may include a cladding layer and a contact layer, and may also include a superlattice layer.
  • the active layer 113 may include a multi-quantum well structure (MQW), and the elements and the composition of the multi-quantum well structure may be controlled to emit light having a desired peak wavelength in the multi-quantum well structure.
  • the present invention is not limited thereto.
  • the above-described semiconductor layers 111, 113, and 115 may be formed of metal organic chemical vapor deposition (MOCVD), chemical vapor deposition (CVD), and plasma chemical vapor deposition (PCVD). It can be formed through a variety of deposition and growth methods, including Molecular Beam Epitaxy (MBE), Hydride Vapor Phase Epitaxy (HVPE).
  • MOCVD metal organic chemical vapor deposition
  • CVD chemical vapor deposition
  • PCVD plasma chemical vapor deposition
  • MBE Molecular Beam Epitaxy
  • HVPE Hydride Vapor Phase Epitaxy
  • the second electrode 120b including the contact layer 121, the pad layer 123, and the electrode layer 125 may surround the upper semiconductor layer 111.
  • the second electrode 120b surrounds the entire circumference of the upper semiconductor layer 111, but is not necessarily limited thereto.
  • the second electrode 120b may extend to both sides of the upper semiconductor layer 111 from where the second bump 130b is positioned to surround about 50% or more of the upper semiconductor layer 111.
  • the contact layer 121 may include at least one of Cr, Ti, Al, and Au, or may have a Cr / Ti / Al / Ti / Au multilayer structure.
  • the pad layer 123 may include Ti or Au, or may have a Ti / Au multilayer structure.
  • the electrode layer 125 may include Ti or Au, or may have a Ti / Au multilayer structure.
  • the second electrode 120b may also be uniformly spaced apart from the upper semiconductor layer 111. As a result, concentration of current can be prevented. Furthermore, an uneven portion (not shown) may be formed on the surface of the lower semiconductor layer 115 between the second electrode 120b and the upper semiconductor layer 111. The uneven portion may prevent current from flowing along the surface of the upper semiconductor layer 111, thereby further distributing the current.
  • the reflective layer 127 and the barrier layer 129 may form a first electrode 120a, and the first electrode 120a may be disposed on the upper semiconductor layer 111 and may be disposed on the upper semiconductor layer 111. Electrically connected.
  • the reflective layer 127 may include at least one of Ni, Au, and Al, or may have a Ni / Au multilayer structure.
  • the barrier layer 129 may include Ti or Au, or may have a Ti / Au multilayer structure.
  • the first electrode 120a may have high reflectivity and form ohmic contact with the upper semiconductor layer 111.
  • the second bump 130b is positioned on the second electrode 120b.
  • the second bumps 130b are spaced apart from the upper semiconductor layer 111.
  • the first bump 130a is positioned on the first electrode 120a including the reflective layer 127 and the barrier layer 129.
  • the first bump 130a may include a first area A1 and a second area A2.
  • the first bump 130a may include a first concave portion and a first convex portion at an upper portion thereof.
  • the first area A1 may include the first concave portion, and thus, an upper surface of the first area A1 may correspond to a bottom surface of the first concave portion.
  • the second region A2 may include the first convex portion, and thus, an upper surface of the second region A2 may correspond to an upper surface of the first convex portion.
  • the second bump 130b may include a third area A3 and a fourth area A4.
  • the second bump 130b may include a second concave portion and a second convex portion at an upper portion thereof.
  • the third region A3 may include the second concave portion, and thus, an upper surface of the third region A3 may correspond to a bottom surface of the second concave portion.
  • the fourth region A4 may include the second convex portion, and thus, an upper surface of the fourth region A4 may correspond to an upper surface of the second convex portion.
  • the second bump 130b and the first bump 130a may be formed of the same metal material.
  • the first and second bumps 130a and 130b may be formed in a multilayer structure, and may include, for example, an adhesive layer, a diffusion barrier layer, and a bonding layer.
  • the adhesive layer may include, for example, Ti, Cr, or Ni, and the diffusion barrier layer may be formed of Cr, Ni, Ti, W, TiW, Mo, Pt, or a composite layer thereof, and the bonding layer may be Au or AuSn may be included.
  • the first insulating layer 128 may be formed of a single layer of a silicon oxide layer or a silicon nitride layer.
  • the first insulating layer 128 may be formed of a distributed Bragg reflector (DBR) in which oxide layers having different refractive indices are stacked. Therefore, the light can be reflected in the region between the first electrode 121 and the upper semiconductor layer 111, thereby further improving the light extraction efficiency of the light emitting diode.
  • DBR distributed Bragg reflector
  • a second insulating layer 129 may be disposed on the first insulating layer 128.
  • the second insulating layer 129 may be formed of a single layer of a silicon oxide layer or a silicon nitride layer.
  • the second insulating layer 129 may be a silicon nitride layer. Since the silicon nitride layer is relatively superior in moisture resistance as compared with the silicon oxide layer, when the second insulating layer 129 is a silicon nitride layer, the moisture resistance of the light emitting diode can be improved.
  • the first insulating layer 128 and the second insulating layer 129 may each have a thickness of 2000 to 7000 ⁇ .
  • the thickness of each of the first insulating layer 128 and the second insulating layer 129 is less than 2000 GPa, it is difficult to improve the moisture-proof property.
  • the thickness of each of the first insulating layer 128 and the second insulating layer 129 is less than 2000 GPa, the total thickness of the insulating layers 127 and 129 is excessively excessive.
  • the overall thickness of the first insulating layer 128 and the second insulating layer 129 may be 1 ⁇ m or less, but is not limited thereto.
  • the first and second bumps 130a and 130b may be formed to cover portions of the first and second insulating layers 128 and 129. Therefore, at least a portion of the second region A2 of the first bump 130a may be disposed on the second insulating layer 129. Furthermore, at least a portion of the fourth region A4 of the second bump 130b may be disposed on the second insulating layer 129. That is, some of the first and second insulating layers 128 and 129 may be disposed between the first bump 130a and the first electrode 120a or between the second bump 130b and the second electrode 120b. have.
  • first and second insulating layers 128 and 129 may be opened in the first and second open regions 140a and 140b so that the first and second open regions 140a and 140b are opened.
  • Side surfaces of the first and second insulating layers 128 and 129 surrounding the first and second insulating layers 128 and 129, respectively, may be exposed, and the exposed side surfaces of the first and second insulating layers 128 and 129 may include the first bumps 130a and / or.
  • the second bump 130b may be in contact with the second bump 130b.
  • the area of the first open area 140a is smaller than the sum of the bottom surface of the first concave portion of the first bump 130a and the top surface of the first convex portion. have.
  • the area of the second open area 140b is smaller than the sum of the bottom surface of the second concave portion of the second bump 130b and the top surface of the second convex portion. That is, in the present embodiment, the first and second bumps 130a and 130b may completely cover the first open area 140a or the second open area 140b, respectively.
  • the length of the top surface of the first bump 130b is 14 to 18 ⁇ m longer than the length of the top surface of the first electrode 120b exposed to the second open area 140b, and the length of the top surface of the first bump 130b and the length of the top surface of the first bump 130b.
  • the length of the upper surface of the first electrode 120b exposed to the second open area 140b may be a length overlapping each other.
  • the light emitting diode may further include a resin (not shown) surrounding side surfaces of the first bump 130b and the second bump 130a.
  • the first bump 130b and the second bump 130a may be disposed in a form embedded in the resin, and in this case, the first bump 130b and the second bump may be disposed.
  • the top surface of 130a may be exposed.
  • the first and second electrodes 120a and 120b of the present invention may be completely sealed. As a result, it is possible to prevent external moisture and the like from penetrating into the light emitting diode, thereby improving the reliability of the light emitting diode.
  • the entire surface of the light emitting diode is covered by multiple layers of the first and second insulating layers 123 and 125, the inflow of moisture or the like can be more effectively blocked.
  • the areas of the bottom surfaces of the recessed portions of the first and second bumps 130a and 130b may be exposed to the first and second open areas 140a and 140b at the lower ends thereof.
  • the depth of the recess may be proportional to the thickness of the first and second insulating layers 128 and 129 disposed on the first electrode 120a or the second electrode 120b. .
  • FIG 3 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
  • the light emitting diode 400 is a light emitting diode according to an embodiment of the present invention described above, and the light emitting diode 400 is mounted on the sub-mount substrate 200.
  • the submount substrate 200 includes a substrate 230 and an electrode pattern 220 disposed on the substrate 230.
  • the substrate 230 may be any one of BeO, SiC, Si, Ge, SiGe, AlN, and a ceramic substrate having excellent thermal conductivity.
  • the present invention is not limited thereto, and may be a substrate including an insulating material having a high thermal conductivity as well as a metallic material having excellent electrical conductivity having a high thermal conductivity.
  • the second bumps 130a and the first bumps 130b are bonded to the electrode patterns 220, respectively. do.
  • thermal or ultrasonic waves may be used or bonding may be performed using heat and ultrasonic waves at the same time.
  • it can be bonded using solder paste.
  • the first and second bumps 130a and 130b and the electrode pattern 220 may be bonded through various bonding methods as described above through the bonding region 210.
  • FIG. 4 is a plan view and a cross-sectional view for describing a light emitting diode according to another embodiment of the present invention.
  • the embodiment of FIG. 4 is identical except for the shape of the first and second open regions, compared to the embodiment of FIG. Therefore, redundant description is omitted.
  • each of the first open area 140a and the second open area 140b may include a plurality of open areas. That is, as shown, the first open area 140a includes a plurality of open areas exposing a part of the first electrode 130a, and the second open area 140b is a part of the second electrode 130b. It may include a plurality of open areas to expose the.
  • the driving voltage of the light emitting diode can be lowered through the open areas 140a and 140b having the above-described shape.
  • the first open area 140a includes five open areas, and the second open area 140b includes three open areas, but the number and arrangement of the open areas is not limited thereto. Do not.
  • FIG. 5 is a perspective view illustrating a light emitting diode package according to an embodiment of the present invention.
  • the light emitting device package includes a substrate including a first frame 311, a second frame 313, and an insulating layer 315 disposed between the first and second frames 311 and 313. 300, a light emitting diode 400, a sub-mount substrate 200, and a wire 330 mounted in a cavity 317 formed on an upper surface of the substrate 300.
  • the light emitting diode 400 is a light emitting diode according to the embodiments of the present invention described above.
  • the first and second frames 311 may be metal frames or ceramic frames.
  • the first and second frames 311 may include a single metal or an alloy including Al, Ag, Cu, Ni, and the like which are excellent in electrical characteristics and heat dissipation.
  • the insulating layer 315 may include an adhesive part and has a function of fixing the first and second frames 311 and 313 to both sides. Power may be supplied to the light emitting diode 400 by connecting power to the pads through the wire 330.
  • FIG. 6 are graphs showing results after a 1000 hour reliability test.
  • the light emitting diode (comparative example) according to FIG. 1 and the light emitting diode (example) according to FIG. 2 have the same size, and ultrasonic bonding was performed on a Si substrate using a TDK flip bonder.
  • the bonding table temperature was 200 ° C and the nozzle temperature was 150 ° C.
  • the Y axis represents power retention of the light emitting diode.
  • R1, R2 and R3 on the X-axis are average values of the results of the examples and are indicated by dotted lines.
  • L1, L2, and L3 of the X axis represent the average value of the result of the comparative example, and are shown by the solid line graphic.
  • R1 and L1 are the measurement results at room temperature and are shown in a circle.
  • R2 and L2 are the measurement results at high temperature (60 ° C) and are indicated by triangles.
  • R3 and L3 are the measurement results at high temperature and high humidity (60 ° C., 90%) and are indicated by squares. Referring back to FIG. 6, it can be seen that the power retention of the light emitting diode is high in all cases of the embodiment.
  • the light emitting diode according to the embodiments of the present invention is excellent in moisture proof property, not only the reliability is improved, but also strong flip bonding is possible, and thus the structural stability is high.
  • the light emitting diode according to FIG. 7 includes a growth substrate 11, a first conductivity type semiconductor layer 13, an active layer 15, a second conductivity type semiconductor layer 17, a first electrode 19, and a second electrode 20. ), A first pad 30a, a second pad 30b, and an insulating layer 31.
  • the light emitting cell may be formed through the first conductive semiconductor layer 13, the active layer 15, and the second conductive semiconductor layer 17.
  • the first conductive semiconductor layer 13 and the second conductive semiconductor layer 17 may be electrically connected to the first pad 30a and the second pad 30b, respectively.
  • the light emitting diode according to FIG. 7 has a problem that current draw phenomenon occurs during high current driving due to the horizontal arrangement of the electrodes 19 and 20. As a result, not only a variation in light emission intensity occurs, but also a problem that light efficiency is reduced. Accordingly, there is a need for development of a light emitting diode capable of distributing current by dispersing a current in the light emitting diode.
  • FIG 8 is a plan view and a cross-sectional view for describing a light emitting diode according to an embodiment of the present invention.
  • FIG. 8A is a plan view of the light emitting diode
  • FIG. 8B is a cross-sectional view taken along the line A-A of FIG. 8A.
  • a light emitting diode includes a growth substrate 500 and a light emitting cell 510, and the light emitting cell 510 includes a lower semiconductor layer 515, an active layer 513, and a light emitting cell 510.
  • the first upper semiconductor layer 511 is included.
  • the first current spreader 520 and the second current spreader 530 including a portion of the lower semiconductor layer 515 are disposed on the lower semiconductor layer 515.
  • a second electrode 540 is disposed on the lower semiconductor layer 515, and the second electrode 540 includes a second contact layer 541 and a second pad layer 543.
  • a second bump 570 is disposed on the second electrode 540.
  • the first electrode 550 is disposed on the first upper semiconductor layer 511, and the first electrode 550 includes a first contact layer 551 and a first pad layer 553.
  • the first bump 580 is disposed on the first electrode 550.
  • an insulating layer 560 is disposed on the front surface of the LED.
  • the growth substrate 500 is a substrate having a hexagonal crystal structure, and may be a growth substrate for growing a gallium nitride epitaxial layer, for example, a sapphire, silicon carbide, or gallium nitride substrate.
  • the growth substrate 500 may include one surface, the other surface opposite to the one surface, and a side surface connecting the one surface and the other surface.
  • the one surface may be a surface on which semiconductor layers are grown.
  • the other surface is a surface on which light generated in the active layer 513 is emitted to the outside.
  • the side surface of the growth substrate 500 may be a surface perpendicular to the one surface and the other surface, but may include an inclined surface.
  • a buffer layer (not shown) including AlN or GaN may be formed to reduce lattice mismatch with the heterogeneous substrate.
  • the growth substrate 500 may be generally rectangular in shape, but the shape of the growth substrate 500 is not limited thereto.
  • the thickness of the growth substrate 500 may exceed 100 ⁇ m, and in particular, may have a value within the range of 150 to 400 ⁇ m. As the growth substrate 500 is thicker, light extraction efficiency may be improved. Meanwhile, the side surface of the growth substrate 500 may include a breaking surface.
  • the lower semiconductor layer 515 is disposed on one surface of the growth substrate 500.
  • the lower semiconductor layer 515 may cover the entire surface of one surface of the growth substrate 500, but the present invention is not limited thereto, and the lower semiconductor layer 515 may be formed on the growth substrate to expose one surface along an edge of the growth substrate 500. And may be located within the upper region of 500.
  • the first upper semiconductor layer 511 is positioned above an area of the lower semiconductor layer 515, and an active layer 513 is positioned between the lower semiconductor layer 515 and the upper semiconductor layer 511.
  • the second and third upper semiconductor layers 521 and 531 may be positioned above other regions of the lower semiconductor layer 515, and the lower and second upper and lower semiconductor layers 521 and 531 may be respectively positioned on the upper and lower regions.
  • the active layer 513 may be located between the semiconductor layers 515.
  • the first upper semiconductor layer 511 may have a H-shape or a dumbbell shape having a narrow waist, thereby realizing excellent light output characteristics under high current density conditions.
  • the lower semiconductor layer 515 and the upper semiconductor layers 511, 521, and 531 may include a III-V series compound semiconductor, and include, for example, a nitride semiconductor such as (Al, Ga, In) N. can do.
  • the lower semiconductor layer 515 may include an n-type semiconductor layer doped with n-type impurities (eg, Si), and the upper semiconductor layers 511, 521, and 531 may include p-type impurities (eg, It may include a p-type semiconductor layer doped with Mg). It may also be the reverse.
  • the lower semiconductor layer 515 and / or the upper semiconductor layers 511, 521, 531 may be a single layer or may include multiple layers.
  • the lower semiconductor layer 515 and / or the upper semiconductor layers 511, 521, and 531 may include a cladding layer and a contact layer, and may also include a superlattice layer.
