WO2023190979A1 - 表面処理鋼板、及び、部品の製造方法 - Google Patents

表面処理鋼板、及び、部品の製造方法 Download PDF

Info

Publication number
WO2023190979A1
WO2023190979A1 PCT/JP2023/013380 JP2023013380W WO2023190979A1 WO 2023190979 A1 WO2023190979 A1 WO 2023190979A1 JP 2023013380 W JP2023013380 W JP 2023013380W WO 2023190979 A1 WO2023190979 A1 WO 2023190979A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
steel sheet
treated steel
less
coating
Prior art date
Application number
PCT/JP2023/013380
Other languages
English (en)
French (fr)
Inventor
保明 河村
隆志 藤井
邦彦 東新
浩平 植田
大地 上田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2023190979A1 publication Critical patent/WO2023190979A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • This application discloses a surface-treated steel sheet and a method for manufacturing parts.
  • the surface-treated steel sheet includes, for example, a plated steel sheet having a Zn-containing plating layer and a surface treatment layer provided on at least one main surface of the plated steel sheet.
  • the weldability and corrosion resistance of the surface-treated steel sheet are improved by employing a coating film as a surface treatment layer and adjusting the types and contents of components constituting the coating film.
  • Patent Document 1 describes a surface-treated steel sheet having a coating film on at least one side of the plated steel sheet, in which the coating film contains a binder resin, non-oxide ceramic particles containing V, and doped zinc oxide particles.
  • a technique has been disclosed that improves the weldability and corrosion resistance of surface-treated steel sheets by including a certain amount of Cr.
  • Patent Document 2 in a coated steel sheet formed by forming two or more coating films on at least one side of a Zn-containing plated steel sheet, the outermost layer of the coating film has a predetermined thickness, and the outermost layer of the coating film has a predetermined thickness.
  • the composition of the coating film is devised so that it contains a predetermined non-chromium compound and the electrical conductivity of the immersion water is 30 ⁇ S/cm or more when the coated steel plate is immersed in ion-exchanged water under predetermined conditions.
  • a technique for improving the corrosion resistance of the end face of a painted steel plate is disclosed.
  • Patent Document 3 in a painted metal material having an organic film on the surface of the metal material, by including a predetermined resin having a urethane bond and predetermined conductive particles in the organic film, the painted metal Techniques for improving the weldability and corrosion resistance of materials have been disclosed.
  • Patent Document 4 discloses that in a coated metal plate having a coating layer on the surface of the metal plate, by including a predetermined amount of conductive particles of a predetermined particle size in the coating layer, the weldability and corrosion resistance of the coated metal plate are improved. A technique for improving this has been disclosed.
  • surface-treated steel sheets used as structural materials for automobiles and the like are required to have coating adhesion after electrodeposition coating.
  • coating adhesion after electrodeposition coating there is a warm salt water immersion test (SDT) as a test for evaluating coating film adhesion after electrodeposition coating.
  • SDT warm salt water immersion test
  • blisters and coating peeling may occur on the surface after SDT. If blisters or paint peeling occur on a surface-treated steel sheet, it may cause red rust, making it difficult to ensure sufficient corrosion resistance.
  • a surface-treated steel sheet A plated steel sheet having a Zn-containing plating layer, a surface treatment layer provided on at least one main surface of the plated steel sheet,
  • the surface treatment layer has at least a coating film as an outer layer,
  • the coating film has an average thickness of 0.5 ⁇ m or more and 5.0 ⁇ m or less,
  • the coating film includes a binder resin, a rust preventive agent, and a conductive agent,
  • the binder resin includes a phenolic resin having a degree of crosslinking of 40% or more and 80% or less, Surface treated steel plate.
  • the conductive agent includes doped oxide particles
  • the coating film contains the doped oxide particles in an amount of 5% by volume or more and 30% by volume or less, Surface-treated steel sheet according to aspect 1 or 2.
  • the doped oxide particles are doped zinc oxide particles, Surface-treated steel sheet according to aspect 3.
  • the rust preventive agent contains at least one magnesium compound of magnesium hydroxide and magnesium oxide,
  • the coating film contains the magnesium compound at 5% by volume or more and 15% by volume or less, The surface-treated steel sheet according to any one of aspects 1 to 4.
  • the surface treatment layer has an inorganic or organic-inorganic composite film as an inner layer between the coating film and the plated steel sheet, The film has an average thickness of 0.1 ⁇ m or more and 1.0 ⁇ m or less, The surface-treated steel sheet according to any one of aspects 1 to 5.
  • ⁇ Aspect 7> A method for manufacturing parts, the method comprising: Preparing the surface-treated steel sheet according to any one of aspects 1 to 6, and laminating an outermost layer on the surface of the coating film of the surface-treated steel sheet and then heating it to crosslink the phenolic resin, adhering the coating film and the outermost layer, Production method.
  • the surface-treated steel sheet of the present disclosure has excellent weldability, corrosion resistance, and coating film adhesion after electrodeposition coating. For example, the occurrence of blisters and coating peeling during SDT is suppressed, and it has excellent corrosion resistance even after SDT.
  • the surface treated steel sheet according to the embodiment includes a plated steel sheet having a Zn-containing plating layer, and a surface treatment layer provided on at least one main surface of the steel sheet.
  • the surface treatment layer has at least a coating film as an outer layer.
  • the coating film has an average thickness of 0.5 ⁇ m or more and 5.0 ⁇ m or less.
  • the coating film includes a binder resin, a rust preventive agent, and a conductive agent.
  • the binder resin includes a phenol resin having a degree of crosslinking of 40% or more and 80% or less.
  • a plated steel plate has, for example, a base steel plate and a Zn-containing plating layer provided on at least one main surface of the base steel plate.
  • the "principal surface” as used in the present application is a surface corresponding to the front side or back side of the board.
  • the Zn-containing plating layer may be provided only on one main surface of the base steel plate, or may be provided on both main surfaces.
  • the Zn-containing plating layer may be provided on the entire main surface of the base steel plate, or may be provided on a part of the main surface.
  • the base material steel plate may be a normal steel plate or a steel plate containing additive elements such as chromium, and the chemical composition and metal structure of the base steel plate may be adjusted in consideration of the desired mechanical properties, formability, etc. do it. Further, the thickness of the base material steel plate is not particularly limited either, and may be, for example, 0.2 mm or more and 6.0 mm or less.
  • the Zn-containing plating layer may have a chemical composition known to those skilled in the art.
  • the Zn-containing plating layer may contain additional elements such as Al in addition to Zn, and may also contain Fe and the like when alloyed.
  • the Zn-containing plating layer may be a Zn-Al-Mg alloy plating layer containing at least Al and Mg, or a Zn-Al-Mg-Si alloy plating layer containing Si. good.
  • the contents (concentrations) of these elements are, in mass%, Al: 0-60%, Mg: 0-10%, Si: 0-2%, Mn: 0-1%, Ni: 0-1%, Sb :0 to 1%, Fe:0 to 20%.
  • the Zn-containing plating layer may be an alloyed hot-dip galvanizing layer, a hot-dip galvanizing layer, or an electrogalvanizing layer.
  • the amount of adhesion of the zinc-containing plating layer to the base steel sheet is not particularly limited, and may be a general amount of adhesion.
  • the thickness of the Zn-based alloy plating layer may be 1 to 30 ⁇ m.
  • the surface treatment layer is provided on at least one main surface of the plated steel sheet.
  • the surface treatment layer may be provided only on one main surface of the plated steel sheet, or may be provided on both main surfaces. Moreover, the surface treatment layer may be provided on the entire main surface of the plated steel sheet, or may be provided on a part of the main surface.
  • the surface treatment layer may be laminated on the surface of the Zn-containing plating layer among the surfaces of the plated steel sheet.
  • the surface treatment layer has at least a coating film as an outer layer.
  • the surface treatment layer may consist only of a coating film, or may have a two-layer structure of a coating film as an outer layer and a chemical conversion coating as an inner layer. When the surface treatment layer has the two-layer structure, better corrosion resistance and the like can be exhibited. On the other hand, when the surface treatment layer does not have a chemical conversion coating as an inner layer, better spot weldability can be exhibited.
  • the coating film includes a binder resin, a rust preventive agent, and a conductive agent.
  • the binder resin includes a phenol resin having a degree of crosslinking of 40% or more and 80% or less. Since the coating film contains a phenol resin in a semi-crosslinked state, crosslinking of the phenol resin in a semi-crosslinked state can be promoted by heating during electrodeposition coating, and the adhesion between the coating film and the electrodeposition coating film is improved. will improve. Alternatively, according to the surface-treated steel sheet according to the present embodiment, it is also possible to improve the adhesion between the outermost layer other than the electrodeposition coating film and the coating film. Any thermosetting phenolic resin (for example, resol type) can be used as the phenolic resin.
  • the degree of crosslinking of the phenol resin may be 40% or more and 80% or less. Note that the degree of crosslinking of the phenol resin is measured as follows. That is, the surface-treated steel plate was cut into two pieces to a predetermined size by shearing, one of which was designated as sample A, and the remaining part was left in an oven set at 200° C. for 1 hour and then cooled, and was designated as sample B.
  • the transmittance (Transmittance (%)) I A and I B of hydroxyl groups at 3200 to 3400 cm ⁇ 1 in the coating film are determined using FT-IR. After that, the coating films of Samples A and B are removed using resin shot or solvent, and the transmittance (%) of hydroxyl groups at 3200 to 3400 cm ⁇ 1 on the surface of the steel plate I A0 and I B0 are determined. ((I A0 - I A )/(I B0 - I B ) x 100) can be determined as "degree of crosslinking (%) of phenol resin".
  • phenolic resin can form a film that is excellent in hardness and adhesion, and also has excellent weldability.
  • a resin other than phenol resin is used as the semi-crosslinked resin, it is difficult to obtain such an effect.
  • the coating film tends to peel off when a surface-treated steel sheet is subjected to press working or the like.
  • the coating film tends to become sticky, and for example, pressing and welding may be difficult.
  • the binder resin may contain other resins.
  • Other resins include various thermosetting resins and thermoplastic resins. Examples include at least one resin selected from epoxy resins, polyester resins, urethane resins, acrylic resins, nylon resins, and olefin resins.
  • the epoxy resin may be an aromatic epoxy resin, an aliphatic epoxy resin, or an epoxy resin such as amines. Specific examples of epoxy resins include bisphenol A epoxy resin, bisphenol F epoxy resin, hydrogenated bisphenol A epoxy resin, brominated bisphenol A epoxy resin, bisphenol S epoxy resin, phenol novolak epoxy resin, and cresol.
  • Examples thereof include novolac type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, and triphenylmethane type epoxy resin.
  • the epoxy resin may be combined with a curing agent.
  • a curing agent various epoxy curing agents such as phenol resin can be employed.
  • the polyester resin may have a glass transition temperature Tg of -20 to 70°C and a number average molecular weight of 3000 to 30000. .
  • the urethane resin When a urethane resin is employed as the binder resin, the urethane resin may have a Tg of 0 to 50°C and a number average molecular weight of 5,000 to 25,000.
  • an acrylic resin When an acrylic resin is employed as the binder resin, the acrylic resin may have a Tg of 0 to 50°C and a number average molecular weight of 3,000 to 25,000.
  • the binder resin may contain a curing agent other than the epoxy curing agent. For example, melamine resin, isocyanate resin, etc. may be employed.
  • the content of the binder resin in the coating film is not particularly limited, and may be, for example, 50 volume% or more or 60 volume% or more, and 90 volume% or less, 80 volume% or less, or 70 volume% or less. There may be. Further, the proportion of the above-mentioned phenolic resin in the binder resin is not particularly limited, and the proportion of the above-mentioned phenol resin is 50 volume% or more, 60 volume% or more, or 70 volume%, with the entire binder resin being 100 volume%. The content may be 80% by volume or more or 90% by volume or more.
