WO2023202616A1 - 一种具有宽分子量分布的聚芳醚酮及其制备方法 - Google Patents

一种具有宽分子量分布的聚芳醚酮及其制备方法 Download PDF

Info

Publication number
WO2023202616A1
WO2023202616A1 PCT/CN2023/089208 CN2023089208W WO2023202616A1 WO 2023202616 A1 WO2023202616 A1 WO 2023202616A1 CN 2023089208 W CN2023089208 W CN 2023089208W WO 2023202616 A1 WO2023202616 A1 WO 2023202616A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether ketone
molecular weight
polyaryl ether
preparation
reaction
Prior art date
Application number
PCT/CN2023/089208
Other languages
English (en)
French (fr)
Inventor
谢怀杰
季然
边疆
童艳玲
毕鑫
Original Assignee
吉林省中研高分子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林省中研高分子材料股份有限公司 filed Critical 吉林省中研高分子材料股份有限公司
Publication of WO2023202616A1 publication Critical patent/WO2023202616A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a polyaryl ether ketone with a wide molecular weight distribution and a preparation method thereof, and belongs to the technical field of polymer materials.
  • Polyetheretherketone is a high-performance thermoplastic with excellent mechanical properties and high crystallinity, and has a glass transition temperature (Tg) of 143°C and a melting point (Tm) of 343°C.
  • Tg glass transition temperature
  • Tm melting point
  • the object of the present invention is to provide a polyaryl ether ketone with a wide molecular weight distribution.
  • the present invention prepares a polyaryl ether ketone with a wide molecular weight distribution by blending high molecular weight and low molecular weight polyaryl ether ketone. Specifically, extrusion is used. Through blending and solution blending, the polyaryl ether ketone provided by the present invention has a wider molecular weight distribution and does not have a higher degree of branching.
  • the polyaryl ether ketone provided by the invention has a Tg of at least 143°C, a Tm of at least 330°C, a crystallinity of at least 20%, a PDI of 2.5 to 2.9, and a gel content of as low as 0.2%;
  • the polyaryl ether ketone has repeating units of the following chemical formula:
  • Ph represents the phenylene part; the phenyl part of each repeating unit and the atom to which it is connected can be independently connected by a 1,4-linking bond or a 1,2-linking bond.
  • a phenyl part includes 1 ,2-linked bond, this part will be in the amorphous phase of the polymer.
  • the crystalline phase will include the phenyl part with 1,4-linked bond.
  • the crystalline phase is preferred, and the corresponding , preferably includes a phenyl moiety having a 1,4-linkage.
  • each Ph moiety in the repeating unit of the chemical formula is connected to the moiety to which it is connected by a 1,4-linkage.
  • the polyaryl ether ketone contains the following repeating units, preferably at least one of the following repeating units, such as one, two or more thereof;
  • the polyaryl ether ketone of the present invention is preferably polyether ether ketone.
  • the invention provides a method for preparing polyaryl ether ketone with a wide molecular weight distribution by extrusion blending, which specifically includes the following steps:
  • step S2 Add salt to both groups of reaction systems in step S1 to terminate the reaction;
  • step S3 Add organic halide to both sets of reaction systems in step S2 for end-capping;
  • step S4 After cooling the two sets of reaction systems in step S3, they are purified to obtain high molecular weight polyaryl ether ketone and low molecular weight polyaryl ether ketone respectively;
  • the present invention also provides a method for preparing polyaryl ether ketone with a wide molecular weight distribution by solution blending, which specifically includes the following steps:
  • step SII add salt to both sets of reaction systems in step SI to terminate the reaction, and then add organic halides for end-capping;
  • step SII Mix the two reaction systems of step SII into the molten aromatic sulfone, stir, and hold at a constant temperature for 15 to 30 minutes. Then, the polyaryl ether ketone is obtained by cooling and purifying in sequence.
  • the alkali metal carbonate is sodium carbonate and potassium carbonate
  • the molar ratio of the sodium carbonate to the bisphenol is 1.001 to 1.14;
  • the ratio of the potassium carbonate to the sodium carbonate is 0.020 to 0.035. This preferred range can provide a higher reaction rate, and can effectively reduce unnecessary side reactions and inhibit possible excessive chain branching;
  • the solvent used in the nucleophilic condensation polymerization is an aromatic sulfone
  • the aromatic sulfone can be diphenyl sulfone, dibenzothiophene dioxide, phenoxthiophene dioxide and 4-phenylsulfonyl biphenyl, preferably Diphenyl sulfone.
  • the organic dihalide is 4,4'-difluorobenzophenone, 2,4'-difluorobenzophenone, 4-chloro-4'- Fluorobenzophenone, 4,4'dichlorobenzophenone, 1,4-bis(4'-fluorobenzoyl)benzene or mixtures thereof, preferably 4,4'-difluorobenzophenone, 2 ,4'-difluorobenzophenone or mixtures thereof;
  • the bisphenols are hydroquinone, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxybenzophenone, 4,4'dihydroxydiphenyl ether, 1,4-dihydroxynaphthalene, 2,3-dihydroxynaphthalene or mixtures thereof, preferably hydroquinone;
  • the molar ratio of the organic dihalide to the bisphenol is 1.002 to 1.03.
  • the molecular weight of the product can be controlled by adjusting the molar ratio. In the context of the present invention, the greater the molar ratio, the better The smaller the molecular weight of the product is.
  • the reaction temperature of the nucleophilic polycondensation is 180°C to 300°C, and the reaction time is 7.5h to 8h.
