WO2016137220A1 - 발광 소자 및 이를 구비한 라이트 유닛 - Google Patents

발광 소자 및 이를 구비한 라이트 유닛 Download PDF

Info

Publication number
WO2016137220A1
WO2016137220A1 PCT/KR2016/001789 KR2016001789W WO2016137220A1 WO 2016137220 A1 WO2016137220 A1 WO 2016137220A1 KR 2016001789 W KR2016001789 W KR 2016001789W WO 2016137220 A1 WO2016137220 A1 WO 2016137220A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
superlattice
layers
conductive semiconductor
semiconductor layer
Prior art date
Application number
PCT/KR2016/001789
Other languages
English (en)
French (fr)
Inventor
홍정엽
김명희
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to CN201680012327.8A priority Critical patent/CN107278333B/zh
Priority to US15/553,517 priority patent/US10381509B2/en
Publication of WO2016137220A1 publication Critical patent/WO2016137220A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Definitions

  • the embodiment relates to a light emitting device.
  • the embodiment relates to an ultraviolet light emitting device.
  • Embodiments relate to a light unit having an ultraviolet light emitting element.
  • nitride semiconductor materials containing a Group V source such as nitrogen (N) and a Group III source such as gallium (Ga), aluminum (Al), or indium (In) have excellent thermal stability and direct transition energy. It has a band structure and is widely used for nitride semiconductor devices such as nitride semiconductor light emitting devices and solar cells in the ultraviolet region.
  • Nitride-based materials have a wide energy bandgap of 0.7eV to 6.2eV, and are widely used as materials for solar cell devices due to their characteristics consistent with the solar spectrum region.
  • ultraviolet light emitting devices are used in various industrial fields such as curing devices, medical analyzers and treatment devices, and sterilization, water purification, and purification systems, and are attracting attention as materials that can be used for general lighting as semiconductor lighting sources.
  • the embodiment provides a light emitting device having a plurality of superlattice layers under the first conductive semiconductor layer and a light unit having the same.
  • the embodiment provides a light emitting device and a light unit having the same, in which a plurality of superlattice layers are disposed between a first conductive semiconductor layer and a substrate to reduce defects.
  • the embodiment provides a light emitting device and a light unit having the same, wherein the composition of aluminum of at least one layer of each pair of the plurality of superlattice layers gradually decreases adjacent to the active layer.
  • the embodiment provides a light emitting device and a light unit having the same, wherein the thickness of at least one of the pairs of each of the plurality of superlattice layers becomes thicker as the active layer is adjacent to the active layer.
  • the embodiment provides a light emitting device that emits an ultraviolet wavelength, for example, Ultraviolet-C (UV-C) wavelength, and a light unit having the same.
  • an ultraviolet wavelength for example, Ultraviolet-C (UV-C) wavelength
  • UV-C Ultraviolet-C
  • the light emitting device may include a first conductive semiconductor layer; An active layer disposed on the first conductive semiconductor layer and having a plurality of barrier layers and a plurality of well layers; A plurality of superlattice layers disposed under the first conductive semiconductor layer; And a second conductive semiconductor layer on the active layer, wherein the plurality of superlattice layers include at least three superlattice layers, each of the at least three superlattice layers each having a pair of at least a first layer and a second layer.
  • each of the at least three superlattice layer is composed of the aluminum of the second layer It has the same composition.
  • the light emitting device may include a first conductive semiconductor layer; An active layer disposed on the first conductive semiconductor layer and having a plurality of barrier layers and a plurality of well layers; A plurality of superlattice layers disposed under the first conductive semiconductor layer; And a second conductive semiconductor layer on the active layer, wherein the plurality of superlattice layers include at least three superlattice layers, each of the at least three superlattice layers each having a pair of at least a first layer and a second layer.
  • a plurality of superlattice layers adjacent to the active layer among the at least three superlattice layers have a larger difference in composition of aluminum between the first layer and the second layer, and a superstructure adjacent to the active layer among the at least three superlattice layers. The thicker the lattice layer, the thicker the first layer.
  • the light emitting device According to the light emitting device according to the embodiment, it is possible to eliminate the defects transferred to the active layer.
  • the light emitting device According to the light emitting device according to the embodiment, it is possible to improve the internal quantum efficiency.
  • the embodiment can improve the reliability of the ultraviolet light emitting device for sterilization.
  • the embodiment can provide a light emitting device package having an ultraviolet light emitting device and a light unit such as an ultraviolet lamp.
  • FIG. 1 is a view showing a light emitting device according to a first embodiment.
  • FIG. 2 is a diagram for describing a plurality of superlattice layers of FIG. 1.
  • FIG. 3 is an example in which an electrode is disposed in the light emitting device of FIG. 1.
  • FIG. 4 is another example in which an electrode is disposed in the light emitting device of FIG. 1.
  • FIG. 5 is a cross-sectional view illustrating a light emitting device package having the light emitting device of FIG. 3.
  • FIG. 6 is a view showing a light emitting device according to a second embodiment.
  • FIG. 7 is an example in which an electrode is disposed in the light emitting device of FIG. 6.
  • FIG. 8 is a cross-sectional view illustrating a light emitting device package having the light emitting device of FIG. 6.
  • FIG. 9 is a view illustrating a light unit having a light emitting device according to an embodiment.
  • 10 is a graph showing the relationship between the composition and thickness of aluminum of the plurality of superlattice layer according to the embodiment.
  • FIG. 11 is a graph illustrating a relationship of contact resistance according to aluminum composition of the third conductive semiconductor layer in the light emitting device according to the second embodiment.
  • each layer, region, pattern or structure may be " on / over “ or “ under “ of the substrate, each layer (film), region, pad or pattern. "On / over” and “under” form “directly” or “indirectly” through another layer, as described in It includes everything that is done. In addition, the criteria for up / down or down / down each layer will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view of a light emitting device according to the first embodiment.
  • a light emitting device includes a substrate 21, a plurality of superlattice layers 31, 33, 35, and 37 disposed on the substrate 21, and a plurality of superlattice layers.
  • the electron blocking layer 61 and the second conductive semiconductor layer 71 disposed on the electron blocking layer 61 may be included.
  • the light emitting device emits light of an ultraviolet wavelength.
  • the light emitting device may emit a wavelength of 300 nm or less, for example, in a range of 200 nm to 290 nm.
  • the light emitting device may be a device emitting a UV-C wavelength.
  • the substrate 21 may be, for example, a light transmissive, conductive substrate, or an insulating substrate.
  • the substrate 21 may include sapphire (Al 2 O 3 ), SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga 2 O 3 It may include at least one of.
  • a plurality of protrusions (not shown) may be formed on an upper surface and / or a lower surface of the substrate 21, and each of the plurality of protrusions has at least one of a hemispherical shape, a polygon shape, an ellipse shape, and a stripe. It may be arranged in the form or matrix form. The protrusion may improve light extraction efficiency.
  • a plurality of compound semiconductor layers may be grown on the substrate 21, and the growth equipment of the plurality of compound semiconductor layers may be an electron beam evaporator, physical vapor deposition (PVD), chemical vapor deposition (CVD), or plasma laser deposition (PLD). It may be formed by a dual-type thermal evaporator sputtering, metal organic chemical vapor deposition (MOCVD), and the like, but is not limited thereto.
  • MOCVD metal organic chemical vapor deposition
  • a plurality of superlattice layers 31, 33, 35, and 37 may be disposed between the substrate 21 and the first conductive semiconductor layer 41.
  • An active layer 51 may be disposed on the first conductive semiconductor layer 41.
  • the plurality of superlattice layers 31, 33, 35, and 37 may include at least three superlattice layers, for example, four or more superlattice layers. Each of the plurality of superlattice layers 31, 33, 35, and 37 may have at least two layers as one pair and include a plurality of pairs.
  • the plurality of superlattice layers 31, 33, 35, and 37 may be embodied by Group II-VI or Group III-V compound semiconductors as one layer of each pair. Group II-VI or Group III-V compound semiconductors.
  • each of the plurality of superlattice layers 31, 33, 35, and 37 is a pair of first layers 11, 13, 15, and 17 and second layers 12, 14, 16, and 18.
  • the first layers 11, 13, 15, and 17 and the second layers 12, 14, 16, and 18 may include different materials.
  • the first layers 11, 13, 15, and 17 and the second layers 12, 14, 16, and 18 may be alternately disposed.
  • the composition of aluminum of the first layers 11, 13, 15, and 17 may gradually decrease.
  • the superlattice layer adjacent to the active layer 51 has the first layer 11, 13, 15, 17 and the second layer 12, 14, 16, 18.
  • the difference in the composition of aluminum may increase gradually.
  • Each of the superlattice layers 31, 33, 35, and 37 may have the same composition of aluminum in the second layers 12, 14, 16, and 18.
  • the thicknesses of the first layers 11, 13, 15, and 17 of the superlattice layers adjacent to the active layer 51 are T1, T2, T3, and T4. It can get thicker.
  • the thickness of the plurality of superlattice layers 31, 33, 35, and 37 may be gradually increased as the thickness of the superlattice layer adjacent to the active layer 51 is increased.
  • the pairs of the first layers 11, 13, 15, 17 and the second layers 12, 14, 16, and 18 of the superlattice layers 31, 33, 35, and 37 each include a pair of AlGaN / AlN. can do.
  • AlGaN of the first layers 11, 13, 15, and 17 decreases gradually as the composition of aluminum is a superlattice layer adjacent to the active layer.
  • the difference in composition of aluminum between the first layers 11, 13, 15, and 17 provided in two adjacent superlattice layers among the plurality of superlattice layers 31, 33, 35, and 37 may be at least 10%.
  • the difference in composition of aluminum between the first layers 11, 13, 15, and 17 provided in the two superlattice layers located on opposite sides of the plurality of superlattice layers 31, 33, 35, and 37 is at least 30% or more. Can have a difference.
  • the plurality of superlattice layers 31, 33, 35, and 37 may include, for example, first to fourth superlattice layers 31, 33, 35, and 37.
  • the first superlattice layer 31 is disposed between the substrate 21 and the second superlattice layer 33, and the second superlattice layer 33 is formed of the first superlattice layer 31 and the first superlattice layer 31. It is disposed between the three superlattice layer 35, the third superlattice layer 35 is disposed between the second superlattice layer 33 and the fourth superlattice layer 37, the fourth superlattice The layer 37 may be disposed between the third superlattice layer 35 and the first conductive semiconductor layer 41.
  • the first superlattice layer 31 may include a pair of the first layer 11 and the second layer 12, and the pair may include 8 to 20 pairs, for example, 10 to 15 pairs.
  • the first layer 11 may be a semiconductor material having a compositional formula of Al a Ga 1-a N (0 ⁇ a ⁇ 1), and the second layer 12 may be AlN.
  • a difference in composition of aluminum between the first layer 11 and the second layer 12 may be 20% or more.
  • the thickness T1 of the first layer 11 in the first superlattice layer 31 is the thickness of the first layers 13, 15, and 17 of the second to fourth superlattice layers 33, 35, and 37. It may be thinner than (T2, T3, T4) and includes, for example, a range of 5 nm to 20 nm.
  • the thickness T5 of the second layer 12 in the first superlattice layer 31 includes a range of 5 nm to 20 nm.
  • the second superlattice layer 33 may include a pair of the first layer 13 and the second layer 14, and the pair may include 8 to 20 pairs, for example, 10 to 15 pairs.
  • the first layer 13 is a semiconductor material having a composition formula of Al b Ga 1 ⁇ b N (0 ⁇ b ⁇ 1), and the second layer 14 may be AlN. have.
  • the difference in composition of aluminum between the first layer 13 and the second layer 14 may have a difference of 30% or more. Since the second layer 14 has a composition of aluminum that is 30% or more higher than that of aluminum of the first layer 13, the second layer 14 may provide a semiconductor having a small lattice constant.
  • the thickness T2 of the first layer 13 in the second superlattice layer 33 is the thickness (T3, T4) of the first layers 15 and 17 of the third and fourth superlattice layers 35 and 37. May be thinner, including, for example, the range from 12 nm to 22 nm.
  • the thickness T5 of the second layer 14 in the second superlattice layer 33 includes a range of 5 nm to 20 nm.
  • the thickness T2 of the first layer 13 of the second superlattice layer 33 may be thicker than the thickness T5 of the second layer 14.
  • the second layer 13 of the second superlattice layer 33 is provided with a small lattice constant and a thin thickness, thereby serving as a layer for controlling defects in the second superlattice layer 33.
  • the third superlattice layer 35 may include a pair of the first layer 15 and the second layer 16, and the pair may include 8 to 20 pairs, for example, 10 to 15 pairs.
  • the first layer 15 is a semiconductor material having a composition formula of Al c Ga 1 - c N (0 ⁇ c ⁇ 1), and the second layer 16 may be AlN. have.
  • the difference in composition of aluminum between the first layer 15 and the second layer 16 may have a difference of 40% or more.
  • the thickness T3 of the first layer 15 in the third superlattice layer 35 may be thinner than the thickness T4 of the first layer 17 of the fourth superlattice layer 37. It covers the 25 nm range.
  • the thickness T5 of the second layer 16 in the third superlattice layer 35 includes a range of 5 nm to 20 nm.
  • the thickness T3 of the first layer 15 of the third superlattice layer 35 may be thicker than the thickness T5 of the second layer 16.
  • the second layer 16 of the third superlattice layer 35 is provided with a small lattice constant and a thin thickness, and may serve as a layer for controlling defects in the third superlattice layer 35.
  • the fourth superlattice layer 37 may include a pair of the first layer 17 and the second layer 18, and the pair may include 8 to 20 pairs, for example, 10 to 15 pairs.
  • the first layer 17 is a semiconductor material having a composition formula of Al d Ga 1 - d N (0 ⁇ d ⁇ 1), and the second layer 18 may be AlN. have.
  • the difference in composition of aluminum between the first layer 17 and the second layer 18 may be 45% or more, for example, 50% or more.
  • the thickness T4 of the first layer 17 in the fourth superlattice layer 37 is the thickness of the first layers 11, 13, and 15 of the first to third superlattice layers 31, 33, and 35. It may be thicker than (T1, T2, T3) and includes, for example, the range of 17 nm to 30 nm.
  • the thickness T5 of the second layer 18 in the fourth superlattice layer 37 includes a range of 5 nm to 20 nm.
  • the thickness T4 of the first layer 17 of the fourth superlattice layer 37 may be thicker than the thickness T5 of the second layer 18.
  • the second layer 18 of the fourth superlattice layer 37 is provided with a small lattice constant and a thin thickness, thereby serving as a layer for controlling defects in the fourth superlattice layer 37.
  • Al compositions of AlGaN (Al a , Al b , Al c , Al d ) in the first to fourth superlattice layers 31, 33, 35, and 37 are the first layers 11, 13, 15, and 17.
  • a>b>c> d the difference between the aluminum composition a and b is 10% or more
  • the difference between the composition b and c of the aluminum is 10% or more
  • the difference between the composition c and d of the aluminum May be at least 10%.
  • the difference between the compositions a and d of aluminum may be at least 30% or more.
  • the composition of aluminum of AlN of the second layers 12, 14, 16, and 18 may be 20% ⁇ 2% or more with a, 30% ⁇ 3% or more with b, and 40% with c.
  • It may have a difference of ⁇ 4% or more, and may have a difference of 50% ⁇ 5% or more of d.
  • the superlattice layer adjacent to the active layer 51 gradually decreases the composition of aluminum in the first layers 11, 13, 15, and 17.