  • the rust preventive may be an inorganic rust preventive or an organic rust preventive.
  • the rust inhibitor may contain, for example, a magnesium compound of at least one of magnesium hydroxide and magnesium oxide.
  • the coating film contains a magnesium compound as a rust preventive agent, corrosion resistance can be further improved.
  • the content of the magnesium compound in the coating film is not particularly limited, but when the coating film contains 5% by volume or more and 15% by volume or less of the magnesium compound, better corrosion resistance is likely to be exhibited.
  • the content of the magnesium compound in the coating film may be 6 vol% or more, 7 vol% or more, or 8 vol% or more, and may be 14 vol% or less, 13 vol% or less, or 12 vol% or less.
  • the rust preventive agent may contain at least one of P and V, which are elements that exhibit a rust preventive function, together with or in place of the above magnesium compound.
  • P and V are elements that exhibit a rust preventive function, together with or in place of the above magnesium compound.
  • Examples of rust preventives containing P include phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid, ammonium salts such as triammonium phosphate and diammonium hydrogen phosphate, Na, and Mg.
  • metal phosphates with Al, K, Ca, Mn, Ni, Zn, Fe, etc. aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra(methylenephosphonic acid), diethylenetriamine
  • aminotri(methylenephosphonic acid) 1-hydroxyethylidene-1,1-diphosphonic acid
  • ethylenediaminetetra(methylenephosphonic acid) diethylenetriamine
  • Examples include phosphonic acids such as penta(methylenephosphonic acid) and their salts, and organic phosphoric acids such as phytic acid and their salts.
  • the rust preventive agent may contain a guanidino group-containing compound, a piguanidino group-containing compound, a thiocarbonyl group-containing compound, and the like.
  • the rust inhibitor may be water-soluble or water-insoluble. If the rust preventive agent is water-soluble, for example, when the coating film is exposed to a humid environment, the rust preventive agent will dissolve in water and elute, exerting its rust preventive function to suppress corrosion of the plating layer. obtain.
  • the form of the rust preventive agent may be, for example, particulate.
  • the average particle diameter thereof is not particularly limited, and an appropriate size may be selected in consideration of the thickness of the coating film, etc. If the particle size of the rust preventive agent is too large relative to the thickness of the paint film, the rust preventive agent will easily fall off from the paint film.
  • the average particle diameter of the rust preventive agent may be 1/10 or more or 1/5 or more of the thickness of the coating film, and may be 2 times or less or the same time or less.
  • the average particle diameter of the rust preventive agent may be, for example, 0.1 ⁇ m or more, 0.3 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more, or 20 ⁇ m or less, 10 ⁇ m or less, 8.0 ⁇ m or less, or 6 ⁇ m or less. It may be .0 ⁇ m or less, 5.0 ⁇ m or less, 4.0 ⁇ m or less, or 2.5 ⁇ m or less.
  • the "average particle size" of the rust preventive agent refers to the average primary particle size when the particles present in the coating film exist as primary particles, and refers to the average secondary particle size when the particles exist as aggregates. The average particle diameter is measured as follows.
  • a surface-treated steel plate with a coating film formed thereon is cut, its cross section is exposed and polished, and the thus obtained polished cross section is observed with a scanning electron microscope to obtain an observed image.
  • Several rust preventive particles present in the field of view of the observed image are arbitrarily selected, the equivalent circle diameter of each particle is determined, and the average value thereof is defined as the average particle diameter. Whether or not the particles in the observed image are rust preventives can be easily determined by elemental analysis or the like.
  • the total content of the rust preventive agent in the coating film is not particularly limited.
  • the total content of the rust inhibitor in the coating film may be 5.0 volume% or more, 6 volume% or more, 7 volume% or more, or 8 volume% or more, and 15 volume% or less, 14 volume% or less. , 13% by volume or less, or 12% by volume or less.
  • the conductive agent has the function of improving the conductivity of the coating film and improving the weldability of the surface-treated steel sheet.
  • a material having a volume resistivity of 1.0 ⁇ 10 3 ⁇ /cm or less can be used as the conductive agent.
  • the conductive agent include metals and metal compounds. Specifically, magnesium, aluminum, silicon, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, strontium, yttrium, zirconium, niobium, molybdenum, technetium, and ruthenium.
  • magnesium aluminum, silicon, phosphorus, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, It may be an alloy of arsenic, strontium, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, tellurium, etc.; or a compound such as an oxide of the above metal elements. .
  • magnesium, aluminum, silicon, chromium, iron, nickel, zinc, tin, zinc-aluminum alloy, zinc-aluminum-magnesium alloy, zinc-aluminum-magnesium-silicon alloy, zinc-iron alloy, zinc-chromium alloy, zinc -Nickel alloy, iron-nickel alloy, iron-chromium alloy, stainless steel, ferrosilicon, ferromanganese, ferrophosphor, zinc oxide, etc. are easily available.
  • the content of the conductive agent in the coating film is not particularly limited, and may be appropriately determined in consideration of the desired weldability and corrosion resistance.
  • the coating film may contain 5% by volume or more and 30% by volume or less of doped oxide particles.
  • the conductive agent may be a Si alloy containing 50% by mass or more of Si, a Si compound containing 50% by mass or more of Si, or a composite thereof.
  • the doped oxide particles includes doped zinc oxide particles.
  • the doped zinc oxide particles for example, at least one doping element selected from the group consisting of Group 13 elements of the periodic table such as B, Al, Ga, and In, and elements of group 15 of the periodic table such as P and As, Examples include those whose conductivity is improved by doping zinc oxide particles.
  • the doping element is Al or Ga, the conductivity can be further improved.
  • the content of the doping element may be, for example, 0.05 atom % or more, or 0.1 atom % or more, and 5 atom % or less, based on the undoped zinc oxide particles.
  • the conductive agent contains a Si alloy or a Si compound
  • a specific example of the Si alloy or Si compound is ferrosilicon containing 70% by mass or more of Si.
  • ferrosilicon As a conductive agent in the coating film, it is easy to improve the electrical conductivity and corrosion resistance of the coating film.
  • ferrosilicon containing 70% by mass or more of Si has excellent corrosion resistance and moldability.
  • the conductive agent may be in the form of particles, for example.
  • the average particle diameter thereof is not particularly limited, and an appropriate size may be selected in consideration of the thickness of the coating film, etc. If the particle size of the conductive agent is too small relative to the thickness of the coating film, the conductivity tends to decrease. On the other hand, if the particle size of the conductive agent is too large relative to the thickness of the coating film, the conductive agent will easily fall off from the coating film. In this regard, the average particle diameter of the conductive agent may be 1/10 or more or 1/5 or more of the thickness of the coating film, or may be 2 times or less or the same time or less.
  • the average particle diameter of the conductive agent may be, for example, 0.1 ⁇ m or more, 0.3 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more, or 20 ⁇ m or less, 10 ⁇ m or less, 8.0 ⁇ m or less, 6. It may be 0 ⁇ m or less, 5.0 ⁇ m or less, 4.0 ⁇ m or less, or 2.5 ⁇ m or less.
  • the "average particle size" of the conductive agent refers to the average primary particle size when the particles present in the coating film exist as primary particles, and refers to the average secondary particle size when the particles exist as aggregates. The average particle diameter is measured as follows.
  • a surface-treated steel plate with a coating film formed thereon is cut, its cross section is exposed and polished, and the thus obtained polished cross section is observed with a scanning electron microscope to obtain an observed image.
  • Several conductive particles are arbitrarily selected from among the conductive particles present in the field of view of the observed image, the equivalent circle diameter of each particle is determined, and the average value is taken as the average particle diameter. Whether or not the particles in the observed image are conductive agents can be easily determined by elemental analysis or the like.
  • the total content of the rust preventive agent in the coating film is not particularly limited.
  • the total content of the rust inhibitor in the coating film may be 5% by volume or more, 6% by volume or more, 7% by volume or more, or 8% by volume or more, and 30% by volume or less, 25% by volume or less, 20% by volume or more. It may be less than 15% by volume or less than 15% by volume.
  • the coating film may contain components other than those described above.
  • Other components include various additives. Examples include bright pigments, lubricants, antifoaming agents, thickeners, etc. for the purpose of improving design.
  • the content of other components in the coating film is not particularly limited.
  • the coating film has an average thickness of 0.5 ⁇ m or more and 5.0 ⁇ m. If the coating film is too thin, sufficient corrosion resistance may not be obtained. In addition, the barrier property against water vapor is reduced, and water is likely to accumulate at the interface between the coating film and the plating due to water vapor mold pressing, and there is a possibility that peeling may occur. On the other hand, if the coating film is too thick, spot weldability may deteriorate.
  • the average film thickness of the coating film may be 1.0 ⁇ m or more or 2.0 ⁇ m or more, and may be 4.5 ⁇ m or less or 4.0 ⁇ m or less. The average film thickness of the coating film is measured as follows.
  • a surface-treated steel plate with a coating film formed thereon is cut, its cross section is exposed and polished, and the thus obtained polished cross section is observed with a scanning electron microscope to obtain an observed image.
  • the thickness of the coating film present in the field of view of the observed image is measured at 10 or more points at intervals of 1 ⁇ m in the surface direction of the plated steel plate, and the average value is taken as the average film thickness.
  • the average thickness of the coating film may be determined by determining the density of the coating film from the components contained in the coating film and then measuring the weight of the coating film.
  • the average film thickness characterized by any method may be 0.5 ⁇ m or more and 5.0 ⁇ m or less.
  • the amount of coating film adhered is not particularly limited.
  • the coating weight may be 2.0 g/m 2 or more, 3.5 g/m 2 or more, or 5.0 g/m 2 or more, 20 g/m 2 or less, 15 g/m 2 or less, or It may be 10 g/m 2 or less.
  • the amount of coating film deposited on the surface-treated steel sheet can be measured by a gravimetric method or cross-sectional observation. To measure the adhesion amount using the gravimetric method, after measuring the initial weight of a steel plate cut into a predetermined size, the coating film can be removed using a solvent or special chemical that can dissolve the binder resin, or by blasting using resin beads. It is possible to calculate this by measuring the weight of a steel plate from which the coating has been removed using a method in which the coating is removed by processing, and then determining the difference between the two.
  • the surface treatment layer has an inorganic or organic-inorganic composite coating as an inner layer between the coating film and the plated steel sheet.
  • the film may have an average thickness of 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the film can also be called a chemical conversion film. That is, the surface treatment layer may have a two-layer structure including a coating film as an outer layer and a chemical conversion treatment film as an inner layer.
  • the chemical conversion coating may be a layer that does not substantially contain chromium (chromate-free layer).
  • Chromate-free treatment liquids used in chemical conversion treatments include liquid-phase silica, gas-phase silica, silica-based treatment liquids whose main component is silicon compounds such as silicate, and zircon-based treatment liquids whose main component is zircon-based compounds. , mixtures thereof, and the like.
  • the chemical conversion coating may contain a binder resin.