  • the molecular weight of the product can be controlled by adjusting the reaction time. Generally speaking, , the longer the reaction time, the greater the molecular weight of the product obtained.
  • the salt is an alkali metal salt selected from lithium carbonate, lithium chloride, lithium iodide, lithium bromide or lithium sulfate;
  • the molar ratio of the salt to the bisphenol is 0.02 to 0.18:1;
  • the organic halide can be a monofluorine-substituted halide, the substituent on one aryl group is fluorine, and the substituent on the other aryl group is a hydrogen atom, -SO 3 , -NO 2 , -NH 3 , -Cl, -Br or -I, specifically 4-fluorobenzophenone, 4-fluoro-4-bromobenzophenone, 4-fluoro-4-iodobenzophenone, 4- Fluoro-4-chlorobenzophenone, 4-fluoro-4-nitrobenzophenone, 2-chloro-4-fluorobenzophenone, 4-fluoro-4-chlorobenzophenone, preferably 4- Fluorobenzophenone;
  • the organic halide is added 15 minutes after adding the salt
  • the time for adding the salt and the organic halide is controlled to be within 2 minutes or less;
  • the end-capping is carried out under the following conditions:
  • step S4 the reaction product is usually placed on a stainless steel plate for cooling
  • the maximum size is less than 1.3mm and the minimum size is greater than 0.22mm.
  • a suitable separation device to take out the organic solvent.
  • a Soxhlet extractor is used for separation, preferably using Extraction is performed with a partially water-miscible organic solvent to remove solvents such as diphenyl sulfone, preferably solvents such as acetone.
  • ultrapure water or deionized water to wash away water-soluble organic solvents such as acetone, followed by rinsing with deionized water or pure water, and heat the blend, preferably at a temperature of 50 to 60°C, and repeat five times of washing.
  • step S5 the steps of extrusion blending are as follows:
  • the extruder is a co-rotating parallel twin-screw extruder.
  • step S5 the mass ratio of the high molecular weight polyaryl ether ketone to the low molecular weight polyaryl ether ketone is 2 to 9:1 to 8, preferably 9:1, 8:2, 7:3, 3:7 or 2:8, most preferably 7:3.
  • the method also includes 1 to 3 extrusion and granulation steps to mix the two polyaryl ether ketones more fully, improve dispersion, and thereby increase molecular weight distribution.
  • step SII based on the mass of the organic dihalide, the ratio of the two reaction systems is 2 to 9:1 to 8, preferably 9:1, 8:2, 7:3, 3:7 or 2:8, most preferably 7:3.
  • Figure 1 shows the viscosity curves of polyether ether ketone prepared in Examples 1-8 and Comparative Example 2 under high shear and low shear.
  • test methods in the following examples are as follows:
  • Viscosity is the ratio of shear stress to shear rate, in Pa.s.
  • the method of measuring the fluidity of plastics using a capillary rheometer which can also be called the apparent viscosity test method, is carried out according to GB/T 25278-2010, ISO 11443, ASTM D3835 standards, using the Dynisco laboratory capillary rheometer LCR7001. a testing method. This method causes the plastic melt to be extruded through a capillary die of known size, and the test pressure is tested under the conditions of a specified volume flow rate.
  • the die of the equipment used has the following dimensions: 1mm diameter and 20mm length.
  • the aspect ratio (L/D) of the die is 20.
  • test sample Before measurement, the test sample should be conditioned in accordance with the regulations of GB/T2918-1998.
  • the conditions are temperature 23 ⁇ 2°C, humidity 50 ⁇ 10%, and time 24 ⁇ 0.5 hours.
  • the test conditions are 400°C
  • the shear rates are 100s -1 , 200s -1 , 500s -1 , 1000s -1 , 2000s -1 , 5000s -1 , 10000s - respectively. 1 .
  • the gel test uses a sand core funnel. Place the 40ml G4 sand core funnel in an oven at a constant temperature of 150°C for 8 hours. After cooling, take it out and let it stand. Use an analytical balance to weigh the weight of the sand core funnel W1; use an analytical balance to take a 0.1g PEEK sample. Put it into a reagent bottle, add 5ml of 4-chlorophenol, and then put it into a shaker at a constant temperature of 180°C for 2 hours.
  • the material melts.
  • Turn on the stirring equipment and start stirring the material Raise the temperature to 180°C at a heating rate of 2°C/min and maintain it at a constant temperature for 60 minutes; then increase the temperature to 190°C at a heating rate of 1°C/min and hold it constant for 30 minutes; then raise the temperature to 200°C at a heating rate of 0.5°C. , and then hold the temperature for 30 minutes; then raise the temperature to 280°C at a heating rate of 1°C/min, and keep it at this temperature for 60 minutes. Finally, the temperature was raised to 300°C at a heating rate of 1°C/min. After maintaining for 60 minutes, 10.17g (0.24mol) lithium chloride was added to the flask. After stirring for 10 minutes, 6.64g (0.03mol) 4-fluorodifluoride was added. benzophenone for capping. Continue stirring for 30 min to terminate the reaction.
  • the product mixture obtained in the reactor was poured and placed flat on a stainless steel plate, and the mixture was allowed to cool to room temperature.
  • the obtained reactant is crushed, ground and sieved using a pulverizer to obtain mixture particles with a mesh size between 15 and 60.
  • use purified water to soak the filtered particles. When heating, the temperature rises to 60°C, then pour out the deionized water. Rinse with deionized water and then heat again. Repeat more than 5 times until the conductivity is between 2 and 10 ⁇ S. Put the washed product into a vacuum drying box, set the temperature in the chamber to 150°C, and vacuum dry for 12 hours.