  • the difference may be reduced by 50% or more, and the thicknesses T1, T2, T3, and T4 of the first layers 11, 13, 15, and 17 may gradually become thicker. Since the first to fourth superlattice layers 31, 33, 35, and 37 are disposed under the active layer 51, defects transmitted from the substrate 21 may be removed and stresses transferred to the upper portion may be reduced. have.
  • the transmittance with respect to the ultraviolet wavelength can be improved.
  • the a-axis lattice constant values are listed in the order of AlN> AlGaN> GaN.
  • AlGaN and AlN have a crystallographically identical wurtzite crystal structure to provide a stable superlattice structure.
  • the plurality of superlattice layers 31, 33, 35, and 37 are disposed on the substrate 21, so that dislocations are reduced compared to the case where a single n-type semiconductor layer is disposed on the substrate 21. It can effectively cut off and prevent the deterioration of quality due to the lattice constant difference.
  • the composition of the aluminum of the first layers 11, 13, 15, and 17 of the plurality of superlattice layers 31, 33, 35, and 37 gradually decreases as the superlattice layer adjacent to the active layer 51 increases. The film quality deterioration by a constant difference can be prevented.
  • the composition of aluminum may be smaller as a layer adjacent to the first conductive semiconductor layer 41 among the first layers 11, 13, 15, and 17 of the plurality of superlattice layers 31, 33, 35, and 37. .
  • the superlattice layer adjacent to the active layer 51 has a thickness T1 ⁇ T2 ⁇ T3 ⁇ T4 of the first layers 11, 13, 15, and 17 of the plurality of superlattice layers 31, 33, 35, and 37.
  • the plurality of superlattice layers 31, 33, 35, and 37 may include a first conductive dopant, for example, an n-type dopant such as Si, Ge, Sn, Se, or Te.
  • the plurality of superlattice layers 31, 33, 35, and 37 may be n-type semiconductor layers, for example, the first layers 11, 13, 15, and 17 of each of the superlattice layers 31, 33, 35, and 37.
  • the second layers 12, 14, 16, and 18 may be n-type semiconductor layers.
  • the first conductive semiconductor layer 41 may be disposed on the plurality of superlattice layers 31, 33, 35, and 37.
  • the composition of aluminum of the first conductive semiconductor layer 41 may have the same composition as that of aluminum of the first layer 17 of the fourth superlattice layer 37 adjacent to the first conductive semiconductor layer 41.
  • the composition of the aluminum of the second layer 18 of the fourth superlattice layer 37 may have a difference of 45% or more.
  • the first conductive semiconductor layer 41 may be at least 40 times thicker than the thickness T4 of the first layer 17 of the fourth superlattice layer 37 adjacent to the first conductive semiconductor layer 41. .
  • the first conductive semiconductor layer 41 may have, for example, a composition of aluminum in a range of 50% ⁇ 5% and a thickness in a range of 1000 nm ⁇ 100 nm.
  • the aluminum of the first conductive semiconductor layer 41 may have a thickness of about 50% from that of AlN and be thickly provided, thereby reducing polarization and defects transferred to the active layer 51.
  • the first conductive semiconductor layer 41 may include at least one of another semiconductor including aluminum, for example, InAlGaN, AlInN, AlGaAs, or AlGaInP material.
  • the first conductive semiconductor layer 41 may be an n-type semiconductor layer doped with n-type dopants such as Si, Ge, Sn, Se, and Te.
  • the active layer 51 may be formed of at least one of a single well, a single quantum well, a multi well, a multi quantum well structure (MQW), a quantum-wire structure, or a quantum dot structure. Can be.
  • the active layer 51 electrons (or holes) injected through the first conductive semiconductor layer 41 and holes (or electrons) injected through the second conductive semiconductor layer 71 meet each other, and the active layer ( 51 is a layer that emits light due to a band gap difference of an energy band according to a forming material of 51).
  • the active layer 51 may be implemented with a compound semiconductor.
  • the active layer 51 may be implemented as at least one of a group II-VI and a group III-V compound semiconductor.
  • the active layer 51 When the active layer 51 is implemented in a multi-well structure, the active layer 51 includes a plurality of well layers (not shown) and a plurality of barrier layers (not shown). In the active layer 51, a well layer and a barrier layer are alternately disposed. The pair of the well layer and the barrier layer may be formed in 2 to 30 cycles.
  • the well layer may be for example, disposed in a semiconductor material having a compositional formula of In x Al y Ga 1 -x- y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the barrier layer for example, may be formed of a semiconductor material having a compositional formula of In x Al y Ga 1 -x- y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the period of the well layer / barrier layer is, for example, InGaN / GaN, GaN / AlGaN, AlGaN / AlGaN, InGaN / AlGaN, InGaN / InGaN, AlGaAs / GaAs, InGaAs / GaAs, InGaP / GaP, AlInGaP / InGaP, InP At least one of a pair of / GaAs.
  • the well layer of the active layer 51 may be implemented with AlGaN, the barrier layer may be implemented with AlGaN.
  • the active layer 51 may emit an ultraviolet wavelength, and may emit, for example, in a range of 200 nm to 290 nm.
  • the aluminum composition of the barrier layer has a composition higher than that of aluminum of the well layer.
  • the aluminum composition of the well layer may range from 20% to 40%, and the aluminum composition of the barrier layer may range from 40% to 95%.
  • the barrier layer may comprise a dopant, for example an n-type dopant.
  • the electron blocking layer 61 may be disposed on the active layer 51.
  • the electron blocking layer 61 may be disposed as an AlGaN semiconductor, and may have a composition of aluminum higher than that of the barrier layer of the active layer.
  • the composition of aluminum of the electron blocking layer 61 may be 50% or more.
  • the electron blocking layer 61 may include a multilayer structure, for example, may include a plurality of semiconductor layers having different compositions of aluminum, and at least one layer may have a composition of aluminum of 50% or more.
  • the second conductive semiconductor layer 71 is disposed on the electron blocking layer 61.
  • the second conductive semiconductor layer 71 may include an AlGaN-based semiconductor.
  • the second conductive semiconductor layer 71 may be a p-type semiconductor layer having a second conductive dopant, for example, a p-type dopant.
  • the second conductive semiconductor layer 71 may include at least one of AlN, InAlGaN, AlInN, AlGaAs, or AlGaInP, and may include p-type dopants such as Mg, Zn, Ca, Sr, and Ba. Can be.
  • the second conductive semiconductor layer 71 may be disposed as an AlGaN-based semiconductor to prevent absorption of ultraviolet wavelengths.
  • the second conductive semiconductor layer 71 may be a multilayer, but is not limited thereto.
  • the first conductive type is n-type and the second conductive type is p-type, but as another example, the first conductive type may be p-type and the second conductive type may be n-type.
  • the light emitting device may include any one of an n-p junction structure, a p-n junction structure, an n-p-n junction structure, and a p-n-p junction structure.
  • FIG. 3 illustrates an example in which an electrode is disposed in the light emitting device of FIG. 1.
  • the same parts as the above-described components will be referred to the description of the above-described embodiments.
  • the light emitting device 101 includes a first electrode 91 and a second electrode 95.
  • the first electrode 91 is electrically connected to any one of a first conductive semiconductor layer, for example, a plurality of superlattice layers 31, 33, 35, and 37, and the second electrode 95 is formed of a first electrode.
  • the second conductive semiconductor layer 71 may be electrically connected to the second conductive semiconductor layer 71.
  • the first electrode 91 may be disposed on at least one of the first conductive semiconductor layer, for example, the plurality of superlattice layers 31, 33, 35, 37, and the first conductive semiconductor layer 41.
  • the second electrode 95 may be disposed on the second conductive semiconductor layer 71.
  • the first electrode 91 and the second electrode 95 may further include a current diffusion pattern having an arm structure or a finger structure.
  • the first electrode 91 and the second electrode 95 may be made of non-transmissive metal, which has the characteristics of ohmic contact, adhesive layer, and bonding layer, but is not limited thereto.
  • the first electrode 93 and the second electrode 95 are Ti, Ru, Rh, Ir, Mg, Zn, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag, Au and their selection Can be selected from among the alloys.
  • An electrode layer (not shown) may be disposed between the second electrode 95 and the second conductive semiconductor layer 71, and the electrode layer may be a translucent material that transmits 70% or more of the light or may reflect 70% or more of the light. It may be formed of a material having reflective properties, such as a metal or a metal oxide.
  • the electrode layer may be indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZAO), indium gallium zinc oxide (IGZO), indium gallium tin oxide (IGTO), or AZO.
  • the electrode layer may have a laminated structure of a light transmissive layer / reflective metal layer.
  • the substrate 21 may be provided with a thickness of 20 ⁇ m or less in order to reduce absorption of ultraviolet wavelengths.
  • the substrate 21 may be separated from the light emitting device, but is not limited thereto.
  • the light emitting device 101 according to the embodiment may emit light of, for example, UV-C wavelength of the ultraviolet wavelength.
  • FIG. 4 is a diagram illustrating an example of a vertical light emitting device using the light emitting device of FIG. 1.
  • the same parts as those described above will be referred to the description of the above-described embodiments.
  • the light emitting device 102 may include at least one of a plurality of superlattice layers 31, 33, 35, and 37, and a plurality of superlattice layers 31, 33, 35, and 37, for example, a first candle.
  • the first electrode 91 is disposed on the grating layer 31, and the first conductive semiconductor layer 41 and the active layer 51 are disposed below the plurality of superlattice layers 31, 33, 35, and 37.
  • a second electrode having a plurality of conductive layers 96, 97, 98, and 99 under the second conductive semiconductor layer 71 is included.
  • the second electrode is disposed under the second conductive semiconductor layer 71 and includes a contact layer 96, a reflective layer 97, a bonding layer 98, and a support member 99.
  • the contact layer 96 is in contact with a semiconductor layer, for example, the second conductive semiconductor layer 71.
  • the contact layer 96 may be a low conductive material such as ITO, IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO, or a metal of Ni and Ag.
  • a reflective layer 97 is disposed below the contact layer 96, and the reflective layer 97 is composed of Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, and a combination thereof. It may be formed into a structure including at least one layer of a material selected from the group.
  • the reflective layer 97 may contact the bottom of the second conductive semiconductor layer 71, but is not limited thereto.
  • a bonding layer 98 is disposed below the reflective layer 97, and the bonding layer 98 may be used as a barrier metal or a bonding metal, and the material may be, for example, Ti, Au, Sn, Ni, Cr, And at least one of Ga, In, Bi, Cu, Ag, and Ta and an optional alloy.
  • the channel layer 83 and the current blocking layer 85 are disposed between the second conductive semiconductor layer 71 and the second electrode.
  • the channel layer 83 is formed along the bottom edge of the second conductive semiconductor layer 71 and may be formed in a ring shape, a loop shape, or a frame shape.
  • the channel layer 83 includes a transparent conductive material or an insulating material, for example, ITO, IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO, SiO 2 , SiO x , SiO x N y , Si 3 N 4 , It may include at least one of Al 2 O 3 , TiO 2 .
  • An inner portion of the channel layer 163 is disposed under the second conductive semiconductor layer 71, and an outer portion of the channel layer 163 is disposed outside the side surface of the light emitting structure.
  • the current blocking layer 85 may be disposed between the second conductive semiconductor layer 71 and the contact layer 96 or the reflective layer 97.
  • the current blocking layer 85 includes an insulating material, for example, SiO 2 , SiO x , SiO x N y , Si 3 N 4 , Al 2 O 3 , TiO 2 It may include at least one of.
  • the current blocking layer 85 may also be formed of metal for Schottky contact.
  • the current blocking layer 85 is disposed to correspond to the first electrode 91 in the vertical direction.
  • the current blocking layer 85 may block the current supplied from the second electrode and diffuse it in another path.
  • the current blocking layer 85 may be disposed in one or a plurality, and at least a portion or the entire area of the current blocking layer 85 may overlap with the first electrode 91.
  • a support member 99 may be formed under the bonding layer 98, and the support member 99 may be formed as a conductive member.
  • the materials may include copper, gold, and nickel. (Ni-nickel), molybdenum (Mo), copper-tungsten (Cu-W), and a carrier wafer (eg, Si, Ge, GaAs, ZnO, SiC, etc.).
  • the support member 99 may be implemented as a conductive sheet.
  • the growth method of the growth substrate may be removed by a physical method (eg, laser lift off) or / and a chemical method (eg, wet etching), and exposes the first superlattice layer 31. Isolation is performed in the direction in which the substrate is removed to form a first electrode 91 on the first superlattice layer 31.
  • An upper surface of the first superlattice layer 31 may have a light extraction structure (not shown) such as roughness. Accordingly, a light emitting device 102 having a vertical electrode structure having a first electrode 91 on the light emitting structure and a support member 99 below may be manufactured.
  • the light emitting device 102 may emit light of, for example, UV-C wavelength of the ultraviolet wavelength.
  • FIG. 5 is a view illustrating a light emitting device package having the light emitting device of FIG. 4.
  • the light emitting device package includes a support member 110, a reflective member 111 having a cavity 112 on the support member 110, an upper portion of the support member 110, and in the cavity 112.
  • the light emitting device 101 according to the embodiment, and a transparent window 115 on the cavity 112 is included.
  • the support member 110 is a resin-based printed circuit board (PCB), silicon (silicon) or silicon carbide (silicon carbide (SiC)), such as silicon-based, ceramics such as aluminum nitride (Aluminum nitride (AlN)), polyphthal It may be formed of at least one of a resin series such as amide (polyphthalamide (PPA)), a liquid crystal polymer (PCB), and a metal core PCB (MCPCB) having a metal layer on the bottom thereof, but is not limited thereto.
  • PCB resin-based printed circuit board
  • silicon silicon
  • silicon carbide silicon carbide
  • AlN aluminum nitride
  • PPA polyphthalamide
  • MCPCB metal core PCB having a metal layer on the bottom thereof, but is not limited thereto.
  • the support member 110 includes a first metal layer 131, a second metal layer 133, a first connection member 138, a second connection member 139, a first electrode layer 135, and a second electrode layer 137. It includes.
  • the first metal layer 131 and the second metal layer 132 are spaced apart from each other on the bottom of the support member 110.
  • the first electrode layer 135 and the second electrode layer 137 are disposed on the upper surface of the support member 110 to be spaced apart from each other.
  • the first connection member 138 may be disposed inside or on the first side of the support member 110, and connects the first metal layer 131 and the first electrode layer 135 to each other.
  • the second connection member 139 may be disposed inside or on the second side of the support member 110, and connects the second metal layer 133 and the second electrode layer 137 to each other.
  • the first metal layer 131, the second metal layer 133, the first electrode layer 135, and the second electrode layer 137 may be formed of a metal material, for example, titanium (Ti), copper (Cu), or nickel (Ni). , Gold (Au), chromium (Cr), tantalum (Ta), platinum (Pt), tin (Sn), silver (Ag), phosphorus (P) or may be formed of an optional alloy thereof, It may be formed of a single metal layer or a multilayer metal layer.
  • the first connection member 138 and the second connection member 139 include at least one of a via, a via hole, and a through hole.
  • the reflective member 111 may be disposed around the cavity 112 on the support member 110 to reflect the ultraviolet light emitted from the light emitting device 101.