  • the active layer 513 may include a multi-quantum well structure (MQW), and the elements and the composition of the multi-quantum well structure may be adjusted to emit light having a desired peak wavelength in the multi-quantum well structure.
  • the well layer of the active layer 513 may be a ternary semiconductor layer such as In x Ga (1-x) N (0 ⁇ x ⁇ 1), or Al x In y Ga ( 1-1- xy) may be a four-component semiconductor layer such as N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), where The value of x, or y can be adjusted to emit light of the desired peak wavelength.
  • the present invention is not limited thereto.
  • the semiconductor layers 511, 513, 515, 521, and 531 may be formed of a metal organic chemical vapor deposition (MOCVD), a chemical vapor deposition (CVD), or a plasma chemical vapor deposition (PCVD). It can be formed through various deposition and growth methods, including chemical vapor deposition (MoE), molecular beam growth (MBE), hydride vapor phase growth (HVPE), and the like.
  • MOCVD metal organic chemical vapor deposition
  • CVD chemical vapor deposition
  • PCVD plasma chemical vapor deposition
  • MoE chemical vapor deposition
  • MBE molecular beam growth
  • HVPE hydride vapor phase growth
  • the first current spreading unit 520 and the second current spreading unit 530 may be disposed on one region of the lower semiconductor layer 515.
  • the first current spreader 520 may be disposed in an area where the second bump 570 is to be formed.
  • the first current spreader 520 may include semiconductor layers 515, 523, and 521 including a portion of the lower semiconductor layer 515. That is, the first current spreading unit 520 is between the second upper semiconductor layer 521 and the lower semiconductor layer 515 and the second upper semiconductor layer 521 disposed on another region of the lower semiconductor layer 515. It may include an active layer 523 disposed in.
  • the first current spreader 520 may perform a function of spreading the current.
  • the first current spreading unit 520 may block the current flowing linearly toward the lower semiconductor layer 515, thereby distributing the current, thereby improving the diffusion of the current.
  • the first current spreading unit 520 may have a height parallel to the light emitting cells 510. That is, since the first current spreading unit 520 has the same height as the light emitting cell 510, the first current spreading unit 520 is disposed on the second bump 570 and the light emitting cell 510 disposed on the first current spreading unit 520. The step difference between the first bumps 580 may be overcome.
  • the second current spreading unit 530 may be disposed between the first current spreading unit 520 and the light emitting cell 510.
  • the second current spreading unit 530 may include semiconductor layers 531, 533, and 515 including a portion of the lower semiconductor layer 515. That is, the second current spreading unit 530 is disposed between the third upper semiconductor layer 531 and the lower semiconductor layer 515 and the upper semiconductor layer 531 disposed on another region of the lower semiconductor layer 515.
  • the active layer 533 may be disposed.
  • the second current spreading unit 530 may improve current spreading by dispersing the current.
  • the second current spreading unit 530 may have a height parallel to the light emitting cell 510.
  • the shape and arrangement of the second current spreading unit 530 is not limited to the illustrated form. Therefore, according to the purpose of the invention, the second current spreading unit 530 may be arranged in various forms.
  • the second current spreader 530 may be disposed closer to the light emitting cell 510 than the first current spreader 520. The area and arrangement of the contact region between the second electrode 540 and the lower semiconductor layer 515 may be controlled through the second current spreader 530.
  • the semiconductor layers included in the first current spreading unit 520 and the second current spreading unit 530 may be formed through the same process as the semiconductor layer included in the light emitting cell 510 described above.
  • the first current spreading unit 520 and the second current spreading unit 530 are shown to include an inclined side surface, but the first and second current spreading units 520 and 530. The form of is not limited to this. However, in the present embodiment, the first and second current spreaders 520 and 530 may include flat top surfaces.
  • the second electrode 540 may be disposed on the lower semiconductor 515 and the first and second current spreaders 520 and 530 except for the region where the light emitting cell 510 is disposed.
  • the second electrode 540 may include a second contact layer 541 and a second pad layer 543.
  • the second electrode 540 may surround the first upper semiconductor layer 511 included in the light emitting cell 510. In FIG. 8, the second electrode 540 surrounds the entire circumference of the first upper semiconductor layer 511, but is not necessarily limited thereto.
  • the second electrode 540 may extend to both sides of the first upper semiconductor layer 511 from where the second bump 570 is positioned to surround about 50% or more of the first upper semiconductor layer 511.
  • the second contact layer 541 may include at least one of Cr, Ti, Al, and Au, or may have a Cr / Ti / Al / Ti / Au multilayer structure.
  • the thickness of Cr is about 100 GPa
  • Ti is about 200 GPa
  • Al is about 600 GPa
  • Ti is about 200 GPa
  • Au is about 1000 GPa. May be, but is not limited thereto.
  • the second pad layer 523 may include Ti or Au, or may have a Ti / Au multilayer structure.
  • the second electrode 540 may further include a reflective layer.
  • the reflective layer may include at least one of Ni, Pt, Pd, Rh, W, Ti, Al, Ag, and Au, and may be formed of a multilayer including at least one of the above elements. However, it is not limited thereto.
  • the second electrode 540 may reflect light emitted from the active layer 513 included in the light emitting cell 510 through the reflective layer.
  • the light emitting diode according to the present invention includes current dispersing parts 520 and 530, and due to the current dispersing parts 520 and 530, the light emitting diodes of the light incident from the active layer 513 to the second electrode 540 are provided.
  • the critical angle can vary. Therefore, much scattering of light incident on the second electrode 540 may occur. Since the second electrode 540 may include a reflective layer, the incident light may be reflected to the light extraction surface, thereby improving light extraction efficiency of the light emitting diode.
  • the contact resistance between the second electrode 540 and the second upper semiconductor layer 521 included in the first current spreading unit 520 is higher than the contact resistance between the second electrode 540 and the lower semiconductor layer 515.
  • the contact resistance between the second electrode 540 and the third upper semiconductor layer 531 included in the second current spreading unit 530 is higher than the contact resistance between the second electrode 540 and the lower semiconductor layer 515.
  • the lower semiconductor layer 515 may be an n-type doped semiconductor layer
  • the upper semiconductor layers 511, 521, and 531 may be p-type semiconductor layers. Therefore, the contact resistance between the second electrode 540 including the metal and the lower semiconductor layer 515 may be lower than that of the upper semiconductor layers 511, 521, and 531. Accordingly, the upper semiconductor layers 511, 521, and 531 may serve as a kind of resistance in the light emitting diodes.
  • the semiconductor layer contacting the metal electrode has conductivity, so that the current flows through both the metal electrode and the semiconductor layer.
  • the upper semiconductor layers 521 and 531 included in the first and second current spreading units 520 and 530 serve as a kind of resistance as described above, the lower semiconductor layer 515 layer and the first semiconductor layer 515 and 531 are formed.
  • the area of the contact region of the second electrode 540 may be controlled. Therefore, the light emitting diode according to the present embodiment can induce a current to flow around the second electrode 540 surrounding at least a part of the light emitting cell 510, thereby improving the diffusion of the current.
  • the second electrode since the contact between the second electrode 540 and the lower semiconductor layer 515 is blocked in the region where the second current spreading unit 530 and the first current spreading unit 520 are formed, the second electrode ( The contact area between the 540 and the lower semiconductor layer 515 may be reduced. Therefore, when the contact area is reduced, the driving voltage of the light emitting diode may increase, so that the second current spreading unit 530 and the entire area of the second electrode 540 are maintained in order to maintain an appropriate driving voltage.
  • the area occupied by the sum of the area of the upper surface of the first current spreading unit 520 may be 10 to 40%.
  • the light emitting diode according to the present invention arranges the first and second current spreading units 520 and 530 within the above-described range, thereby improving current spreading in the light emitting diode and satisfying a required driving voltage. .
  • the second electrode 540 is illustrated to cover the second current spreading unit 530 in the present embodiment, the present invention is not limited thereto. Therefore, the second electrode 540 according to the present invention may cover only a part of the second electrode.
  • the first electrode 550 may be disposed on the light emitting cell 510.
  • the first electrode 550 may include a first contact layer 551 and a first pad layer 553.
  • the first electrode 550 may be positioned on the upper semiconductor layer 511 and electrically connected to the first upper semiconductor layer 511.
  • the first contact layer 551 may include at least one of Ni, Au, and Al, or may have a Ni / Au multilayer structure.
  • Ni may be formed to have a thickness of about 150 GPa and Au of about 300 GPa.
  • the second pad layer 553 may include at least one of Ti, Au, and Cr, and may have a Ti / Au / Cr / Au multilayer structure.
  • Ti may be formed to have a thickness of about 300 mW, Au about 2 m, Cr about 200 m and Au about 2.5 m, in the order described above.
  • the first electrode 550 may have a high reflectivity and form an ohmic contact with the first upper semiconductor layer 511.
  • the first bump 580 is disposed on the first electrode 550.
  • the second bump 570 is disposed on the second electrode 560.
  • the first bump 580 may include a first area A1 and a second area A2.
  • the first bump 580 may include a first concave portion and a first convex portion at an upper portion thereof.
  • the first area A1 may include the first concave portion, and thus, an upper surface of the first area A1 may correspond to a bottom surface of the first concave portion.
  • the second region A2 may include the first convex portion, and thus, an upper surface of the second region A2 may correspond to an upper surface of the first convex portion.
  • the second bump 570 may include a third region A3 and a fourth region A4.
  • the second bump 570 may include a second concave portion and a second convex portion at an upper portion thereof.
  • the third region A3 may include the second recessed portion, and thus, the top surface of the third region A3 may correspond to the bottom surface of the second recessed portion.
  • the fourth region A4 may include the second convex portion, and thus, an upper surface of the fourth region A4 may correspond to an upper surface of the second convex portion.
  • the second bump 570 and the first bump 580 may be formed of the same metal material.
  • the first and second bumps 580 and 570 may be formed in a multilayer structure, and may include, for example, an adhesive layer, a diffusion barrier layer, and a bonding layer.
  • the adhesive layer may include, for example, Ti, Cr, or Ni
  • the diffusion barrier layer may be formed of Cr, Ni, Ti, W, TiW, Mo, Pt, or a composite layer thereof, and the bonding layer may be Au or AuSn may be included.
  • the first and second bumps 580 and 570 may have a Ti / Au / Cr / Au multilayer structure. In this case, Ti is about 300 ⁇ s, Au is about 2 ⁇ m, Cr is about 200 ⁇ m, and Au is about 2.5 ⁇ m. It may be formed in a thickness.
  • the insulating layer 560 may include a silicon oxide layer and / or a silicon nitride layer.
  • the insulating layer 560 may be formed of a distributed Bragg reflector (DBR) in which oxide layers having different refractive indices are stacked.
  • DBR distributed Bragg reflector
  • the insulating layer 560 may reflect light of the inclined surface and the exposed portion of the lower semiconductor layer 515 between the upper semiconductor layer 511 and the lower semiconductor layer 515, thereby further improving the light extraction efficiency of the light emitting diode.
  • the insulating layer 560 may be formed of multiple layers of the silicon oxide layer and the silicon nitride layer or a single layer of the silicon oxide layer, and when the insulating layer 560 is a multilayer, the silicon oxide layer
  • the silver nitride layer may have a thickness of about 2400 GPa, and the silicon nitride layer may have a thickness of about 5000 GPa.
  • the silicon oxide layer may have a thickness of about 6000 GPa. However, it is not limited thereto.
  • the silicon nitride layer has a relatively excellent moisture proof property compared to the silicon oxide layer, when the insulating layer 560 is a multilayer, the moisture proof property of the light emitting diode can be further improved.
  • the first bumps and the second bumps 580 and 570 may be formed to cover a portion of the insulating layer 560 as shown. Therefore, at least a portion of the second area A2 of the first bump 580 may be disposed on the insulating layer 560. In addition, at least a portion of the fourth region A4 of the second bump 570 may be disposed on the insulating layer 560. That is, a part of the insulating layer 560 may be disposed between the first bump 580 and the first electrode 550 and / or between the second bump 570 and the second electrode 540.
  • the insulating layer 560 may include a first open area 550a exposing the first electrode 550 and a second open area 540a exposing the second electrode 540. have. Side surfaces of the insulating layer 560 surrounding the first and second open regions 550a and 540a may be exposed, and the exposed side surfaces may be exposed to the first bump 580 and / or the second bump 570. May be in contact.
  • the area of the first open area 550a is smaller than the sum of the bottom surface of the first concave portion of the first bump 580 and the top surface of the first convex portion. have.
  • the area of the second open area 540a is smaller than the sum of the bottom surface of the second concave portion of the second bump 570 and the top surface of the second convex portion. That is, in the present exemplary embodiment, the first and second bumps 580 and 570 may completely cover the first open area 550a and the second open area 540a, respectively.
  • the first and second bumps 580 and 570 according to the present invention may surround the first and second electrodes 550 and 540 together with the insulating layer 560. As a result, it is possible to prevent external moisture and the like from penetrating into the light emitting diode, thereby improving the reliability of the light emitting diode. In addition, due to the concave portion and the convex portion disposed on each of the first and second bumps 580 and 570 according to the present invention, it can be mounted with a stronger bonding force on the printed circuit board or the sub-mount substrate.
  • FIG. 9 is a cross-sectional view for describing a light emitting diode according to another exemplary embodiment of the present invention.
  • the light emitting diode according to the present exemplary embodiment is identical to the light emitting diode according to the exemplary embodiment except for the shape and arrangement of the second current spreading unit 530. Therefore, duplicate descriptions of the same components are omitted.
  • the second current spreader 530 includes at least one dispersion, and the dispersion has a rectangular shape having a long surface in the vertical direction. As a result, the current in the light emitting diode is dispersed in the region in which the second current spreading unit 530 is formed, thereby improving current spreading.
  • the dispersions included in the second current spreading unit 530 may be disposed at regular intervals with the same shape and may be disposed at different shapes and intervals.
  • the dispersions included in the second current spreading unit 530 may be disposed closer to the first current spreading unit 520 than to the light emitting cell 510. That is, the distance between the dispersion closest to the light emitting cell 510 and the light emitting cell 510 among the dispersions included in the second current spreading unit 530 is a dispersion included in the second current spreading unit 530.
  • the distance between the first current spreading unit 520 and the dispersion closest to the first current spreading unit 520 may be wider.
  • FIG. 10 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
  • the light emitting diode is a light emitting diode according to the embodiments of the present invention described above, and the light emitting diode is mounted on the sub-mount substrate 200.
  • the submount substrate 200 includes a substrate 230 and an electrode pattern 220 disposed on the substrate 230.
  • the substrate 230 may be any one of BeO, SiC, Si, Ge, SiGe, AlN, and a ceramic substrate having excellent thermal conductivity.
  • the present invention is not limited thereto, and may be a substrate including not only an insulating material having high thermal conductivity but also a metal material having high thermal conductivity and excellent electrical conductivity.
  • the electrode pattern 220 is formed to correspond to the shape of the second bump 570 and the first bump 580, and the second bump 570 and the first bump 580 are bonded to the electrode patterns 220, respectively. do. In this case, thermal or ultrasonic waves may be used or bonding may be performed using heat and ultrasonic waves at the same time. In addition, each of the electrode patterns 220 and the first bump 580 or the second bump 570 may be bonded using solder paste.
  • first and second bumps 580 and 570 and the electrode pattern 220 may be bonded in various ways including the bonding method described above in the bonding region 210.
  • FIG. 11 is a perspective view illustrating a light emitting diode package according to an embodiment of the present invention.
  • the LED package includes a substrate including a first frame 311, a second frame 313, and an insulating layer 315 positioned between the first and second frames 311 and 313. And a light emitting diode 600, a sub-mount substrate 200, and a wire 330 mounted in a cavity 317 formed on an upper surface of the substrate 300.
  • the light emitting diode 600 is a light emitting diode according to the embodiments of the present invention described above.
  • the first and second frames 311 and 313 may be metal frames or ceramic frames.
  • the first and second frames 311 and 313 may include a single metal or an alloy including Al, Ag, Cu, Ni, and the like, which have excellent performance in electrical characteristics and heat dissipation.
  • the insulating layer 315 may include an adhesive part and has a function of fixing the first and second frames 311 and 313 to both sides. Power may be supplied to the light emitting diode 600 by connecting power to the pads through the wire 330.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 신뢰성이 향상된 발광 다이오드에 대한 것이다. 구체적으로, 상기 발광 다이오드는 상온은 물론 고온 및/또는 고습 환경에서 향상된 신뢰성을 가지며, 발광 특성의 저하가 방지될 수 있다. 또한, 본 발명은 전류 확산을 향상시킬 수 있는 구조체를 포함하고, 상기 구조체를 통한 광 반사를 이용하여 광 추출 효율이 향상된 발광 다이오드에 대한 것이다.