  • Example 2 The preparation process of Example 2 is basically the same as that of Example 1. The difference is that when the reaction reaches 280°C for 1 hour, 10.17g lithium chloride is immediately added to the system. After stirring for 5 minutes, 4-fluorobenzophenone is added. Ended. Stir for 30 minutes, pour out, cool, crush and wash.
  • Example 1 The polyether ether ketone prepared in Example 1 and Example 2 was dried and subjected to a viscosity test, and the results are shown in Table 1.
  • Example 1 The materials obtained in Example 1 and Example 2 were directly mixed with a mixer in a mass ratio of 7:3, 8:2, and 9:1.
  • the viscosity is as shown in Table 3.
  • Example 1 The synthesis was carried out according to the synthesis methods of Example 1 and Example 2. The difference is that the amounts of reactants were reduced in proportion, respectively to 0.9 in Example 1 and to the original 0.1 in Example 2.
  • the reaction start time By controlling the reaction start time, the two reactions end at the same time, and the contents of the two reactors are poured into a 10L reaction kettle at the same time. At this time, the temperature of the 10L reaction kettle is 300°C, and there is 2kg of molten diphenyl sulfone in it.
  • the reaction kettle is equipped with a turbine stirring paddle, which stirs at high speed for 15 minutes and then releases, cools and solidifies, and is purified and dried.
  • Example 3 Repeat Example 3, with the change that the amount of reactants is reduced to the original 0.8 and 0.2 in equal proportions.
  • Example 3 Repeat Example 3, with the change being that the amount of reactants is reduced to the original 0.2 and 0.8 in equal proportions.
  • Example 5 Repeat Example 1, except that the quality of the fluoroketone in the raw material is changed to prepare products with different molecular weights. Test melt index and viscosity as shown in Table 5.
  • Example 6 E2 in Example 6 was extruded and granulated again, and the viscosity is as shown in Table 7.
  • a branched synthesis route (the same as Example 1, but using a lower purity fluoroketone raw material) was used to conduct a synthesis experiment, and the prepared polyetheretherketone was subjected to a viscosity test, and the viscosity is shown in Table 8.
  • the difference between the branched synthesis route and Example 1 lies in changing the source of fluoroketone.
  • the purity of the fluoroketone raw material of the conventional synthesis reaches 99.8% to 99.9%, while the purity of the fluoroketone raw material of the branched method is lower (98.3% to 98.9%). .
  • the purity of the fluoroketone raw material is lower, there is an excess of fluoroketone compared with Example 1.
  • Examples 1-7 and Comparative Examples 1-3 were subjected to molecular weight distribution test and gel test, and the results are shown in Table 9.
  • the obtained product polyether ether ketone was subjected to an absorbance test (absorbance test: dissolve the product with concentrated sulfuric acid and then use a spectrophotometer to test the absorbance at 550 nm).
  • the measured absorbance was between 0.09 and 0.10, while the polyether prepared in Example 1
  • the absorbance of ether ketone is 0.22 ⁇ 0.23. From the absorbance test results, it can be determined that the polyether ether ketone prepared by the branched synthesis route absorbs less light at the 550nm wavelength, indicating that its carbonyl branching level is higher, so it has higher
  • the broad molecular weight is caused by the reduction in the purity of the fluoroketone raw material and the increase in the branching degree of the product.
  • Example 3-5 the obtained contents of the reaction kettle were directly mixed and stirred in the solution state after adding the terminator. Through testing, it was found that the obtained product also had a wider molecular weight distribution effect. This shows that high-speed blending in the solution state and twin-screw extrusion blending after obtaining the material can obtain consistent results.
  • the PEEK produced by the present invention always has a lower viscosity at 2000s -1 Compared with conventional products, that is to say, PEEK with a wider molecular weight distribution has lower viscosity performance.
  • the conventional synthesis is the five products (C 1 ...C 5 ) of Comparative Example 2
  • the branched synthesis is the The three products (F 1 ... F 3 ) of proportion 3
  • the solution blending is the products of Examples 3, 4, and 5
  • the extrusion blending is the products A 2 -A 5 and B 1 -B 4 of the previous embodiments. .
  • the gel content of the polyetheretherketone prepared by the method of the present invention is significantly lower than the product of the branched synthesis route, which reflects that the product prepared by the present invention has a lower degree of branching.
  • the polyaryl ether ketone provided by the invention has the same viscosity under low shear strength but a smaller viscosity under high shear strength, which can significantly reduce the processing difficulty of the product and increase the applicable range of the product.
  • the gel content of the polyaryl ether ketone provided by the invention is significantly reduced, the processing process when preparing molded products is simpler, and no obvious fish eyes will appear on the film due to the aggregation of gel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