  • the reflective member 111 may be a resin based printed circuit board (PCB), silicon based on silicon (silicon) or silicon carbide (silicon carbide (SiC)), ceramic based on AlN (aluminum nitride; AlN), or polyphthalamide. It may be formed of at least one of a resin series such as (polyphthalamide: PPA) and a liquid crystal polymer (Liquid Crystal Polymer), but is not limited thereto.
  • the support member 110 and the reflective member 111 may include a ceramic-based material, and the ceramic-based material may have a higher heat dissipation efficiency than the resin material.
  • the light emitting device 101 may be disposed on the second electrode layer 137 or on the support member 110, and electrically connected to the first electrode layer 135 and the second electrode layer 137. do.
  • the light emitting device 101 may be connected by a wire 121.
  • the light emitting device 101 may be bonded in a flip chip method.
  • the light emitting device 101 may emit an ultraviolet wavelength or emit light of another wavelength when the phosphor layer is disposed on the light emitting device 101.
  • the transparent window 115 is disposed on the cavity 112 and emits a peak wavelength emitted from the light emitting device 101.
  • the transparent window 115 may include a glass material, a ceramic material, or a transparent resin material.
  • an optical lens or a phosphor layer may be further disposed on the cavity 112, but is not limited thereto.
  • the light emitting device or the light emitting device package according to the embodiment may be applied to the light unit.
  • the light unit is an assembly having one or more light emitting devices or light emitting device packages, and may include an ultraviolet lamp.
  • FIG. 6 is a side sectional view showing a light emitting device according to the second embodiment.
  • the same configuration as the first embodiment will be described with reference to the description of the first embodiment.
  • the light emitting device includes a substrate 21, a plurality of superlattice layers 31, 33, 35, and 37 disposed on the substrate 21, and the plurality of superlattice layers.
  • a first conductive semiconductor layer 41 disposed on (31, 33, 35, 37), an active layer 51 disposed on the first conductive semiconductor layer 41, and an active layer 51 disposed on the active layer 51
  • the light emitting device emits light of an ultraviolet wavelength.
  • the light emitting device may emit light having a wavelength of 290 nm or less, for example, in the range of 200 nm to 290 nm.
  • the light emitting device may be a device emitting a UV-C wavelength.
  • a plurality of superlattice layers 31, 33, 35, and 37 may be disposed between the substrate 21 and the first conductive semiconductor layer 41.
  • An active layer 51 may be disposed on the first conductive semiconductor layer 41.
  • the plurality of superlattice layers 31, 33, 35, and 37 may include at least three superlattice layers, for example, four or more superlattice layers. Each of the plurality of superlattice layers 31, 33, 35, and 37 may have at least two layers as one pair and include a plurality of pairs.
  • the plurality of superlattice layers 31, 33, 35, and 37 may be embodied by Group II-VI or Group III-V compound semiconductors as one layer of each pair. Group II-VI or Group III-V compound semiconductors.
  • each of the plurality of superlattice layers 31, 33, 35, and 37 is a pair of first layers 11, 13, 15, and 17 and second layers 12, 14, 16, and 18.
  • the first layers 11, 13, 15, and 17 and the second layers 12, 14, 16, and 18 may include different materials.
  • the first layers 11, 13, 15, and 17 and the second layers 12, 14, 16, and 18 may be alternately disposed.
  • the composition of aluminum of the first layers 11, 13, 15, and 17 may gradually decrease.
  • the superlattice layer adjacent to the active layer 51 has the first layer 11, 13, 15, 17 and the second layer 12, 14, 16, 18.
  • the difference in the composition of aluminum may increase gradually.
  • Each of the superlattice layers 31, 33, 35, and 37 may have the same composition of aluminum in the second layers 12, 14, 16, and 18.
  • the thicknesses of the first layers 11, 13, 15, and 17 of the superlattice layers adjacent to the active layer 51 are T1, T2, T3, and T4. It can get thicker.
  • the thickness of the plurality of superlattice layers 31, 33, 35, and 37 may be gradually increased as the thickness of the superlattice layer adjacent to the active layer 51 is increased.
  • the pairs of the first layers 11, 13, 15, 17 and the second layers 12, 14, 16, and 18 of the superlattice layers 31, 33, 35, and 37 each include a pair of AlGaN / AlN. can do.
  • AlGaN of the first layers 11, 13, 15, and 17 decreases gradually as the composition of aluminum is a superlattice layer adjacent to the active layer.
  • the difference in composition of aluminum between the first layers 11, 13, 15, and 17 provided in two adjacent superlattice layers among the plurality of superlattice layers 31, 33, 35, and 37 may be at least 10%.
  • the difference in composition of aluminum between the first layers 11, 13, 15, and 17 provided in the two superlattice layers located on opposite sides of the plurality of superlattice layers 31, 33, 35, and 37 is at least 30% or more. Can have a difference.
  • the plurality of superlattice layers 31, 33, 35, and 37 may include, for example, first to fourth superlattice layers 31, 33, 35, and 37.
  • the first superlattice layer 31 is disposed between the substrate 21 and the second superlattice layer 33, and the second superlattice layer 33 is formed of the first superlattice layer 31 and the first superlattice layer 31. It is disposed between the three superlattice layer 35, the third superlattice layer 35 is disposed between the second superlattice layer 33 and the fourth superlattice layer 37, the fourth superlattice The layer 37 may be disposed between the third superlattice layer 35 and the first conductive semiconductor layer 41.
  • the first to fourth superlattice layers 31, 33, 35, and 37 will be described with reference to the description of the first embodiment.
  • a first conductive semiconductor layer 41 is disposed on the plurality of superlattice layers 31, 33, 35, and 37, and an active layer 51 is disposed on the first conductive semiconductor layer 41, and the active layer 51 is disposed on the first conductive semiconductor layer 41.
  • An electron blocking layer 61 is disposed, a second conductive semiconductor layer 71 is disposed on the electron blocking layer 61, and a third conductive semiconductor layer 73 is disposed on the second conductive semiconductor layer 71. This can be arranged.
  • the second and third conductive semiconductor layers 71 and 73 may be AlGaN-based semiconductors, for example, AlGaN.
  • the second conductive semiconductor layer 71 may have a composition of aluminum of 50% or more, and a p-type dopant may be added.
  • the p-type dopant concentration may be in the range of 1E16cm-3 to 1E21cm-3, and when the p-type dopant concentration is lower than the range, hole injection efficiency may be lowered, and when the p-type dopant concentration is higher than the range, crystal quality may be lowered and the third conductive semiconductor
  • the electrical properties of layer 73 can be affected.
  • the third conductive semiconductor layer 73 is GaN, since the ultraviolet wavelength is absorbed, light extraction efficiency may be reduced. In addition, when an oxide layer such as ITO is disposed on the third conductive semiconductor layer 73, light extraction efficiency may decrease due to absorption of ultraviolet wavelengths.
  • the embodiment may provide a layer that may be in ohmic contact with the second electrode 95 by the aluminum composition of the third conductive semiconductor layer 73. To this end, the third conductive semiconductor layer 73 may be an electrode contact layer or an ohmic contact layer contacting the second electrode 95, and may be in ohmic contact with the second electrode 95.
  • the aluminum composition of the third conductive semiconductor layer 73 may be 40% or less, for example, in a range of 20% to 40%.
  • the contact resistance with the second electrode 95 is increased.
  • the contact resistance is lower, for example, may be 10 2 ⁇ cm 2 or less. There is a problem.
  • the third conductive semiconductor layer 73 may include a second conductive dopant, for example, a p-type dopant, and the p-type dopant concentration may be 1Ecm-18 or more, for example, 1Ecm-18 to 1Ecm-21.
  • the p-type dopant concentration is lower than the above range, the contact resistance is rapidly increased, and when the p-type dopant concentration is higher than the above range, the film quality is lowered to change the ohmic characteristics.
  • the third conductive semiconductor layer 73 may have a thickness of 50 nm or less, for example, a thickness of 40 nm or less, which may vary depending on the transmittance of ultraviolet wavelength according to the material and thickness of the third conductive semiconductor layer 73.
  • the second electrode 95 is a metal in contact with the third conductive semiconductor layer 73, for example, Ti, Ru, Rh, Ir, Mg, Zn, Al, In, Ta, Pd, Co, Ni, Si, Ge , Ag and Au and their optional alloys.
  • FIG. 7 illustrates an example in which an electrode is disposed in the light emitting device of FIG. 6.
  • the light emitting device includes a substrate 21, a plurality of superlattice layers 31, 33, 35, and 37, a first conductive semiconductor layer 41, an active layer 51, and an electron blocking layer. 61 and second and third conductive semiconductor layers 73 and 75 according to the second embodiment.
  • the light emitting device includes a first electrode 91 and a second electrode 95, and the first electrode 91 includes a plurality of superlattice layers 31, 33, 35, 37, and a first conductive semiconductor layer ( 41 may be disposed under at least one of the second electrodes 95, and the second electrode 95 may be disposed under the third conductive semiconductor layer 75.
  • a contact layer and a reflective layer are included between the second electrode 95 and the third conductive semiconductor layer 75, and the contact layer is indium tin oxide (ITO), indium zinc oxide (IZO), or indium zinc tin (IZTO). oxide), indium aluminum zinc oxide (IAZO), indium gallium zinc oxide (IGZO), indium gallium tin oxide (IGTO), aluminum zinc oxide (AZO), antimony tin oxide (ATO), gallium zinc oxide (GZO), ZnO, At least one of IrOx, RuOx, NiO, Al, Ag, Pd, Rh, Pt, Ir, or a plurality of mixed materials, and the reflective layer may include at least one of Al, Ag, Pd, Rh, Pt, Ir. have.
  • the substrate 21 may be provided with a thickness of 20 ⁇ m or less in order to minimize light absorption and improve light transmittance.
  • a light extracting structure 21A such as roughness may be disposed on the top surface of the substrate 21.
  • the substrate 21 may be a bulk AlN substrate or a sapphire substrate for growth of AlGaN, which is the first layers 11, 13, 15, and 17 of the first superlattice layer 31.
  • the light emitting device 103 may be disposed in a flip structure to extract light toward the substrate.
  • the light emitting device of FIG. 7 may be mounted in a flip chip structure as shown in FIG. 8.
  • the light source module according to the embodiment may be a light unit.
  • a light source module includes a light emitting device package 201 having a light emitting device 103 disclosed in the embodiment, a circuit board 301 on which the light emitting device package 201 is disposed, and the light emission.
  • the device package 201 and a moisture proof film 275 covering the circuit board 301 are included.
  • the light emitting device package 201 may include a light emitting device disposed on at least one of a body 210 having a cavity 211, a plurality of electrodes 221 and 225 disposed in the cavity 211, and a plurality of electrodes 221 and 225. 103, a transparent window 261 disposed on the cavity 111.
  • the light emitting device 103 may include an optional peak wavelength within a range of ultraviolet wavelength to visible wavelength.
  • the light emitting device 103 may emit, for example, a UV-C wavelength, that is, an ultraviolet wavelength in the range of 200 nm to 290 nm.
  • the body 210 includes an insulating material, for example, a ceramic material.
  • the ceramic material includes a low temperature co-fired ceramic (LTCC) or a high temperature co-fired ceramic (HTCC) which is co-fired.
  • the material of the body 210 may be, for example, AlN, and may be formed of a metal nitride having a thermal conductivity of 140 W / mK or more.
  • An upper circumference of the body 210 includes a stepped structure 215.
  • the stepped structure 215 is a region lower than the upper surface of the body 210 and is disposed around the upper portion of the cavity 211.
  • the depth of the stepped structure 215 is a depth from an upper surface of the body 210 and may be formed deeper than the thickness of the transparent window 261, but is not limited thereto.
  • the cavity 211 is an area in which a portion of the upper region of the body 210 is open and may be formed to a predetermined depth from an upper surface of the body 210.
  • the electrodes 211 and 225 in the cavity 211 and the body 210 may be electrically connected to the electrode pads 241 and 245 disposed on the bottom surface of the body 210.
  • the materials of the electrodes 221 and 225 and the electrode pads 241 and 245 are metals such as platinum (Pt), titanium (Ti), copper (Cu), nickel (Ni), gold (Au), tantalum (Ta) and aluminum ( Al) may optionally be included.
  • the light emitting device 103 may be mounted on the electrodes 221 and 225 in the cavity 211 without a separate wire by a flip chip method.
  • the light emitting device 103 is an ultraviolet light emitting diode according to the first and second embodiments, and may be an ultraviolet light emitting device having a wavelength ranging from 200 nm to 290 nm.
  • the transparent window 261 is disposed on the cavity 211.
  • the transparent window 261 includes a glass material, for example, quartz glass. Accordingly, the transparent window 261 may be defined as a material that can be transmitted without damage such as bond breakage between molecules by light emitted from the light emitting element 103, for example, ultraviolet wavelength.
  • the transparent window 261 has an outer circumference coupled to the stepped structure 215 of the body 210.
  • An adhesive layer 263 is disposed between the transparent window 261 and the stepped structure 215 of the body 210, and the adhesive layer 263 includes a resin material such as silicon or epoxy.
  • the transparent window 261 may be spaced apart from the light emitting device 103. Since the transparent window 261 is spaced apart from the light emitting device 103, the transparent window 261 may be prevented from being expanded by the heat generated by the light emitting device 103.
  • the circuit board 301 may include a plurality of bonding pads 304 and 305, and the plurality of bonding pads 304 and 305 may be electrically connected to the pads 241 and 245 disposed on the bottom surface of the body 210.
  • the circuit board 301 may be connected to signal cables 311 and 313 through external connection terminals 307 and 308, and the signal cables 311 and 313 supply power from the outside.
  • the moisture proof film 275 is disposed on the top and side surfaces of the light emitting device package 201 and the top surface of the circuit board 301.
  • the moisture proof film 275 is disposed on an upper surface of the transparent window 261 of the light emitting device package 201, and an upper surface and a side surface of the body 210.
  • the extension part 271 of the moisture proof film 275 extends from a side surface of the body 210 to an upper surface of the circuit board 301.
  • the moisture proof film 275 is a fluororesin-based material and may transmit the light without being destroyed by the light emitted from the light emitting element 103.
  • the moisture proof film 275 may be used as at least one of polychlorotrifluoroethylene (PCTFE), ethyl + tetrafluoroethylene (ETFE), fluorinated ethylene propylene copolymer (FEP), and perfluoroalkoxy (PFA).
  • PCTFE polychlorotrifluoroethylene
  • ETFE ethyl + tetrafluoroethylene
  • FEP fluorinated ethylene propylene copolymer
  • PFA perfluoroalkoxy
  • the moisture proof film 275 may block moisture or moisture penetrating into the circuit board 301, as well as moisture or moisture penetrating through the side and top surfaces of the light emitting device package 201.
  • the moisture-proof film 275 may be formed in a range of 0.5 ⁇ m-10 ⁇ m, and when the thickness of the moisture-proof film 275 exceeds the above range, the light transmittance is significantly lowered. The habit is inferior.
  • the moisture proof film 275 may be spaced apart from the bonding areas of the external connection terminals 307 and 308 and the signal cables 311 and 313. As another example, the moisture proof film 275 may cover the external connection terminals 307 and 308. In this case, the moisture proof film 275 may prevent moisture or moisture penetration through the external connection terminals 307 and 308.
  • the light emitting device may provide a device for an ultraviolet-C (Ultraviolet-C) wavelength.
  • ultraviolet-C Ultraviolet-C
  • the embodiment can improve the transmittance of the ultraviolet light emitting device.
  • the embodiment can improve electrical characteristics of the ultraviolet light emitting device.