  • the chemical conversion coating may contain at least one of the binder resins listed as binder resins that can constitute the above-mentioned coating.
  • the content of the binder resin and the content of components other than the binder resin in the chemical conversion film are not particularly limited.
  • the content of the binder resin in the chemical conversion film may be 0 volume% or more and 50 volume% or less, and the content of components other than the binder resin may be 50 volume% or more and 100 volume% or less.
  • the chemical conversion coating as the inner layer may be an inorganic coating containing an inorganic component as a binder, or may be an organic-inorganic composite coating.
  • the chemical conversion coating may contain various additives. Examples include bright pigments, lubricants, antifoaming agents, thickeners, etc. for the purpose of improving design.
  • the content of other components in the chemical conversion film is not particularly limited.
  • the average film thickness of the chemical conversion film is not particularly limited. From the viewpoint of further improving the adhesion between the plated steel sheet and the coating film, and from the viewpoint of further improving corrosion resistance and weldability, the average film thickness of the chemical conversion coating is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the average film thickness of the chemical conversion film can be measured in the same manner as the average film thickness of the coating film. That is, a surface-treated steel sheet on which a chemical conversion coating has been formed is cut, its cross section is exposed and polished, and the thus obtained polished cross section is observed with a scanning electron microscope to obtain an observed image. obtain.
  • the thickness of the chemical conversion coating present in the field of view of the observed image is measured at 10 or more points at intervals of 1 ⁇ m in the surface direction of the plated steel sheet, and the average value is taken as the average film thickness.
  • the average thickness of the chemical conversion film may be determined by determining the density of the chemical conversion film from the components contained in the chemical conversion film and then measuring the weight of the chemical conversion film.
  • the amount of the chemical conversion coating applied is not particularly limited.
  • the amount of the chemical conversion coating applied is 200 mg/m 2 or more and 2000 mg/m 2 or less, it is easier to further improve the corrosion resistance of the surface-treated steel sheet.
  • the amount of adhesion of the chemical conversion coating on the surface-treated steel sheet can be measured by fluorescent X-rays and cross-sectional analysis. Specifically, a calibration curve plate is prepared for each chemical conversion treatment. The chemical conversion treatment board and the calibration curve plate are measured using fluorescent X-rays, and the amount of adhesion on the produced chemical conversion treatment board is calculated from the X-ray intensity of the contained elements and the X-ray intensity of the calibration curve plate.
  • the surface-treated steel sheet according to the present embodiment since the semi-crosslinked phenol resin is contained in the coating film, the phenol resin is removed by heating etc. during electrodeposition coating.
  • the resin can be crosslinked. That is, when providing some kind of outermost layer (for example, an electrodeposition coating film) to a coating film, the adhesion between the coating film and the outermost layer can be improved. As a result, blistering and coating peeling during SDT can be suppressed, and excellent corrosion resistance can be ensured even after SDT. Moreover, excellent weldability can also be ensured because the average film thickness of the coating film is below a certain level.
  • the surface-treated steel sheet according to the present embodiment has excellent weldability, corrosion resistance, and coating film adhesion after electrodeposition coating, and exhibits excellent effects when used for electrodeposition coating, for example.
  • the coating film becomes hard and has excellent adhesion.
  • a coating film having excellent scratch resistance can be formed, for example.
  • the coating film of the surface-treated steel sheet according to the present embodiment may have a scratch hardness of H or higher according to the pencil method specified in JIS K5600-5-4, for example.
  • the above-mentioned surface-treated steel sheet can be manufactured, for example, by the following method.
  • the method for manufacturing surface-treated steel sheets is as follows: Obtaining a plated steel sheet having a zinc-containing plating layer, and Forming a coating film by applying a coating material containing a binder resin, a rust preventive agent, and a conductive agent to at least one main surface of the plated steel sheet; May contain.
  • the method for manufacturing surface-treated steel sheets is Obtaining a plated steel sheet having a zinc-containing coating layer; Forming a chemical conversion coating by applying chemical conversion treatment to at least one main surface of the plated steel sheet, and forming a coating film by applying a paint containing a binder resin, a rust preventive agent, and a conductive agent to the surface of the chemical conversion coating; may contain.
  • a plated steel plate having a Zn-containing plating layer can be produced by, for example, obtaining a slab by continuous casting, hot rolling the slab to obtain a hot rolled plate, or obtaining a hot rolled plate by subjecting the slab to hot rolling. winding up the hot-rolled sheet, cold-rolling the hot-rolled sheet to obtain a cold-rolled sheet, annealing the cold-rolled sheet, subjecting the annealed sheet to a plating treatment, and optionally It can be obtained by doing a skin pass, etc.
  • Continuous casting conditions, hot rolling conditions, winding conditions, cold rolling conditions, annealing conditions, and plating conditions may be conventionally known general conditions.
  • a chemical conversion treatment film may be formed as an inner layer by performing a chemical conversion treatment on at least one main surface of the plated steel sheet obtained as described above.
  • the chemical conversion treatment can be performed by applying various treatment liquids as described above to the surface of the steel plate and drying it.
  • a binder resin, rust preventive coating is applied to the surface of the plated steel sheet obtained as described above or the surface of the chemical conversion coating formed as described above.
  • a coating film as an outer layer may be formed by applying and drying a paint containing a conductive agent and a conductive agent.
  • the surface-treated steel sheet according to the above embodiment can be obtained.
  • it is important that the phenol resin contained in the coating film is in a semi-crosslinked state as described above. In order to obtain such a semi-crosslinked phenol resin, in the manufacturing method according to the present embodiment, it is preferable to adjust the heating temperature and heating time, for example.
  • the technology of the present disclosure also has an aspect as a component manufacturing method. That is, the method for manufacturing the component of the present disclosure includes: The above-mentioned surface-treated steel sheet of the present disclosure is prepared, and the outermost layer is laminated on the surface of the coating film of the surface-treated steel sheet, and then heated to crosslink the phenolic resin, and the coating film and the This includes gluing the outermost layer.
  • the type of the outermost layer may be one that can be adhered to the coating film by heating, and various types can be adopted.
  • heating causes crosslinking between the semi-crosslinked phenolic resins in the paint film, as well as a bonding reaction between the semi-crosslinked phenol resin and the resin end groups of the outermost layer, which causes the film to bond to the outermost layer.
  • Adhesion with the outer layer can be improved.
  • excellent effects are likely to be obtained when an electrodeposition coating film is laminated as the outermost layer on the surface of the coating film.
  • general conditions may be adopted as the electrodeposition coating conditions (type of electrodeposition paint, voltage, etc.).
  • a semi-crosslinked phenol resin contained in the coating film of the surface-treated steel sheet is produced.
  • the baking temperature may be, for example, 150° C. or more and 190° C. or less, and the baking time may be, for example, 10 minutes or more and 40 minutes or less.
  • the type of component is not particularly limited, and may be, for example, an electrocoated component as described above, or another component.
  • GA Alloyed hot-dip galvanized steel sheet (thickness 0.8 mm, 10 mass% Fe, coating weight 45 g/m 2 )
  • ZA1 Zn-Al-Mg ternary hot-dip galvanized steel sheet (Zn-11%Al-3%Mg-0.2%Si) (plate thickness 0.8 mm, 10 mass% Fe, coating weight 60 g/m 2 )
  • ZA2 Zn-Al-Mg ternary hot-dip galvanized steel sheet (Zn-6%Al-3%Mg) (plate thickness 0.8 mm, 10 mass% Fe, coating weight 60 g/m 2 )
  • ZL Electric Zn-10% by mass Ni alloy plated steel plate (plate thickness 0.8 mm, coating weight 40 g/m 2 )
  • GI Hot-dip galvanized steel plate (thickness 0.8 mm, coating weight 60 g/m 2 )
  • EG Electrogalvanized steel sheet (thickness 0.8 mm, coating weight 40 g/m 2 )
  • each component was mixed so that the solid content concentration was the same as in Table 1.
  • a coating composition for forming a coating film was prepared. While changing the bar coat count and dilution rate, the coating composition is applied onto the base metal plate or chemical conversion film using a bar coater, and the maximum temperature (PMT) reached is 140°C, 160°C, 180°C, or 200°C.
  • a coating film as an outer layer was formed by drying in an oven under the following conditions. Here, the degree of crosslinking of the phenol resin in the coating film was adjusted by the maximum temperature reached during drying.
  • the average film thickness of the coating film was the film thickness ( ⁇ m) shown in Table 2. The components contained in the coating composition are shown below.
  • MgO Magnesium oxide (average particle size 3 ⁇ m)
  • Mg(OH) 2 Magnesium hydroxide (average particle size 3 ⁇ m)
  • PA Aluminum tripolyphosphate (oil absorption 10ml/100g, particle size 2 ⁇ m)
  • binder resin Phenol resin (water-soluble resol type phenol resin GG-1490 manufactured by DIC)
  • B2 Phenol resin (resol type phenol resin 5010 manufactured by DIC)
  • B3 Urethane resin (Superflex 150 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
  • B4 Polyester resin (Vyronal MD1480 manufactured by Byron)
  • B5 Melamine resin (Cymel 325 manufactured by Allnex)
  • Blister area ratio from the evaluation side is 50% or more 2: Blister area ratio from the evaluation side is 5% or more and less than 50% 3: Blister area ratio from the evaluation side is 1% or more and less than 5% 4: From the evaluation side Blisters occur less than 1% of the time 5: No blisters occur
  • the number of dots is 10 or more and less than 50.
  • 3 The number of dots is 50 or more and less than 200.
  • 4 The number of dots is 200.
  • 5 The number of RBIs is 1,000 or more and less than 2,000 RBIs 6: The number of RBIs is 2,000 or more
  • the coating film did not contain an anticorrosive pigment and had poor corrosion resistance after SDT.
  • the coating film did not contain a conductive pigment and had poor spot weldability.
  • the binder constituting the coating film was not a phenol resin, and blistering occurred during SDT, and the corrosion resistance after SDT was also poor.
  • the film thickness of the coating film was too thin at 0.2 ⁇ m, so the corrosion resistance after SDT was poor.
  • the film thickness of the coating film was too thick at 10 ⁇ m, so the spot weldability was poor.
  • No. Nos. 1 to 12, 15 to 18, 20 to 22, 24 to 27, 29 to 33, and 35 to 40 hardly generate blisters during SDT, have excellent corrosion resistance after SDT, and have excellent spot weldability. It also had excellent scratch resistance. No. Nos.
  • the surface-treated steel sheet has (1) a plated steel sheet having a Zn-containing plating layer, and (2)
  • the coating film as a surface treatment layer has an average thickness of 0.5 ⁇ m or more and 5.0 ⁇ m or less, (3) the coating film contains a binder resin, a rust-preventing pigment, and a conductive pigment, (4) )
  • the binder resin contains a phenolic resin having a degree of crosslinking of 40% or more and 80% or less. That is, it is considered that corrosion resistance and spot weldability were improved by containing the anticorrosion pigment and the conductive pigment in the coating film.
  • a surface-treated steel sheet A plated steel sheet having a Zn-containing plating layer, a surface treatment layer provided on at least one main surface of the plated steel sheet,
  • the surface treatment layer has at least a coating film as an outer layer,
  • the coating film has an average thickness of 0.5 ⁇ m or more and 5.0 ⁇ m or less,
  • the coating film includes a binder resin, a rust preventive agent, and a conductive agent,
  • the binder resin includes a phenolic resin having a degree of crosslinking of 40% or more and 80% or less, Surface treated steel plate.