Description

발광 다이오드
본 발명은 발광 다이오드에 대한 것이다. 더욱 상세하게는, 본 발명은 신뢰성이 향상된 발광 다이오드에 대한 것이다.
발광 다이오드는 전자와 정공의 재결합으로 발생되는 광을 발하는 무기 반도체 소자로서, 최근, 디스플레이, 자동차 램프, 일반 조명 등의 여러 분야에서 사용되고 있다. 발광 다이오드는 전극, 전극과 전기적으로 연결된 범프, 및 범프 주변의 절연층을 포함할 수 있다. 이 때, 범프와 절연층 사이에 일정한 간격이 발생하여, 발광 다이오드의 신뢰성이 문제될 수 있다. 또한, 전극들의 수평 배치로 인하여 고전류 구동 시, 특정 영역에 전류가 밀집되는 문제가 발생할 수 있다.
본 발명이 해결하고자 하는 과제는 신뢰성 및 구조적 안정성이 향상된 발광 다이오드를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 고온 및/또는 고습 환경에서 발광 특성 저하가 방지되는 발광 다이오드를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 기판과 범프 간의 결합력이 강화된 발광 다이오드를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 광 효율이 향상되고, 활성층 내의 영역에 따른 발광강도의 편차가 해소된 발광 다이오드를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 발광 다이오드 내의 전류 확산을 향상시킬 수 있는 구조체를 포함하고, 상기 구조체를 통한 광 반사를 이용하여 광 추출 효율이 향상된 발광 다이오드를 제공하는 것이다.
본 발명의 일 실시예에 따른 발광 다이오드는 기판; 상기 기판 상에 위치하고, 하부 반도체층, 상기 하부 반도체층의 일 영역 상에 배치된 상부 반도체층 및 상기 하부 반도체층과 상기 상부 반도체층 사이에 배치된 활성층을 포함하는 발광셀; 상기 상부 반도체층 상에 배치된 제1 전극; 상기 하부 반도체층 상에 배치된 제2 전극; 상기 제1 전극의 일부를 노출시키는 제1 개방 영역을 포함하는 제1 절연층; 상기 제1 절연층 상에 배치된 제2 절연층; 및 상기 제1 개방 영역을 통해 제1 전극과 오믹 컨택하는 제1 범프를 포함하되, 상기 제1 범프는 상부에 제1 오목부와 제1 볼록부를 포함하고, 상기 제1 범프는 상면에 상기 제1 오목부의 바닥면을 포함하는 제1 영역과 상면에 상기 제1 볼록부의 상면을 포함하는 제2 영역을 포함하며, 상기 제1 영역의 적어도 일부 영역은 상기 제1 개방 영역 상에 배치되고, 상기 제2 영역의 적어도 일부는 제2 절연층 상에 배치될 수 있다.
나아가, 상기 제1 오목부의 바닥면의 면적은 상기 제1 개방 영역을 통해 노출된 상기 제1 전극의 면적과 비례할 수 있다.
또한, 상기 제1 오목부의 깊이는 상기 제1 전극 상에 배치된 상기 제1 절연층 및 상기 제2 절연층의 두께에 비례할 수 있다.
몇몇 실시예들에 있어서, 상기 제1 볼록부의 상면의 면적 및 상기 제1 오목부의 바닥면 면적의 합은 적어도 상기 제1 개방 영역을 통해 노출된 상기 제1 전극의 면적보다 클 수 있다.
또한, 상기 제1 전극과 상기 제1 범프 사이에 상기 제1 절연층 및 상기 제2 절연층의 일부가 배치될 수 있다.
상기 제1 개방 영역을 둘러싸는 상기 제1 절연층 및 상기 제2 절연층의 측면과 제1 범프의 하단 측면의 적어도 일부는 맞닿아 있을 수 있다.
나아가, 상기 제1 볼록부는 상기 제1 오목부를 둘러쌀 수 있다.
한편, 상기 제1 절연층은 상기 제2 전극의 일부를 노출시키는 제2 개방 영역을 포함하고, 상기 제2 개방 영역을 통해 상기 제2 전극과 오믹 컨택하는 제2 범프를 더 포함하되, 상기 제2 범프는 상부에 제2 오목부와 제2 볼록부를 포함하고, 상기 제2 범프는 상면에 상기 제2 오목부의 바닥면을 포함하는 제3 영역과 상면에 상기 제2 볼록부의 상면을 포함하는 제4 영역을 포함하며, 상기 제3 영역의 적어도 일부 영역은 상기 제2 개방 영역 상에 배치되고, 상기 제4 영역의 적어도 일부는 제2 절연층 상에 배치될 수 있다.
또한, 상기 제2 오목부의 바닥면의 면적은 상기 제2 개방 영역을 통해 노출된 상기 제2 전극의 면적과 비례할 수 있다.
상기 제2 오목부의 깊이는 상기 제2 전극 상에 배치된 상기 제1 절연층 및 상기 제2 절연층의 두께에 비례할 수 있다.
한편, 상기 제2 볼록부의 상면의 면적 및 상기 제2 오목부의 바닥면 면적의 합은 적어도 상기 제2 개방 영역을 통해 노출된 상기 제2 전극의 면적보다 클 수 있다.
몇몇 실시예들에 있어서, 상기 제2 전극과 상기 제2 범프 사이에 상기 제1 절연층 및 상기 제2 절연층의 일부가 배치될 수 있다.
나아가, 상기 제2 개방 영역을 둘러싸는 상기 제1 절연층 및 상기 제2 절연층의 측면과 제2 범프의 하단의 측면의 적어도 일부는 맞닿아 있을 수 있다.
상기 제2 볼록부는 상기 제2 오목부를 둘러쌀 수 있다.
또한, 상기 제2 절연층은 실리콘 질화물층을 포함할 수 있다.
한편, 상기 발광셀은 자외선 파장 영역의 광을 방출할 수 있다.
상기 기판은 상기 발광셀이 배치된 일면과, 상기 일면과 반대되는 타면을 포함하고, 상기 타면은 요철부를 포함할 수 있다.
상기 기판은 투명 사파이어 기판일 수 있다.
또한, 상기 제1 절연층은 분포 브래그 반사기를 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 발광 다이오드는 기판; 상기 기판 상에 배치된 하부 반도체층; 상기 하부 반도체층의 일 영역 상에 상에 배치된 제1 상부 반도체층 및 상기 하부 반도체층과 상기 제1 상부 반도체층 사이에 배치된 활성층을 포함하는 발광셀; 상기 하부 반도체층의 다른 영역 상에 배치된 제3 상부 반도체층 및 상기 하부 반도체층과 상기 제3 상부 반도체층 사이에 배치된 활성층을 포함하는 제2 전류 분산부; 상기 발광셀 상에 배치되어, 상기 제1 상부 반도체층과 전기적으로 연결된 제1 전극; 및 상기 발광셀과 이격되어 배치되어, 상기 하부 반도체층과 전기적으로 연결된 제2 전극을 포함하되, 상기 제2 전극은 연장되어 상기 제2 전류 분산부의 적어도 일부를 덮고, 상기 발광셀의 적어도 일부를 둘러싸되, 상기 제2 전극과 상기 제3 상부 반도체층과의 접촉저항은 상기 제2 전극과 상기 하부 반도체층과의 접촉저항보다 클 수 있다.
상기 하부 반도체층의 다른 영역을 중심으로, 상기 하부 반도체층의 일 영역과 대향되는 상기 하부 반도체층의 또 다른 영역 내에 배치되는 제1 전류 분산부를 더 포함하되, 상기 제1 전류 분산부는 상기 하부 반도체층의 또 다른 영역 상에 배치되는 제2 상부 반도체층 및 상기 하부 반도체층과 상기 제2 상부 반도체층 사이에 배치된 활성층을 포함할 수 있다.
상기 제2 전극과 상기 제2 상부 반도체층과의 접촉저항은 상기 제2 전극과 상기 하부 반도체층과의 접촉저항보다 클 수 있다.
상기 제2 전극은 상기 제1 전류 분산부 상에 배치될 수 있다.
상기 제2 전류 분산부는 상기 발광셀보다 상기 제1 전류 분산부와 인접하게 배치될 수 있다.
상기 제1 전류 분산부는 상기 발광셀과 동일한 높이를 가질 수 있다.
상기 제1 전류 분산부 및 상기 제2 전류 분산부 각각의 상부면 면적의 합은 제2 전극 면적의 10 내지 40%일 수 있다.
상기 제2 전류 분산부는 복수개의 분산체들을 포함하고, 상기 분산체들은 서로 균일한 간격을 가지고 이격될 수 있다.
상기 제1 전극 및 상기 제2 전극 상에 배치되어, 상기 제1 전극을 노출시키는 제1 개방영역 및 상기 제2 전극을 노출시키는 제2 개방영역을 포함하는 절연층을 더 포함할 수 있다.
상기 절연층은 실리콘 질화물층 및 실리콘 산화물층 중 적어도 하나를 포함할 수 있다.
상기 절연층은 분포 브래그 반사기를 포함할 수 있다.
상기 제1 개방 영역을 통해 제1 전극과 전기적으로 연결되는 제1 범프; 및 상기 제2 개방 영역을 통해 제2 전극과 전기적으로 연결되는 제2 범프를 더 포함할 수 있다.
상기 제1 범프는 상부에 제1 오목부와 제1 볼록부를 포함하고, 상기 제1 범프는 상면에 상기 제1 오목부의 바닥면을 포함하는 제1 영역과 상면에 상기 제1 볼록부의 상면을 포함하는 제2 영역으로 형성되고, 상기 제1 영역의 적어도 일부 영역은 상기 제1 개방 영역 상에 배치되고, 상기 제2 영역의 적어도 일부는 절연층 상에 배치될 수 있다.
상기 제1 오목부의 바닥면의 면적은 상기 제1 개방 영역을 통해 노출된 상기 제1 전극의 면적과 비례할 수 있다.
상기 제1 오목부의 깊이는 상기 제1 전극 상에 배치된 절연층의 두께에 비례할 수 있다.
상기 제1 볼록부의 상면의 면적 및 상기 제1 오목부의 바닥면 면적의 합은 적어도 상기 제1 개방 영역을 통해 노출된 상기 제1 전극의 면적보다 클 수 있다.
상기 제1 볼록부는 상기 제1 오목부를 둘러쌀 수 있다.
상기 제1 전극과 상기 제1 범프 사이 및 상기 제2 전극과 상기 제2 범프 사이에 절연층의 일부가 배치될 수 있다.
상기 제1 개방 영역을 둘러싸는 상기 절연층의 측면과 상기 제1 범프의 측면의 적어도 일부는 맞닿아 있을 수 있다.
상기 제2 전극은 상기 발광셀의 활성층에서 방출되는 광을 반사시키는 반사층을 포함할 수 있다.
본 발명에 따른 발광 다이오드는 상온은 물론 고온 및/또는 고습 환경에서 신뢰성이 향상되어, 발광 특성의 저하가 방지될 수 있다. 또한, 상기 발광 다이오드는 기판과 범프 간의 결합력이 강화되어, 기판과 범프의 결합 영역에 하중이 반복적으로 가해지는 경우에도, 발광 다이오드와 기판과의 분리가 방지될 수 있다. 또한, 본 발명에 따른 발광 다이오드는 전류 분산 구조체의 역할을 하는 전류 분산부를 포함한다. 따라서, 전극 금속 위주의 전류 흐름을 유도함과 동시에, 전류를 분산 시킴으로 발광 다이오드 내의 전류 확산을 향상시킬 수 있다. 그러므로, 발광 다이오드의 광 효율을 향상시킬 수 있으며, 발광강도의 편차를 감소시킬 수 있다. 또한, 상기 전류 분산부는 별도의 추가 공정 없이, 제조될 수 있으므로, 제조 비용 및 시간을 절감할 수 있다.
도 1은 발광 다이오드를 설명하기 위한 평면도 및 단면도이다.
도 2는 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 평면도 및 단면도이다.
도 3은 본 발명의 일 실시예에 발광 소자를 설명하기 위한 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 발광 다이오드를 설명하기 위한 평면도 및 단면도이다.
도 5는 본 발명의 일 실시예에 따른 발광 다이오드 패키지를 설명하기 위한 사시도이다.
도 6는 본 발명의 개선된 효과를 설명하기 위한 그래프들이다.
도 7은 발광 다이오드를 설명하기 위한 개략적인 단면도이다.
도 8는 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 평면도 및 단면도이다.
도 9은 본 발명의 다른 실시예에 따른 발광 다이오드를 설명하기 위한 평면도 및 단면도이다.
도 10는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.
도 11는 본 발명의 일 실시예에 따른 발광 다이오드 패키지를 설명하기 위한 사시도이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 발명이 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 있는 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 발광 다이오드를 설명하기 위한 단면도이다.
도 1을 참조하면, 발광 다이오드는 H-형태의 콘택층(14)를 포함하고 있다. 이어서, 상기 콘택층(14) 상에는 전류 인가를 위한 범프가 형성될 수 있으며, 범프 형성 영역을 제외한 상부층(16) 상에 절연층이 형성될 수 있다. 그러나, 범프 및 절연층 형성 공정에 있어서, 범프와 절연층 사이에는 일정한 간격이 존재한다. 이러한 간격은 발광 다이오드의 제조 공정 상의 이유로 존재하지만, 이로 인해, 발광 다이오드의 신뢰성이 문제될 수 있다. 발광 다이오드, 특히 자외선 발광 다이오드는 고온 및/또는 고습에 취약하며, 이로 인해 발광 다이오드의 신뢰성이 문제된다. 발광 다이오드에 존재하는 상기 간격은 습기 및/또는 외부 공기의 통로로 이용될 수 있는 문제점이 있다.
한편, 발광 다이오드는 n형 및 p형 범프를 가지며, 상기 범프들은 서브 마운트 기판 상에 실장된다. 그러나, n형 및 p형 범프와 서브 마운트 기판의 결합 영역에 하중이 반복적으로 가해지는 경우에, 상기 범프들과 서브 마운트 기판 간의 결합력이 약화되어 발광 다이오드와 기판이 분리되는 문제점이 발생할 수 있다. 따라서, 상술한 문제점을 해결하여 신뢰성 및 구조적 안정성이 향상된 발광 다이오드의 개발이 요구된다.
한편, 발광 다이오드는 전극이 배치되는 위치, 또는 상기 전극이 외부 리드와 연결되는 방식 등에 따라서 수평형 발광 다이오드, 수직형 발광 다이오드 또는 플립칩(flip-chip)형 발광 다이오드 등으로 분류될 수 있다.
수평형 발광 다이오드는 제조 방법이 비교적 간단하여 가장 폭넓게 사용된다. 이러한 수평형 발광 다이오드는 성장기판이 하부에 그대로 형성되어 있다. 상기 발광 다이오드의 성장 기판으로서 사파이어 기판이 가장 폭 넓게 사용되는데, 사파이어 기판은 열전도성이 낮아서 발광 다이오드의 열방출이 어렵다. 이에 따라, 발광 다이오드의 접합 온도가 높아지며, 내부 양자 효율이 저하된다.
상술한 수평형 발광 다이오드의 문제점을 해결하고자, 수직형 발광 다이오드 또는 플립칩형 발광 다이오드가 개발되고 있다.
도 2는 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 평면도 및 단면도이다.
도 2의 (a)는 상기 발광 다이오드의 평면도이며, 도 2의 (b)는 도 2의 (a) 평면도의 선 A-A에 따라 바라본 단면도이다.
도 2를 참조하면, 상기 발광 다이오드는 성장 기판(100), 하부 반도체층(115), 활성층(113), 상부 반도체층(111)을 포함한다. 하부 반도체층(115) 상에 컨택층(121), 패드층(123) 및 전극층(125)가 배치된다. 제2 전극(120b)는 컨택층(121), 패드층(123) 및 전극층(125)을 포함할 수 있다.