Abstract

실시 예는 발광소자에 관한 것이다. 실시 예에 따른 발광 소자는, 제1도전성 반도체층; 상기 제1도전성 반도체층 상에 배치되며 복수의 장벽층 및 복수의 우물층을 갖는 활성층; 상기 제1도전성 반도체층 아래에 배치된 복수의 초격자층; 및 상기 활성층 위에 제2도전성 반도체층을 포함하며, 상기 복수의 초격자층은 적어도 3개의 초격자층을 포함하며, 상기 적어도 3개의 초격자층 각각은 적어도 제1층 및 제2층의 페어를 복수개 구비하며, 상기 적어도 3개의 초격자층 중 상기 활성층에 인접한 초격자층일수록 상기 제1층의 알루미늄의 조성은 점차 감소되며, 상기 적어도 3개의 초격자층 각각은 상기 제2층의 알루미늄의 조성이 동일한 조성을 갖는다.

Description

발광 소자 및 이를 구비한 라이트 유닛
실시 예는 발광소자에 관한 것이다.
실시 예는 자외선 발광 소자에 관한 것이다.
실시 예는 자외선 발광 소자를 갖는 라이트 유닛에 관한 것이다.
일반적으로 질소(N)와 같은 Ⅴ족 소스와, 갈륨(Ga), 알루미늄(Al), 또는 인듐(In)과 같은 Ⅲ족 소스를 포함하는 질화물 반도체 소재는 열적 안정성이 우수하고 직접 천이형의 에너지 밴드(band) 구조를 갖고 있어, 질화물계 반도체 소자 예컨대, 자외선 영역의 질화물계 반도체 발광소자 및 태양전지용 물질로 많이 사용되고 있다.
질화물계 물질은 0.7eV에서 6.2eV의 폭넓은 에너지 밴드갭을 가지고 있어 태양광스펙트럼 영역과 일치하는 특성으로 인하여 태양전지소자용 물질로 많이 사용되고 있다. 특히, 자외선 발광소자는 경화기 장치, 의료분석기 및 치료기기 및 살균, 정수, 정화시스템 등 다양한 산업분야에서 활용되고 있으며, 향후 반도체 조명 광원으로써 일반조명에 사용 가능한 물질로서 주목을 받고 있다.
실시 예는 제1도전성 반도체층 아래에 복수의 초격자층을 갖는 발광 소자 및 이를 구비한 라이트 유닛을 제공한다.
실시 예는 제1도전성 반도체층과 기판 사이에 복수의 초격자층을 배치하여 결함을 줄여줄 수 있도록 한 발광 소자 및 이를 구비한 라이트 유닛을 제공한다.
실시 예는 복수의 초격자층 각각의 페어 중 적어도 한 층의 알루미늄의 조성이 활성층에 인접할수록 점차 감소되는 발광 소자 및 이를 구비한 라이트 유닛을 제공한다.
실시 예는 복수의 초격자층 각각의 페어 중 적어도 한 층의 두께가 활성층에 인접할수록 점차 두꺼워지는 발광 소자 및 이를 구비한 라이트 유닛을 제공한다.
실시 예는 자외선 파장 예컨대, UV-C(Ultraviolet-C) 파장을 방출하는 발광 소자 및 이를 구비하 라이트 유닛을 제공한다.
실시 예에 따른 발광 소자는, 제1도전성 반도체층; 상기 제1도전성 반도체층 상에 배치되며 복수의 장벽층 및 복수의 우물층을 갖는 활성층; 상기 제1도전성 반도체층 아래에 배치된 복수의 초격자층; 및 상기 활성층 위에 제2도전성 반도체층을 포함하며, 상기 복수의 초격자층은 적어도 3개의 초격자층을 포함하며, 상기 적어도 3개의 초격자층 각각은 적어도 제1층 및 제2층의 페어를 복수개 구비하며, 상기 적어도 3개의 초격자층 중 상기 활성층에 인접한 초격자층일수록 상기 제1층의 알루미늄의 조성은 점차 감소되며, 상기 적어도 3개의 초격자층 각각은 상기 제2층의 알루미늄의 조성이 동일한 조성을 갖는다.
실시 예에 따른 발광 소자는, 제1도전성 반도체층; 상기 제1도전성 반도체층 상에 배치되며 복수의 장벽층 및 복수의 우물층을 갖는 활성층; 상기 제1도전성 반도체층 아래에 배치된 복수의 초격자층; 및 상기 활성층 위에 제2도전성 반도체층을 포함하며, 상기 복수의 초격자층은 적어도 3개의 초격자층을 포함하며, 상기 적어도 3개의 초격자층 각각은 적어도 제1층 및 제2층의 페어를 복수개 구비하며, 상기 적어도 3개의 초격자층 중 상기 활성층에 인접한 초격자층일수록 상기 제1층과 제2층의 알루미늄의 조성 차이가 더 크며, 상기 적어도 3개의 초격자층 중 상기 활성층에 인접한 초격자층일수록 상기 제1층의 두께가 두껍다.
실시 예에 따른 발광 소자에 의하면, 활성층으로 전달되는 결함을 제거할 수 있다.
실시 예에 따른 발광 소자에 의하면, 내부 양자 효율을 개선시켜 줄 수 있다.
실시 예는 살균용 자외선 발광 소자의 신뢰성을 개선시켜 줄 수 있다.
실시 예는 자외선 발광 소자를 갖는 발광소자 패키지 및 자외선 램프와 같은 라이트 유닛을 제공할 수 있다.
도 1은 제1실시 예에 따른 발광 소자를 나타낸 도면이다.
도 2는 도 1의 복수의 초격자층을 설명하기 위한 도면이다.
도 3은 도 1의 발광 소자에 전극을 배치한 일 예이다.
도 4는 도 1의 발광 소자에 전극을 배치한 다른 예이다.
도 5는 도 3의 발광 소자를 갖는 발광 소자 패키지를 나타낸 단면도이다.
도 6은 제2실시 예에 따른 발광 소자를 나타낸 도면이다.
도 7은 도 6의 발광 소자에 전극을 배치한 일 예이다.
도 8은 도 6의 발광 소자를 갖는 발광 소자 패키지를 나타낸 단면도이다.
도 9는 실시 예에 따른 발광 소자를 갖는 라이트 유닛을 나타낸 도면이다.
도 10은 실시 예에 따른 복수의 초격자층의 알루미늄의 조성 및 두께의 관계를 나타낸 그래프이다.
도 11은 제2실시 예에 따른 발광 소자에서 제3도전성 반도체층의 알루미늄의 조성에 따른 접촉 저항의 관계를 나타낸 그래프이다.
실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on/over)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on/over)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
<발광소자>
도 1는 제1실시예에 따른 발광소자의 단면도이다.
도 1을 참조하면, 실시예에 따른 발광소자는 기판(21)과, 상기 기판(21) 상에 배치된 복수의 초격자층(31,33,35,37)과, 상기 복수의 초격자층(31,33,35,37) 상에 배치된 제1도전성 반도체층(41)과, 상기 제1도전성 반도체층(41) 상에 배치된 활성층(51)과, 상기 활성층(51) 상에 배치된 전자 차단층(61), 상기 전자 차단층(61) 상에 배치된 제2 도전성 반도체층(71)을 포함할 수 있다.
상기 발광 소자는 자외선 파장의 광을 방출하게 된다. 상기 발광 소자는 300nm 파장 이하 예컨대, 200nm 내지 290nm 범위의 파장을 발광할 수 있다. 상기 발광 소자는 UV-C 파장을 발광하는 소자일 수 있다.
상기 기판(21)은 예를 들어, 투광성, 전도성 기판 또는 절연성 기판일 수 있다. 예를 들어, 상기 기판(21)은 사파이어(Al2O3), SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga2O3 중 적어도 하나를 포함할 수 있다. 상기 기판(21)의 상면 및/또는 하면에는 복수의 돌출부(미도시)가 형성될 수 있으며, 상기 복수의 돌출부 각각은 측 단면이, 반구형 형상, 다각형 형상, 타원 형상 중 적어도 하나를 포함하며 스트라이프 형태 또는 매트릭스 형태로 배열될 수 있다. 상기 돌출부는 광 추출 효율을 개선시켜 줄 수 있다.
상기 기판(21) 위에는 복수의 화합물 반도체층이 성장될 수 있으며, 상기 복수의 화합물 반도체층의 성장 장비는 전자빔 증착기, PVD(physical vapor deposition), CVD(chemical vapor deposition), PLD(plasma laser deposition), 이중형의 열증착기(dual-type thermal evaporator) 스퍼터링(sputtering), MOCVD(metal organic chemical vapor deposition) 등에 의해 형성할 수 있으며, 이에 대해 한정하지는 않는다.
상기 기판(21)과 상기 제1도전성 반도체층(41) 사이에는 복수의 초격자층(31,33,35,37)이 배치될 수 있다. 상기 제1도전성 반도체층(41) 상에는 활성층(51)이 배치될 수 있다.
상기 복수의 초격자층(31,33,35,37)은 적어도 3개의 초격자층 예컨대, 4개 이상의 초격자층을 포함할 수 있다. 상기 복수의 초격자층(31,33,35,37) 각각은 적어도 2개의 층을 하나의 페어로 하며 복수의 페어를 구비할 수 있다. 상기 복수의 초격자층(31,33,35,37)은 각 페어의 어느 한 층은 예로서 II족-VI족 또는 III족-V족 화합물 반도체로 구현될 수 있으며, 다른 한 층은 예로서 II족-VI족 또는 III족-V족 화합물 반도체로 구현될 수 있다.
도 2를 참조하면, 상기 복수의 초격자층(31,33,35,37) 각각은 제1층(11,13,15,17) 및 제2층(12,14,16,18)의 페어를 포함할 수 있으며, 상기 제1층(11,13,15,17) 및 제2층(12,14,16,18)은 서로 다른 물질을 포함할 수 있다. 상기 각 초격자층(31,33,35,37)은 제1층(11,13,15,17) 및 제2층(12,14,16,18)이 교대로 배치될 수 있다.
상기 초격자층(31,33,35,37) 중 상기 활성층(51)에 인접한 초격자층일수록 상기 제1층(11,13,15,17)의 알루미늄의 조성은 점차 감소될 수 있다. 상기 초격자층(31,33,35,37) 중 상기 활성층(51)에 인접한 초격자층일수록 상기 제1층(11,13,15,17)과 제2층(12,14,16,18)의 알루미늄의 조성 차이는 점차 커질 수 있다. 상기 초격자층(31,33,35,37) 각각은 상기 제2층(12,14,16,18)의 알루미늄의 조성이 동일한 조성을 가질 수 있다.
상기 초격자층(31,33,35,37) 중 상기 활성층(51)에 인접한 초격자층일수록 상기 제1층(11,13,15,17)의 두께(T1,T2,T3,T4)는 점차 두꺼워질 수 있다. 상기 복수의 초격자층(31,33,35,37)의 두께는 상기 활성층(51)에 인접한 초격자층일수록 두께가 점차 증가될 수 있다.
상기 각 초격자층(31,33,35,37)의 제1층(11,13,15,17)/제2층(12,14,16,18)의 페어는 AlGaN/AlN의 페어를 포함할 수 있다. 상기 제1층(11,13,15,17)의 AlGaN은 알루미늄의 조성이 활성층에 인접한 초격자층일수록 점차 감소하게 된다.
상기 복수의 초격자층(31,33,35,37) 중 인접한 두 초격자층에 구비된 제1층(11,13,15,17)들 간의 알루미늄의 조성 차이는 적어도 10% 이상일 수 있다. 상기 복수의 초격자층(31,33,35,37) 중 서로 반대측에 위치한 두 초격자층에 구비된 제1층(11,13,15,17)들 간의 알루미늄의 조성 차이는 적어도 30% 이상 차이를 가질 수 있다.
상기 복수의 초격자층(31,33,35,37)은 예컨대, 제1 내지 제4초격자층(31,33,35,37)을 포함한다. 상기 제1초격자층(31)은 상기 기판(21)과 제2초격자층(33) 사이에 배치되며, 상기 제2초격자층(33)은 상기 제1초격자층(31)과 제3초격자층(35) 사이에 배치되며, 상기 제3초격자층(35)은 상기 제2초격자층(33)과 제4초격자층(37) 사이에 배치되며, 상기 제4초격자층(37)은 제3초격자층(35)과 제1도전성 반도체층(41) 사이에 배치될 수 있다.
상기 제1초격자층(31)은 제1층(11) 및 제2층(12)의 페어를 포함하며, 상기 페어는 8 내지 20페어 예컨대 10내지 15페어를 포함할 수 있다. 상기 제1층(11)은 AlaGa1-aN (0<a<1)의 조성식을 갖는 반도체 재료이며, 상기 제2층(12)은 AlN일 수 있다. 상기 제1초격자층(31)에서 제1층(11)과 제2층(12)의 알루미늄의 조성 차이는 20% 이상의 차이를 가질 수 있다.
상기 제1초격자층(31)에서 제1층(11)의 두께(T1)는 제2내지 제4초격자층(33,35,37)의 제1층(13,15,17)의 두께(T2,T3,T4)보다 얇을 수 있으며, 예컨대 5nm 내지 20nm 범위를 포함한다. 상기 제1초격자층(31)에서 제2층(12)의 두께(T5)는 5nm 내지 20nm 범위를 포함한다. 상기 제1초격자층(31)의 제1층(11) 및 제2층(12)의 두께(T1,T5)를 상기한 범위로 제공해 줌으로써, 상기 기판(21)과의 격자 상수 차이에 의한 결함을 줄여줄 수 있고 제2초격자층(33)으로 전달되는 응력을 줄여줄 수 있다. 상기 제1초격자층(31)의 제1층(11) 및 제2층(12)의 두께(T1,T5)는 동일한 두께일 수 있으며, 이에 대해 한정하지는 않는다.
상기 제2초격자층(33)은 제1층(13) 및 제2층(14)의 페어를 포함하며, 상기 페어는 8 내지 20페어 예컨대 10내지 15페어를 포함할 수 있다. 상기 제2초격자층(33)에서 제1층(13)은 AlbGa1 - bN (0<b<1)의 조성식을 갖는 반도체 재료이며, 상기 제2층(14)은 AlN일 수 있다. 상기 제2초격자층(33)에서 제1층(13)과 제2층(14)의 알루미늄의 조성 차이는 30% 이상의 차이를 가질 수 있다. 상기 제2층(14)은 상기 제1층(13)의 알루미늄의 조성에 비해 30% 이상 높은 알루미늄의 조성을 가지므로, 격자 상수가 작은 반도체를 제공해 줄 수 있다.
상기 제2초격자층(33)에서 제1층(13)의 두께(T2)는 제3 및 제4초격자층(35,37)의 제1층(15,17)의 두께(T3,T4)보다 얇을 수 있으며, 예컨대 12nm 내지 22nm 범위를 포함한다. 상기 제2초격자층(33)에서 제2층(14)의 두께(T5)는 5nm 내지 20nm 범위를 포함한다. 상기 제2초격자층(33)의 제1층(13) 및 제2층(14)의 두께(T2,T5)를 상기한 범위로 제공해 줌으로써, 상기 제1초격자층(31)을 통해 전달되는 결함을 줄여줄 수 있고 제3초격자층(35)으로 전달되는 응력을 줄여줄 수 있다. 상기 제2초격자층(33)의 제1층(13)의 두께(T2)는 제2층(14)의 두께(T5)보다 두꺼울 수 있다. 이러한 제2초격자층(33)의 제2층(13)이 격자 상수가 작고 얇은 두께로 제공되어, 제2초격자층(33) 내에서 결함을 제어하는 층으로서의 역할을 수행할 수 있다.