Abstract

溶接性及び電着塗装後の耐食性に優れる表面処理鋼板を開示する。本開示の表面処理鋼板は、Zn含有めっき層を有するめっき鋼板と、前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有し、前記表面処理層が、少なくとも、外層としての塗膜を有し、前記塗膜が、0.5μm以上5.0μm以下の平均膜厚を有し、前記塗膜が、バインダー樹脂と、防錆剤と、導電剤とを含み、前記バインダー樹脂が、架橋度が40%以上80%以下であるフェノール樹脂を含むことを特徴とする。

Description

表面処理鋼板、及び、部品の製造方法
 本願は表面処理鋼板、及び、部品の製造方法を開示する。
 自動車等の構成材として表面処理鋼板が用いられている。表面処理鋼板は、例えば、Zn含有めっき層を有するめっき鋼板と、当該めっき鋼板の少なくとも一方の主面に設けられた表面処理層とを有する。従来技術においては、表面処理層として塗膜を採用し、且つ、塗膜を構成する成分の種類や含有量を調整することで、表面処理鋼板の溶接性や耐食性を向上させている。
 例えば、特許文献1には、めっき鋼板の少なくとも片面に塗膜を有する表面処理鋼板において、前記塗膜に、バインダー樹脂と、Vを含む非酸化物セラミックス粒子と、ドープ型酸化亜鉛粒子とを所定量含ませることで、表面処理鋼板の溶接性や耐食性を向上させる技術が開示されている。
 また、特許文献2には、Zn含有めっき鋼板の少なくとも片面に2層以上の塗膜を形成してなる塗装鋼板において、前記塗膜の最外層を所定の厚みとし、前記塗膜の最外層に所定の非クロム化合物を含ませ、且つ、前記塗装鋼板を所定の条件でイオン交換水に浸漬したときの浸漬水の電気伝導度が30μS/cm以上となるように前記塗膜の構成を工夫することで、塗装鋼板の端面の耐食性を向上させる技術が開示されている。
 また、特許文献3には、金属材の表面に有機皮膜を有する塗装金属材において、前記有機皮膜に、ウレタン結合を有する所定の樹脂と、所定の導電性粒子とを含ませることで、塗装金属材の溶接性や耐食性を向上させる技術が開示されている。
 また、特許文献4には、金属板の表面に被覆層を有する被覆金属板において、前記被覆層に所定の粒径の導電性粒子を所定量含ませることで、被覆金属板の溶接性や耐食性を向上させる技術が開示されている。
国際公開第2018/092244号 特開2012-136025号公報 特開2004-042622号公報 特開2004-183080号公報
 自動車等の構成材としての表面処理鋼板は、上記したような溶接性や耐食性に加え、電着塗装後の塗膜密着性が要求される。例えば、電着塗装後の塗膜密着性を評価する試験として温塩水浸漬試験(SDT)がある。本発明者の新たな知見によると、従来の表面処理鋼板について電着塗装後にSDTを行った場合、SDT後の表面にブリスターや塗膜剥離が発生する場合がある。表面処理鋼板においてブリスターや塗膜剥離が発生すると、赤錆の原因となるなどして、十分な耐食性が確保され難い。従来の表面処理鋼板においては、SDTにおけるブリスターや塗膜剥離の発生を抑制し、且つ、SDT後の耐食性を高めることについて、十分な検討がなされていない。以上の通り、表面処理鋼板において溶接性、耐食性及び電着塗装後の塗膜密着性を両立可能な新たな技術が必要である。
 本願は上記課題を解決するための手段の一つとして、以下の複数の態様を開示する。
<態様1>
 表面処理鋼板であって、
 Zn含有めっき層を有するめっき鋼板と、
 前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有し、
 前記表面処理層が、少なくとも、外層としての塗膜を有し、
 前記塗膜が、0.5μm以上5.0μm以下の平均膜厚を有し、
 前記塗膜が、バインダー樹脂と、防錆剤と、導電剤とを含み、
 前記バインダー樹脂が、架橋度が40%以上80%以下であるフェノール樹脂を含む、
 表面処理鋼板。
<態様2>
 電着塗装用のものである、
 態様1の表面処理鋼板。
<態様3>
 前記導電剤が、ドープ型酸化物粒子を含み、
 前記塗膜が、前記ドープ型酸化物粒子を5体積%以上30体積%以下含む、
 態様1又は2の表面処理鋼板。
<態様4>
 前記ドープ型酸化物粒子が、ドープ型酸化亜鉛粒子である、
 態様3の表面処理鋼板。
<態様5>
 前記防錆剤が、水酸化マグネシウム及び酸化マグネシウムのうちの少なくとも一方のマグネシウム化合物を含み、
 前記塗膜が、前記マグネシウム化合物を5体積%以上15体積%以下含む、
 態様1~4のいずれかの表面処理鋼板。
<態様6>
 前記表面処理層が、前記塗膜と前記めっき鋼板との間の内層として、無機系又は有機無機複合系の皮膜を有し、
 前記皮膜が、0.1μm以上1.0μm以下の平均膜厚を有する、
 態様1~5のいずれかの表面処理鋼板。
<態様7>
 部品の製造方法であって、
 態様1~6のいずれかの表面処理鋼板を用意すること、及び
 前記表面処理鋼板の前記塗膜の表面に最外層を積層したうえで、加熱することで、前記フェノール樹脂を架橋させて、前記塗膜と前記最外層とを接着すること、を含む、
 製造方法。
<態様8>
 前記塗膜の表面に前記最外層として電着塗装膜を積層する、
 態様7の製造方法。
 本開示の表面処理鋼板は、溶接性、耐食性及び電着塗装後の塗膜密着性に優れる。例えば、SDTにおけるブリスターや塗膜剥離の発生が抑制され、SDT後にも優れた耐食性を有する。
 以下、本発明の実施形態について説明する。なお、これらの説明は、本発明の実施形態の単なる例示を意図するものであって、本発明は以下の実施形態に限定されない。
1.表面処理鋼板
 実施形態に係る表面処理鋼板は、Zn含有めっき層を有するめっき鋼板と、前記鋼板の少なくとも一方の主面に設けられた表面処理層と、を有する。前記表面処理層は、少なくとも、外層としての塗膜を有する。前記塗膜は、0.5μm以上5.0μm以下の平均膜厚を有する。前記塗膜は、バインダー樹脂と、防錆剤と、導電剤とを含む。前記バインダー樹脂は、架橋度が40%以上80%以下であるフェノール樹脂を含む。
1.1 めっき鋼板
 めっき鋼板は、例えば、母材鋼板と、母材鋼板の少なくとも一方の主面に設けられたZn含有めっき層とを有する。本願にいう「主面」とは板の表側又は裏側に相当する面である。Zn含有めっき層は、母材鋼板の一方の主面のみに設けられていてもよいし、両方の主面に設けられていてもよい。また、Zn含有めっき層は、母材鋼板の主面の全体に設けられていてもよいし、主面の一部に設けられていてもよい。
 母材鋼板としては、種々の化学組成や金属組織を有するものを採用し得る。母材鋼板は、普通鋼板であっても、クロム等の添加元素を含む鋼板であってもよく、目的とする機械特性や成形性等を考慮して母材鋼板の化学組成や金属組織を調整すればよい。また、母材鋼板の厚みも特に限定されるものではなく、例えば、0.2mm以上であってもよく、6.0mm以下であってもよい。
 Zn含有めっき層は、当業者に公知の化学組成を有するものであってよい。例えば、Zn含有めっき層は、Zn以外にAl等の添加元素を含んでいてよく、また、合金化処理が施されてなる場合はFe等を含んでいてよい。一例として、Zn含有めっき層は、少なくともAlとMgとを含有するZn-Al-Mg合金めっき層であってもよく、さらにSiを含有するZn-Al-Mg-Si合金めっき層であってもよい。これら元素の含有量(濃度)は、質量%で、Al:0~60%、Mg:0~10%、Si:0~2%、Mn:0~1%、Ni:0~1%、Sb:0~1%、Fe:0~20%であってもよい。Zn含有めっき層は、合金化溶融亜鉛めっき層、溶融亜鉛めっき層又は電気亜鉛めっき層であってもよい。母材鋼板に対する亜鉛含有めっき層の付着量は特に限定されるものではなく、一般的な付着量であってよい。例えば、Zn系合金めっき層の厚さは1~30μmであってもよい。
1.2 表面処理層
 表面処理層は、めっき鋼板の少なくとも一方の主面に設けられる。表面処理層は、めっき鋼板の一方の主面のみに設けられていてもよいし、両方の主面に設けられていてもよい。また、表面処理層は、めっき鋼板の主面の全体に設けられていてもよいし、主面の一部に設けられていてもよい。表面処理層は、上記のめっき鋼板の表面のうち、Zn含有めっき層の表面に積層され得る。
 表面処理層は、少なくとも、外層としての塗膜を有する。表面処理層は、塗膜のみからなるものであってもよいし、外層としての塗膜と、内層としての化成処理皮膜と、の二層構成を有するものであってもよい。表面処理層が当該二層構成を有するものである場合、より優れた耐食性等を発揮し得る。一方で、表面処理層が内層としての化成処理皮膜を有していない場合、より優れたスポット溶接性を発揮し得る。
1.2.1 塗膜
 本実施形態に係る表面処理鋼板において、塗膜は、バインダー樹脂と、防錆剤と、導電剤と、を含む。
(バインダー樹脂)
 バインダー樹脂は、架橋度が40%以上80%以下であるフェノール樹脂を含む。塗膜が半架橋状態にあるフェノール樹脂を含むことで、例えば、電着塗装における加熱によって、半架橋状態のフェノール樹脂の架橋を進行させることができ、塗膜と電着塗装膜との密着性が向上する。或いは、本実施形態に係る表面処理鋼板によれば、電着塗装膜以外の最外層と塗膜との密着性を高めることも可能である。フェノール樹脂は、熱硬化性のもの(例えば、レゾール型のもの)であればいずれも採用可能である。半架橋状態のフェノール樹脂を構成するフェノール類やアルデヒド類や触媒の種類に特に制限はない。いずれにしても、本実施形態においては、フェノール樹脂の架橋度が40%以上80%以下であればよい。尚、フェノール樹脂の架橋度は、以下のようにして測定する。すなわち、表面処理鋼板をシャーリングで所定サイズに2枚切断し、一つをサンプルAとし、残りは、200℃設定のオーブンに1時間静置したあと冷却し、サンプルBとする。2つのサンプルを用い、各々、FT-IRにて、塗膜における3200~3400cm-1の水酸基の透過度(Transmittance(%))I、Iを求める。その後サンプルA、Bそれぞれの塗膜を、樹脂ショットまたは溶剤等で除去した後、鋼板表面の3200~3400cm-1の水酸基の透過度(Transmittance(%))IA0、IB0を求める。((IA0-I)/(IB0-I)×100)を「フェノール樹脂の架橋度(%)」として求めることができる。
 本発明者の知見によると、フェノール樹脂は、上記のような半架橋状態においても、硬質性、及び密着性に優れ、かつ、溶接性にも優れる膜を形成し得る。半架橋状態の樹脂として、フェノール樹脂以外の樹脂を用いた場合、このような効果を得ることは難しい。例えば、半架橋状態の樹脂としてポリエステル樹脂を用いた場合、表面処理鋼板に対してプレス加工等を施すと、塗膜が剥離してしまう傾向にある。また、半架橋状態の樹脂としてポリエステル樹脂を用いた場合、塗膜が粘着質となる傾向にあり、例えば、プレス、溶接が困難となる場合がある。