상기 제2 전극(120b)이 배치되고, 제2 전극(120b) 상에 제2 범프(130b)가 배치된다. 상부 반도체층(111) 상에 반사층(127) 및 장벽층(129)이 배치되면, 반사층(127) 및 장벽층(129)을 통해 제1 전극(120a)이 형성될 수 한다. 상기 제1 전극(120a) 상에 제1 범프(130a)가 배치된다. 제1 범프(130a) 및 제2 범프(130b)가 배치된 영역을 제외하고, 상기 발광 다이오드의 전면은 제1 절연층(128) 및 제2 절연층(129)로 덮일 수 있다. 한편, 하부 반도체층(115), 활성층(113) 및 상부 반도체층(111)을 통해 발광셀(110)이 형성될 수 있다.
성장 기판(100)은 육방정계 결정 구조를 갖는 기판으로서, 질화갈륨계 예피층을 성장시키지 위한 성장 기판, 예컨대 사파이어, 탄화 실리콘, 질화갈륨 기판일 수 있다. 특히, 심자외선 발광 다이오드를 제공하기 위해 성장 기판(100)은 사파이어 기판일 수 있다. 성장 기판(100)은 일면, 상기 일면의 반대면인 타면 및 상기 일면과 타면을 연결하는 측면을 포함한다. 상기 일면은 반도체층들이 성장되는 면이며, 상기 타면은 활성층(113)에서 생성된 광이 외부로 방출되는 면이다. 성장 기판(100)의 측면은 상기 일면 및 타면에 수직한 면일 수 있으나, 경사진 면을 포함할 수도 있다. 성장기판(100)의 일면에 하부 반도체층(115)을 형성하기 전에 사파이어 기판과의 격자 부정합을 줄이기 위하여, AlN 또는 GaN을 포함하는 버퍼층(미도시)을 형성할 수 있다.
또한, 성장 기판(100)은 전체적으로 사각형 형상일 수 있으나, 기판의 형상은 이에 한정되는 것은 아니다. 한편, 본 실시예에 있어서, 성장 기판(100)의 두께는 성장 기판(100)의 두께는 100㎛를 초과할 수 있으며, 특히 150㎛ 내지 400㎛ 범위 내의 값을 가질 수 있다. 성장 기판(100)이 두꺼울수록 광의 추출 효율이 향상된다. 한편, 성장 기판(100)의 측면은 브레이킹 면을 포함할 수 있다.
하부 반도체층(115)은 성장 기판(100)의 일면 상에 위치한다. 하부 반도체층(115)은 성장 기판(100)의 일면의 전면을 덮을 수 있으나, 이에 한정되는 것은 아니며, 성장 기판(100)의 가장자리를 따라 일면이 노출되도록 하부 반도체층(115)이 성장 기판(100)의 상부영역 내에 한정되어 위치할 수도 있다.
상부 반도체층(111)은 하부 반도체층(115)의 일 영역 상부에 위치하며, 하부 반도체층(115)과 상부 반도체층(111) 사이에 활성층(113)이 위치한다. 상부 반도체층(111)은 H 형상 또는 좁은 허리를 가지는 아령 형상을 가짐으로써, 높은 전류밀도 조건에서 우수한 광 출력 특성을 나타낼 수 있다.
하부 반도체층(115)과 상부 반도체층(111)은 III-V 계열 화합물 반도체를 포함할 수 있고, 예를 들어, (Al, Ga, In)N과 같은 질화물계 반도체를 포함할 수 있다. 하부 반도체층(115)은 n형 불순물 (예를 들어, Si)이 도핑된 n형 반도체층을 포함할 수 있고, 상부 반도체층(111)은 p형 불순물 (예를 들어, Mg)이 도핑된 p형 반도체층을 포함할 수 있다. 또한, 그 반대일 수도 있다. 나아가, 하부 반도체층(115) 및/또는 상부 반도체층(111)은 단일층일 수 있고, 또한 다중층을 포함할 수도 있다. 예를 들어, 하부 반도체층(115) 및/또는 상부 반도체층(111)은 클래드층 및 컨택층을 포함할 수 있고, 초격자층을 포함할 수도 있다.
활성층(113)은 다중양자우물 구조(MQW)를 포함할 수 있으며, 상기 다중양자우물구조에서 원하는 피크 파장의 광을 방출하도록, 상기 다중양자우물 구조를 이루는 원소 및 그 조성이 조절될 수 있다. 예를 들어, 활성층(113)의 우물층은 InxGa(1-x)N (0=x=1)과 같은 삼성분계 반도체층일 수 있고, 또는 AlxInyGa(1-x-y)N (0=x=1, 0=y=1, 0=x+y=1)과 같은 사성분계 반도체층일 수 있으며, 이때, x 또는 y의 값을 조정하여 원하는 피크 파장의 광을 방출하도록 할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
상술한 반도체층들(111, 113, 115)은 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD; Chemical Vapor Deposition), 플라즈마 화학 증착법(PCVD; Plasma-enhanced Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy) 등을 포함한 다양한 증착 및 성장 방법을 통해 형성될 수 있다.
이하, III-V 계열 화합물 반도체를 포함하는 반도체층들(111, 113, 115)과 관련된 주지 기술내용의 설명은 생략한다.
한편, 컨택층(121), 패드층(123) 및 전극층(125)을 포함하는 제2 전극(120b)은 상부 반도체층(111) 주위를 둘러쌀 수 있다. 도 2에 있어서, 제2 전극(120b)이 상부 반도체층(111)의 주위 전체를 둘러싸는 것으로 도시하였으나, 반드시 이에 한정되는 것은 아니다. 제2 전극(120b)은 제2 범프(130b)가 위치한 곳으로부터 상부 반도체층(111)의 양측으로 연장하여 상부 반도체층(111)의 약 50% 이상을 둘러쌀 수 있다. 컨택층(121)은 Cr, Ti, Al 및 Au 중 적어도 하나를 포함할 수 있으며, 또는, Cr/Ti/Al/Ti/Au 다층구조일 수도 있다. 패드층(123)은 Ti 또는 Au를 포함할 수 있으며, 또는, Ti/Au 다층구조일 수 있다. 전극층(125)은 Ti 또는 Au를 포함할 수 있으며, 또는, Ti/Au 다층구조일 수 있다.
제2 전극(120b)은 또한, 상부 반도체층(111)으로부터 균일하게 이격되어 위치할 수 있다. 이에 따라, 전류가 집중되는 것을 방지할 수 있다. 나아가, 제2 전극(120b)과 상부 반도체층(111) 사이에 하부 반도체층(115) 표면에 요철부(도시하지 않음)가 형성될 수 있다. 상기 요철부에 의해 상부 반도체층(111)의 표면을 따라 전류가 흐르는 것을 방지할 수 있어 전류를 더욱 분산시킬 수 있다.
한편, 반사층(127) 및 장벽층(129)은 제1 전극(120a)을 형성할 수 있으며, 상기 제1 전극(120a)은 상부 반도체층(111) 상에 위치하여 상부 반도체층(111)에 전기적으로 연결된다. 반사층(127)은 Ni, Au 및 Al 중 적어도 하나를 포함할 수 있으며, 또는, Ni/Au 다층구조일 수 있다. 장벽층(129)은 Ti 또는 Au를 포함할 수 있으며, 또는, Ti/Au 다층구조일 수 있다. 상기 제1 전극(120a)은 높은 반사도를 가지면서, 상부 반도체층(111)과 오믹 접촉을 형성할 수 있다.
제2 범프(130b)는 제2 전극(120b) 상에 위치한다. 제2 범프(130b)는 상부 반도체층(111)으로부터 이격돠어 위치한다. 제1 범프(130a)는 반사층(127)과 장벽층(129)을 포함하는 제1 전극(120a) 상에 위치한다.
제1 범프(130a)는 제1 영역(A1)과 제2 영역(A2)을 포함할 수 있다. 제1 범프(130a)는 상부에 제1 오목부 및 제1 볼록부를 포함할 수 있다. 상기 제1 영역(A1)은 상기 제1 오목부를 포함할 수 있으며, 따라서, 제1 영역(A1)의 상면은 제1 오목부의 바닥면과 대응될 수 있다. 상기 제2 영역(A2)는 상기 제1 볼록부를 포함할 수 있으며, 따라서, 제2 영역(A2)의 상면은 제1 볼록부의 상면과 대응될 수 있다.
제2 범프(130b)는 제3 영역(A3)과 제4 영역(A4)을 포함할 수 있다. 제2 범프(130b)는 상부에 제2 오목부 및 제2 볼록부를 포함할 수 있다. 상기 제3 영역(A3)은 상기 제2 오목부를 포함할 수 있으며, 따라서, 제3 영역(A3)의 상면은 제2 오목부의 바닥면과 대응될 수 있다. 상기 제4 영역(A4)는 상기 제2 볼록부를 포함할 수 있으며, 따라서, 제4 영역(A4)의 상면은 제2 볼록부의 상면과 대응될 수 있다.
상기 제2 범프(130b) 및 제1 범프(130a)는 동일한 금속 재료로 형성될 수 있다. 또한, 상기 제1 및 제2 범프(130a, 130b)는 다층 구조로 형성될 수 있으며, 예컨대 접착층, 확산방지층 및 본딩층을 포함할 수 있다. 상기 접착층은 예를 들어, Ti, Cr 또는 Ni을 포함할 수 있으며, 확산방지층은 Cr, Ni, Ti, W, TiW, Mo, Pt 또는 이들의 복합층으로 형성될 수 있고, 본딩층은 Au 또는 AuSn을 포함할 수 있다.
한편, 제1 절연층(128)이 제1 범프(130a) 및 제2 범프(130b)가 배치된 영역을 제외하고, 상기 하부 반도체층(115), 활성층(113), 상부 반도체층(111), 제2 전극(120b), 반사층(127) 및 장벽층(129)을 덮어 보호한다. 제1 절연층(128)은 실리콘 산화물층이나 실리콘 질화물층의 단일층으로 형성될 수 있다. 나아가, 제1 절연층(128)은 굴절률이 서로 다른 산화물층들을 적층한 분포 브래그 반사기(DBR)로 형성될 수도 있다. 따라서, 제1 전극(121)과 상부 반도체층(111) 사이의 영역에서 광을 반사시킬 수 있어, 발광 다이오드의 광 추출 효율을 더욱 향상시킬 수 있다. 또한, 제1 절연층(128) 상에 제2 절연층(129)가 배치될 수 있다. 제2 절연층(129)는 실리콘 산화물층이나 실리콘 질화물층의 단일층으로 형성될 수 있고, 특히 본 실시예에 있어서 제2 절연층(129)는 실리콘 질화물층일 수 있다. 실리콘 질화물층은 실리콘 산화물층과 비교하여, 방습특성이 상대적으로 우수하므로, 제2 절연층(129)가 실리콘 질화물층인 경우에는, 발광 다이오드의 방습특성을 향상시킬 수 있다.
제1 절연층(128) 및 제2 절연층(129)은 각각 2000 내지 7000Å두께를 가질 수 있다. 제1 절연층(128) 및 제2 절연층(129) 각각의 두께가 2000Å미만인 경우에는, 방습특성의 향상이 어렵고, 7000Å초과인 경우에는, 절연층들(127, 129) 전체 두께가 과도하게 두꺼워진다. 또한, 제1 절연층(128) 및 제2 절연층(129)의 전체 두께는 1㎛ 이하일 수 있으나, 상기 두께들에 제한되는 것은 아니다.
본 실시예에 있어서, 제1 및 제2 범프(130a, 130b)는 상기 제1 및 제2 절연층(128, 129)의 일부를 덮도록 형성될 수 있다. 따라서, 제1 범프(130a)의 제2 영역(A2)의 적어도 일부는 제2 절연층(129) 상에 배치될 수 있다. 더 나아가, 제2 범프(130b)의 제4 영역(A4)의 적어도 일부는 제2 절연층(129) 상에 배치될 수 있다. 즉, 제1 및 제2 절연층(128, 129)의 일부는 제1 범프(130a)와 제1 전극(120a) 사이 또는 제2 범프(130b)와 제2 전극(120b) 사이에 배치될 수 있다.
도 2를 다시 참조하면, 제1 및 제2 개방영역(140a, 140b)는 제1 및 제2 절연층(128, 129)의 일부가 개방되어, 제1 및 제2 개방영역(140a, 140b)을 각각 둘러싸는 제1 및 제2 절연층(128, 129)의 측면이 노출될 수 있으며, 상기 노출된 제1 및 제2 절연층(128, 129)의 측면은 제1 범프(130a) 및/또는 제2 범프(130b)와 맞닿아 있을 수 있다.
또한, 도 2의 (a) 평면도를 다시 검토하면, 제1 개방영역(140a)의 면적은 제1 범프(130a)의 제1 오목부의 바닥면 및 제1 볼록부의 상면의 합보다 작음을 알 수 있다. 또한, 제2 개방영역 (140b)의 면적은 제2 범프(130b)의 제2 오목부의 바닥면 및 제2 볼록부의 상면의 합보다 작음을 알 수 있다. 즉, 본 실시예에 있어서, 제1 및 제2 범프(130a, 130b)는 각각 제1 개방영역(140a) 또는 제2 개방영역(140b)을 완전히 덮을 수 있다.
또한, 제1 범프(130b) 상면의 길이는 제2 개방영역(140b)으로 노출된 제1 전극(120b) 상면의 길이보다 14 내지 18㎛ 더 길고, 제1 범프(130b) 상면의 길이와 상기 제2 개방영역(140b)으로 노출된 상기 제1 전극(120b) 상면의 길이는 서로 중첩되는 길이일 수 있다.
또한, 상기 발광 다이오드는, 제1 범프(130b)와 제2 범프(130a)의 측면을 감싸는 수지(미도시)를 더 포함할 수 있다. 상기 발광 다이오드가 상기 수지를 더 포함하는 경우, 제1 범프(130b)와 제2 범프(130a)는 상기 수지에 매립된 형태로 배치될 수 있고, 이때, 제1 범프(130b)와 제2 범프(130a)의 상면은 노출될 수 있다.
본 발명은 제1 및 제2 절연층(128, 129)과 제1 및 제2 범프(130a, 130b) 사이의 간격이 없다. 따라서, 본 발명의 제1 및 제2 전극(120a, 120b)은 완벽하게 실링(sealing)될 수 있다. 이에 따라, 외부의 습기 등이 발광 다이오드 내부로 침투하는 것을 방지할 수 있으므로, 발광 다이오드의 신뢰성을 향상시킬 수 있다. 또한, 본 실시예에 있어서, 제1 및 제2 절연층(123, 125)의 다중층으로 발광 다이오드 전면을 덮으므로, 더욱 효과적으로 습기 등의 유입을 차단할 수 있다.
또한, 제1 및 제2 범프(130a, 130b) 각각의 오목부의 바닥면의 면적은 하단의 제1 및 제2 개방영역(140a, 140b)으로 노출되는 제1 전극(120a) 및 제2 전극(120b) 각각의 면적과 비례하며, 상기 오목부의 깊이는 제1 전극(120a) 또는 제2 전극(120b) 상에 배치된 제1 및 제2 절연층(128, 129)의 두께와 비례할 수 있다.
본 실시예에 있어서, 제1 및 제2 범프(130a, 130b) 각각의 상부에 배치된 오목부 및 볼록부로 인하여, 인쇄회로기판 또는 서브 마운트 기판 상에 실장 시 보다 강한 결합력을 보일 수 있다.
도 3은 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.
도 3을 참조하면, 발광 다이오드(400)는 상술한 본 발명의 일 실시예에 따른 발광 다이오드이며, 발광 다이오드(400)는 서브 마운트 기판(200) 상에 실장된다.
서브 마운트 기판(200)은 기판(230) 및 기판(230) 상에 배치된 전극패턴(220)을 포함한다. 기판(230)은 열전도성이 우수한 BeO, SiC, Si, Ge, SiGe, AlN 및 세라믹 기판 중 어느 하나일 수 있다. 그러나, 이에 한정되지 않고, 열전도율이 큰 절연 물질은 물론, 열전도율이 큰 전기 전도성이 우수한 금속성 물질을 포함하는 기판일 수 있다.
전극패턴(220)은 제2 범프(130a) 및 제1 범프(130b)의 형상에 대응하도록 형성되면, 전극패턴(220) 각각에 제2 범프(130a) 및 제1 범프(130b)가 각각 본딩된다. 이때, 열 또는 초음파(ultrasonic)를 이용하거나, 열과 초음파를 동시에 사용하여 본딩할 수 있다. 또는, 솔더 페이스트를 사용하여 본딩될 수 있다.
제1 및 제2 범프(130a, 130b)들과 전극패턴(220)은 본딩 영역(210)을 통해 상술한 바와 같은 다양한 본딩 방법을 통해 본딩될 수 있다.