상기 제3초격자층(35)은 제1층(15) 및 제2층(16)의 페어를 포함하며, 상기 페어는 8 내지 20페어 예컨대 10내지 15페어를 포함할 수 있다. 상기 제3초격자층(35)에서 제1층(15)은 AlcGa1 - cN (0<c<1)의 조성식을 갖는 반도체 재료이며, 상기 제2층(16)은 AlN일 수 있다. 상기 제3초격자층(35)에서 제1층(15)과 제2층(16)의 알루미늄의 조성 차이는 40% 이상의 차이를 가질 수 있다. 상기 제3초격자층(35)의 제1층(15)의 알루미늄 조성을 제2초격자층(33)의 제1층(13)에 비해 낮추어줌으로써, 반도체층의 결정 품질을 개선시켜 줄 수 있다.
상기 제3초격자층(35)에서 제1층(15)의 두께(T3)는 제4초격자층(37)의 제1층(17)의 두께(T4)보다 얇을 수 있으며, 예컨대 15nm 내지 25nm 범위를 포함한다. 상기 제3초격자층(35)에서 제2층(16)의 두께(T5)는 5nm 내지 20nm 범위를 포함한다. 상기 제3초격자층(35)의 제1층(15) 및 제2층(16)의 두께(T3,T5)를 상기한 범위로 제공해 줌으로써, 상기 제2초격자층(33)을 통해 전달되는 결함을 줄여줄 수 있고 제4초격자층(37)으로 전달되는 응력을 줄여줄 수 있다. 상기 제3초격자층(35)의 제1층(15)의 두께(T3)는 제2층(16)의 두께(T5)보다 두꺼울 수 있다. 이러한 제3초격자층(35)의 제2층(16)이 격자 상수가 작고 얇은 두께로 제공되어, 제3초격자층(35) 내에서 결함을 제어하는 층으로서의 역할을 수행할 수 있다.
상기 제4초격자층(37)은 제1층(17) 및 제2층(18)의 페어를 포함하며, 상기 페어는 8 내지 20페어 예컨대 10내지 15페어를 포함할 수 있다. 상기 제4초격자층(37)에서 제1층(17)은 AldGa1 - dN (0<d<1)의 조성식을 갖는 반도체 재료이며, 상기 제2층(18)은 AlN일 수 있다. 상기 제4초격자층(37)에서 제1층(17)과 제2층(18)의 알루미늄의 조성 차이는 45% 이상 예컨대, 50% 이상의 차이를 가질 수 있다. 상기 제4초격자층(37)의 제1층(17)의 알루미늄 조성을 제3초격자층(35)의 제1층(15)에 비해 낮추어줌으로써, 반도체층의 결정 품질을 개선시켜 줄 수 있다.
상기 제4초격자층(37)에서 제1층(17)의 두께(T4)는 제1내지 제3초격자층(31,33,35)의 제1층(11,13,15)의 두께(T1,T2,T3)보다 두꺼울 수 있으며, 예컨대 17nm 내지 30nm 범위를 포함한다. 상기 제4초격자층(37)에서 제2층(18)의 두께(T5)는 5nm 내지 20nm 범위를 포함한다. 상기 제4초격자층(37)의 제1층(17) 및 제2층(18)의 두께(T4,T5)를 상기한 범위로 제공해 줌으로써, 상기 제3초격자층(35)을 통해 전달되는 결함을 줄여줄 수 있고 제1도전성 반도체층(41)으로 전달되는 응력을 줄여줄 수 있다. 상기 제4초격자층(37)의 제1층(17)의 두께(T4)는 제2층(18)의 두께(T5)보다 두꺼울 수 있다. 이러한 제4초격자층(37)의 제2층(18)이 격자 상수가 작고 얇은 두께로 제공되어, 제4초격자층(37) 내에서 결함을 제어하는 층으로서의 역할을 수행할 수 있다.
상기 제1내지 제4초격자층(31,33,35,37)에서 제1층(11,13,15,17)인 AlGaN의 Al조성(Ala,Alb,Alc,Ald)은 a>b>c>d일 수 있으며, 상기 알루미늄 조성 a와 b의 차이는 10% 이상이고, 상기 알루미늄의 조성 b와 c의 차이는 10% 이상이고, 상기 알루미늄의 조성 c와 d의 차이는 10% 이상일 수 있다. 상기 알루미늄의 조성 a와 d의 차이는 적어도 30% 이상일 수 있다. 상기 제2층(12,14,16,18)인 AlN의 알루미늄의 조성은 a와 20%±2% 이상의 차이를 가지며, b와 30%±3% 이상의 차이를 가질 수 있으며, c와 40%±4% 이상의 차이를 가질 수 있으며, d와 50%±5% 이상의 차이를 가질 수 있다. 이러한 상기 제1내지 제4초격자층(31,33,35,37)의 제1층(11,13,15,17)의 알루미늄 조성을 점차 줄여줌으로써, 활성층에 인접한 층의 결함을 줄여줄 수 있다.
이러한 제1 내지 제4초격자층(31,33,35,37) 중 활성층(51)에 인접한 초격자층일수록 제1층(11,13,15,17)의 알루미늄의 조성은 점차 감소하고 최대 50% 이상의 차이로 감소될 수 있으며, 제1층(11,13,15,17)의 두께(T1,T2,T3,T4)는 점차 두꺼워질 수 있다. 이러한 제1내지 제4초격자층(31,33,35,37)이 활성층(51) 아래에 배치됨으로써, 기판(21)으로부터 전달되는 결함을 제거할 수 있고 상부로 전달되는 응력을 줄여줄 수 있다.
실시 예에 따른 제1내지 제4초격자층(31,33,35,37)은 제1층(11,13,15,17)과 제2층(12,14,16,18)의 페어가 AlN/AlGaN 페어로 배치함으로써, 자외선 파장에 대한 투과율을 개선시켜 줄 수 있다. 또한 a축 격자 상수 값은 AlN>AlGaN>GaN의 순으로 나열되며, 상기 a축 격자 상수 값이 작은 AlGaN 위에 AlN을 성장하면 압축 응력(compressive stress)이 걸리게 되고, 다시 AlN 위에 AlGaN을 성장하면 인장 응력(tensile stress)이 걸리게 된다. 이러한 AlGaN/AlN을 주기적으로 반복해 줌으로써, 서로 반대의 응력인 압축 응력과 신장 응력이 상쇄되는 효과가 있다. 또한 AlGaN과 AlN은 결정학적으로 동일한 부르자이트(wurzite) 결정 구조를 갖고 있어 안정적인 초격자 구조를 제공할 수 있다.
실시 예는 기판(21) 상에 복수의 초격자층(31,33,35,37)을 배치함으로써, 기판(21) 상에 단일의 n형 반도체층을 배치한 경우에 비해 결함(dislocation)을 효과적으로 차단할 수 있고, 격자 상수 차이로 인한 품질 저하를 방지할 수 있다. 또한 복수의 초격자층(31,33,35,37)의 제1층(11,13,15,17)의 알루미늄의 조성을 활성층(51)에 인접한 초격자층일수록 점차 감소시켜 줌으로써, a축 격자 상수 차이로 인한 막질 저하를 방지할 수 있다. 상기 복수의 초격자층(31,33,35,37)의 제1층(11,13,15,17) 중 상기 제1도전성 반도체층(41)에 인접한 층일수록 알루미늄의 조성이 더 작을 수 있다. 상기 복수의 초격자층(31,33,35,37)의 제1층(11,13,15,17) 중 상기 제1도전성 반도체층(41)으로부터 멀수록 알루미늄의 조성이 더 많을 수 있다. 상기 복수의 초격자층(31,33,35,37)의 제1층(11,13,15,17)의 두께(T1<T2<T3<T4)를 활성층(51)에 인접한 초격자층일수록 두껍게 제공해 줌으로써, c축 격자 상수 값의 차이를 최소화하여 분극 현상을 개선시키고 하부 층에서 전달되는 결함을 막아줄 수 있다. 도 10과 같이, 복수의 초격자층(31,33,35,37)의 제1층(11,13,15,17) 중 활성층(51)에 인접할수록 알루미늄의 조성이 감소될수록 두께는 점차 증가하게 된다.
상기 복수의 초격자층(31,33,35,37)은 제1도전형의 도펀트 예컨대, Si, Ge, Sn, Se, Te와 같은 n형 도펀트를 포함할 수 있다. 상기 복수의 초격자층(31,33,35,37)은 n형 반도체층일 수 있으며, 예컨대 각 초격자층(31,33,35,37)의 제1층(11,13,15,17) 및 제2층(12,14,16,18)은 n형 반도체층이 될 수 있다.
상기 제1도전성 반도체층(41)은 복수의 초격자층(31,33,35,37) 위에 배치될 수 있다. 상기 제1도전성 반도체층(41)의 알루미늄의 조성은 상기 제1도전성 반도체층(41)에 인접한 제4초격자층(37)의 제1층(17)의 알루미늄의 조성과 동일한 조성을 가질 수 있으며, 제4초격자층(37)의 제2층(18)의 알루미늄의 조성과 45% 이상의 차이를 가질 수 있다. 상기 제1도전성 반도체층(41)은 AleGa1 - eN (0<e<1)의 조성을 갖는 반도체로 배치될 수 있으며, Ale는 Ald(d=e)와 동일하거나 Alc(c<e)보다는 클 수 있으며, 상기 활성층(51) 내의 우물층의 알루미늄의 조성보다 높을 수 있다.
상기 제1도전성 반도체층(41)의 두께는 상기 제1도전성 반도체층(41)에 인접한 제4초격자층(37)의 제1층(17)의 두께(T4)의 40배 이상 두꺼울 수 있다. 상기 제1도전성 반도체층(41)은 예컨대, 알루미늄의 조성이 50%±5% 범위를 갖고, 두께는 1000nm±100nm 범위를 가질 수 있다. 이러한 제1도전성 반도체층(41)의 알루미늄은 AlN의 알루미늄의 조성과 거의 50% 정도의 차이를 갖고 두껍게 제공해 줌으로써, 활성층(51)으로 전달되는 분극 현상 및 결함을 줄여줄 수 있다.
상기 제1도전성 반도체층(41)은 알루미늄을 포함하는 다른 반도체 예컨대, InAlGaN, AlInN, AlGaAs, AlGaInP 재료 중 적어도 하나를 포함할 수 있다. 상기 제1도전성 반도체층(41)은 제1도전형 도펀트 예컨대, Si, Ge, Sn, Se, Te 등의 n형 도펀트가 도핑된 n형 반도체층이 될 수 있다.
상기 활성층(51)은 단일 우물, 단일 양자우물, 다중 우물, 다중 양자우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 하나로 형성될 수 있다.
상기 활성층(51)은 상기 제1도전성 반도체층(41)을 통해서 주입되는 전자(또는 정공)와 상기 제2도전성 반도체층(71)을 통해서 주입되는 정공(또는 전자)이 서로 만나서, 상기 활성층(51)의 형성 물질에 따른 에너지 밴드(Energy Band)의 밴드 갭(Band Gap) 차이에 의해서 빛을 방출하는 층이다.
상기 활성층(51)은 화합물 반도체로 구현될 수 있다. 상기 활성층(51)은 예로서 II족-VI족 및 III족-V족 화합물 반도체 중에서 적어도 하나로 구현될 수 있다.
상기 활성층(51)이 다중 우물 구조로 구현된 경우, 상기 활성층(51)은 복수의 우물층(미도시)과 복수의 장벽층(미도시)을 포함한다. 상기 활성층(51)은 우물층과 장벽층이 교대로 배치된다. 상기 우물층과 상기 장벽층의 페어는 2~30주기로 형성될 수 있다.
상기 우물층은 예컨대, InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 배치될 수 있다. 상기 장벽층은 예컨대, InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 형성될 수 있다.
상기 우물층/장벽층의 주기는 예를 들어, InGaN/GaN, GaN/AlGaN, AlGaN/AlGaN, InGaN/AlGaN, InGaN/InGaN, AlGaAs/GaAs, InGaAs/GaAs, InGaP/GaP, AlInGaP/InGaP, InP/GaAs의 페어 중 적어도 하나를 포함한다.
실시 예에 따른 활성층(51)의 우물층은 AlGaN으로 구현될 수 있으며, 상기 장벽층은 AlGaN으로 구현될 수 있다. 상기 활성층(51)은 자외선 파장을 발광할 수 있으며, 예컨대 200nm 내지 290nm 범위로 발광할 수 있다.
상기 장벽층의 알루미늄 조성은 상기 우물층의 알루미늄의 조성보다 높은 조성을 갖는다. 상기 우물층의 알루미늄 조성은 20% 내지 40% 범위일 수 있으며, 상기 장벽층의 알루미늄 조성은 40% 내지 95% 범위일 수 있다. 상기 장벽층은 도펀트를 포함할 수 있으며, 예컨대 n형 도펀트를 포함할 수 있다.
상기 전자 차단층(61)은 상기 활성층(51) 상에 배치될 수 있다. 상기 전자 차단층(61)은 AlGaN 반도체로 배치될 수 있으며, 상기 활성층의 장벽층보다 높은 알루미늄의 조성을 가질 수 있다. 상기 전자 차단층(61)의 알루미늄의 조성은 50% 이상일 수 있다.
상기 전자 차단층(61)은 다층 구조를 포함하며, 예컨대 알루미늄의 조성이 서로 다른 복수의 반도체층을 포함할 수 있으며, 적어도 한 층은 알루미늄의 조성은 50% 이상일 수 있다.
상기 제2도전성 반도체층(71)은 상기 전자 차단층(61) 위에 배치된다. 상기 제2도전성 반도체층(71)은 AlGaN계 반도체를 포함할 수 있다. 상기 제2도전성 반도체층(71)은 제2도전형의 도펀트 예컨대, p형 도펀트를 갖는 p형 반도체층일 수 있다. 다른 예로서, 상기 제2도전성 반도체층(71)은 AlN, InAlGaN, AlInN, AlGaAs, 또는 AlGaInP 중에서 적어도 하나를 포함할 수 있으며, Mg, Zn, Ca, Sr, Ba와 같은 p형 도펀트를 포함할 수 있다. 이러한 제2도전성 반도체층(71)은 자외선 파장의 흡수를 방지하기 위해, AlGaN계 반도체로 배치될 수 있다.
상기 제2도전성 반도체층(71)은 다층일 수 있으며, 이에 대해 한정하지는 않는다.
실시 예는 제1도전형은 n형 및 제2도전형은 p형으로 설명하였으나, 다른 예로서, 제1도전형은 p형 및 제2도전형은 n형일 수 있다. 또는 발광 소자는 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조를 포함할 수 있다.
도 3은 도 1의 발광소자에 전극을 배치한 예를 나타낸다. 도 3을 설명함에 있어서, 상기에 개시된 구성과 동일한 부분은 상기에 개시된 실시 예의 설명을 참조하기로 한다.
도 3을 참조하면, 발광소자(101)는 제1전극(91) 및 제2전극(95)을 포함한다. 상기 제1전극(91)은 제1도전형의 반도체층 예컨대, 복수의 초격자층(31,33,35,37) 중 어느 한 층에 전기적으로 연결되며, 상기 제2전극(95)는 제2도전성 반도체층(71)에 전기적으로 연결될 수 있다.