 バインダー樹脂は、上記のフェノール樹脂に加えて、その他の樹脂を含んでいてもよい。その他の樹脂としては、各種の熱硬化性樹脂や熱可塑性樹脂が挙げられる。例えば、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ナイロン樹脂及びオレフィン樹脂から選ばれる少なくとも1種の樹脂が挙げられる。エポキシ樹脂は、芳香族エポキシ樹脂であってもよいし、脂肪族エポキシ樹脂であってもよいし、アミン類等のエポキシ樹脂であってもよい。エポキシ樹脂の具体例として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は硬化剤と組み合わされたものであってよい。硬化剤としてはフェノール樹脂等の各種のエポキシ硬化剤が採用され得る。バインダー樹脂としてポリエステル樹脂が採用される場合、当該ポリエステル樹脂は、-20~70℃のガラス転移温度Tgを有するものであってもよく、3000~30000の数平均分子量を有するものであってもよい。バインダー樹脂としてウレタン樹脂が採用される場合、当該ウレタン樹脂は、0~50℃のTgを有するものであってもよく、5000~25000の数平均分子量を有するものであってもよい。バインダー樹脂としてアクリル樹脂が採用される場合、当該アクリル樹脂は、0~50℃のTgを有するものであってもよく、3000~25000の数平均分子量を有するものであってもよい。バインダー樹脂は、エポキシ硬化剤以外の硬化剤を含んでいてもよい。例えば、メラミン樹脂やイソシアネート樹脂等が採用され得る。
 塗膜におけるバインダー樹脂の含有量は、特に限定されるものではなく、例えば、50体積%以上又は60体積%以上であってもよく、90体積%以下、80体積%以下又は70体積%以下であってもよい。また、バインダー樹脂に占める上記のフェノール樹脂の割合は特に限定されるものではなく、バインダー樹脂全体を100体積%として、上記のフェノール樹脂の割合が50体積%以上、60体積%以上、70体積%以上、80体積%以上又は90体積%以上であってもよい。
(防錆剤)
 防錆剤は、無機防錆剤であってもよいし、有機防錆剤であってもよい。防錆剤は、例えば、水酸化マグネシウム及び酸化マグネシウムのうちの少なくとも一方のマグネシウム化合物を含むものであってもよい。本実施形態においては、塗膜が防錆剤としてマグネシウム化合物を含むことで、耐食性が一層向上し易くなる。この場合、塗膜におけるマグネシウム化合物の含有量は特に限定されるものではないが、塗膜が、マグネシウム化合物を5体積%以上15体積%以下含む場合に、より優れた耐食性が発現し易い。塗膜におけるマグネシウム化合物の含有量は、6体積%以上、7体積%以上又は8体積%以上であってもよく、14体積%以下、13体積%以下又は12体積%以下であってもよい。
 防錆剤は、上記のマグネシウム化合物とともに、或いは、上記のマグネシウム化合物に替えて、防錆機能を発揮する元素であるP及びVのうちの少なくとも1種を含んでいてもよい。Pを含む防錆剤としては、例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等のリン酸類、リン酸三アンモニウム、リン酸水素二アンモニウム等のアンモニウム塩、Na、Mg、Al、K、Ca、Mn、Ni、Zn、Fe等との金属リン酸塩、アミノトリ(メチレンホスホン酸)、1-ヒドロキシエチリデン-1,1-ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等のホスホン酸類及びそれらの塩、フィチン酸等の有機リン酸類及びそれらの塩等が挙げられる。また、Vを含む防錆剤としては、五酸化バナジウム、メタバナジン酸HVO、メタバナジウム酸アンモニウム、オキシ三塩化バナジウムVOCl、三酸化バナジウムV、二酸化バナジウム、オキシ硫酸バナジウムVOSO、バナジウムオキシアセチルアセトネートVO(OC(=CH)CHCOCH、バナジウムアセチルアセトネートV(OC(=CH)CHCOCH、三塩化バナジウムVCl等が挙げられる。また、防錆剤は、グアニジノ基含有化合物、ピグアニジノ基含有化合物、チオカルボニル基含有化合物等を含むものであってもよい。防錆剤は水溶性であっても非水溶性であってもよい。防錆剤が水溶性である場合、例えば、塗膜が湿潤環境下に晒された場合に、防錆剤が水に溶解して溶出し、めっき層の腐食を抑制する防錆機能が発揮され得る。
 防錆剤の形態は、例えば、粒子状であってよい。防錆剤が粒子状である場合、その平均粒子径は、特に限定されるものではなく、塗膜の厚み等を考慮して適切な大きさのものが選択されればよい。防錆剤の粒子径が塗膜の厚みに対して大き過ぎると、防錆剤が塗膜から脱落し易くなる。防錆剤の平均粒子径は、塗膜の厚みの1/10以上又は1/5以上であってよく、また、2倍以下又は等倍以下であってよい。防錆剤の平均粒子径は、例えば、0.1μm以上、0.3μm以上、0.5μm以上又は1.0μm以上であってもよく、また、20μm以下、10μm以下、8.0μm以下、6.0μm以下、5.0μm以下、4.0μm以下又は2.5μm以下であってもよい。尚、防錆剤の「平均粒子径」とは、塗膜に存在する粒子が一次粒子として存在する場合は平均一次粒子径をいい、凝集して存在する場合は平均二次粒子径をいう。平均粒子径は、以下の通りにして測定する。すなわち、塗膜が形成された表面処理鋼板を切断し、その断面を露出させたうえで研磨し、このようにして得られた研磨後断面を走査型電子顕微鏡で観察して、観察像を得る。観察像の視野に存在する防錆剤粒子から数個を任意に選び出し、それぞれの粒子の円相当直径を求め、その平均値を平均粒子径とする。観察像中の粒子が防錆剤であるか否かは、元素分析等を行うことで容易に判断することができる。
 塗膜における防錆剤全体の含有量は、特に限定されるものではない。例えば、塗膜における防錆剤全体の含有量は、5.0体積%以上、6体積%以上、7体積%以上又は8体積%以上であってもよく、15体積%以下、14体積%以下、13体積%以下又は12体積%以下であってもよい。
(導電剤)
 導電剤は、塗膜の導電性を向上させて、表面処理鋼板の溶接性を向上させる機能を有する。本願においては、例えば、体積抵抗率として1.0×10Ω/cm以下を有するものが導電剤となり得る。導電剤としては、例えば、金属や金属化合物が挙げられる。具体的には、マグネシウム、アルミニウム、シリコン、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、インジウム、錫等の金属;マグネシウム、アルミニウム、シリコン、リン、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ヒ素、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、インジウム、錫、アンチモン、テルル等の合金;又は上記した金属元素の酸化物等の化合物であってよい。中でも、マグネシウム、アルミニウム、シリコン、クロム、鉄、ニッケル、亜鉛、錫、亜鉛-アルミニウム合金、亜鉛-アルミニウム-マグネシウム合金、亜鉛-アルミニウム-マグネシウム-シリコン合金、亜鉛-鉄合金、亜鉛-クロム合金、亜鉛-ニッケル合金、鉄-ニッケル合金、鉄-クロム合金、ステンレス鋼、フェロシリコン、フェロマンガン、フェロホスホル、酸化亜鉛等が入手し易い。塗膜における導電剤の含有量は特に限定されるものではなく、目的とする溶接性と耐食性とを考慮して適宜決定されればよい。
 特に、導電剤が、ドープ型酸化物粒子を含む場合に導電性とともに耐食性を向上させ易い。この場合、塗膜は、ドープ型酸化物粒子を5体積%以上30体積%以下含んでいてもよい。或いは、導電剤は、50質量%以上のSiを含有するSi合金、50質量%以上のSiを含有するSi化合物、又は、これらの複合体であってもよい。
 導電剤がドープ型酸化物粒子を含む場合、当該ドープ型酸化物粒子の具体例としては、ドープ型酸化亜鉛粒子が挙げられる。ドープ型酸化亜鉛粒子としては、例えば、B、Al、Ga、In等の周期表13族元素、及び、P、As等の周期表15族元素よりなる群から選ばれる少なくとも一種のドープ元素を、酸化亜鉛粒子にドープすることによって導電性を向上させたものが挙げられる。ドープ元素がAl又はGaである場合、導電性を一層向上させ易い。ドープ元素の含有量は、未ドープの酸化亜鉛粒子に対して、例えば、0.05atom%以上又は0.1atom%以上であってよく、5atom%以下であってよい。
 導電剤がSi合金又はSi化合物を含む場合、当該Si合金又はSi化合物の具体例としては、70質量%以上のSiを含有するフェロシリコンが挙げられる。塗膜に導電剤としてフェロシリコンを含ませることで、塗膜の導電性とともに耐食性を向上させ易い。特に、70質量%以上のSiを含有するフェロシリコンは、耐食性と成形性とに優れる。
 導電剤は例えば粒子状であってよい。導電剤が粒子状である場合、その平均粒子径は、特に限定されるものではなく、塗膜の厚み等を考慮して適切な大きさのものが選択されればよい。導電剤の粒子径が塗膜の厚みに対して小さ過ぎると、導電性が低下し易い。一方で、導電剤の粒子径が塗膜の厚みに対して大き過ぎると、導電剤が塗膜から脱落し易くなる。この点、導電剤の平均粒子径は、塗膜の厚みの1/10以上又は1/5以上であってよく、また、2倍以下又は等倍以下であってよい。導電剤の平均粒子径は、例えば、0.1μm以上、0.3μm以上、0.5μm以上又は1.0μm以上であってもよく、また、20μm以下、10μm以下、8.0μm以下、6.0μm以下、5.0μm以下、4.0μm以下又は2.5μm以下であってもよい。尚、導電剤の「平均粒子径」とは、塗膜に存在する粒子が一次粒子として存在する場合は平均一次粒子径をいい、凝集して存在する場合は平均二次粒子径をいう。平均粒子径は、以下の通りにして測定する。すなわち、塗膜が形成された表面処理鋼板を切断し、その断面を露出させたうえで研磨し、このようにして得られた研磨後断面を走査型電子顕微鏡で観察して、観察像を得る。観察像の視野に存在する導電粒子から数個を任意に選び出し、それぞれの粒子の円相当直径を求め、その平均値を平均粒子径とする。観察像中の粒子が導電剤であるか否かは、元素分析等を行うことで容易に判断することができる。
 塗膜における防錆剤全体の含有量は、特に限定されるものではない。例えば、塗膜における防錆剤全体の含有量は、5体積%以上、6体積%以上、7体積%以上又は8体積%以上であってもよく、30体積%以下、25体積%以下、20体積%以下又は15体積%以下であってもよい。
(その他の成分)
 塗膜には、上記した成分以外のその他の成分が含まれていてもよい。その他の成分としては、各種添加剤が挙げられる。例えば、意匠性の向上を目的とした光輝顔料、潤滑剤、消泡剤、増粘剤等である。塗膜におけるその他の成分の含有量は特に限定されるものではない。
(平均膜厚)