一种具有宽分子量分布的聚芳醚酮及其制备方法。所述聚芳醚酮的Tg至少达143℃,Tm至少达330℃,结晶度至少为20%,PDI为2.5~2.9,凝胶含量最低至0.2%。通过挤出共混或溶液共混的方式制备具有宽分子量分布的聚芳醚酮,且不具有较高的支化程度。所述聚芳醚酮在低剪切强度下的黏度相同时在高剪切强度下的黏度更小,可以显著地使得产品的加工难度降低,使得产品的可适用范围增多。所述聚芳醚酮的凝胶含量明显减少,在制备模制品时加工过程更加简洁,不会由于凝胶的聚集而使得在薄膜上出现显著的鱼眼。

Description

一种具有宽分子量分布的聚芳醚酮及其制备方法
相关申请交叉引用
本申请要求由申请人吉林省中研高分子材料股份有限公司于2022年4 月22日提交的、题目为一种具有宽分子量分布的聚芳醚酮及其制备方法的 中国专利申请申请号为202210425987.6的优先权,该申请的全部内容通过 引用并入本文。
技术领域
本发明涉及一种具有宽分子量分布的聚芳醚酮及其制备方法,属于高分子材料技术领域。
背景技术
聚醚醚酮是高性能的热塑性塑料,其具有优异的机械性能和高结晶,并且具有143℃的玻璃化转变温度(Tg)和343℃的熔点(Tm)。为了减少加工难度,我们需要具有较宽分子量分布的聚醚醚酮,但现有的具有较宽分子量的聚醚醚酮是因提高了分子链的支化程度而得到的,而链支化的产生会使得聚合物的拉伸强度变低同时也使得产物的凝胶率变高,当高聚物的凝胶率过高时,会使得材料的黏度变大,材料的高温稳定效果也会变差,这是不利于材料的加工的,而且在材料加工完成后缺陷会明显多于凝胶更少的材料,这对力学性能是有影响的,且在制备薄膜制品时,过高的凝胶会在膜上产生鱼眼,品质下降。因此,需要提供一种新的具有宽分子量分布的聚芳醚酮的制备方法。
发明内容
本发明的目的是提供一种具有宽分子量分布的聚芳醚酮,本发明通过高分子量与低分子量聚芳醚酮共混的方式制备具有较宽分子量分布的聚芳醚酮,具体采用了挤出共混和溶液共混的方式,本发明提供的聚芳醚酮具有较宽的分子量分布,且不具有较高的支化程度。
本发明提供的聚芳醚酮,其Tg至少达143℃,Tm至少达330℃,结晶度至少为20%,PDI为2.5~2.9,凝胶含量最低至0.2%;
所述聚芳醚酮具有以下化学式的重复单元:
-O-Ph-O-Ph-CO-Ph-
其中,Ph代表亚苯基部分;每个重复单元的苯基部分与其所连接的原子之间可以独立的以1,4-连接键或1,2-连接键连接,当一个苯基部分包括1,2-连接键时,该部分处将处于该聚合物的非晶相中,晶体相会包括具有1,4-连接键的苯基部分,在众多情况下,优选为晶体相,且相应的,优选为包括具有1,4-连接键的苯基部分。
优选地,化学式重复单元中每个Ph部分与其连接的部分之间以1,4-连接键连接。
优选地,所述聚芳醚酮含有如下重复单元,优选含有下述重复单元中的至少一种,如其中的一种、两种或多种;
本发明聚芳醚酮优选为聚醚醚酮。
本发明提供了一种通过挤出共混的方式制备具有宽分子量分布的聚芳醚酮的方法,具体包括如下步骤:
S1、在惰性气氛下,在碱金属碳酸盐存在的条件下,有机二卤化物与双酚进行亲核缩聚;同时进行两组所述亲核缩聚的反应;
S2、向步骤S1的两组反应体系中均加入盐进行终止反应;
S3、向步骤S2的两组反应体系中均加入有机卤化物进行封端;
S4、冷却步骤S3的两组反应体系后经提纯分别得到高分子量的聚芳醚酮和低分子量的聚芳醚酮;
S5、将所述高分子量的聚芳醚酮和所述低分子量的聚芳醚酮混合后进行挤出共混,即得到所述聚芳醚酮。
本发明同时还提供了一种通过溶液共混的方式制备具有宽分子量分布的聚芳醚酮的方法,具体包括如下步骤:
SⅠ、在惰性气氛下,在碱金属碳酸盐存在的条件下,有机二卤化物与双酚进行亲核缩聚,进行两组所述亲核缩聚的反应,控制两组所述亲核缩聚同时结束;
SⅡ、在步骤SⅠ的两组反应体系中均加入盐进行终止反应,随后加入有机卤化物进行封端;
SⅢ、将步骤SⅡ的两组反应体系混合于熔融的芳族砜中,进行搅拌,恒温15~30min后,依次经冷却和纯化即得所述聚芳醚酮。
上述的制备方法中,步骤S1或SⅠ中,所述碱金属碳酸盐为碳酸钠与碳酸钾;
所述碳酸钠与所述双酚的摩尔比为1.001~1.14;
所述碳酸钾与所述碳酸钠的比为0.020~0.035,此优选范围内可提供较高的反应速率,并且可有效降低无益的副反应,抑制了可能存在的过度链支化;
所述亲核缩聚采用的溶剂为芳族砜,所述芳族砜可为二苯砜、二苯并噻吩二氧化物、吩噁噻二氧化物和4-苯基磺酰基联苯,优选为二苯砜。
上述的制备方法中,步骤S1或SⅠ中,所述有机二卤化物为4,4’-二氟二苯甲酮、2,4’-二氟二苯甲酮、4-氯-4’-氟二苯甲酮、4,4’二氯二苯甲酮、1,4-双(4’-氟苯甲酰基)苯或其混合物,优选4,4’-二氟二苯甲酮、2,4’-二氟二苯甲酮或其混合物;
所述双酚为对苯二酚,4,4’-二羟基联苯、4,4’-二羟基二苯甲酮、4,4’二羟基二苯醚、1,4-二羟基萘、2,3-二羟基萘或其混合物,优选对苯二酚;
所述有机二卤化物与所述双酚的摩尔比为1.002~1.03,可通过调节该摩尔比实现对产物分子量的控制,在本发明的背景下,该摩尔比越大,得 到的产物的分子量越小。
上述的制备方法中,步骤S1或SⅠ中,所述亲核缩聚的反应温度为180℃~300℃,反应时间为7.5h~8h,可通过调节反应时间实现对产物分子量的控制,通常来说,反应时间越长,得到的产物的分子量越大。
上述的制备方法中,步骤S2或SⅡ中,所述盐为碱金属盐,选自碳酸锂、氯化锂、碘化锂、溴化锂或硫酸锂;
所述盐与所述双酚的摩尔比为0.02~0.18:1;
步骤S3或SⅡ中,所述有机卤化物可为单氟取代的卤化物,一个芳基上的取代基为氟,另一个芳基上的取代基为氢原子、-SO3、-NO2、-NH3、-Cl、-Br或-I,具体可为4-氟二苯甲酮、4-氟-4-溴二苯甲酮、4-氟-4-碘二苯甲酮、4-氟-4-氯二苯甲酮、4-氟-4-硝基二苯甲酮、2-氯-4-氟二苯甲酮、4-氟-4-氯二苯甲酮,优选4-氟二苯甲酮;
优选加入所述盐后的15min,再加入所述有机卤化物;
添加所述盐和所述有机卤化物的时间控制为2min以内或者更短;
所述封端在如下条件下进行:
温度为290~315℃;
时间为15~45min;
步骤S4中,通常将反应产物放置在不锈钢板上进行冷却;