도 4는 본 발명의 다른 실시예에 따른 발광 다이오드를 설명하기 위한 평면도 및 단면도이다. 도 4의 실시예는 도 2의 실시예와 비교하여, 제1 및 제2 개방 영역의 형태를 제외하고 동일하다. 따라서, 중복되는 설명은 생략한다.
도 4를 참조하면, 제1 개방영역(140a) 및 제2 개방영역(140b) 각각은 복수개의 개방영역을 포함할 수 있다. 즉, 도시된 바와 같이, 제1 개방영역(140a)는 제1 전극 (130a)의 일부를 노출시키는 복수개의 개방영역들을 포함하고, 제2 개방영역(140b)는 제2 전극(130b)의 일부를 노출시키는 복수개의 개방영역들을 포함할 수 있다. 본 실시예에 있어서, 상기 형태를 가지는 개방영역(140a, 140b)을 통하여, 발광 다이오드의 구동 전압을 낮출 수 있다.
본 실시예에 있어서, 제1 개방영역(140a)는 다섯 개의 개방영역을 포함하고, 제2 개방영역(140b)는 세 개의 개방영역을 포함하고 있지만, 개방영역의 개수 및 배치 형태는 이에 제한되지 않는다.
도 5는 본 발명의 일 실시예에 따른 발광 다이오드 패키지를 설명하기 위한 사시도이다.
도 5를 참조하면, 상기 발광 소자 패키지는 제1 프레임(311), 제2 프레임(313) 및 상기 제1 및 제2 프레임(311, 313) 사이에 위치하는 절연층(315)을 포함하는 기판(300), 상기 기판(300)의 상면에 형성된 캐비티(317) 내에 실장된 발광 다이오드(400) 및 서브 마운트 기판(200) 및 와이어(330)을 포함한다.
발광 다이오드(400)는 상술하여 설명한 본 발명의 실시예들에 따른 발광 다이오드이다.
제1 및 제2 프레임(311)은 금속 프레임 또는 세라믹 프레임일 수 있다. 제1 및 제2 프레임(311)이 금속 프레임인 경우에는, 전기적 특성과 방열에 우수한 Al, Ag, Cu, Ni 등을 포함하는 단일 금속 또는 합금을 포함할 수 있다.
절연층(315)은 접착부를 포함할 수 있으며, 제1 및 제2 프레임(311, 313)을 양측에 고정시키는 기능을 갖는다. 와이어(330)를 통해, 패드들과 전원을 연결하여 발광 다이오드(400)에 전원이 공급될 수 있다.
도 6는 본 발명의 개선된 효과를 설명하기 위한 그래프들이다.
도 6는 1000시간 신뢰성 테스트 이후의 결과를 나타내는 그래프들이다. 도 1에 따른 발광 다이오드(비교예)와 도 2에 따른 발광 다이오드(실시예)는 동일 사이즈이며, Si 기판 상에 TDK 플립 본더를 이용한 초음파 본딩을 실시하였다. 초음파 본딩 시에, 본딩 테이블 온도는 200℃, 노즐 온도는 150℃였다.
도 6을 참조하면, Y축은 발광 다이오드의 파워 유지률(Po Retention)을 나타낸다. X축의 R1, R2 및 R3는 실시예의 결과의 평균값이며, 점선의 도형으로 표시하였다. X축의 L1, L2 및 L3는 비교예의 결과의 평균값을 나타내며, 실선의 도형으로 표시하였다.
R1 및 L1은 상온에서의 측정 결과이며 원형으로 표시하였다. R2 및 L2는 고온(60℃)에서의 측정 결과이며 삼각형으로 표시하였다. R3 및 L3는 고온다습(60℃, 90%)에서의 측정 결과이며 사각형으로 표시하였다. 도 6을 다시 참조하면, 실시예가 모든 경우에 있어서, 발광 다이오드의 파워 유지률이 높음을 알 수 있다.
본 발명의 실시예들에 따른 발광 다이오드는 방습 특성이 우수하므로, 신뢰성이 향상될 뿐만 아니라, 강한 플립 본딩이 가능하므로, 구조적 안정성이 높다.
도 7은 플립칩형 발광 다이오드를 도시한다. 도 7에 따른 발광 다이오드는 성장 기판(11), 제1 도전형 반도체층(13), 활성층(15), 제2 도전형 반도체층(17), 제1 전극(19), 제2 전극(20), 제1 패드(30a), 제2 패드(30b) 및 절연층(31)을 포함할 수 있다. 제1 도전형 반도체층(13), 활성층(15) 및 제2 도전형 반도체층(17)을 통해 발광셀이 형성될 수 있다. 제1 도전형 반도체층(13)과 제2 도전형 반도체층(17)은 각각 제1 패드(30a) 및 제2 패드(30b)에 전기적으로 연결될 수 있다.
도 7에 따른 발광 다이오드는 전극(19, 20)들의 수평 배치로 인하여 고전류 구동 시에 전류쏠림현상이 발생하는 문제점이 있다. 이에 따라, 발광 강도의 편차가 발생할 뿐 만 아니라, 광효율이 감소되는 문제점이 생긴다. 따라서, 발광 다이오드 내의 전류를 분산시켜 전류를 확산시킬 수 있는 발광 다이오드의 개발이 요구된다.
이하, 도 8 내지 도 11을 통해, 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하도록 한다.
도 8는 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 평면도 및 단면도이다.
도 8의 (a)는 상기 발광 다이오드의 평면도이며, 도 8의 (b)는 도 8의 (a)의 선 A-A선에 따라 바라본 단면도이다.
도 8를 참조하면, 본 발명의 일 실시예에 따른 발광 다이오드는 성장 기판(500) 및 발광셀(510)을 포함하며, 발광셀(510)은 하부 반도체층(515), 활성층(513) 및 제1 상부 반도체층(511)을 포함한다. 하부 반도체층(515) 상에는 하부 반도체층(515)의 일부를 포함하는 제1 전류 분산부(520) 및 제2 전류 분산부(530)가 배치된다. 또한, 하부 반도체층(515) 상에는 제2 전극(540)이 배치되며, 제2 전극(540)은 제2 컨택층(541) 및 제2 패드층(543)을 포함한다. 또한, 제2 전극(540) 상에 제2 범프(570)가 배치된다.
제1 상부 반도체층(511) 상에 제1 전극(550)이 배치되며, 제1 전극(550)은 제1 컨택층(551) 및 제1 패드층(553)을 포함한다. 제1 전극(550) 상에는 제1 범프(580)이 배치된다. 또한, 제1 및 제2 범프(580, 570)의 배치를 위한 제1 및 제2 개방영역(550a, 540a)을 제외한, 발광 다이오드의 전면은 절연층(560)이 배치된다.
도 8를 다시 참조하면, 성장 기판(500)은 육방정계 결정 구조를 갖는 기판으로서, 질화갈륨계 에피층을 성장시키기 위한 성장 기판, 예컨대, 사파이어, 탄화 실리콘, 질화갈륨 기판일 수 있다. 성장 기판(500)은 일면, 상기 일면의 반대면인 타면 및 상기 일면과 타면을 연결하는 측면을 포함할 수 있다. 상기 일면은 반도체층들이 성장되는 면일 수 있으며, 이와 달리, 상기 타면은 활성층(513)에서 생성된 광이 외부로 방출되는 면이다. 성장 기판(500)의 측면은 상기 일면 및 타면과 수직한 면일 수 있으나, 경사진 면을 포함할 수 있다. 성장 기판(500)의 일면에 하부 반도체층(515)을 형성하기 전에 이종 기판과의 격자 부정합을 줄이기 위하여, AlN 또는 GaN을 포함하는 버퍼층(미도시)을 형성할 수 있다. 또한, 성장 기판(500)은 전체적으로 사각형 형상일 수 있으나, 성장 기판(500)의 형상은 이에 한정되는 것은 아니다.
한편, 본 실시예에 있어서, 성장 기판(500)의 두께는 100㎛를 초과할 수 있으며, 특히 150 내지 400㎛ 범위 내의 값을 가질 수 있다. 성장 기판(500)이 두꺼울수록 광 추출 효율의 향상될 수 있다. 한편, 성장 기판(500)의 측면은 브레이킹면을 포함할 수 있다.
하부 반도체층(515)은 성장 기판(500)의 일면 상에 배치된다. 하부 반도체층(515)은 성장 기판(500)의 일면의 전면을 덮을 수 있으나, 이에 한정되는 것은 아니며, 성장 기판(500)의 가장자리를 따라 일면이 노출되도록 하부 반도체층(515)이 성장 기판(500)의 상부 영역 내에 한정되어 위치할 수 있다.
제1 상부 반도체층(511)은 하부 반도체층(515)의 일 영역 상부에 위치하며, 하부 반도체층(515)과 상부 반도체층(511) 사이에 활성층(513)이 위치한다. 나아가, 제2 및 제3 상부 반도체층(521, 531)들은 하부 반도체층(515)의 다른 영역들 상부에 위치할 수 있으며, 제2 및 제3 상부 반도체층(521, 531)들 각각과 하부 반도체층(515) 사이에 활성층(513)이 위치할 수 있다.
제1 상부 반도체층(511)은 H 형상 또는 좁은 허리를 가지는 아령 형상을 가질 수 있으며, 이에 따라, 높은 전류밀도 조건에서 우수한 광 출력 특성을 구현할 수 있다.
하부 반도체층(515)과 상부 반도체층들(511, 521, 531)은 Ⅲ-Ⅴ 계열 화합물 반도체를 포함할 수 있고, 예를 들어, (Al, Ga, In)N과 같은 질화물계 반도체를 포함할 수 있다. 하부 반도체층(515)은 n형 불순물 (예를 들어, Si)이 도핑된 n형 반도체층을 포함할 수 있고, 상부 반도체층들(511, 521, 531)은 p형 불순물 (예를 들어, Mg)이 도핑된 p형 반도체층을 포함할 수 있다. 또한, 그 반대일 수도 있다. 나아가, 하부 반도체층(515) 및/또는 상부 반도체층들(511, 521, 531)은 단일층일 수 있고, 또한 다중층을 포함할 수도 있다. 예를 들어, 하부 반도체층(515) 및/또는 상부 반도체층들(511, 521, 531)은 클래드층 및 컨택층을 포함할 수 있고, 초격자층을 포함할 수도 있다.
활성층(513)은 다중양자우물 구조(MQW)를 포함할 수 있으며, 상기 다중양자우물구조에서 원하는 피크 파장의 광을 방출하도록, 상기 다중양자우물 구조를 이루는 원소 및 그 조성이 조절될 수 있다. 예를 들어, 활성층(513)의 우물층은 InxGa(1-x)N (0≤≤x≤≤≤≤1)과 같은 삼성분계 반도체층일 수 있고, 또는 AlxInyGa(1-x-y)N (0≤≤x≤≤≤≤1, 0≤≤≤≤y≤≤≤≤1, 0≤≤≤≤x+y≤≤≤≤1)과 같은 사성분계 반도체층일 수 있으며, 이때, x 또는 y의 값을 조정하여 원하는 피크 파장의 광을 방출하도록 할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
상술한 반도체층들(511, 513, 515, 521, 531)은 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD; Chemical Vapor Deposition), 플라즈마 화학 증착법(PCVD; Plasma-enhanced Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy) 등을 포함한 다양한 증착 및 성장 방법을 통해 형성될 수 있다.
이하, Ⅲ-Ⅴ 계열 화합물 반도체를 포함하는 반도체층들(511, 513, 515, 521, 531)과 관련된 주지 기술내용의 설명은 생략한다.
한편, 하부 반도체층(515)의 일 영역 상에 제1 전류 분산부(520) 및 제2 전류 분산부(530)가 배치될 수 있다. 제1 전류 분산부(520)는 제2 범프(570)가 형성될 영역에 배치될 수 있다. 제1 전류 분산부(520)는 하부 반도체층(515)의 일부를 포함한 반도체층들(515, 523, 521)을 포함할 수 있다. 즉, 제1 전류 분산부(520)는 하부 반도체층(515)의 다른 영역 상에 배치된 제2 상부 반도체층(521)과 상기 하부 반도체층(515)와 제2 상부 반도체층(521) 사이에 배치된 활성층(523)을 포함할 수 있다. 제1 전류 분산부(520)는 제2 범프(570)를 통해 전류가 주입될 때, 전류를 확산시키는 기능을 수행할 수 있다. 즉, 제1 전류 분산부(520)는 전류가 하부 반도체층(515)을 향해 직선적으로 흐르는 것을 차단하고, 이를 통해 전류를 분산 시켜, 전류의 확산을 향상시킬 수 있다. 제1 전류 분산부(520)는 발광셀(510) 나란한 높이를 가질 수 있다. 즉, 제1 전류 분산부(520)는 발광셀(510)과 동일한 높이를 가지므로, 제1 전류 분산부(520) 상에 배치되는 제2 범프(570)와 발광셀(510) 상에 배치되는 제1 범프(580) 간의 단차를 극복할 수 있다.
제2 전류 분산부(530)는 제1 전류 분산부(520)와 발광셀(510) 사이에 배치될 수 있다. 제2 전류 분산부(530)는 하부 반도체층(515)의 일부를 포함한 반도체층들(531, 533, 515)을 포함할 수 있다. 즉, 제2 전류 분산부(530)는 하부 반도체층(515)의 또 다른 영역 상에 배치된 제3 상부 반도체층(531)과 상기 하부 반도체층(515)와 상부 반도체층(531) 사이에 배치된 활성층(533)을 포함할 수 있다.
제2 전류 분산부(530)는 제2 범프(570)을 통해 주입된 전류가 발광셀(510)을 향해 흐를 때, 상기 전류를 분산시킴으로써, 전류 확산을 향상시킬 수 있다. 제2 전류 분산부(530)는 발광셀(510)과 나란한 높이를 가질 수 있다. 본 실시예에 있어서, 제2 전류 분산부(530)의 형태 및 배치는 도시된 형태로 제한되는 것은 아니다. 따라서, 발명의 목적에 따라 제2 전류 분산부(530)는 다양한 형태로 배치될 수 있다. 또한, 제2 전류 분산부(530)은 제1 전류 분산부(520)보다 발광셀(510)에 보다 가까이 멀리 배치될 수 있다. 제2 전류 분산부(530)를 통해, 제2 전극(540)과 하부 반도체층(515)와의 컨택 영역의 면적 및 배치를 제어할 수 있다.
제1 전류 분산부(520) 및 제2 전류 분산부(530)가 포함하는 반도체층들은 상술한 발광셀(510)이 포함하는 반도체층과 동일한 공정을 통해 형성될 수 있다. 또한, 본 실시예에 있어서, 제1 전류 분산부(520) 및 제2 전류 분산부(530)는 경사진 측면을 포함하는 형태로 도시되었지만, 제1 및 제2 전류 분산부(520, 530)의 형태는 이에 제한되는 것은 아니다. 다만, 본 실시예에 있어서 제1 및 제2 전류 분산부(520, 530)은 평평한 상부면을 포함할 수 있다.
한편, 발광셀(510)이 배치된 영역을 제외한 하부 반도체(515), 제1 및 제2 전류 분산부(520, 530) 상에 제2 전극(540)이 배치될 수 있다. 제2 전극(540)은 제2 컨택층(541) 및 제2 패드층(543)을 포함할 수 있다. 제2 전극(540)은 발광셀(510)이 포함하는 제1 상부 반도체층(511)의 주위를 둘러쌀 수 있다. 도 8에 있어서, 제2 전극(540)이 제1 상부 반도체층(511)의 주위 전체를 둘러싸는 것으로 도시하였으나, 반드시 이에 한정되는 것은 아니다. 제2 전극(540)은 제2 범프(570)가 위치한 곳으로부터 제1 상부 반도체층(511)의 양측으로 연장하여 제1 상부 반도체층(511)의 약 50% 이상을 둘러쌀 수 있다. 제2 컨택층(541)은 Cr, Ti, Al 및 Au 중 적어도 하나를 포함할 수 있으며, 또는, Cr/Ti/Al/Ti/Au 다층구조일 수도 있다. 제2 컨택층(541)이 상술한 다층구조인 경우에, 상기 기재 순서에 따라, Cr은 약 100Å, Ti는 약 200Å, Al는 약 600Å, Ti는 약 200Å, Au는 약 1000Å의 두께를 가질 수 있으나, 이에 제한되는 것은 아니다. 제2 패드층(523)은 Ti 또는 Au를 포함할 수 있으며, 또는, Ti/Au 다층구조일 수 있다.