 本実施形態において、塗膜は、0.5μm以上5.0μmの平均膜厚を有する。塗膜が薄過ぎると、十分な耐食性が得られない場合がある。また、水蒸気に対するバリア性が低下し、水蒸気型押下して塗膜とめっきとの界面等に水が溜まり易くなり、剥離が生じる虞がある。一方、塗膜が厚過ぎると、スポット溶接性が低下する場合がある。塗膜の平均膜厚は、1.0μm以上又は2.0μm以上であってもよく、4.5μm以下又は4.0μm以下であってもよい。塗膜の平均膜厚は、以下の通りにして測定する。すなわち、塗膜が形成された表面処理鋼板を切断し、その断面を露出させたうえで研磨し、このようにして得られた研磨後断面を走査型電子顕微鏡で観察して、観察像を得る。観察像の視野に存在する塗膜の厚みを、めっき鋼板の面方向に1μmの間隔で10点以上測定し、その平均値を平均膜厚とする。或いは、塗膜に含まれる成分から塗膜の密度を割り出したうえで、塗膜の重量を測定することで、塗膜の平均膜厚を特定してもよい。本実施形態においては、いずれかの方法により特性された平均膜厚が0.5μm以上5.0μm以下であればよい。
(付着量)
 塗膜の付着量は、特に限定されるものではない。例えば、塗膜の付着量は、2.0g/m以上、3.5g/m以上又は5.0g/m以上であってもよく、20g/m以下、15g/m以下又は10g/m以下であってもよい。尚、表面処理鋼板における塗膜の付着量は、重量法や断面観察によって測定することができる。重量法での付着量測定としては、所定サイズに切断した鋼板の初期重量を測定した後、バインダー樹脂を溶解可能な溶剤や専用の薬剤を用いて塗膜を取り除く方法や樹脂ビーズを用いたブラスト処理により塗膜を取り除く方法、を用いることで塗膜を取り除いた鋼板の重量測定を行い、これら差分を求めることで算出することが可能である。
1.2.2 化成処理皮膜
 本実施形態に係る表面処理鋼板において、表面処理層は、前記塗膜と前記めっき鋼板との間の内層として、無機系又は有機無機複合系の皮膜を有していてもよく、前記皮膜が、0.1μm以上1.0μm以下の平均膜厚を有していてもよい。当該皮膜は、化成処理皮膜とも言い得る。すなわち、表面処理層は、外層としての塗膜と、内層としての化成処理皮膜との二層構成を有するものであってもよい。
(構成成分)
 めっき鋼板の表面に内層として化成処理皮膜を設け、さらに当該化成処理皮膜の表面に上述の塗膜を設けることで、めっき鋼板に対する塗膜の密着性等が向上する。化成処理皮膜は、クロムを実質的に含有しない層(クロメートフリー層)であってもよい。化成処理に用いられるクロメートフリーの処理液としては、液相シリカ、気相シリカ、ケイ酸塩等のケイ素化合物を主成分とするシリカ系処理液、ジルコン系化合物を主成分とするジルコン系処理液、これらの混合物等が挙げられる。化成処理皮膜はバインダー樹脂を含んでいてもよい。例えば、化成処理皮膜は、上述の塗膜を構成し得るバインダー樹脂として例示されたもののうちの少なくとも1種を含んでいてもよい。化成処理皮膜におけるバインダー樹脂の含有量やバインダー樹脂以外の成分の含有量は、特に限定されるものではない。例えば、化成処理皮膜におけるバインダー樹脂の含有量は0体積%以上50体積%以下であってもよく、また、バインダー樹脂以外の成分の含有量は50体積%以上100体積%以下であってもよい。内層としての化成処理皮膜は、バインダーとして無機成分を含む無機系の皮膜であってもよいし、有機無機複合系の皮膜であってもよい。化成処理皮膜には、各種添加剤が含まれていてもよい。例えば、意匠性の向上を目的とした光輝顔料、潤滑剤、消泡剤、増粘剤等である。化成処理皮膜におけるその他の成分の含有量は特に限定されるものではない。
(平均膜厚)
 化成処理皮膜の平均膜厚は、特に限定されるものではない。めっき鋼板と塗膜との密着性を一層向上させる観点、耐食性や溶接性を一層向上させる観点等から、化成処理皮膜の平均膜厚は、0.1μm以上1.0μm以下であるとよい。化成処理皮膜の平均膜厚は、塗膜の平均膜厚と同様にして測定することができる。すなわち、化成処理皮膜が形成された表面処理鋼板を切断し、その断面を露出させたうえで研磨し、このようにして得られた研磨後断面を走査型電子顕微鏡で観察して、観察像を得る。観察像の視野に存在する化成処理皮膜の厚みを、めっき鋼板の面方向に1μmの間隔で10点以上測定し、その平均値を平均膜厚とする。或いは、化成処理皮膜に含まれる成分から化成処理皮膜の密度を割り出したうえで、化成処理皮膜の重量を測定することで、化成処理皮膜の平均膜厚を特定してもよい。
(付着量)
 表面処理鋼板において、化成処理皮膜の付着量は、特に限定されるものではない。例えば、化成処理皮膜の付着量が、200mg/m以上2000mg/m以下である場合、表面処理鋼板の耐食性を一層向上させ易い。尚、表面処理鋼板における化成処理皮膜の付着量は、蛍光X線ならびに断面分析によって測定することができる。具体的には、各化成処理に対して検量線板を作製する。化成処理板ならびに検量線板を蛍光X線で測定し、含有される元素のX線強度と検量線板のX線強度より、作製した化成処理板の付着量を算出する。
1.3 効果
 上述したように、本実施形態に係る表面処理鋼板においては、塗膜中に半架橋状態のフェノール樹脂が含まれることで、その後、電着塗装を行う際の加熱等によって、フェノール樹脂を架橋させることができる。すなわち、塗膜に対して何らかの最外層(例えば、電着塗装膜)を設ける場合に、塗膜と最外層との密着性を高めることができる。その結果、SDTにおけるブリスターや塗膜剥離を抑制することができ、また、SDT後においても優れた耐食性を確保することができる。また、塗膜の平均膜厚が一定以下であることで、優れた溶接性を確保することもできる。このように、本実施形態に係る表面処理鋼板は、溶接性、耐食性及び電着塗装後の塗膜密着性に優れ、例えば、電着塗装に用いられる場合に優れた効果を発揮する。
 また、上述したように、本実施形態に係る表面処理鋼板においては、半架橋状態の樹脂としてフェノール樹脂が採用されることで、塗膜が硬質となり、かつ、密着性にも優れたものとなる。これにより、本実施形態に係る表面処理鋼板においては、例えば、耐スクラッチ性に優れる塗膜が形成され得る。本実施形態に係る表面処理鋼板は、例えば、硬度Hの鉛筆を用いてJIS K5600にしたがって塗膜の耐スクラッチ性を評価した場合、スクラッチ部で塗膜疵が生じることがなく、また、塗膜の剥離も生じない。すなわち、本実施形態に係る表面処理鋼板の塗膜は、例えば、JIS K5600-5-4に規定される鉛筆法による引っかき硬度がH以上の硬度であってもよい。
2.表面処理鋼板の製造方法
 上記の表面処理鋼板は、例えば、以下の方法によって製造することができる。すなわち、表面処理鋼板の製造方法は、
 亜鉛含有めっき層を有するめっき鋼板を得ること、及び、
 前記めっき鋼板の少なくとも一方の主面にバインダー樹脂と、防錆剤と、導電剤とを含む塗料を塗布することで、塗膜を形成すること、
 を含んでいてもよい。
 或いは、表面処理鋼板の製造方法は、
 亜鉛含有めっき層を有するめっき鋼板を得ること、
 前記めっき鋼板の少なくとも一方の主面に化成処理を施すことで、化成処理皮膜を形成すること、及び、
 前記化成処理皮膜の表面にバインダー樹脂と、防錆剤と、導電剤とを含む塗料を塗布することで、塗膜を形成すること、
 を含んでいてよい。
2.1 めっき鋼板の作製
 Zn含有めっき層を有するめっき鋼板は、例えば、連続鋳造によってスラブを得ること、前記スラブに対して熱間圧延を施して熱延板を得ること、前記熱延板を巻き取ること、前記熱延板に対して冷間圧延を施して冷延版を得ること、前記冷延板を焼鈍すること、焼鈍後の板に対してめっき処理を施すこと、及び、任意にスキンパスを行うこと、等を経て得ることができる。連続鋳造条件、熱間圧延条件、巻き取り条件、冷間圧延条件、焼鈍条件、及び、めっき条件については、従来公知の一般的な条件であってよい。
2.2 化成処理
 本開示の製造方法においては、上記のようにして得られためっき鋼板の少なくとも一方の主面に化成処理を施すことで、内層としての化成処理皮膜を形成してもよい。化成処理は、上述したような各種の処理液を鋼板表面に塗布して乾燥することによって行うことができる。
2.3 塗膜の形成
 本開示の製造方法においては、上記のようにして得られためっき鋼板の表面、又は、上記のようにして形成された化成処理皮膜の表面に、バインダー樹脂、防錆剤及び導電剤を含む塗料を塗布して乾燥することで、外層としての塗膜を形成してもよい。ここで、塗膜に含まれる防錆剤の種類、防錆剤の含有量、塗膜の厚み等を調整することで、上記の実施形態に係る表面処理鋼板を得ることができる。ただし、本実施形態においては、塗膜に含まれるフェノール樹脂が、上述の通り半架橋状態であることが重要である。このような半架橋状態のフェノール樹脂を得るために、本実施形態に係る製造方法では、例えば、加熱温度、加熱時間を調整して製造することが好ましい。
3.部品の製造方法
 本開示の技術は、部品の製造方法としての側面も有する。すなわち、本開示の部品の製造方法は、
 上記本開示の表面処理鋼板を用意すること、及び
 前記表面処理鋼板の前記塗膜の表面に最外層を積層したうえで、加熱することで、前記フェノール樹脂を架橋させて、前記塗膜と前記最外層とを接着すること、を含む。
 最外層の種類は、加熱によって塗膜に接着されるものであればよく、様々なものが採用され得る。塗膜に対して最外層を積層する際に、加熱によって塗膜中の半架橋フェノール樹脂同士の架橋に加え、半架橋フェノール樹脂と最外層の樹脂末端基との結合反応により、塗膜と最外層との密着性を向上させることができる。特に、上述したように、塗膜の表面に最外層として電着塗装膜を積層する場合に優れた効果が得られ易い。この場合の電着塗装条件(電着塗料の種類や電圧など)は、一般的な条件が採用されればよい。本開示の製造方法においては、例えば、表面処理鋼板に対して電着塗装を行った後、電着塗装膜の焼き付けを行うことで、表面処理鋼板の塗膜に含まれる半架橋状態のフェノール樹脂を架橋させることができるとともに電着塗装膜中の樹脂との結合反応が得られる。これにより、塗膜と電着塗装膜との密着性が向上する。焼き付け温度は、例えば、150℃以上190℃以下であり、焼き付け時間は、例えば、10分以上40分以下であるとよい。
 部品の種類は、特に限定されるものではなく、例えば、上述したような電着塗装部品であってもよいし、それ以外の部品であってもよい。
 以下、実施例を示しつつ本発明についてさらに説明するが、本発明は以下の実施例に限定されるものではない。本発明は、本発明要旨を逸脱せず、本発明目的を達する限りにおいては、種々の条件を採用可能とするものである。
1.表面処理鋼板の製造
1.1 合金化溶融亜鉛めっき鋼板の準備
 以下の5種の亜鉛系めっき鋼板と冷延鋼板を準備し、水系アルカリ脱脂剤(日本パーカライジング(株)製FC-301)の水溶液(2.5質量%、40℃)に2分間浸漬して表面を脱脂した後、水洗、乾燥して表面処理用の基材金属板とした。
 GA:合金化溶融亜鉛めっき鋼板(板厚0.8mm、10質量%Fe、めっき付着量45g/m
 ZA1:Zn-Al-Mg3元系溶融亜鉛めっき鋼板(Zn-11%Al-3%Mg-0.2%Si)(板厚0.8mm、10質量%Fe、めっき付着量60g/m
 ZA2:Zn-Al-Mg3元系溶融亜鉛めっき鋼板(Zn-6%Al-3%Mg)(板厚0.8mm、10質量%Fe、めっき付着量60g/m