상기 제1전극(91)은 상기 제1도전형의 반도체층 예컨대, 복수의 초격자층(31,33,35,37) 및 제1도전성 반도체층(41) 중 적어도 하나의 위에 배치될 수 있으며, 상기 제2전극(95)은 제2도전성 반도체층(71) 위에 배치될 수 있다.
상기 제1전극(91) 및 상기 제2전극(95)은 암(arm) 구조 또는 핑거(finger) 구조의 전류 확산 패턴이 더 형성될 수 있다. 상기 제1전극(91) 및 제2전극(95)은 오믹 접촉, 접착층, 본딩층의 특성을 갖는 금속으로 비 투광성으로 이루어질 수 있으며, 이에 대해 한정하지는 않는다. 상기 제1전극(93) 및 제2전극(95)은 Ti, Ru, Rh, Ir, Mg, Zn, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag 및 Au와 이들의 선택적인 합금 중에서 선택될 수 있다.
상기 제2전극(95)과 상기 제2도전성 반도체층(71) 사이에는 전극층(미도시)이 배치될 수 있으며, 상기 전극층은 70% 이상의 광을 투과하는 투광성 물질이거나 70% 이상의 광을 반사하는 반사성 특성을 갖는 물질로 형성될 수 있으며, 예컨대 금속 또는 금속 산화물로 형성될 수 있다. 상기 전극층은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), ZnO, IrOx, RuOx, NiO, Al, Ag, Pd, Rh, Pt, Ir 중 선택적으로 형성될 수 있다. 상기 전극층은 투광성 층/반사 금속층의 적층 구조일 수 있다.
또한 상기 기판(21)은 자외선 파장을 흡수를 줄이기 위해, 20㎛ 이하의 두께로 제공될 수 있다. 또한 상기 기판(21)은 발광 소자로부터 분리될 수 있으며, 이에 대해 한정하지는 않는다. 실시 예에 따른 발광 소자(101)는 자외선 파장의 예컨대, UV-C 파장을 발광할 수 있다.
도 4는 도 1의 발광소자를 이용한 수직형 발광소자의 예를 나타낸 도면이다. 도 4를 설명함에 있어서, 상기에 개시된 구성과 동일한 부분은 상기에 개시된 실시 예의 설명을 참조하기로 한다.
도 4를 참조하면, 발광소자(102)는 복수의 초격자층(31,33,35,37), 상기 복수의 초격자층(31,33,35,37) 중 적어도 하나 예컨대, 제1초격자층(31) 위에 제1전극(91)이 배치되고, 상기 복수의 초격자층(31,33,35,37) 아래에 제1도전성 반도체층(41) 및 활성층(51)이 배치되고, 제2도전성 반도체층(71) 아래에 복수의 전도층(96,97,98,99)을 갖는 제2전극을 포함한다.
상기 제2전극은 상기 제2도전성 반도체층(71) 아래에 배치되며, 접촉층(96), 반사층(97), 본딩층(98) 및 지지 부재(99)를 포함한다. 상기 접촉층(96)은 반도체층 예컨대, 제2도전성 반도체층(71)과 접촉된다. 상기 접촉층(96)은 ITO, IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO 등과 같은 저 전도성 물질이거나 Ni, Ag의 금속을 이용할 수 있다. 상기 접촉층(96) 아래에 반사층(97)이 배치되며, 상기 반사층(97)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 및 그 조합으로 구성된 그룹으로부터 선택된 물질로 이루어진 적어도 하나의 층을 포함하는 구조로 형성될 수 있다. 상기 반사층(97)은 상기 제2도전성 반도체층(71) 아래에 접촉될 수 있으며, 이에 대해 한정하지는 않는다.
상기 반사층(97) 아래에는 본딩층(98)이 배치되며, 상기 본딩층(98)은 베리어 금속 또는 본딩 금속으로 사용될 수 있으며, 그 물질은 예를 들어, Ti, Au, Sn, Ni, Cr, Ga, In, Bi, Cu, Ag 및 Ta와 선택적인 합금 중에서 적어도 하나를 포함할 수 있다.
상기 제2도전성 반도체층(71)과 제2전극 사이에 채널층(83) 및 전류 블록킹층(85)이 배치된다.
상기 채널층(83)은 상기 제2도전성 반도체층(71)의 하면 에지를 따라 형성되며, 링 형상, 루프 형상 또는 프레임 형상으로 형성될 수 있다. 상기 채널층(83)은 투명한 전도성 물질 또는 절연성 물질을 포함하며, 예컨대 ITO, IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO, SiO2, SiOx, SiOxNy, Si3N4, Al2O3, TiO2 중 적어도 하나를 포함할 수 있다. 상기 채널층(163)의 내측부는 상기 제2도전성 반도체층(71) 아래에 배치되고, 외측부는 상기 발광 구조물의 측면보다 더 외측에 배치된다.
상기 전류 블록킹층(85)은 제2도전성 반도체층(71)과 접촉층(96) 또는 반사층(97) 사이에 배치될 수 있다. 상기 전류 블록킹층(85)은 절연물질을 포함하며, 예컨대 SiO2, SiOx, SiOxNy, Si3N4, Al2O3, TiO2 중에서 적어도 하나를 포함할 수 있다. 다른 예로서, 상기 전류 블록킹층(85)은 쇼트키 접촉을 위한 금속으로도 형성될 수 있다.
상기 전류 블록킹층(85)은 상기 제1전극(91)과 수직 방향으로 대응되게 배치된다. 상기 전류 블록킹층(85)은 상기 제2전극으로부터 공급되는 전류를 차단하여, 다른 경로로 확산시켜 줄 수 있다. 상기 전류 블록킹층(85)은 하나 또는 복수로 배치될 수 있으며, 제1전극(91)과 수직 방향으로 적어도 일부 또는 전 영역이 오버랩될 수 있다.
상기 본딩층(98) 아래에는 지지 부재(99)가 형성되며, 상기 지지 부재(99)는 전도성 부재로 형성될 수 있으며, 그 물질은 구리(Cu-copper), 금(Au-gold), 니켈(Ni-nickel), 몰리브덴(Mo), 구리-텅스텐(Cu-W), 캐리어 웨이퍼(예: Si, Ge, GaAs, ZnO, SiC 등)와 같은 전도성 물질로 형성될 수 있다. 상기 지지부재(99)는 다른 예로서, 전도성 시트로 구현될 수 있다.
여기서, 상기 도 1의 기판은 제거하게 된다. 상기 성장 기판의 제거 방법은 물리적 방법(예: Laser lift off) 또는/및 화학적 방법(습식 에칭 등)으로 제거할 수 있으며, 상기 제1초격자층(31)을 노출시켜 준다. 상기 기판이 제거된 방향을 통해 아이솔레이션 에칭을 수행하여, 상기 제1초격자층(31) 상에 제1전극(91)을 형성하게 된다.
상기 제1초격자층(31)의 상면에는 러프니스와 같은 광 추출 구조(미도시)로 형성될 수 있다. 이에 따라 발광 구조물 위에 제1전극(91) 및 아래에 지지 부재(99)를 갖는 수직형 전극 구조를 갖는 발광소자(102)가 제조될 수 있다.
실시 예에 따른 발광 소자(102)는 자외선 파장의 예컨대, UV-C 파장을 발광할 수 있다.
<발광소자 패키지>
도 5은 도 4의 발광소자를 갖는 발광소자 패키지를 나타낸 도면이다.
도 5를 참조하면, 발광소자 패키지는 지지부재(110), 상기 지지 부재(110) 위에 캐비티(112)를 갖는 반사부재(111), 상기 지지부재(110)의 위 및 상기 캐비티(112) 내에 실시 예에 따른 발광 소자(101), 및 상기 캐비티(112) 상에 투명 윈도우(115)를 포함한다.
상기 지지부재(110)는 수지 계열의 인쇄회로기판(PCB), 실리콘(silicon) 또는 실리콘 카바이드(silicon carbide: SiC)와 같은 실리콘 계열, 질화 알루미늄(aluminum nitride; AlN)과 같은 세라믹 계열, 폴리프탈아마이드(polyphthalamide: PPA)와 같은 수지 계열, 고분자액정(Liquid Crystal Polymer), 바닥에 금속층을 갖는 PCB(MCPCB: Metal core PCB) 중에서 적어도 하나로 형성될 수 있으며, 이러한 재질로 한정하지는 않는다.
상기 지지부재(110)는 제1금속층(131), 제2금속층(133), 제1연결 부재(138), 제2연결 부재(139), 제1전극층(135) 및 제2전극층(137)를 포함한다. 상기 제1금속층(131) 및 제2금속층(132)은 상기 지지부재(110)의 바닥에 서로 이격되게 배치된다. 상기 제1전극층(135) 및 제2전극층(137)은 상기 지지부재(110)의 상면에 서로 이격되게 배치된다. 상기 제1연결 부재(138)는 상기 지지부재(110)의 내부 또는 제1측면에 배치될 수 있으며, 상기 제1금속층(131)과 상기 제1전극층(135)을 서로 연결해 준다. 상기 제2연결 부재(139)는 상기 지지부재(110)의 내부 또는 제2측면에 배치될 수 있으며, 상기 제2금속층(133) 및 상기 제2전극층(137)를 서로 연결해 준다.
상기 제1금속층(131), 제2금속층(133), 제1전극층(135) 및 제2전극층(137)은 금속 재질, 예를 들어, 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 크롬(Cr), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag), 인(P) 중 적어도 하나 또는 이들의 선택적 합금으로 형성될 수 있으며, 단일 금속층 또는 다층 금속층으로 형성될 수 있다.
상기 제1연결 부재(138) 및 상기 제2연결 부재(139)는 비아, 비아 홀, 쓰루 홀 중 적어도 하나를 포함한다.
상기 반사 부재(111)는 상기 지지부재(110) 상에서 상기 캐비티(112)의 둘레에 배치되며, 상기 발광 소자(101)로부터 방출된 자외선 광을 반사시켜 줄 수 있다.
상기 반사부재(111)는 수지 계열의 인쇄회로기판(PCB), 실리콘(silicon) 또는 실리콘 카바이드(silicon carbide: SiC)과 같은 실리콘 계열, AlN(aluminum nitride; AlN)과 같은 세라믹 계열, 폴리프탈아마이드(polyphthalamide: PPA)과 같은 수지 계열, 고분자액정(Liquid Crystal Polymer) 중에서 적어도 하나로 형성될 수 있으며, 이러한 재질로 한정하지는 않는다. 상기 지지부재(110) 및 반사부재(111)는 세라믹 계열의 재질을 포함할 수 있으며, 이러한 세라믹 계열의 재질은 방열 효율이 수지 재질보다 높은 특징이 있다.
상기 발광 소자(101)는 상기 제2전극층(137) 상에 배치되거나 상기 지지 부재(110) 상에 배치될 수 있으며, 상기 제1전극층(135)과 상기 제2전극층(137)과 전기적으로 연결된다. 상기 발광 소자(101)는 와이어(121)로 연결될 수 있다. 다른 예로서, 상기 발광 소자(101)는 플립 칩 방식으로 본딩될 수 있다.
상기 발광 소자(101)는 자외선 파장을 발광하거나, 상기 발광 소자(101) 상에 형광체층이 배치된 경우 다른 파장의 광을 발광할 수 있다.
상기 투명 윈도우(115)는 상기 캐비티(112) 상에 배치되며, 상기 발광 소자(101)로부터 방출된 피크 파장을 방출하게 된다. 이러한 투명 윈도우(115)는 유리 재질, 세라믹 재질, 또는 투광성 수지 재질을 포함할 수 있다.
또한 상기 캐비티(112) 상에는 광학 렌즈, 또는 형광체층이 더 배치될 수 있으며, 이에 대해 한정하지는 않는다.
실시 예에 따른 발광 소자 또는 발광 소자 패키지는, 라이트 유닛에 적용될 수 있다. 상기 라이트 유닛은 하나 또는 복수의 발광소자 또는 발광소자 패키지를 갖는 어셈블리로서, 자외선 램프를 포함될 수 있다.
도 6은 제2실시 예에 따른 발광 소자를 나타낸 측 단면도이다. 제2실시 예를 설명함에 있어서, 제1실시 예와 동일한 구성은 제1실시 예의 설명을 참조하기로 한다.
도 6을 참조하면, 실시 예에 따른 발광소자는 기판(21)과, 상기 기판(21) 상에 배치된 복수의 초격자층(31,33,35,37)과, 상기 복수의 초격자층(31,33,35,37) 상에 배치된 제1도전성 반도체층(41)과, 상기 제1도전성 반도체층(41) 상에 배치된 활성층(51)과, 상기 활성층(51) 상에 배치된 전자 차단층(61), 상기 전자 차단층(61) 상에 배치된 제2 도전성 반도체층(71), 상기 제2도전성 반도체층(71) 상에 배치된 제3도전성 반도체층(73)을 포함할 수 있다.
상기 발광 소자는 자외선 파장의 광을 방출하게 된다. 상기 발광 소자는 290nm 파장 이하 예컨대, 200nm 내지 290nm 범위의 파장을 발광할 수 있다. 상기 발광 소자는 UV-C 파장을 발광하는 소자일 수 있다.
상기 기판(21)과 상기 제1도전성 반도체층(41) 사이에는 복수의 초격자층(31,33,35,37)이 배치될 수 있다. 상기 제1도전성 반도체층(41) 상에는 활성층(51)이 배치될 수 있다.
상기 복수의 초격자층(31,33,35,37)은 적어도 3개의 초격자층 예컨대, 4개 이상의 초격자층을 포함할 수 있다. 상기 복수의 초격자층(31,33,35,37) 각각은 적어도 2개의 층을 하나의 페어로 하며 복수의 페어를 구비할 수 있다. 상기 복수의 초격자층(31,33,35,37)은 각 페어의 어느 한 층은 예로서 II족-VI족 또는 III족-V족 화합물 반도체로 구현될 수 있으며, 다른 한 층은 예로서 II족-VI족 또는 III족-V족 화합물 반도체로 구현될 수 있다.
도 2를 참조하면, 상기 복수의 초격자층(31,33,35,37) 각각은 제1층(11,13,15,17) 및 제2층(12,14,16,18)의 페어를 포함할 수 있으며, 상기 제1층(11,13,15,17) 및 제2층(12,14,16,18)은 서로 다른 물질을 포함할 수 있다. 상기 각 초격자층(31,33,35,37)은 제1층(11,13,15,17) 및 제2층(12,14,16,18)이 교대로 배치될 수 있다.