在所述冷却之后,将冷却物研磨成粗粉,优选的,最大尺寸小于1.3mm,最小尺寸大于0.22mm,采用合适的分离装置取出有机溶剂,通常使用索氏抽提器进行分离,优选采用部分与水混容的有机溶剂来进行萃取以除去溶剂如二苯砜,优选溶剂如丙酮。接着使用超纯水或者去离子水洗去水溶性有机溶剂如丙酮,紧接着使用去离子水或纯水进行漂洗,并对共混物进行加热,优选温度为50~60℃,反复五次洗涤以除去水溶性残余物如钾盐和钠盐,此过程可通过检测洗涤水的电导率来进行把控,一旦达到可要求范围,就可立即从洗涤水中过滤产物,干燥过滤的材料以获得可回收的PAEK,得到的PAEK里残留的溶剂残余应少于0.03%。
上述的制备方法中,步骤S5中,所述挤出共混的步骤如下:
将所述高分子量的聚芳醚酮与所述低分子量的聚芳醚酮混合,通过挤出机进行造粒;
所述挤出机为同向平行双螺杆挤出机。
上述的制备方法中,步骤S5中,所述高分子量的聚芳醚酮与所述低分子量的聚芳醚酮的质量比为2~9:1~8,优选9:1、8:2、7:3、3:7或2:8,最优选7:3。
所述方法还包括1~3次挤出造粒的步骤,以使两种聚芳醚酮混合的更加充分,提高分散性,进而提高分子量分布。
上述的制备方法中,步骤SⅡ中,以所述有机二卤化物的质量计,两组反应体系的配比为2~9:1~8,优选9:1、8:2、7:3、3:7或2:8,最优选7:3。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定,在附图中:
图1为实施例1-8和对比例2制备的聚醚醚酮的高剪切和低剪切下的黏度曲线。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中各测试方法如下:
1、黏度的测试方法
黏度为剪切应力与剪切速率之比,单位为Pa.s。
采用毛细管流变仪测定塑料的流动性的方法,也可称之为表观黏度的测试方法,根据GB/T 25278-2010,ISO 11443,ASTM D3835标准,使用Dynisco实验室毛细管流变仪LCR7001进行的一种测试方法。该方法使塑料熔体被挤压通过已知尺寸的毛细管口模,在规定体积流动速率的条件下,测试试验压力。
所用设备的口模具有以下尺寸:1mm直径以及20mm长度,口模的长径比(L/D)为20。
测定前,应对测试样品按照GB/T2918-1998的规定对样品进行状态调节,条件为温度23±2℃,湿度50±10%,时间24±0.5小时。
测试前,应保证让各部件在试验温度下达到热平衡,之后开始装料,将样品少量分次加入料筒,立即用柱塞压实以防止带入空气。装料至离料筒顶部约12.5mm,一般物料测量使用量为10~15g聚合物,在2分钟内完成装料。
加料后立即开始预热计时,预热5分钟,测试条件为400℃,剪切速率分别为100s-1、200s-1、500s-1、1000s-1、2000s-1、5000s-1、10000s-1
2、分子量分布测试方法
采用凝胶色谱测试PEEK分子量的步骤如下:
首先配置流动相,流动相选择使用1,2,4-三氯苯和4-氯苯酚;将PEEK进行溶解,将0.1g的PEEK溶于5ml的4-氯苯酚;将试剂瓶盖上铝盖,放置在加热振荡器上,温度180℃,加热至完全溶解;将试剂瓶冷却到室温,加入5ml1,2,4-三氯苯,使用注射器将溶液滤过0.45μm的玻纤过滤器;将滤液进行凝胶色谱测试,将得到的数据进行分析。
3、凝胶测试方法
凝胶测试使用砂芯漏斗,将40mlG4砂芯漏斗放置在烘箱内恒温150℃持续8小时,待冷却后取出静置,使用分析天平称重砂芯漏斗重量W1;用分析天平取0.1g PEEK样品放入试剂瓶中,加入5ml 4-氯苯酚,随后放入到震荡器中恒温180℃震荡2h,待完全溶解无残留物后,放置在操作台上冷却至室温,再向其中加入1,2,4-三氯苯静置5min;将同一批次5组溶液倒入砂芯漏斗中进行抽滤,再取10ml 4-氯苯酚洗涤试剂瓶和砂芯漏斗,抽滤,接下来再使用25ml无水乙醇洗涤砂芯漏斗抽滤,最后放入到烘箱内干燥2h。待冷却后取出漏斗,用分析天平称重W2;(W2-W1)/0.5g×100%即为PEEK凝胶的百分含量。
本发明将通过以下非限制性的实例进一步说明。除非另有说明,在这些实例中量值表示为按重量计的百分比。
实施例1、高分子量的聚醚醚酮的制备
使用一个3L的开口烧瓶,并配有四口盖、搅拌器、搅拌桨、氮气保护输入装置、热电偶温度探测装置和开口烧瓶夹子。向其中依次加入1425g(6.529mol)二苯砜,444.86g(纯度为99.9%、2.036mol)的4,4-二氟二苯甲酮、223.35g(2.029mol)对苯二酚、245g(2.312mol)精细研磨过的碳酸钠和6.5g(0.047mol)优级纯碳酸钾。使用高纯氮气以0.14L/min的速率吹扫保护20min,将烧瓶内空气排净。将温度在1h内缓慢升到140℃,此时物料融化,开启搅拌设备对物料开始搅拌。以2℃/min的升温速率将温度升到180℃,恒温保持60min;再以1℃/min的升温速率将温度提高至190℃,恒温30min;之后再以0.5℃的升温速率升温至200℃,再恒温30min;紧接着以1℃/min的升温速率将温度提至280℃,在此温度下保温60min。最后将温度以1℃/min的升温速率升至300℃,保持60min后向烧瓶中投入10.17g(0.24mol)氯化锂,接着搅拌10分钟后,投入6.64g(0.03mol)4-氟二苯甲酮进行封端。持续搅拌30min来进行终止反应。
最后将反应器内得到的产物混合物倾倒铺平在不锈钢板上进行放置,等待该混合物冷却到室温后。将所得到的反应物使用粉碎机粉碎研磨筛分,得到15-60目数之间的混合物颗粒。称取100g混合物颗粒加入索氏抽提器中,使用丙酮作为溶剂,提取粉末颗粒中的反应溶剂二苯砜及其他剩余有机物杂质,反复抽提1小时。接下来使用纯化水浸泡滤出的颗粒,加热时温度升至60℃后将去离子水倒出,用去离子水进行漂洗后再次加热,反复5次以上,直至电导率处于2~10μS。将水洗之后的产物放入真空干燥箱,将腔内温度设置为150℃,真空干燥12小时。
实施例2、低分子量的聚醚醚酮的制备
实施例2与实施例1的制备过程基本一致,不同的是在反应进行到280℃1小时的时候立即向体系中投入10.17g氯化锂,搅拌5分钟后,投入4-氟二苯甲酮封端。搅拌30min后倒出,冷却粉碎洗涤。
实施例1和实施例2制备的聚醚醚酮干燥后进行黏度测试,结果如表1所示。
表1实施例1和实施例2制备的聚醚醚酮的黏度