 ZL:電気Zn-10質量%Ni合金めっき鋼板(板厚0.8mm、めっき付着量40g/m
 GI:溶融亜鉛めっき鋼板(板厚0.8mm、めっき付着量60g/m
 EG:電気亜鉛めっき鋼板(板厚0.8mm、めっき付着量40g/m
 CR:冷延鋼板(板厚0.8mm、めっき無し)
1.2 内層(化成処理皮膜)の形成
 次に、以下の化成処理用の処理液Sを準備し、当該処理液をバーコートの番手を変更しつつ、上記の基材金属板上に塗布し、その後、熱風炉にて金属板表面への到達温度が70℃となるようにしつつ乾燥し、風乾することで、金属板の表面に化成処理皮膜を形成した。化成処理皮膜の平均膜厚は0.2μmであった。
 S:Zr化合物、シランカップリング剤、シリカ微粒子、ポリエステル樹脂からなるNv10%の化成処理用の処理液
1.3 外層(塗膜)の形成
 次に、表1に示される組成比(体積%)を有する塗膜を形成するため、表1と同様の固形分濃度となるように各成分を混合し、塗膜形成用の塗料組成物を準備した。バーコートの番手や希釈率を変更しつつ、塗料組成物を基材金属板上又は化成処理皮膜上にバーコータで塗布し、最高到達温度(PMT)が140℃、160℃、180℃、200℃となる条件でオーブンを用いて乾燥することにより、外層としての塗膜を形成した。ここで、乾燥時の最高到達温度によって、塗膜におけるフェノール樹脂の架橋度を調整した。塗膜の平均膜厚は表2に示される膜厚(μm)であった。尚、塗料組成物に含まれる成分を以下に示す。
(防錆顔料)
 MgO:酸化マグネシウム(平均粒径3μm)
 Mg(OH):水酸化マグネシウム(平均粒径3μm)
 PA :トリポリリン酸アルミニウム(吸油量10ml/100g、粒径2μm)
(導電顔料)
 ZnO :ドープ型酸化亜鉛粒子(ハクスイテック(株)製23-Kt、平均粒径0.5μm)
 FeSi:フェロシリコン粒子(平均粒径3μm、70質量%以上のSiを含有)
 SUS :SUS粒子(平均粒径5μm)
(バインダー樹脂)
 B1:フェノール樹脂(DIC社製水溶性レゾール型フェノール樹脂 GG-1490)
 B2:フェノール樹脂(DIC社製レゾール型フェノール樹脂 5010)
 B3:ウレタン樹脂(第一工業製薬社製 スーパーフレックス150)
 B4:ポリエステル樹脂(バイロン社製 バイロナールMD1480)
 B5:メラミン樹脂(allnex社製 サイメル325)
2.性能評価試験
 各々の表面処理鋼板に対して、以下の性能評価試験を行った。
2.1 架橋度の測定
 塗膜中のバインダーとしてフェノール樹脂を用いた場合において、塗膜に含まれるフェノール樹脂の架橋度を以下の通りに測定した。結果を表2に示す。
(フェノール樹脂の架橋度の測定方法)
 上記の通りに作製した表面処理鋼板をシャーリングで所定サイズに2枚切断し、一つをサンプルAとし、残りは、200℃設定のオーブンに1時間静置したあと冷却し、サンプルBとした。2つのサンプルを用い、各々、FT-IRにて、塗膜における3200~3400cm-1の水酸基の透過度(Transmittance(%))I、Iを求めた。その後サンプルA、Bそれぞれの塗膜を、樹脂ショットまたは溶剤等で除去した後、鋼板表面の3200~3400cm-1の水酸基の透過度(Transmittance(%))IA0、IB0を求めた。((IA0-I)/(IB0-I)×100)を「フェノール樹脂の架橋度(%)」として測定した。
2.2 温塩水浸漬試験(SDT)
(事前準備)
 各々の表面処理鋼板に対して、日本パーカライジング株式会社製の表面調整処理剤プレパレンX(商品名)を用いて、表面調整を室温で20秒実施した。更に、日本パーカライジング株式会社製の化成処理液(リン酸亜鉛処理液)「パルボンド3020(商品名)」を用いて、化成処理(リン酸塩処理)を実施した。化成処理液の温度は43℃とし、熱間プレス成形材を化成処理液に120秒間浸漬後、水洗・乾燥を行った。上記化成処理(リン酸塩処理)を実施した後、日本ペイント株式会社製のカチオン型電着塗料を、電圧160Vのスロープ通電で電着塗装し、更に、焼き付け温度170℃で20分間焼き付け塗装した。電着塗装後の電着塗装膜の膜厚の平均は、いずれのサンプルも10μmであった。
(SDT時耐食性(ブリスターの面積率))
 上記電着塗装後、表面処理鋼板の端面をシールテープし、50℃の温度を有する3%NaCl水溶液に、500時間浸漬した。浸漬試験後取り出したサンプルを乾燥し、電着塗膜表面に存在するブリスターの面積率を目視で測定した。かかる耐食性試験において、「3」である場合、ある程度の耐食性を有するものと判断し、「4」又は「5」である場合、耐食性に優れると判断した。結果を表2に示す。
 1:評価面からのブリスター面積率が50%以上
 2:評価面からのブリスター面積率が5%以上50%未満
 3:評価面からのブリスター面積率が1%以上5%未満
 4:評価面からブリスターは、発生するものの1%未満
 5:ブリスター発生なし
2.3 SDT後耐食性試験
 温塩水浸漬試験後の電着塗装を施した表面処理鋼板に対して、下記サイクル条件のサイクル腐食試験を120サイクル実施した。
(サイクル条件)
 塩水噴霧(SST、5%NaCl、35℃雰囲気)2hr、乾燥(60℃)2hr、及び湿潤(50℃、98%RH)4hrを1サイクルとして、実施した。
 その後、平面部からの腐食状況を観察し、下記評点を付与した。かかる耐食性試験において、「3」、「4」又は「5」である場合、耐食性に優れると判断した。結果を表2に示す。
 1:評価面からの白錆発生面積率が50%以上又は、評価面からの赤錆発生が確認
 2:評価面からの白錆発生面積率が10%以上50%未満
 3:評価面からの白錆発生面積率が5%以上10%未満
 4:評価面からの白錆発生面積率が1%以上5%未満
 5:評価面からの白錆発生面積率が1%未満
2.4 スポット溶接性
 各々の表面処理鋼板を、先端径5mm、R40のCF型Cr-Cu電極を用い、加圧力1.96kN、溶接電流8kA、通電時間12サイクル/50Hzにてスポット溶接の連続打点性試験を行い、ナゲット径が3√t(tは板厚)を下回る直前の打点数を求めた。以下の評価点を用いてスポット溶接性の優劣を評価した。かかる溶接性試験において、「4」、「5」又は「6」である場合、溶接性に優れると判断した。結果を表2に示す。
 1:ナゲットが生成せず1点も溶接できない、又は、打点数が10打点未満
 2:打点数が10打点以上50打点未満
 3:打点数が50打点以上200打点未満
 4:打点数が200点以上1000打点未満
 5:打点数が1000点以上2000打点未満
 6:打点数が2000点以上
2.5 スクラッチ性
 三菱ユニ社製の硬度Hの鉛筆を用い、JIS K5600にしたがって、各々の表面処理鋼板の塗膜にスクラッチ試験を実施した。スクラッチ後の塗膜状況を観察し、以下の評価点を用いスクラッチ性を評価した。かかるスクラッチ性試験において、「2」または、「3」である場合、スクラッチ性に優れると判断した。結果を表2に示す。
 1:スクラッチ部の一部、または全部で塗膜剥離が発生
 2:スクラッチ部で塗膜疵があるものの、塗膜剥離なし
 3:スクラッチ部で塗膜疵なし
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
3.結果と考察
 表1及び2に示される結果から以下のことが分かる。
 No.13については、塗膜に防錆顔料が含まれておらず、SDT後の耐食性に劣るものであった。
 No.14については、塗膜に導電顔料が含まれておらず、スポット溶接性に劣るものであった。
 No.19については、塗膜を構成するバインダーがフェノール樹脂ではなく、SDT時にブリスターが発生したほか、SDT後の耐食性にも劣るものであった。
 No.23については、塗膜の膜厚が0.2μmと薄すぎたため、SDT後の耐食性に劣るものであった。
 No.28については、塗膜の膜厚が10μmと厚過ぎたため、スポット溶接性に劣るものであった。
 No.34については、Zn含有めっき層を有しない鋼板を用いたため、SDT後の耐食性に劣るものであった。
 No.41~44については、塗膜を構成するバインダーとしてフェノール樹脂を用いたものの、当該フェノール樹脂の架橋度が高過ぎたため、電着塗装時にフェノール樹脂の架橋を進行させることができず、塗膜と電着塗装膜との密着性に劣るものであった。そのため、SDT時にブリスターが発生したほか、SDT後の耐食性にも劣るものであった。
 No.45については、塗膜におけるフェノール樹脂の架橋度が20%と小さ過ぎたため、塗膜の硬さや密着性が十分なものとならなかった。
 No.46については、未架橋のポリエステル樹脂を用いたため、塗膜の硬さや密着性が十分なものとならなかった。また、溶接時に塗膜に電極がくっ付いてしまい、適切な溶接ができなかった。また、スクラッチ試験において塗膜剥離が発生した。
 No.47については、塗膜における半架橋樹脂として、ポリエステル樹脂、及び、架橋剤としてのメラミン樹脂を用いたため、塗膜の密着性が不十分であった。また、溶接時に塗膜に電極がくっ付いてしまい、適切な溶接ができなかった。また、スクラッチ試験において塗膜剥離が発生した。
 これに対し、No.1~12、15~18、20~22、24~27、29~33、及び、35~40については、SDT時にブリスターがほとんど発生せず、SDT後の耐食性にも優れるとともに、スポット溶接性や耐スクラッチ性にも優れるものであった。No.1~12、15~18、20~22、24~27、29~33、及び、35~40は、表面処理鋼板が、(1)Zn含有めっき層を有するめっき鋼板を有し、(2)表面処理層としての塗膜が、0.5μm以上5.0μm以下の平均膜厚を有し、(3)当該塗膜が、バインダー樹脂と、防錆顔料と、導電顔料とを含み、(4)当該バインダー樹脂が、架橋度が40%以上80%以下であるフェノール樹脂を含むものである。すなわち、塗膜に防錆顔料及び導電顔料が含まれることによって、耐食性及びスポット溶接性が向上したものと考えられる。また、バインダー樹脂として、半架橋状態のフェノール樹脂が用いられることで、電着塗装時の加熱によって当該フェノール樹脂の架橋を進行させることができ、塗膜と電着塗装膜との密着性が向上したものと考えられる。また、塗膜における半架橋樹脂として、フェノール樹脂を採用したことで、塗膜が硬質かつ密着性に優れたものとなり、耐スクラッチ性が向上したものと考えられる。
 以上の結果から、以下の要件を満たす表面処理鋼板は、優れた溶接性及び耐食性を有するものといえる。
 表面処理鋼板であって、
 Zn含有めっき層を有するめっき鋼板と、
 前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有し、
 前記表面処理層が、少なくとも、外層としての塗膜を有し、
 前記塗膜が、0.5μm以上5.0μm以下の平均膜厚を有し、
 前記塗膜が、バインダー樹脂と、防錆剤と、導電剤とを含み、
 前記バインダー樹脂が、架橋度が40%以上80%以下であるフェノール樹脂を含む、
 表面処理鋼板。