상기 초격자층(31,33,35,37) 중 상기 활성층(51)에 인접한 초격자층일수록 상기 제1층(11,13,15,17)의 알루미늄의 조성은 점차 감소될 수 있다. 상기 초격자층(31,33,35,37) 중 상기 활성층(51)에 인접한 초격자층일수록 상기 제1층(11,13,15,17)과 제2층(12,14,16,18)의 알루미늄의 조성 차이는 점차 커질 수 있다. 상기 초격자층(31,33,35,37) 각각은 상기 제2층(12,14,16,18)의 알루미늄의 조성이 동일한 조성을 가질 수 있다.
상기 초격자층(31,33,35,37) 중 상기 활성층(51)에 인접한 초격자층일수록 상기 제1층(11,13,15,17)의 두께(T1,T2,T3,T4)는 점차 두꺼워질 수 있다. 상기 복수의 초격자층(31,33,35,37)의 두께는 상기 활성층(51)에 인접한 초격자층일수록 두께가 점차 증가될 수 있다.
상기 각 초격자층(31,33,35,37)의 제1층(11,13,15,17)/제2층(12,14,16,18)의 페어는 AlGaN/AlN의 페어를 포함할 수 있다. 상기 제1층(11,13,15,17)의 AlGaN은 알루미늄의 조성이 활성층에 인접한 초격자층일수록 점차 감소하게 된다.
상기 복수의 초격자층(31,33,35,37) 중 인접한 두 초격자층에 구비된 제1층(11,13,15,17)들 간의 알루미늄의 조성 차이는 적어도 10% 이상일 수 있다. 상기 복수의 초격자층(31,33,35,37) 중 서로 반대측에 위치한 두 초격자층에 구비된 제1층(11,13,15,17)들 간의 알루미늄의 조성 차이는 적어도 30% 이상 차이를 가질 수 있다.
상기 복수의 초격자층(31,33,35,37)은 예컨대, 제1 내지 제4초격자층(31,33,35,37)을 포함한다. 상기 제1초격자층(31)은 상기 기판(21)과 제2초격자층(33) 사이에 배치되며, 상기 제2초격자층(33)은 상기 제1초격자층(31)과 제3초격자층(35) 사이에 배치되며, 상기 제3초격자층(35)은 상기 제2초격자층(33)과 제4초격자층(37) 사이에 배치되며, 상기 제4초격자층(37)은 제3초격자층(35)과 제1도전성 반도체층(41) 사이에 배치될 수 있다.
상기 제1 내지 제4초격자층(31,33,35,37)은 제1실시 예의 설명을 참조하기로 한다.
상기 복수의 초격자층(31,33,35,37) 상에는 제1도전성 반도체층(41)이 배치되며, 상기 제1도전성 반도체층(41) 상에는 활성층(51)이 배치되며, 상기 활성층(51) 상에는 전자 차단층(61)이 배치되고, 상기 전자 차단층(61) 상에는 제2도전성 반도체층(71)이 배치되고, 상기 제2도전성 반도체층(71) 상에는 제3도전성 반도체층(73)이 배치될 수 있다.
상기 제2 및 제3도전성 반도체층(71,73)은 AlGaN계 반도체 예컨대, AlGaN일 수 있다. 상기 제2도전성 반도체층(71)은 알루미늄의 조성이 50% 이상일 수 있으며, p형 도펀트가 첨가될 수 있다. 상기 p형 도펀트 농도는 1E16cm-3 내지 1E21cm-3 범위일 수 있으며, 이러한 p형 도펀트 농도가 상기 범위보다 낮으면 홀 주입 효율이 저하되고 상기 범위보다 높으면 결정 품질이 저하될 수 있고 제3도전성 반도체층(73)의 전기적인 특성에 영향을 줄 수 있다.
상기 제3도전성 반도체층(73)이 GaN인 경우, 자외선 파장이 흡수되므로 광 추출 효율이 감소될 수 있다. 그리고 제3도전성 반도체층(73) 상에 ITO와 같은 산화물 층을 배치한 경우, 자외선 파장의 흡수로 인해 광 추출 효율이 저하될 수 있다. 실시 예는 제3도전성 반도체층(73)의 알루미늄 조성에 의해 제2전극(95)과의 오믹 접촉될 수 있는 층을 제공할 수 있다. 이를 위해, 상기 제3도전성 반도체층(73)은 제2전극(95)과 접촉되는 전극 접촉층 또는 오믹 접촉층일 수 있으며, 상기 제2전극(95)과 오믹 접촉될 수 있다.
상기 제3도전성 반도체층(73)의 알루미늄이 조성은 40% 이하 예컨대, 20% 내지 40% 범위일 수 있다. 상기 제3도전성 반도체층(73)의 알루미늄의 조성이 상기 범위를 벗어난 경우 제2전극(95)과의 접촉 저항이 증가된다. 도 11과 같이, 제2도전성 반도체층(71)의 알루미늄의 20% 내지 40% 범위인 경우 접촉 저항이 낮아지며, 예컨대 102Ωcm2 이하일 수 있으며, 상기 범위를 벗어난 경우 접촉 저항이 10배 이상 증가하는 문제가 있다.
또한 제3도전성 반도체층(73)은 제2도전형의 도펀트 예컨대, p형 도펀트가 첨가될 수 있으며, 상기 p형 도펀트 농도는 1Ecm-18 이상 예컨대, 1Ecm-18 내지 1Ecm-21 범위일 수 있으며, 상기 p형 도펀트 농도가 상기 범위보다 낮으면 접촉 저항이 급격하게 증가하게 되며, 상기 범위보다 높으면 막질이 저하되어 오믹 특성이 변화되는 문제가 있다.
상기 제3도전성 반도체층(73)은 50nm 이하의 두께 예컨대, 40nm 이하의 두께일 수 있으며, 이는 제3도전성 반도체층(73)의 재질 및 두께에 따른 자외선 파장의 투과율에 따라 달라질 수 있다.
상기 제2전극(95)은 상기 제3도전성 반도체층(73)과 접촉된 금속 예컨대, Ti, Ru, Rh, Ir, Mg, Zn, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag 및 Au와 이들의 선택적인 합금 중에서 선택될 수 있다. 이러한 제2 및 제3도전성 반도체층(73,75)을 제공함으로써 제2전극(95)와의 접촉 저항을 낮출 수 있고, 광 투과율도 개선시켜 줄 수 있다.
도 7은 도 6의 발광 소자에 전극을 배치한 예이다.
도 7을 참조하면, 발광 소자는 기판(21), 실시 예에 따른 복수의 초격자층(31,33,35,37), 제1도전성 반도체층(41), 활성층(51), 전자 차단층(61), 제2실시 예에 따른 제2 및 제3도전성 반도체층(73,75)를 포함한다.
상기 발광 소자는 제1전극(91) 및 제2전극(95)를 포함하며, 상기 제1전극(91)은 복수의 초격자층(31,33,35,37) 및 제1도전성 반도체층(41) 중 적어도 하나의 아래에 배치될 수 있고, 상기 제2전극(95)은 제3도전성 반도체층(75) 아래에 배치될 수 있다.
상기 제2전극(95)과 상기 제3도전성 반도체층(75) 사이에는 접촉층 및 반사층을 포함하며, 상기 접촉층은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), ZnO, IrOx, RuOx, NiO, Al, Ag, Pd, Rh, Pt, Ir 중 적어도 하나 또는 복수의 혼합 물질을 포함하며, 상기 반사층은 Al, Ag, Pd, Rh, Pt, Ir 중 적어도 하나를 포함할 수 있다.
상기 기판(21)은 광 흡수를 최소화하고 광 투과율을 개선하기 위해 20㎛ 이하의 두께로 제공할 수 있다. 또한 기판(21)의 상면은 러프니스와 같은 광 추출 구조(21A)가 배치될 수 있다.
상기 기판(21)은 제1초격자층(31)의 제1층(11,13,15,17)인 AlGaN의 성장을 위해 벌크(bluk) AlN 기판이거나 사파이어 기판일 수 있다.
이러한 발광 소자(103)는 플립 구조로 배치되어, 광을 기판 방향으로 추출할 수 있다. 예컨대, 도 7의 발광 소자는 도 8과 같이 플립 칩 구조로 탑재될 수 있다.
도 9는 실시 예에 따른 발광 소자 또는 발광 소자 패키지를 갖는 광원 모듈을 제공할 수 있다. 실시 예에 따른 광원 모듈은 라이트 유닛일 수 있다.
도 9를 참조하면, 실시 예에 따른 광원 모듈은 실시 예에 개시된 발광 소자(103)를 갖는 발광 소자 패키지(201), 상기 발광 소자 패키지(201)가 배치된 회로 기판(301), 및 상기 발광 소자 패키지(201) 및 상기 회로 기판(301)을 덮는 방습 필름(275)을 포함한다.
상기 발광 소자 패키지(201)는 캐비티(211)를 갖는 몸체(210), 상기 캐비티(211)에 배치된 복수의 전극(221,225), 상기 복수의 전극(221,225) 중 적어도 하나의 위에 배치된 발광 소자(103), 상기 캐비티(111) 상에 배치된 투명 윈도우(261)를 포함한다.
상기 발광 소자(103)은 자외선 파장부터 가시광선 파장의 범위 내에서 선택적인 피크 파장을 포함할 수 있다. 상기 발광 소자(103)은 예컨대, UV-C 파장 즉, 200nm-290nm 범위의 자외선 파장을 발광할 수 있다.
상기 몸체(210)는 절연 재질 예컨대, 세라믹 소재를 포함한다. 상기 세라믹 소재는 동시 소성되는 저온 소성 세라믹(LTCC: low temperature co-fired ceramic) 또는 고온 소성 세라믹(HTCC: high temperature co-fired ceramic)을 포함한다. 상기 몸체(210)의 재질은 예를 들면, AlN일 수 있으며, 열 전도도가 140 W/mK 이상인 금속 질화물로 형성할 수 있다.
상기 몸체(210)의 상부 둘레는 단차 구조(215)를 포함한다. 상기 단차 구조(215)는 상기 몸체(210)의 상면보다 낮은 영역으로서, 상기 캐비티(211)의 상부 둘레에 배치된다. 상기 단차 구조(215)의 깊이는 상기 몸체(210)의 상면으로부터의 깊이로서, 투명 윈도우(261)의 두께보다 깊게 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 캐비티(211)는 상기 몸체(210)의 상부 영역의 일부가 개방된 영역이며 상기 몸체(210)의 상면으로부터 소정 깊이로 형성될 수 있다.
상기 캐비티(211) 및 몸체(210) 내의 전극(221,225)는 몸체(210)의 하면에 배치된 전극 패드(241,245)에 전기적으로 연결될 수 있다. 이러한 전극(221,225) 및 전극 패드(241,245)의 재질은 금속 예컨대, 백금(Pt), 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 탄탈늄(Ta), 알루미늄(Al)을 선택적으로 포함할 수 있다.
상기 발광 소자(103)는 상기 캐비티(211) 내에서 전극(221,225) 상에 별도의 와이어 없이 플립 칩 방식으로 탑재될 수 있다. 상기 발광 소자(103)은 제1,2실시 예에 따른 자외선 발광 다이오드로서, 200nm 내지 290nm 범위의 파장을 가지는 자외선 발광 소자일 수 있다.
상기 투명 윈도우(261)는 캐비티(211) 상에 배치된다. 상기 투명 윈도우(261)는 글래스(glass) 재질 예컨대, 석영 글래스를 포함한다. 이에 따라 상기 투명 윈도우(261)는 상기 발광 소자(103)으로부터 방출된 광 예컨대, 자외선 파장에 의해 분자 간의 결합 파괴와 같은 손해 없이 투과시켜 줄 수 있는 재질로 정의할 수 있다.
상기 투명 윈도우(261)는 외측 둘레가 상기 몸체(210)의 단차 구조(215) 상에 결합된다. 상기 투명 윈도우(261)와 상기 몸체(210)의 단차 구조(215) 사이에는 접착층(263)이 배치되며, 상기 접착층(263)은 실리콘 또는 에폭시와 같은 수지 재질을 포함한다.
상기 투명 윈도우(261)는 상기 발광 소자(103)으로부터 이격될 수 있다. 상기 투명 윈도우(261)가 상기 발광 소자(103)로부터 이격됨으로써, 상기 발광 소자(103)에 의해 발생된 열에 의해 팽창되는 것을 방지할 수 있다.
상기 회로 기판(301)은 복수의 본딩 패드(304,305)를 포함하며, 상기 복수의 본딩 패드(304,305)는 상기 몸체(210)의 하면에 배치된 패드(241,245)와 전기적으로 연결될 수 있다.
상기 회로 기판(301)은 외부 연결 단자(307,308)를 통해 신호 케이블(311,313)로 연결될 수 있으며, 상기 신호 케이블(311,313)은 외부로부터 전원을 공급하게 된다.
방습 필름(275)은 발광 소자 패키지(201)의 상면 및 측면과 상기 회로 기판(301)의 상면에 배치된다. 상기 방습 필름(275)은 상기 발광 소자 패키지(201)의 투명 윈도우(261)의 상면, 상기 몸체(210)의 상면 및 측면에 배치된다. 상기 방습 필름(275)의 연장부(271)는 상기 몸체(210)의 측면부터 상기 회로 기판(301)의 상면까지 연장되어 배치된다.
상기 방습 필름(275)은 불소 수지계 재료로서, 상기 발광 소자(103)으로부터 방출된 광에 의해 파괴되지 않고 상기 광을 투과시켜 줄 수 있다. 이러한 방습 필름(275)은 PCTFE (Polychlorotrifluoroethylene), ETFE (Ethylene + Tetrafluoroethylene), FEP (Fluorinated ethylene propylene copoly-mer), PFA (Perfluoroalkoxy) 중 적어도 하나로 사용될 수 있다.
상기 방습 필름(275)은 회로기판(301)으로 침투하는 수분 또는 습기뿐만 아니라, 상기 발광 소자 패키지(201)의 측면 및 상면을 통해 침투하는 수분 또는 습기를 차단할 수 있다. 상기 방습 필름(275)의 두께는 0.5㎛-10㎛ 범위로 형성될 수 있으며, 상기 방습 필름(275)의 두께가 상기의 범위를 초과하면 광 투과율이 현저하게 저하되며, 상기 범위의 미만이면 내습성이 떨어진다.
상기 방습 필름(275)은 상기 외부 연결 단자(307,308)와 신호 케이블(311,313)의 본딩 영역으로부터 이격될 수 있다. 다른 예로서, 상기 방습 필름(275)은 상기 외부 연결 단자(307,308)를 커버할 수 있다. 이 경우 방습 필름(275)은 외부 연결 단자(307,308)를 통한 수분 또는 습기 침투를 방지할 수 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시 예에 따른 발광 소자는 UV-C(Ultraviolet-C) 파장용 소자를 제공할 수 있다.
실시 예는 자외선 발광 소자의 투과율을 개선시켜 줄 수 있다.
실시 예는 자외선 발광 소자의 전기적인 특성을 개선시켜 줄 수 있다.