한편, 제2 전극(540)은 반사층을 더 포함할 수 있다. 상기 반사층은 Ni, Pt, Pd, Rh, W, Ti, Al, Ag 및 Au 중 적어도 하나를 포함할 수 있으며, 상술한 원소들 중 적어도 하나를 포함하는 다중층으로 형성될 수도 있다. 다만, 이에 제한되는 것은 아니다.
제2 전극(540)은 상기 반사층을 통해 상기 발광셀(510)이 포함하는 활성층(513)에서 방출되는 광을 반사시킬 수 있다. 구체적으로, 본 발명에 따른 발광 다이오드는 전류 분산부(520, 530)을 포함하며, 상기 전류 분산부(520, 530)들로 인하여, 활성층(513)에서 제2 전극(540)으로 입사되는 광의 임계각이 달라질 수 있다. 따라서, 제2 전극(540)으로 입사되는 광의 산란이 많이 일어 날 수 있다. 제2 전극(540)은 반사층을 포함할 수 있으므로, 상기 입사되는 광을 광 추출면으로 반사시킬 수 있으며, 이에 따라 발광 다이오드의 광 추출 효율을 향상시킬 수 있다.
제2 전극(540)과 제1 전류 분산부(520)이 포함하는 제2 상부 반도체층(521)과의 접촉저항은 제2 전극(540)과 하부 반도체층(515)과의 접촉저항보다 높을 수 있다. 제2 전극(540)과 제2 전류 분산부(530)이 포함하는 제3 상부 반도체층(531)과의 접촉저항은 제2 전극(540)과 하부 반도체층(515)과의 접촉저항보다 높을 수 있다. 본 실시예에 있어서, 하부 반도체층(515)는 n형으로 도핑된 반도체층일 수 있으며, 상부 반도체층(511, 521, 531)들은 p형으로 도핑된 반도체층들일 수 있다. 따라서, 금속을 포함하는 제2 전극(540)과 하부 반도체층(515)과의 접촉저항은, 상부 반도체층(511, 521, 531)들과의 접촉저항과 비교하여 낮을 수 있다. 이에 따라, 상부 반도체층(511, 521, 531)들은 발광 다이오드 내에서 일종의 저항 역할을 할 수 있다.
도 7에 따른 발광 다이오드에 있어서, 금속 전극을 통한 전류 주입 시에, 상기 금속 전극과 접촉하는 반도체층은 전도성을 가지므로, 상기 전류는 상기 금속 전극과 상기 반도체층 모두를 통해 흐른다. 본 실시예에 있어서, 제1 및 제2 전류 분산부(520, 530)가 포함하는 상부 반도체층(521, 531)들은 상술한 바와 같이 일종의 저항 역할을 하므로, 하부 반도체층(515)층과 제2 전극(540)의 컨택 영역의 면적을 제어할 수 있다. 그러므로, 본 실시예에 따른 발광 다이오드는 발광셀(510)의 적어도 일부를 둘러싸는 제2 전극(540) 위주로 전류가 흐르도록 유도할 수 있으므로, 전류의 확산을 향상시킬 수 있다.
본 실시예에 있어서, 제2 전류 분산부(530) 및 제1 전류 분산부(520)이 형성된 영역은 제2 전극(540)과 하부 반도체층(515)와의 접촉이 차단되므로, 제2 전극(540)과 하부 반도체층(515)과의 컨택 영역이 감소될 수 있다. 따라서, 상기 컨택 영역이 감소될 경우, 발광 다이오드의 구동 전압이 증가될 수 있으므로, 적절한 구동 전압을 유지하기 위하여, 제2 전극(540)의 전체 면적에 대하여, 제2 전류 분산부(530) 및 제1 전류 분산부(520)의 상부면 면적의 합이 차지하는 면적은 10 내지 40% 일 수 있다. 제2 전류 분산부(530) 및 제1 전류 분산부(520)의 상부면 면적의 합이 제2 전극(540) 면적의 10% 미만인 경우에는, 본 발명이 구현하고자 하는 전류 확산의 향상 등의 효과가 발현되기 어려울 수 있으며, 40% 초과인 경우에는 발광 다이오드의 구동전압이 상승될 수 있다. 따라서, 본 발명에 따른 발광 다이오드는 상술한 범위 내에서 제1 및 제2 전류 분산부(520, 530)를 배치하므로, 발광 다이오드 내의 전류 확산을 향상시킴과 동시에, 필요한 구동전압을 만족시킬 수 있다.
또한, 본 실시예는 제2 전극(540)이 제2 전류 분산부(530)을 덮는 형태로 도시되어 있지만, 본 발명은 이에 제한되는 것은 아니다. 따라서, 본 발명에 따른 제2 전극(540)은 제2 전극의 일부만을 덮을 수도 있다.
한편, 발광셀(510) 상에 제1 전극(550)이 배치될 수 있다. 제1 전극(550)은 제1 컨택층(551) 및 제1 패드층(553)을 포함할 수 있다. 제1 전극(550)은 상부 반도체층(511) 상에 위치하여 제1 상부 반도체층(511)에 전기적으로 연결될 수 있다. 제1 컨택층(551)은 Ni, Au 및 Al 중 적어도 하나를 포함할 수 있으며, 또는, Ni/Au 다층구조일 수 있다. 제1 컨택층(551)이 상술한 다층구조인 경우에, Ni는 약 150Å, Au는 약 300Å의 두께를 가지고 형성될 수 있다. 제2 패드층(553)은 Ti, Au 및 Cr 증 적어도 하나를 포함할 수 있으며, Ti/Au/Cr/Au 다층구조일 수 있다. 제2 패드층(553)이 상술한 다층구조인 경우에, 상기 기재 순서대로, Ti는 약 300Å, Au는 약 2㎛, Cr는 약 200Å, Au는 약 2.5㎛의 두께를 가지고 형성될 수 있다. 제1 전극(550)은 높은 반사도를 가지면서, 제1 상부 반도체층(511)과 오믹 컨택을 형성할 수 있다.
제1 범프(580)는 제1 전극(550) 상에 배치된다. 제2 범프(570)는 제2 전극(560) 상에 배치된다. 제1 범프(580)는 제1 영역(A1)과 제2 영역(A2)을 포함할 수 있다. 제1 범프(580)는 상부에 제1 오목부 및 제1 볼록부를 포함할 수 있다. 상기 제1 영역(A1)은 상기 제1 오목부를 포함할 수 있으며, 따라서, 제1 영역(A1)의 상면은 제1 오목부의 바닥면과 대응될 수 있다. 상기 제2 영역(A2)는 상기 제1 볼록부를 포함할 수 있으며, 따라서, 제2 영역(A2)의 상면은 제1 볼록부의 상면과 대응될 수 있다.
제2 범프(570)는 제3 영역(A3)과 제4 영역(A4)을 포함할 수 있다. 제2 범프(570)는 상부에 제2 오목부 및 제2 볼록부를 포함할 수 있다. 제3 영역(A3)은 상기 제2 오목부를 포함할 수 있으며, 따라서, 제3 영역(A3)의 상면은 제2 오목부의 바닥면과 대응될 수 있다. 상기 제4 영역(A4)는 상기 제2 볼록부를 포함할 수 있으며, 따라서, 제4 영역(A4)의 상면은 제2 볼록부의 상면과 대응될 수 있다.
제2 범프(570) 및 제1 범프(580)는 동일한 금속 재료로 형성될 수 있다. 또한, 상기 제1 및 제2 범프(580, 570)는 다층 구조로 형성될 수 있으며, 예컨대 접착층, 확산방지층 및 본딩층을 포함할 수 있다. 상기 접착층은 예를 들어, Ti, Cr 또는 Ni을 포함할 수 있으며, 확산방지층은 Cr, Ni, Ti, W, TiW, Mo, Pt 또는 이들의 복합층으로 형성될 수 있고, 본딩층은 Au 또는 AuSn을 포함할 수 있다. 제1 및 제2 범프(580, 570)는 Ti/Au/Cr/Au 다층구조일 수 있으며, 이 경우, Ti는 약 300Å, Au는 약 2㎛, Cr는 약 200Å, Au는 약 2.5㎛의 두께로 형성될 수 있다.
한편, 절연층(560)이 제1 범프(580) 및 제2 범프(570)가 배치된 영역을 제외하고, 상기 하부 반도체층(515), 제1 및 제2 전류 분산부(520, 530), 제1 및 제2 전극(550, 540)을 덮어 보호한다. 절연층(560)은 실리콘 산화물층 및/또는 실리콘 질화물층을 포함할 수 있다. 나아가, 절연층(560)은 굴절률이 서로 다른 산화물층들을 적층한 분포 브래그 반사기(DBR)로 형성될 수도 있다. 이 경우, 절연층(560)은 상부 반도체층(511)과 하부 반도체층(515) 사이 경사면 및 하부 반도체층(515) 노출부의 광을 반사시킬 수 있어, 발광 다이오드의 광 추출 효율을 더욱 향상시킬 수 있다. 본 실시예에 있어서, 절연층(560)은 실리콘 산화물층과 실리콘 질화물층의 다중층 또는 실리콘 산화물층의 단일층으로 형성될 수 있으며, 절연층(560)이 다중층인 경우에, 실리콘 산화물층은 약 2400Å, 실리콘 질화물층은 약 5000Å의 두께를 가질 수 있으며, 절연층(560)이 실리콘 산화물층의 단일층인 경우에는, 실리콘 산화물층은 약 6000Å의 두께를 가질 수 있다. 다만, 이에 제한되는 것은 아니다.
실리콘 질화물층은 실리콘 산화물층과 비교하여, 방습특성이 상대적으로 우수하므로, 절연층(560)이 다중층인 경우에 발광 다이오드의 방습특성을 보다 향상시킬 수 있다.
본 발명에 있어서, 제1 범프 및 제2 범프(580, 570)는 도시된 바와 같이 절연층(560)의 일부를 덮도록 형성될 수 있다. 따라서, 제1 범프(580)의 제2 영역(A2)의 적어도 일부는 절연층(560) 상에 배치될 수 있다. 나아가, 제2 범프(570)의 제4 영역(A4)의 적어도 일부는 절연층(560) 상에 배치될 수 있다. 즉, 절연층(560)의 일부는 제1 범프(580)과 제1 전극(550) 사이 및/또는 제2 범프(570)와 제2 전극(540) 사이에 배치될 수 있다.
도 8를 다시 참조하면, 절연층(560)은 제1 전극(550)을 노출시키는 제1 개방영역(550a) 및 제2 전극(540)을 노출시키는 제2 개방영역(540a)을 포함할 수 있다. 제1 및 제2 개방영역(550a, 540a)을 각각 둘러싸는 절연층(560)의 측면이 노출될 수 있으며, 상기 노출된 측면은 제1 범프(580) 및/또는 제2 범프(570)와 맞닿아 있을 수 있다.
또한, 도 8의 (a) 평면도를 다시 검토하면, 제1 개방영역(550a)의 면적은 제1 범프(580)의 제1 오목부의 바닥면 및 제1 볼록부의 상면의 합보다 작음을 알 수 있다. 또한, 제2 개방영역(540a)의 면적은 제2 범프(570)의 제2 오목부의 바닥면 및 제2 볼록부의 상면의 합보다 작음을 알 수 있다. 즉, 본 실시예에 있어서 제1 및 제2 범프(580, 570)는 각각 제1 개방영역(550a) 및 제2 개방영역(540a)을 완전히 덮을 수 있다.
본 발명에 따른 제1 및 제2 범프(580, 570)은 절연층(560)과 함께, 제1 및 제2 전극(550, 540)을 감쌀 수 있다. 이에 따라, 외부 습기 등이 발광 다이오드 내부로 침투하는 것을 방지할 수 있으므로, 발광 다이오드의 신뢰성을 향상시킬 수 있다. 또한, 본 발명에 따른 제1 및 제2 범프(580, 570) 각각의 상부에 배치된 오목부 및 볼록부로 인하여, 인쇄회로기판 또는 서브 마운트 기판 상에 보다 강한 결합력을 가지고 실장될 수 있다.
도 9은 본 발명의 다른 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이다. 본 실시예에 따른 발광 다이오드는 상술한 일 실시예에 따른 발광 다이오드와 비교하여, 제2 전류 분산부(530)의 형상 및 배치를 제외하고는 동일하다. 따라서, 동일한 구성요소에 대한 중복되는 설명은 생략한다.
도 9을 참조하면, 제2 전류 분산부(530)는 적어도 하나 이상의 분산체를 포함하며, 상기 분산체는 상하방향으로 긴 면을 가지는 직사각형 형태를 가진다. 이에 따라 발광 다이오드 내의 전류는 제2 전류 분산부(530) 형성 영역에서 분산되므로, 전류 확산을 향상시킬 수 있다.
제2 전류 분산부(530)가 포함하는 분산체들은 도시된 바와 같이, 동일한 형상을 가지고 일정한 간격으로 배치될 수 있을 뿐 아니라, 서로 다른 형상과 간격을 가지고 배치될 수도 있다. 제2 전류 분산부(530)가 포함하는 분산체들은 발광셀(510)보다 제1 전류 분산부(520)와 가깝게 배치될 수 있다. 즉, 제2 전류 분산부(530)가 포함하는 분산체들 중 발광셀(510)과 가장 인접한 분산체와 발광셀(510)과의 간격은, 제2 전류 분산부(530)가 포함하는 분산체들 중 제1 전류 분산부(520)과 가장 인접한 분산체와 제1 전류 분산부(520)와의 간격보다 넓을 수 있다.
도 10는 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.
도 10를 참조하면, 발광 다이오드는 상술한 본 발명의 실시예들에 따른 발광 다이오드이며, 발광 다이오드는 서브 마운트 기판(200) 상에 실장된다.
서브 마운트 기판(200)은 기판(230) 및 기판(230) 상에 배치된 전극 패턴(220)을 포함한다. 기판(230)은 열전도성이 우수한 BeO, SiC, Si, Ge, SiGe, AlN 및 세라믹 기판 중 어느 하나일 수 있다. 그러나, 이에 한정되지 않고, 열전도율이 높은 절연 물질은 물론, 열전도율이 높을 뿐 아니라 전기 전도성이 우수한 금속성 물질을 포함하는 기판일 수 있다.
전극 패턴(220)은 제2 범프(570) 및 제1 범프(580)의 형상에 대응하도록 형성되며, 전극 패턴(220) 각각에 제2 범프(570) 및 제1 범프(580)가 각각 본딩된다. 이때, 열 또는 초음파(ultrasonic)를 이용하거나, 열과 초음파를 동시에 사용하여 본딩할 수 있다. 그 밖에, 전극 패턴(220) 각각과 제1 범프(580) 또는 제2 범프(570)은 솔더 페이스트를 사용하여 본딩될 수 있다.
다만 이에 제한되는 것은 아니며, 제1 및 제2 범프(580, 570)와 전극 패턴(220)은 본딩 영역(210)에서 상술한 본딩 방법을 포함한 다양한 방법을 통하여 본딩될 수 있다.
도 11는 본 발명의 일 실시예에 따른 발광 다이오드 패키지를 설명하기 위한 사시도이다.
도 11를 참조하면, 상기 발광 다이오드 패키지는 제1 프레임(311), 제2 프레임(313) 및 상기 제1 및 제2 프레임(311, 313) 사이에 위치하는 절연층(315)을 포함하는 기판(300), 상기 기판(300)의 상면에 형성된 캐비티(317) 내에 실장된 발광 다이오드(600) 및 서브 마운트 기판(200) 및 와이어(330)을 포함한다. 발광 다이오드(600)는 상술하여 설명한 본 발명의 실시예들에 따른 발광 다이오드이다.
제1 및 제2 프레임(311, 313)은 금속 프레임 또는 세라믹 프레임일 수 있다. 제1 및 제2 프레임(311, 313)이 금속 프레임인 경우에는, 전기적 특성과 방열에 우수한 성능을 가지는 Al, Ag, Cu 및 Ni 등을 포함하는 단일 금속 또는 합금을 포함할 수 있다.
절연층(315)는 접착부를 포함할 수 있으며, 제1 및 제2 프레임(311, 313)을 양측에 고정시키는 기능을 갖는다. 와이어(330)를 통해, 패드들과 전원을 연결하여 발광 다이오드(600)에 전원이 공급될 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (39)