Claims (8)

  1.  表面処理鋼板であって、
     Zn含有めっき層を有するめっき鋼板と、
     前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有し、
     前記表面処理層が、少なくとも、外層としての塗膜を有し、
     前記塗膜が、0.5μm以上5.0μm以下の平均膜厚を有し、
     前記塗膜が、バインダー樹脂と、防錆剤と、導電剤とを含み、
     前記バインダー樹脂が、架橋度が40%以上80%以下であるフェノール樹脂を含む、
     表面処理鋼板。
  2.  電着塗装用のものである、
     請求項1に記載の表面処理鋼板。
  3.  前記導電剤が、ドープ型酸化物粒子を含み、
     前記塗膜が、前記ドープ型酸化物粒子を5体積%以上30体積%以下含む、
     請求項1又は2に記載の表面処理鋼板。
  4.  前記ドープ型酸化物粒子が、ドープ型酸化亜鉛粒子である、
     請求項3に記載の表面処理鋼板。
  5.  前記防錆剤が、水酸化マグネシウム及び酸化マグネシウムのうちの少なくとも一方のマグネシウム化合物を含み、
     前記塗膜が、前記マグネシウム化合物を5体積%以上15体積%以下含む、
     請求項1~4のいずれか1項に記載の表面処理鋼板。
  6.  前記表面処理層が、前記塗膜と前記めっき鋼板との間の内層として、無機系又は有機無機複合系の皮膜を有し、
     前記皮膜が、0.1μm以上1.0μm以下の平均膜厚を有する、
     請求項1~5のいずれか1項に記載の表面処理鋼板。
  7.  部品の製造方法であって、
     請求項1~6のいずれか1項に記載の表面処理鋼板を用意すること、及び
     前記表面処理鋼板の前記塗膜の表面に最外層を積層したうえで、加熱することで、前記フェノール樹脂を架橋させて、前記塗膜と前記最外層とを接着すること、を含む、
     製造方法。
  8.  前記塗膜の表面に前記最外層として電着塗装膜を積層する、
     請求項7に記載の製造方法。
PCT/JP2023/013380 2022-03-31 2023-03-30 表面処理鋼板、及び、部品の製造方法 WO2023190979A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022060402 2022-03-31
JP2022-060402 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190979A1 true WO2023190979A1 (ja) 2023-10-05

Family

ID=88202896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013380 WO2023190979A1 (ja) 2022-03-31 2023-03-30 表面処理鋼板、及び、部品の製造方法

Country Status (1)

Country Link
WO (1) WO2023190979A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236558A (en) * 1975-09-18 1977-03-19 Yoshizaki Kozo Method of processing metal material
JPS5385827A (en) * 1977-01-06 1978-07-28 Kansai Paint Co Ltd Production of precoated metal plate for processing
JPS61139436A (ja) * 1984-12-12 1986-06-26 日産自動車株式会社 防錆鋼板
JPH03268939A (ja) * 1990-03-19 1991-11-29 Sumitomo Metal Ind Ltd 電着塗装性と耐食性に優れた有機複合被覆鋼板
JP2018012096A (ja) * 2016-07-08 2018-01-25 関西ペイント株式会社 複層塗膜形成方法
WO2018092244A1 (ja) * 2016-11-17 2018-05-24 新日鐵住金株式会社 表面処理鋼板および塗装部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236558A (en) * 1975-09-18 1977-03-19 Yoshizaki Kozo Method of processing metal material
JPS5385827A (en) * 1977-01-06 1978-07-28 Kansai Paint Co Ltd Production of precoated metal plate for processing
JPS61139436A (ja) * 1984-12-12 1986-06-26 日産自動車株式会社 防錆鋼板
JPH03268939A (ja) * 1990-03-19 1991-11-29 Sumitomo Metal Ind Ltd 電着塗装性と耐食性に優れた有機複合被覆鋼板
JP2018012096A (ja) * 2016-07-08 2018-01-25 関西ペイント株式会社 複層塗膜形成方法
WO2018092244A1 (ja) * 2016-11-17 2018-05-24 新日鐵住金株式会社 表面処理鋼板および塗装部材

Similar Documents

Publication Publication Date Title
US8304092B2 (en) Surface-treated galvanized steel sheet with superior flat-portion corrosion resistance, blackening resistance, and appearance and corrosion resistance after press forming and aqueous surface-treatment liquid for galvanized steel sheet
RU2592895C2 (ru) Металлический лист с предварительным покрытием для применения в автомобилях, имеющий превосходную пригодность к контактной сварке, коррозионную стойкость и формуемость
CN110073034B (zh) 表面处理钢板以及涂装构件
WO2016159307A1 (ja) 溶融亜鉛系めっき鋼板
JP6551518B2 (ja) 亜鉛系めっき鋼板
JP6631623B2 (ja) 亜鉛系めっき鋼板
EP0545993A1 (en) COMPOSITION AND PROCESS FOR CHROMATE METAL.
JP2007186745A (ja) 燃料タンク用鋼板
WO2023190979A1 (ja) 表面処理鋼板、及び、部品の製造方法
KR100727694B1 (ko) 표면 처리 금속판 및 표면 처리제
JP2005068511A (ja) プレコート鋼板
WO2023190971A1 (ja) 表面処理鋼板
JP7127628B2 (ja) 表面処理液、表面処理鋼板の製造方法、および表面処理鋼板
JP6943232B2 (ja) 表面処理液、表面処理鋼板の製造方法、および表面処理鋼板
JP6680412B1 (ja) 表面処理鋼板
JP5293050B2 (ja) 自動車部材
JP2023151286A (ja) 表面処理鋼板
JPH08323914A (ja) 耐クロム溶出性および加工後耐食性に優れた有機複合被覆鋼板
JP4283698B2 (ja) 端面耐食性に優れるプレコート鋼板およびその製造方法
JP2023030634A (ja) 表面処理鋼板
WO2024075833A1 (ja) 表面処理鋼板
JP2023030618A (ja) 表面処理鋼板
JP2001279470A (ja) 高耐食性燃料タンク用鋼板
TWI655086B (zh) Surface treated steel sheet and coated member
JP2023030644A (ja) 表面処理鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780987

Country of ref document: EP

Kind code of ref document: A1