将实施例1和2得到的产物分别按照9:1、8:2、7:3的质量比共混后,使用同向平行双螺杆挤出机,螺杆直径为18mm,长径比32:1进行挤出造粒,黏度如表2所示。
表2实施例1和2制备的聚醚醚酮挤出共混后的黏度
对比例1、直接混合高分子量和低分子量的聚醚醚酮
将实施例1和实施例2得到的物料直接按7:3、8:2、9:1的质量比进行搅拌机混合,黏度如表3所示。
表3实施例1和2制备的聚醚醚酮直接混合后的黏度
实施例3、溶液混合法制备宽分子量分布的聚醚醚酮
按照实施例1和实施例2的合成方法进行合成,区别在于:反应物用量分别等比缩小,实施例1分别缩小到0.9,实施例2分别缩小到原来的0.1。通过控制反应开始时间使得两个反应同时结束,并将两个反应器内容物同时倒入一个10L的反应釜中,此时10L的反应釜温度为300℃,其中有2kg的熔融二苯砜,该反应釜配有涡轮搅拌桨,高速搅拌15分钟然后放出,进行冷却固化,纯化干燥。
实施例4、
重复实施例3,改变在于反应物用量等比缩小到原来的0.8和0.2。
实施例5、
重复实施例3,改变在于反应物用量等比缩小到原来的0.2和0.8。
实施例3-5制备的聚醚醚酮的黏度如表4所示。
表4实施例3-5制备的聚醚醚酮的黏度
对比例2、
重复实施例1,区别在于改变原料中氟酮的质量,制备分子量大小不同的产品。测试熔指和黏度,如表5中所示。
表5对比例2各条件下制备的聚醚醚酮的黏度
实施例6、
使用生产用5000L反应釜进行聚合反应。分别按照实施例1和实施例2进行放大,按照常规生产工序进行后处理,得到外观常规的粗粉颗粒,分别采用8:2、9:1的配比进行挤出造粒,黏度如表6所示。
表6实施例6制备的聚醚醚酮的黏度
实施例7、
将实施例6中的E2进行再次挤出造粒,黏度如表7所示。
表7实施例7制备的聚醚醚酮的黏度
对比例3、
采用支化合成路线(与实施例1相同,但使用更低纯度的氟酮原料)进行合成实验,制备的聚醚醚酮进行黏度测试,黏度如表8所示。
表8对比例3制备的聚醚醚酮的黏度
支化合成路线与实施例1的不同在于改变氟酮的来源,常规合成的氟酮原料纯度达99.8%~99.9%,而支化法的氟酮原料纯度更低(为98.3%~98.9%)。其中,由于氟酮原料纯度更低,所以较实施例1氟酮过量。
对实施例1-7和对比例1-3的物料进行分子量分布测试和凝胶测试,结果如表9所示。
所得产物聚醚醚酮进行吸光度测试(吸光度测试:用浓硫酸溶解产物后用分光光度计测试在550nm下的吸光度),测得的吸光度为0.09~0.10之间,而实施例1制备的聚醚醚酮的吸光度为0.22~0.23,通过吸光度的测试结果可以确定,支化合成路线制备的聚醚醚酮较少吸收在550nm波长下的光,表明其羰基支化水平较高,因此其具有较宽分子量是由于氟酮原料纯度降低使产物的支化度提升而带来的。
通过对比发现,按照常规工艺的对比例3得到的产物,可以看出混合挤出的材料在100s-1和2000s-1黏度的关系是较好的,这一点由凝胶色谱测出的分子量分布(PDI)也可以看出。而由直接手混测试的结果(对比例1)发现并未得到与混合挤出(A1-A5、E1-E2、实施例7)一致的结果,这说明高低分子量的物料混合是一种较好的工艺手段,但是要有极为充分的混合。通 过实施例7可以看到,混合的越充分,越均匀对于结果越好,高分子量的物料和低分子量的物料的分散性越好,分子量分布越宽。
实施例3-5通过直接将得到的反应釜内容物在添加终止剂后直接在溶液状态下混合搅拌,得到的产物通过测试发现也具有较宽的分子量分布效果。这说明溶液状态下的高速共混与得到物料之后再进行双螺杆挤出共混可以得到一致的结果。
通过将常规物料黏度曲线、与实施例趋势线进行对比可以看出,本发明的制造的PEEK与具有相同100s-1黏度的常规产品相比,本发明制造的PEEK的2000s-1黏度总是低于常规产品,也就是说分子量分布更宽的PEEK具有更低的黏度表现,如图1所示,常规合成是对比例2的五个产品(C1……C5),支化合成是对比例3的三个产品(F1……F3),溶液共混是实施例3、4、5的产品,挤出共混是前述实施例的产品A2-A5和B1-B4
并且在通过凝胶测试之后可以发现,本发明方法制备的聚醚醚酮的凝胶含量明显低于支化合成路线的产物,这反映了本发明制备的产物的支化度更低。
表9实施例1-7和对比例1-3制备的聚醚醚酮的黏度、PDI和凝胶含量