  1. 기판;
    상기 기판 상에 위치하고, 하부 반도체층, 상기 하부 반도체층의 일 영역 상에 배치된 상부 반도체층 및 상기 하부 반도체층과 상기 상부 반도체층 사이에 배치된 활성층을 포함하는 발광셀;
    상기 상부 반도체층 상에 배치된 제1 전극;
    상기 하부 반도체층 상에 배치된 제2 전극;
    상기 제1 전극의 일부를 노출시키는 제1 개방 영역을 포함하는 제1 절연층;
    상기 제1 절연층 상에 배치된 제2 절연층; 및
    상기 제1 개방 영역을 통해 제1 전극과 오믹 컨택하는 제1 범프를 포함하되,
    상기 제1 범프는 상부에 제1 오목부와 제1 볼록부를 포함하고,
    상기 제1 범프는 상면에 상기 제1 오목부의 바닥면을 포함하는 제1 영역과 상면에 상기 제1 볼록부의 상면을 포함하는 제2 영역을 포함하며,
    상기 제1 영역의 적어도 일부 영역은 상기 제1 개방 영역 상에 배치되고, 상기 제2 영역의 적어도 일부는 제2 절연층 상에 배치되는 발광 다이오드.
  2. 청구항 1에 있어서,
    상기 제1 오목부의 바닥면의 면적은 상기 제1 개방 영역을 통해 노출된 상기 제1 전극의 면적과 비례하는 발광 다이오드.
  3. 청구항 1에 있어서,
    상기 제1 오목부의 깊이는 상기 제1 전극 상에 배치된 상기 제1 절연층 및 상기 제2 절연층의 두께에 비례하는 발광 다이오드.
  4. 청구항 1에 있어서,
    상기 제1 볼록부의 상면의 면적 및 상기 제1 오목부의 바닥면 면적의 합은 적어도 상기 제1 개방 영역을 통해 노출된 상기 제1 전극의 면적보다 큰 발광 다이오드.
  5. 청구항 1에 있어서,
    상기 제1 전극과 상기 제1 범프 사이에 상기 제1 절연층 및 상기 제2 절연층의 일부가 배치된 발광 다이오드.
  6. 청구항 1에 있어서,
    상기 제1 개방 영역을 둘러싸는 상기 제1 절연층 및 상기 제2 절연층의 측면과 제1 범프의 하단 측면의 적어도 일부는 맞닿아 있는 발광 다이오드.
  7. 청구항 1에 있어서,
    상기 제1 볼록부는 상기 제1 오목부를 둘러싸는 발광 다이오드.
  8. 청구항 1에 있어서,
    상기 제1 절연층은 상기 제2 전극의 일부를 노출시키는 제2 개방 영역을 포함하고, 상기 제2 개방 영역을 통해 상기 제2 전극과 오믹 컨택하는 제2 범프를 더 포함하되,
    상기 제2 범프는 상부에 제2 오목부와 제2 볼록부를 포함하고,
    상기 제2 범프는 상면에 상기 제2 오목부의 바닥면을 포함하는 제3 영역과 상면에 상기 제2 볼록부의 상면을 포함하는 제4 영역을 포함하며,
    상기 제3 영역의 적어도 일부 영역은 상기 제2 개방 영역 상에 배치되고, 상기 제4 영역의 적어도 일부는 제2 절연층 상에 배치되는 발광 다이오드.
  9. 청구항 8에 있어서,
    상기 제2 오목부의 바닥면의 면적은 상기 제2 개방 영역을 통해 노출된 상기 제2 전극의 면적과 비례하는 발광 다이오드.
  10. 청구항 8에 있어서,
    상기 제2 오목부의 깊이는 상기 제2 전극 상에 배치된 상기 제1 절연층 및 상기 제2 절연층의 두께에 비례하는 발광 다이오드.
  11. 청구항 8에 있어서,
    상기 제2 볼록부의 상면의 면적 및 상기 제2 오목부의 바닥면 면적의 합은 적어도 상기 제2 개방 영역을 통해 노출된 상기 제2 전극의 면적보다 큰 발광 다이오드.
  12. 청구항 8에 있어서,
    상기 제2 전극과 상기 제2 범프 사이에 상기 제1 절연층 및 상기 제2 절연층의 일부가 배치된 발광 다이오드.
  13. 청구항 8에 있어서,
    상기 제2 개방 영역을 둘러싸는 상기 제1 절연층 및 상기 제2 절연층의 측면과 제2 범프의 하단의 측면의 적어도 일부는 맞닿아 있는 발광 다이오드.
  14. 청구항 8에 있어서,
    상기 제2 볼록부는 상기 제2 오목부를 둘러싸는 발광 다이오드.
  15. 청구항 1에 있어서,
    상기 제2 절연층은 실리콘 질화물층을 포함하는 발광 다이오드.
  16. 청구항 1에 있어서,
    상기 발광셀은 자외선 파장 영역의 광을 방출하는 발광 다이오드.
  17. 청구항 1에 있어서,
    상기 기판은 상기 발광셀이 배치된 일면과, 상기 일면과 반대되는 타면을 포함하고,
    상기 타면은 요철부를 포함하는 발광 다이오드.
  18. 청구항 1에 있어서,
    상기 기판은 투명 사파이어 기판인 발광 다이오드.
  19. 청구항 1에 있어서,
    상기 제1 절연층은 분포 브래그 반사기를 포함하는 발광 다이오드.
  20. 기판;
    상기 기판 상에 배치된 하부 반도체층;
    상기 하부 반도체층의 일 영역 상에 상에 배치된 제1 상부 반도체층 및 상기 하부 반도체층과 상기 제1 상부 반도체층 사이에 배치된 활성층을 포함하는 발광셀;
    상기 하부 반도체층의 다른 영역 상에 배치된 제3 상부 반도체층 및 상기 하부 반도체층과 상기 제3 상부 반도체층 사이에 배치된 활성층을 포함하는 제2 전류 분산부;
    상기 발광셀 상에 배치되어, 상기 제1 상부 반도체층과 전기적으로 연결된 제1 전극; 및
    상기 발광셀과 이격되어 배치되어, 상기 하부 반도체층과 전기적으로 연결된 제2 전극을 포함하되,
    상기 제2 전극은 연장되어 상기 제2 전류 분산부의 적어도 일부를 덮고, 상기 발광셀의 적어도 일부를 둘러싸되,
    상기 제2 전극과 상기 제3 상부 반도체층과의 접촉저항은 상기 제2 전극과 상기 하부 반도체층과의 접촉저항보다 큰 발광 다이오드.
  21. 청구항 20에 있어서,
    상기 하부 반도체층의 다른 영역을 중심으로, 상기 하부 반도체층의 일 영역과 대향되는 상기 하부 반도체층의 또 다른 영역 내에 배치되는 제1 전류 분산부를 더 포함하되,
    상기 제1 전류 분산부는 상기 하부 반도체층의 또 다른 영역 상에 배치되는 제2 상부 반도체층 및 상기 하부 반도체층과 상기 제2 상부 반도체층 사이에 배치된 활성층을 포함하는 발광 다이오드.
  22. 청구항 21에 있어서,
    상기 제2 전극과 상기 제2 상부 반도체층과의 접촉저항은 상기 제2 전극과 상기 하부 반도체층과의 접촉저항보다 큰 발광 다이오드.
  23. 청구항 21에 있어서,
    상기 제2 전극은 상기 제1 전류 분산부 상에 배치되는 발광 다이오드.
  24. 청구항 21에 있어서,
    상기 제2 전류 분산부는 상기 발광셀보다 상기 제1 전류 분산부와 인접하게 배치된 발광 다이오드.
  25. 청구항 21에 있어서,
    상기 제1 전류 분산부는 상기 발광셀과 동일한 높이를 가지는 발광 다이오드.
  26. 청구항 21에 있어서,
    상기 제1 전류 분산부 및 상기 제2 전류 분산부 각각의 상부면 면적의 합은 제2 전극 면적의 10 내지 40%인 발광 다이오드.
  27. 청구항 20에 있어서,
    상기 제2 전류 분산부는 복수개의 분산체들을 포함하고,
    상기 분산체들은 서로 균일한 간격을 가지고 이격된 발광 다이오드.
  28. 청구항 20에 있어서,
    상기 제1 전극 및 상기 제2 전극 상에 배치되어, 상기 제1 전극을 노출시키는 제1 개방영역 및 상기 제2 전극을 노출시키는 제2 개방영역을 포함하는 절연층을 더 포함하는 발광 다이오드.
  29. 청구항 28에 있어서,
    상기 절연층은 실리콘 질화물층 및 실리콘 산화물층 중 적어도 하나를 포함하는 발광 다이오드.
  30. 청구항 28에 있어서,
    상기 절연층은 분포 브래그 반사기를 포함하는 발광 다이오드.
  31. 청구항 28에 있어서,
    상기 제1 개방 영역을 통해 제1 전극과 전기적으로 연결되는 제1 범프; 및
    상기 제2 개방 영역을 통해 제2 전극과 전기적으로 연결되는 제2 범프를 더 포함하는 발광 다이오드.
  32. 청구항 31에 있어서,
    상기 제1 범프는 상부에 제1 오목부와 제1 볼록부를 포함하고,
    상기 제1 범프는 상면에 상기 제1 오목부의 바닥면을 포함하는 제1 영역과 상면에 상기 제1 볼록부의 상면을 포함하는 제2 영역으로 형성되고,
    상기 제1 영역의 적어도 일부 영역은 상기 제1 개방 영역 상에 배치되고, 상기 제2 영역의 적어도 일부는 절연층 상에 배치되는 발광 다이오드.
  33. 청구항 31에 있어서,
    상기 제1 오목부의 바닥면의 면적은 상기 제1 개방 영역을 통해 노출된 상기 제1 전극의 면적과 비례하는 발광 다이오드.
  34. 청구항 31에 있어서,
    상기 제1 오목부의 깊이는 상기 제1 전극 상에 배치된 절연층의 두께에 비례하는 발광 다이오드.
  35. 청구항 31에 있어서,
    상기 제1 볼록부의 상면의 면적 및 상기 제1 오목부의 바닥면 면적의 합은 적어도 상기 제1 개방 영역을 통해 노출된 상기 제1 전극의 면적보다 큰 발광 다이오드.
  36. 청구항 31에 있어서,
    상기 제1 볼록부는 상기 제1 오목부를 둘러싸는 발광 다이오드.
  37. 청구항 31에 있어서,
    상기 제1 전극과 상기 제1 범프 사이 및 상기 제2 전극과 상기 제2 범프 사이에 절연층의 일부가 배치된 발광 다이오드.
  38. 청구항 31에 있어서,
    상기 제1 개방 영역을 둘러싸는 상기 절연층의 측면과 상기 제1 범프의 측면의 적어도 일부는 맞닿아 있는 발광 다이오드.
  39. 청구항 20에 있어서,
    상기 제2 전극은 상기 발광셀의 활성층에서 방출되는 광을 반사시키는 반사층을 포함하는 발광 다이오드.
PCT/KR2015/008010 2014-07-31 2015-07-30 발광 다이오드 WO2016018109A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/329,993 US9812616B2 (en) 2014-07-31 2015-07-30 Light-emitting diode
CN201580040828.2A CN106663730B (zh) 2014-07-31 2015-07-30 发光二极管
CN201910940819.9A CN110676367B (zh) 2014-07-31 2015-07-30 发光二极管
JP2017504022A JP6760921B2 (ja) 2014-07-31 2015-07-30 発光ダイオード
US15/722,826 US10177281B2 (en) 2014-07-31 2017-10-02 Light-emitting diode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0098641 2014-07-31
KR1020140098641A KR102256590B1 (ko) 2014-07-31 2014-07-31 발광 다이오드
KR1020140131604A KR102288376B1 (ko) 2014-09-30 2014-09-30 발광 다이오드
KR10-2014-0131604 2014-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/329,993 A-371-Of-International US9812616B2 (en) 2014-07-31 2015-07-30 Light-emitting diode
US15/722,826 Division US10177281B2 (en) 2014-07-31 2017-10-02 Light-emitting diode