Claims (19)

  1. 제1도전성 반도체층;
    상기 제1도전성 반도체층 상에 배치되며 복수의 장벽층 및 복수의 우물층을 갖는 활성층;
    상기 제1도전성 반도체층 아래에 배치된 복수의 초격자층; 및
    상기 활성층 위에 제2도전성 반도체층을 포함하며,
    상기 복수의 초격자층은 적어도 3개의 초격자층을 포함하며,
    상기 적어도 3개의 초격자층 각각은 적어도 제1층 및 제2층의 페어를 복수개 구비하며,
    상기 적어도 3개의 초격자층 중 상기 활성층에 인접한 초격자층일수록 상기 제1층의 알루미늄의 조성은 점차 감소되며,
    상기 적어도 3개의 초격자층 각각은 상기 제2층의 알루미늄의 조성이 동일한 조성을 갖는 발광 소자.
  2. 제1도전성 반도체층;
    상기 제1도전성 반도체층 상에 배치되며 복수의 장벽층 및 복수의 우물층을 갖는 활성층;
    상기 제1도전성 반도체층 아래에 배치된 복수의 초격자층; 및
    상기 활성층 위에 제2도전성 반도체층을 포함하며,
    상기 복수의 초격자층은 적어도 3개의 초격자층을 포함하며,
    상기 적어도 3개의 초격자층 각각은 적어도 제1층 및 제2층의 페어를 복수개 구비하며,
    상기 적어도 3개의 초격자층 중 상기 활성층에 인접한 초격자층일수록 상기 제1층과 제2층의 알루미늄의 조성 차이가 더 크며,
    상기 적어도 3개의 초격자층 중 상기 활성층에 인접한 초격자층일수록 상기 제1층의 두께가 두꺼운 발광 소자.
  3. 제1항 또는 제2항에 있어서,
    상기 제1도전성 반도체층 및 상기 복수의 초격자층은 n형 도펀트를 포함하며,
    상기 제2도전성 반도체층은 p형 도펀트를 포함하는 발광 소자.
  4. 제1항 또는 제2항에 있어서,
    상기 복수의 초격자층은 제1초격자층, 상기 제1초격자층 위에 제2초격자층, 상기 제2초격자층 위에 제3초격자층, 상기 제3초격자층과 상기 제1도전성 반도체층 사이에 제4초격자층을 구비하며,
    상기 제1 내지 제4초격자층 각각의 제1층/제2층의 페어는 AlGaN/AlN의 페어를 포함하는 발광 소자.
  5. 제4항에 있어서,
    상기 복수의 초격자층의 제1층 중 상기 제1도전성 반도체층에 인접한 층일수록 알루미늄의 조성이 더 작으며,
    상기 제1도전성 반도체층은 n형 반도체층을 포함하는 발광 소자.
  6. 제4항에 있어서,
    상기 복수의 초격자층의 제1층 중 상기 제1도전성 반도체층으로부터 먼 층일수록 알루미늄의 조성이 더 많으며,
    상기 제1도전성 반도체층은 n형 반도체층을 포함하는 발광 소자.
  7. 제1항 또는 제2항에 있어서,
    상기 복수의 초격자층 중 인접한 두 초격자층들에 구비된 제1층들 간의 알루미늄의 조성 차이는 적어도 10% 이상을 갖는 발광 소자.
  8. 제1항 또는 제2항에 있어서,
    상기 복수의 초격자층 중 서로 반대측에 위치한 두 초격자층들에 구비된 제1층 간의 알루미늄의 조성 차이는 적어도 30% 이상 차이를 갖는 발광 소자.
  9. 제1항 또는 제2항에 있어서,
    상기 제1도전성 반도체층은 알루미늄의 조성이 상기 제1도전성 반도체층에 인접한 제1층의 알루미늄의 조성과 동일한 조성을 갖는 발광 소자.
  10. 제3항에 있어서,
    상기 제1도전성 반도체층은 알루미늄의 조성이 상기 제1도전성 반도체층에 인접한 초격자층의 제2층의 알루미늄의 조성에 비해 45% 이상의 차이를 갖는 발광 소자.
  11. 제3항에 있어서,
    상기 제1도전성 반도체층의 두께는 상기 제1도전성 반도체층에 인접한 제1층의 두께의 40배 이상의 차이를 갖는 발광 소자.
  12. 제1항 또는 제2항에 있어서,
    상기 복수의 초격자층 아래에 배치된 AlN 기판을 포함하는 발광 소자.
  13. 제3항에 있어서,
    상기 활성층과 상기 제2도전성 반도체층 사이에 배치된 전자 차단층을 포함하는 발광 소자.
  14. 제11항에 있어서,
    상기 제2도전성 반도체층 위에 제3도전성 반도체층 및 상기 제3도전성 반도체층에 접촉된 전극을 포함하며,
    상기 제3도전성 반도체층은 상기 제2도전성 반도체층의 알루미늄의 조성보다 낮은 알루미늄의 조성을 갖는 p형 반도체층을 포함하는 발광 소자.
  15. 제12항에 있어서,
    상기 제3도전성 반도체층은 알루미늄의 조성이 20% 내지 40% 범위를 갖고 상기 전극과 오믹 접촉하는 발광 소자.
  16. 제4항에 있어서,
    상기 복수의 초격자층 각각의 페어는 10내지 15페어를 갖는 발광 소자.
  17. 제16항에 있어서,
    상기 제1초격자층의 제1층의 두께는 제2내지 제4초격자층의 제1층의 두께보다 얇고, 5nm 내지 20nm의 범위를 가지며,
    상기 제1초격자층에서 제2층의 두께는 5nm 내지 20nm의 범위를 갖는 발광 소자.
  18. 제1항 또는 제2항에 있어서,
    상기 활성층은 UV-C 파장을 발광하는 발광 소자.
  19. 캐비티를 갖는 몸체;
    상기 캐비티 내에 배치된 제1항 또는 제2항의 발광 소자;
    상기 캐비티 상에 투명 윈도우; 및
    상기 투명 윈도우 및 몸체 상에 배치된 방습 필름을 갖는 라이트 유닛.
PCT/KR2016/001789 2015-02-25 2016-02-24 발광 소자 및 이를 구비한 라이트 유닛 WO2016137220A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680012327.8A CN107278333B (zh) 2015-02-25 2016-02-24 发光器件和具有发光器件的灯单元
US15/553,517 US10381509B2 (en) 2015-02-25 2016-02-24 Light emitting device and light unit having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0026344 2015-02-25
KR1020150026344A KR102237154B1 (ko) 2015-02-25 2015-02-25 발광 소자 및 이를 구비한 라이트 유닛

Publications (1)

Publication Number Publication Date
WO2016137220A1 true WO2016137220A1 (ko) 2016-09-01

Family

ID=56788767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001789 WO2016137220A1 (ko) 2015-02-25 2016-02-24 발광 소자 및 이를 구비한 라이트 유닛

Country Status (4)

Country Link
US (1) US10381509B2 (ko)
KR (1) KR102237154B1 (ko)
CN (1) CN107278333B (ko)
WO (1) WO2016137220A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181657A1 (en) 2014-05-27 2015-12-03 The Silanna Group Pty Limited Advanced electronic device structures using semiconductor structures and superlattices
EP3528297B1 (en) * 2016-11-22 2021-05-19 National Institute of Information and Communications Technology Light-emitting module provided with semiconductor light-emitting element that emits deep ultraviolet light
KR102608142B1 (ko) * 2016-12-26 2023-11-30 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자 및 이를 구비한 광원 모듈
WO2018236183A1 (ko) * 2017-06-22 2018-12-27 엘지이노텍 주식회사 반도체 소자
WO2019193487A1 (en) 2018-04-06 2019-10-10 Silanna UV Technologies Pte Ltd Semiconductor structure with chirp layer
CN111341891B (zh) * 2020-03-09 2021-07-09 江西新正耀光学研究院有限公司 紫外led外延结构及其制备方法
US11322647B2 (en) 2020-05-01 2022-05-03 Silanna UV Technologies Pte Ltd Buried contact layer for UV emitting device
WO2022050510A1 (ko) 2020-09-04 2022-03-10 주식회사 포톤웨이브 자외선 발광소자 및 이를 포함하는 발광소자 패키지
CN115863502B (zh) * 2023-02-21 2024-03-19 江西兆驰半导体有限公司 一种led外延片、外延生长方法及led芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067077A (ja) * 2005-08-30 2007-03-15 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体素子およびその製造方法
JP2013016521A (ja) * 2012-10-23 2013-01-24 Nippon Telegr & Teleph Corp <Ntt> 平板型固体酸化物形燃料電池
JP2013021124A (ja) * 2011-07-11 2013-01-31 Dowa Electronics Materials Co Ltd Iii族窒化物エピタキシャル基板およびその製造方法
KR20140098518A (ko) * 2013-01-31 2014-08-08 엘지이노텍 주식회사 발광소자
JP2015035536A (ja) * 2013-08-09 2015-02-19 Dowaエレクトロニクス株式会社 Iii族窒化物半導体エピタキシャル基板およびiii族窒化物半導体発光素子ならびにこれらの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644933B1 (ko) * 1997-01-09 2006-11-15 니치아 카가쿠 고교 가부시키가이샤 질화물반도체소자
EP1063711B1 (en) * 1998-03-12 2013-02-27 Nichia Corporation Nitride semiconductor device
KR100497890B1 (ko) * 2002-08-19 2005-06-29 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
CN100418237C (zh) 2004-09-23 2008-09-10 璨圆光电股份有限公司 氮化镓多重量子阱发光二极管的n型接触层结构
JP5255759B2 (ja) * 2005-11-14 2013-08-07 パロ・アルト・リサーチ・センター・インコーポレーテッド 半導体デバイス用超格子歪緩衝層
KR101438808B1 (ko) 2007-10-08 2014-09-05 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US8742396B2 (en) 2012-01-13 2014-06-03 Dowa Electronics Materials Co., Ltd. III nitride epitaxial substrate and deep ultraviolet light emitting device using the same
JP5514920B2 (ja) 2012-01-13 2014-06-04 Dowaエレクトロニクス株式会社 Iii族窒化物エピタキシャル基板および該基板を用いた深紫外発光素子
KR20140020028A (ko) 2012-08-07 2014-02-18 엘지이노텍 주식회사 자외선 발광 소자 및 발광 소자 패키지
CN103236477B (zh) 2013-04-19 2015-08-12 安徽三安光电有限公司 一种led外延结构及其制备方法
CN203312365U (zh) * 2013-07-04 2013-11-27 京东方科技集团股份有限公司 一种led支架、led以及背光模组
WO2015034865A1 (en) * 2013-09-03 2015-03-12 Sensor Electronic Technology, Inc. Optoelectronic device with modulation doping
WO2015042552A1 (en) * 2013-09-23 2015-03-26 Sensor Electronic Technology , Inc. Group iii nitride heterostructure for optoelectronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067077A (ja) * 2005-08-30 2007-03-15 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体素子およびその製造方法
JP2013021124A (ja) * 2011-07-11 2013-01-31 Dowa Electronics Materials Co Ltd Iii族窒化物エピタキシャル基板およびその製造方法
JP2013016521A (ja) * 2012-10-23 2013-01-24 Nippon Telegr & Teleph Corp <Ntt> 平板型固体酸化物形燃料電池
KR20140098518A (ko) * 2013-01-31 2014-08-08 엘지이노텍 주식회사 발광소자
JP2015035536A (ja) * 2013-08-09 2015-02-19 Dowaエレクトロニクス株式会社 Iii族窒化物半導体エピタキシャル基板およびiii族窒化物半導体発光素子ならびにこれらの製造方法

Also Published As

Publication number Publication date
KR20160103687A (ko) 2016-09-02
CN107278333A (zh) 2017-10-20
US10381509B2 (en) 2019-08-13
US20180240936A1 (en) 2018-08-23
CN107278333B (zh) 2020-11-20
KR102237154B1 (ko) 2021-04-07

Similar Documents

Publication Publication Date Title
WO2016137220A1 (ko) 발광 소자 및 이를 구비한 라이트 유닛
WO2016137197A1 (ko) 발광 소자 및 이를 구비한 라이트 유닛
WO2016104946A1 (ko) 발광 소자 및 이를 구비한 발광 소자 패키지
WO2009128669A2 (ko) 발광 소자 및 그 제조방법
WO2009134029A2 (ko) 반도체 발광소자
WO2017179944A1 (ko) 발광소자, 발광소자 패키지 및 발광모듈
WO2017222341A1 (ko) 반도체 소자 및 이를 포함하는 반도체 소자 패키지
WO2016064134A2 (en) Light emitting device and method of fabricating the same
WO2009145483A2 (ko) 발광 소자 및 그 제조방법
WO2016018109A1 (ko) 발광 다이오드
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2009125953A2 (ko) 발광 소자
WO2016209015A1 (ko) 자외선 발광소자, 발광소자 패키지 및 조명장치
WO2013183888A1 (ko) 발광소자
WO2017034212A1 (ko) 발광소자 및 이를 구비한 발광 소자 패키지
WO2015147518A1 (ko) 렌즈, 이를 포함하는 발광소자 모듈
WO2018088851A1 (ko) 반도체 소자
WO2010018946A2 (ko) 반도체 발광소자 및 그 제조방법
WO2020138842A1 (en) Micro light emitting diode and manufacturing method of micro light emitting diode
WO2020040449A1 (ko) 반도체 소자
WO2015190735A1 (ko) 발광소자 및 이를 구비한 발광소자 패키지
WO2017164644A1 (ko) 발광 소자 및 이를 구비한 발광 모듈
WO2016080671A1 (ko) 발광소자 및 조명시스템
WO2017135644A1 (ko) 자외선 발광소자 및 조명시스템
KR102355604B1 (ko) 발광 소자 및 이를 구비한 라이트 유닛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15553517

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755870

Country of ref document: EP

Kind code of ref document: A1