工业应用
本申请具有如下有益技术效果:
本发明提供的聚芳醚酮在低剪切强度下的黏度相同时在高剪切强度下的黏度更小,可以显著地使得产品的加工难度降低,使得产品的可适用范围增多。
本发明提供的聚芳醚酮的凝胶含量明显减少,在制备模制品时加工过程更加简洁,不会由于凝胶的聚集而使得在薄膜上出现显著的鱼眼。

Claims (12)

  1. 一种聚芳醚酮,其特征在于:所述聚芳醚酮的PDI为2.5~2.9,凝胶含量最低至0.2%。
  2. 根据权利要求1所述的聚芳醚酮,其特征在于:所述聚芳醚酮含有如下重复单元:
  3. 权利要求1或2所述聚芳醚酮的制备方法,包括如下步骤:
    S1、在惰性气氛下,在碱金属碳酸盐存在的条件下,有机二卤化物与双酚进行亲核缩聚;同时进行两组所述亲核缩聚的反应;
    S2、向步骤S1的两组反应体系中均加入盐进行终止反应;
    S3、向步骤S2的两组反应体系中均加入有机卤化物进行封端;
    S4、冷却步骤S3的两组反应体系后经提纯分别得到高分子量的聚芳醚酮和低分子量的聚芳醚酮;
    S5、将所述高分子量的聚芳醚酮和所述低分子量的聚芳醚酮混合后进行挤出共混,即得到所述聚芳醚酮。
  4. 权利要求1或2所述聚芳醚酮的制备方法,包括如下步骤:
    SⅠ、在惰性气氛下,在碱金属碳酸盐存在的条件下,有机二卤化物与 双酚进行亲核缩聚,进行两组所述亲核缩聚的反应,控制两组所述亲核缩聚同时结束;
    SⅡ、在步骤SⅠ的两组反应体系中均加入盐进行终止反应,随后加入有机卤化物进行封端;
    SⅢ、将步骤SⅡ的两组反应体系混合于熔融的芳族砜中,进行搅拌,恒温15~30min后,依次经冷却和纯化即得所述聚芳醚酮。
  5. 根据权利要求3或4所述的制备方法,其特征在于:步骤S1或SⅠ中,所述碱金属碳酸盐为碳酸钠与碳酸钾;
    所述碳酸钠与所述双酚的摩尔比为1.001~1.14;
    所述碳酸钾与所述碳酸钠的比为0.020~0.035;
    所述亲核缩聚采用的溶剂为芳族砜,所述芳族砜为二苯砜、二苯并噻吩二氧化物、吩噁噻二氧化物和4-苯基磺酰基联苯。
  6. 根据权利要求3-5中任一项所述的制备方法,其特征在于:步骤S1或SⅠ中,所述有机二卤化物为4,4’-二氟二苯甲酮、2,4’-二氟二苯甲酮、4-氯-4’-氟二苯甲酮、4,4’二氯二苯甲酮、1,4-双(4’-氟苯甲酰基)苯或其混合物;
    所述双酚为对苯二酚,4,4’-二羟基联苯、4,4’-二羟基二苯甲酮、4,4’二羟基二苯醚、1,4-二羟基萘、2,3-二羟基萘或其混合物;
    所述有机二卤化物与所述双酚的摩尔比为1.002~1.03。
  7. 根据权利要求3-6中任一项所述的制备方法,其特征在于:步骤S1或SⅠ中,所述亲核缩聚的反应温度为180℃~300℃,反应时间为7.5~8h。
  8. 根据权利要求3-7中任一项所述的制备方法,其特征在于:步骤S2或SⅡ中,所述盐为碱金属盐,选自碳酸锂、氯化锂、碘化锂、溴化锂或硫酸锂;
    所述盐与所述双酚的摩尔比为0.02~0.18:1。
  9. 根据权利要求3-8中任一项所述的制备方法,其特征在于:步骤S3或SⅡ中,所述有机卤化物为单氟取代的卤化物,一个芳基上的取代基为氟,另一个芳基上的取代基为氢原子、-SO3、-NO2、-NH3、-Cl、-Br或-I;
    所述封端在如下条件下进行:
    温度为290~315℃;
    时间为15~45min;
    步骤S4中,所述高分子量的聚芳醚酮和所述低分子量的聚芳醚酮的溶剂残余量均小于0.03%。
  10. 根据权利要求3、5-9中任一项所述的制备方法,其特征在于:步骤S5中,所述挤出共混的步骤如下:
    将所述高分子量的聚芳醚酮与所述低分子量的聚芳醚酮混合,通过挤出机进行造粒;
    所述挤出机为同向平行双螺杆挤出机。
  11. 根据权利要求3、5-10中任一项所述的制备方法,其特征在于:步骤S5中,所述高分子量的聚芳醚酮与所述低分子量的聚芳醚酮的质量比为2~9:1~8;
    所述方法还包括1~3次挤出造粒的步骤。
  12. 根据权利要求4-9中任一项所述的制备方法,其特征在于:步骤SⅡ中,以所述有机二卤化物的质量计,两组反应体系的配比为2~9:1~8。
PCT/CN2023/089208 2022-04-22 2023-04-19 一种具有宽分子量分布的聚芳醚酮及其制备方法 WO2023202616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210425987.6A CN115636933B (zh) 2022-04-22 2022-04-22 一种具有宽分子量分布的聚芳醚酮及其制备方法
CN202210425987.6 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023202616A1 true WO2023202616A1 (zh) 2023-10-26