Publications (1)

Publication Number Publication Date
WO2016018109A1 true WO2016018109A1 (ko) 2016-02-04

Family

ID=55217887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008010 WO2016018109A1 (ko) 2014-07-31 2015-07-30 발광 다이오드

Country Status (4)

Country Link
US (2) US9812616B2 (ko)
JP (1) JP6760921B2 (ko)
CN (2) CN106663730B (ko)
WO (1) WO2016018109A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107421A (ja) * 2016-12-23 2018-07-05 ルーメンス カンパニー リミテッド マイクロledモジュール及びその製造方法
EP3447808A1 (en) * 2017-08-25 2019-02-27 Lg Innotek Co. Ltd Semiconductor device
CN111463233A (zh) * 2020-04-16 2020-07-28 錼创显示科技股份有限公司 微型发光元件显示装置
US11626549B2 (en) 2020-04-16 2023-04-11 PlayNitride Display Co., Ltd. Micro light-emitting device display apparatus having bump

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812616B2 (en) * 2014-07-31 2017-11-07 Seoul Viosys Co., Ltd. Light-emitting diode
US11145598B2 (en) * 2017-12-28 2021-10-12 Texas Instruments Incorporated Lattice bump interconnect
JP7218048B2 (ja) * 2018-05-24 2023-02-06 スタンレー電気株式会社 半導体発光装置及びその製造方法
US10833034B2 (en) * 2018-07-26 2020-11-10 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor package
US11600590B2 (en) * 2019-03-22 2023-03-07 Advanced Semiconductor Engineering, Inc. Semiconductor device and semiconductor package
CN110459659B (zh) * 2019-06-20 2020-07-07 华灿光电(浙江)有限公司 发光二极管外延片及其制造方法、制造芯片的方法
JP2021044278A (ja) 2019-09-06 2021-03-18 キオクシア株式会社 半導体装置
CN114093996A (zh) * 2021-11-19 2022-02-25 淮安澳洋顺昌光电技术有限公司 半导体发光器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204838A (ja) * 2010-03-25 2011-10-13 Citizen Holdings Co Ltd 半導体発光装置の製造方法
KR20120135903A (ko) * 2010-02-03 2012-12-17 폴리머 비젼 비.브이. 가변 ic 칩 범프 피치를 갖는 반도체 디바이스
KR101316119B1 (ko) * 2007-03-06 2013-10-11 서울바이오시스 주식회사 발광다이오드 및 그 제조방법
US20140054633A1 (en) * 2012-08-24 2014-02-27 Dong Ha Kim Light emitting device
KR20140049877A (ko) * 2012-10-18 2014-04-28 일진엘이디(주) 발광 영역 분리 트렌치를 갖는 전류 분산 효과가 우수한 고휘도 반도체 발광소자

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759791B2 (ja) * 2000-07-27 2011-08-31 日亜化学工業株式会社 光半導体素子とその製造方法
JP2003273408A (ja) * 2000-07-31 2003-09-26 Nichia Chem Ind Ltd 発光装置
JP4830768B2 (ja) * 2006-05-10 2011-12-07 日亜化学工業株式会社 半導体発光装置及び半導体発光装置の製造方法
CN101150156B (zh) * 2006-09-22 2012-05-30 晶元光电股份有限公司 发光元件及其制造方法
CN101350381B (zh) * 2007-07-18 2011-03-02 晶科电子(广州)有限公司 凸点发光二极管及其制造方法
JP5305790B2 (ja) * 2008-08-28 2013-10-02 株式会社東芝 半導体発光素子
JP5334601B2 (ja) * 2009-01-21 2013-11-06 株式会社東芝 半導体発光ダイオード素子及び半導体発光装置
CN101859859B (zh) * 2010-05-04 2012-12-19 厦门市三安光电科技有限公司 高亮度氮化镓基发光二极管及其制备方法
EP2599133A2 (en) * 2010-07-28 2013-06-05 Seoul Opto Device Co., Ltd. Light emitting diode having distributed bragg reflector
CN201773864U (zh) * 2010-09-08 2011-03-23 厦门市三安光电科技有限公司 具有高反射镜的氮化镓基倒装发光二极管
CN106098889B (zh) * 2011-09-16 2019-02-15 首尔伟傲世有限公司 发光二极管及制造该发光二极管的方法
CN103367344B (zh) * 2012-04-11 2016-04-27 光宝电子(广州)有限公司 连板料片、发光二极管封装品及发光二极管灯条
KR102013363B1 (ko) * 2012-11-09 2019-08-22 서울바이오시스 주식회사 발광 소자 및 그것을 제조하는 방법
KR101537330B1 (ko) * 2012-12-28 2015-07-16 일진엘이디(주) 질화물 반도체 발광 소자 제조 방법
CN103441198A (zh) * 2013-09-09 2013-12-11 聚灿光电科技(苏州)有限公司 一种led高亮度倒装芯片以及制作方法
US9812616B2 (en) * 2014-07-31 2017-11-07 Seoul Viosys Co., Ltd. Light-emitting diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316119B1 (ko) * 2007-03-06 2013-10-11 서울바이오시스 주식회사 발광다이오드 및 그 제조방법
KR20120135903A (ko) * 2010-02-03 2012-12-17 폴리머 비젼 비.브이. 가변 ic 칩 범프 피치를 갖는 반도체 디바이스
JP2011204838A (ja) * 2010-03-25 2011-10-13 Citizen Holdings Co Ltd 半導体発光装置の製造方法
US20140054633A1 (en) * 2012-08-24 2014-02-27 Dong Ha Kim Light emitting device
KR20140049877A (ko) * 2012-10-18 2014-04-28 일진엘이디(주) 발광 영역 분리 트렌치를 갖는 전류 분산 효과가 우수한 고휘도 반도체 발광소자

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107421A (ja) * 2016-12-23 2018-07-05 ルーメンス カンパニー リミテッド マイクロledモジュール及びその製造方法
EP3447808A1 (en) * 2017-08-25 2019-02-27 Lg Innotek Co. Ltd Semiconductor device
KR20190022110A (ko) * 2017-08-25 2019-03-06 엘지이노텍 주식회사 반도체 소자
US10734550B2 (en) 2017-08-25 2020-08-04 Lg Innotek Co., Ltd. Semiconductor device
KR102410809B1 (ko) 2017-08-25 2022-06-20 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자
TWI814735B (zh) * 2017-08-25 2023-09-11 大陸商蘇州樂琻半導體有限公司 半導體裝置
CN111463233A (zh) * 2020-04-16 2020-07-28 錼创显示科技股份有限公司 微型发光元件显示装置
CN111463233B (zh) * 2020-04-16 2022-09-13 錼创显示科技股份有限公司 微型发光元件显示装置
US11626549B2 (en) 2020-04-16 2023-04-11 PlayNitride Display Co., Ltd. Micro light-emitting device display apparatus having bump

Also Published As

Publication number Publication date
US9812616B2 (en) 2017-11-07
CN110676367A (zh) 2020-01-10
CN106663730B (zh) 2019-11-19
US10177281B2 (en) 2019-01-08
CN110676367B (zh) 2023-03-24
US20170263821A1 (en) 2017-09-14
JP2017523613A (ja) 2017-08-17
CN106663730A (zh) 2017-05-10
JP6760921B2 (ja) 2020-09-23
US20180182925A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2016018109A1 (ko) 발광 다이오드
WO2016064134A2 (en) Light emitting device and method of fabricating the same
WO2010077082A2 (ko) 발광소자 패키지 및 그 제조방법
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2011145850A2 (en) High efficiency light emitting diode and method of fabricating the same
WO2015016561A1 (en) Light emitting diode, method of fabricating the same and led module having the same
WO2012060509A1 (en) A light emitting diode assembly and method for fabricating the same
WO2017179944A1 (ko) 발광소자, 발광소자 패키지 및 발광모듈
WO2016137220A1 (ko) 발광 소자 및 이를 구비한 라이트 유닛
WO2017138707A1 (ko) 고출력 발광 다이오드 및 그것을 갖는 발광 모듈
WO2013183888A1 (ko) 발광소자
WO2017065566A1 (ko) 반도체 소자, 반도체 소자 패키지, 및 이를 포함하는 조명 시스템
WO2016137197A1 (ko) 발광 소자 및 이를 구비한 라이트 유닛
WO2016104946A1 (ko) 발광 소자 및 이를 구비한 발광 소자 패키지
WO2015147518A1 (ko) 렌즈, 이를 포함하는 발광소자 모듈
WO2015156504A1 (ko) 발광소자 및 이를 구비하는 조명 시스템
WO2017034212A1 (ko) 발광소자 및 이를 구비한 발광 소자 패키지
WO2021210919A1 (ko) 단일칩 복수 대역 발광 다이오드
WO2020138842A1 (en) Micro light emitting diode and manufacturing method of micro light emitting diode
WO2017119730A1 (ko) 발광 소자
WO2021256839A1 (ko) 단일칩 복수 대역 발광 다이오드 및 그 응용품
WO2015190735A1 (ko) 발광소자 및 이를 구비한 발광소자 패키지
WO2017122996A1 (ko) 자외선 발광소자
KR102256590B1 (ko) 발광 다이오드
WO2014021651A1 (ko) 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504022

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15329993

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827321

Country of ref document: EP

Kind code of ref document: A1