Family

ID=84940266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089208 WO2023202616A1 (zh) 2022-04-22 2023-04-19 一种具有宽分子量分布的聚芳醚酮及其制备方法

Country Status (2)

Country Link
CN (1) CN115636933B (zh)
WO (1) WO2023202616A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636933B (zh) * 2022-04-22 2023-08-04 吉林省中研高分子材料股份有限公司 一种具有宽分子量分布的聚芳醚酮及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109843974A (zh) * 2016-09-26 2019-06-04 威格斯制造有限公司 聚合物和其制造方法
WO2019186085A1 (en) * 2018-03-28 2019-10-03 Victrex Manufacturing Limited Copolymers and process for their manufacture
CN113651954A (zh) * 2021-08-16 2021-11-16 吉林省中研高分子材料股份有限公司 用于合成聚醚醚酮的组合物、聚醚醚酮的合成方法及聚醚醚酮
CN114230785A (zh) * 2021-11-17 2022-03-25 吉林省中研高分子材料股份有限公司 一种耐辐射的聚醚醚酮聚合物及其制备方法
CN115636933A (zh) * 2022-04-22 2023-01-24 吉林省中研高分子材料股份有限公司 一种具有宽分子量分布的聚芳醚酮及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980478B (zh) * 2014-05-22 2016-11-02 吉林大学 低熔体粘度聚芳醚酮共聚物及其制备方法
CN110982062B (zh) * 2019-12-18 2022-04-29 山东非金属材料研究所 一种低分子量聚醚醚酮的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109843974A (zh) * 2016-09-26 2019-06-04 威格斯制造有限公司 聚合物和其制造方法
WO2019186085A1 (en) * 2018-03-28 2019-10-03 Victrex Manufacturing Limited Copolymers and process for their manufacture
CN113651954A (zh) * 2021-08-16 2021-11-16 吉林省中研高分子材料股份有限公司 用于合成聚醚醚酮的组合物、聚醚醚酮的合成方法及聚醚醚酮
CN114230785A (zh) * 2021-11-17 2022-03-25 吉林省中研高分子材料股份有限公司 一种耐辐射的聚醚醚酮聚合物及其制备方法
CN115636933A (zh) * 2022-04-22 2023-01-24 吉林省中研高分子材料股份有限公司 一种具有宽分子量分布的聚芳醚酮及其制备方法

Also Published As

Publication number Publication date
CN115636933A9 (zh) 2023-04-25
CN115636933B (zh) 2023-08-04
CN115636933A (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
JP5187998B2 (ja) 低色ポリ(ビフェニルエーテルスルホン)及びその改良された製造方法
WO2023202616A1 (zh) 一种具有宽分子量分布的聚芳醚酮及其制备方法
JPS6032642B2 (ja) 熱可塑性芳香族ポリエ−テルケトン
JP2018502972A (ja) 溶融重合法からのポリアリールエーテルの脱塩
CN105593267A (zh) 聚合物材料
CN110903480B (zh) 一种可控分子量聚砜的制备方法
CN111902456A (zh) 共聚物和用于其制造的方法
KR102327908B1 (ko) 용융 추출에 의한 폴리아릴 에테르의 탈염
WO2023040819A1 (zh) 聚醚醚酮及其制备方法
KR102574669B1 (ko) 용융 추출에 의한 폴리아릴 에테르의 탈염화
CN113651954A (zh) 用于合成聚醚醚酮的组合物、聚醚醚酮的合成方法及聚醚醚酮
JP5362410B2 (ja) ポリフェニレンエーテル
WO2019219870A1 (en) Process for preparing a poly(biphenyl ether sulfone) (ppsu) polymer
CN113999394B (zh) 一种砜聚合物及其制备方法和应用
EP4006079B1 (en) Polyarylene ether ketone resin, manufacturing method therefor, and molded body
RU2775553C1 (ru) Способ получения модифицированного сополиарилэфирфиркетона
WO2024053304A1 (ja) 結晶化速度の向上したポリエーテルニトリル及びその製造方法、ポリエーテルニトリル樹脂組成物及びその製造方法
WO2023190280A1 (ja) ポリエーテルニトリル成形用材料及びその製造方法、ポリエーテルニトリル樹脂組成物成形用材料の製造方法
JP7272126B2 (ja) ポリアリーレンエーテルケトン樹脂の精製方法、及び該精製方法を含むポリアリーレンエーテルケトン樹脂の製造方法
JPH0475251B2 (zh)
WO2023090101A1 (ja) ポリエーテルニトリルの製造方法
JP2023075022A (ja) ポリエーテルニトリルの製造方法
WO2023090100A1 (ja) ポリエーテルニトリルの製造方法
CN113563578A (zh) 一种制备聚(芳基醚酮)的方法及聚(芳基醚酮)
WO2023090096A1 (ja) ポリエーテルニトリル成形用材料及びその製造方法、ポリエーテルニトリル樹脂組成物成形用材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791271

Country of ref document: EP

Kind code of ref document: A1