WO2023190971A1 - 表面処理鋼板 - Google Patents

表面処理鋼板 Download PDF

Info

Publication number
WO2023190971A1
WO2023190971A1 PCT/JP2023/013368 JP2023013368W WO2023190971A1 WO 2023190971 A1 WO2023190971 A1 WO 2023190971A1 JP 2023013368 W JP2023013368 W JP 2023013368W WO 2023190971 A1 WO2023190971 A1 WO 2023190971A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
steel sheet
oil
treated steel
less
Prior art date
Application number
PCT/JP2023/013368
Other languages
English (en)
French (fr)
Inventor
保明 河村
隆志 藤井
邦彦 東新
浩平 植田
大地 上田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2023190971A1 publication Critical patent/WO2023190971A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • This application discloses a surface-treated steel sheet.
  • the surface-treated steel sheet includes, for example, a plated steel sheet having a Zn-containing plating layer and a surface treatment layer provided on at least one main surface of the plated steel sheet.
  • the weldability and corrosion resistance of the surface-treated steel sheet are improved by employing a coating film as a surface treatment layer and adjusting the types and contents of components constituting the coating film.
  • Patent Document 1 describes a surface-treated steel sheet having a coating film on at least one side of the plated steel sheet, in which the coating film contains a binder resin, non-oxide ceramic particles containing V, and doped zinc oxide particles.
  • a technique has been disclosed that improves the weldability and corrosion resistance of surface-treated steel sheets by including a certain amount of Cr.
  • Patent Document 2 in a coated steel sheet formed by forming two or more coating films on at least one side of a Zn-containing plated steel sheet, the outermost layer of the coating film has a predetermined thickness, and the outermost layer of the coating film has a predetermined thickness.
  • the composition of the coating film is devised so that it contains a predetermined non-chromium compound and the electrical conductivity of the immersion water is 30 ⁇ S/cm or more when the coated steel plate is immersed in ion-exchanged water under predetermined conditions.
  • a technique for improving the corrosion resistance of the end face of a painted steel plate is disclosed.
  • Patent Document 3 in a painted metal material having an organic film on the surface of the metal material, by including a predetermined resin having a urethane bond and predetermined conductive particles in the organic film, the painted metal Techniques for improving the weldability and corrosion resistance of materials have been disclosed.
  • Patent Document 4 discloses that in a coated metal plate having a coating layer on the surface of the metal plate, by including a predetermined amount of conductive particles of a predetermined particle size in the coating layer, the weldability and corrosion resistance of the coated metal plate are improved. A technique for improving this has been disclosed.
  • surface-treated steel sheets used as structural materials for automobiles and the like are required to have coating adhesion after electrodeposition coating.
  • coating adhesion after electrodeposition coating there is a warm salt water immersion test (SDT) as a test for evaluating coating film adhesion after electrodeposition coating.
  • SDT warm salt water immersion test
  • blisters and coating peeling may occur on the surface after SDT. If blisters or paint peeling occur on a surface-treated steel sheet, it may cause red rust, making it difficult to ensure sufficient corrosion resistance.
  • a surface-treated steel sheet A plated steel sheet having a Zn-containing plating layer, a surface treatment layer provided on at least one main surface of the plated steel sheet,
  • the surface treatment layer has at least a coating film as an outer layer,
  • the coating film has an average thickness of 1.0 ⁇ m or more and 10.0 ⁇ m or less,
  • the coating film includes a binder resin, an oil absorbent, and a conductive agent, the binder resin includes an epoxy resin,
  • the proportion of the epoxy resin in the binder resin is 25% by volume or more
  • the oil absorbing agent has an oil absorption amount of 50 ml/100 g or more
  • the oil absorbent has a particle size that is more than half the average film thickness and less than the same size,
  • the coating film contains 5% by volume or more of the oil absorbent.
  • the surface-treated steel sheet has a 60° gloss of 1% or more and 20% or less, Surface-treated steel sheet according to aspect 1.
  • the oil absorbent is silica; Surface-treated steel sheet according to aspect 1 or 2.
  • the conductive agent is a doped oxide particle, a Si alloy containing 50% by mass or more of Si, a Si compound containing 50% by mass or more of Si, or a composite thereof,
  • the coating film contains the conductive agent at 5% by volume or more and 30% by volume or less,
  • the doped oxide particles are doped zinc oxide particles, Surface-treated steel sheet according to aspect 4.
  • the Si alloy or the Si compound is ferrosilicon containing 70% by mass or more of Si, Surface-treated steel sheet according to aspect 4 or 5.
  • the coating film contains 10% by volume or more of the oil absorbent, The surface-treated steel sheet has a 60° gloss of 1% or more and 15% or less, The surface-treated steel sheet according to any one of aspects 1 to 6.
  • the surface treatment layer has an inorganic or organic-inorganic composite film as an inner layer between the coating film and the plated steel sheet, The film has an average thickness of 0.1 ⁇ m or more and 1.0 ⁇ m or less, The surface-treated steel sheet according to any one of aspects 1 to 7.
  • a surface-treated steel sheet A plated steel sheet having a Zn-containing plating layer, a surface treatment layer provided on at least one main surface of the plated steel sheet, The surface treatment layer has at least a coating film as an outer layer, The coating film has an average thickness of 1.0 ⁇ m or more and 10.0 ⁇ m or less,
  • the coating film includes a binder resin, an oil absorbent, and a conductive agent, the binder resin includes an epoxy resin, The proportion of the epoxy resin in the binder resin is 25% by volume or more,
  • the oil absorbent has a particle size that is more than half the average film thickness and less than the same size,
  • the coating film contains 5% by volume or more of the oil absorbent,
  • the surface-treated steel sheet has a 60° gloss of 1% or more and 20% or less, Surface treated steel plate.
  • the surface-treated steel sheet of the present disclosure has excellent weldability, corrosion resistance, and coating film adhesion after electrodeposition coating. For example, the occurrence of blisters and coating peeling during SDT after electrodeposition coating is suppressed, and it has excellent corrosion resistance even after SDT.
  • FIG. 1 It is a schematic diagram for explaining the action and effect of an oil absorbent having an oil absorption amount of 50 ml/100 g or more.
  • A is a case where an oil absorbing agent with an oil absorption amount of 50 ml/100 g or more is present in the coating film
  • B is a case where a non-oil absorbing agent with an oil absorption amount of less than 50 ml/100 g is present in the coating film.
  • the surface-treated steel sheet according to the embodiment includes a plated steel sheet having a Zn-containing plating layer, and a surface treatment layer provided on at least one main surface of the plated steel sheet.
  • the surface treatment layer has at least a coating film as an outer layer.
  • the coating film has an average thickness of 1.0 ⁇ m or more and 10.0 ⁇ m or less.
  • the coating film includes a binder resin, an oil absorbent, and a conductive agent.
  • the binder resin includes an epoxy resin. The proportion of the epoxy resin in the binder resin is 25% by volume or more.
  • the oil absorbing agent has an oil absorption amount of 50 ml/100 g or more.
  • the oil-absorbing agent has a particle size that is equal to or more than half of the average film thickness.
  • the coating film contains the oil absorbing agent in an amount of 5% by volume or more.
  • a plated steel plate has, for example, a base steel plate and a Zn-containing plating layer provided on at least one main surface of the base steel plate.
  • the "principal surface” as used in the present application is a surface corresponding to the front side or back side of the board.
  • the Zn-containing plating layer may be provided only on one main surface of the base steel plate, or may be provided on both main surfaces. Moreover, the Zn-containing plating layer may be provided on the entire main surface of the base steel plate, or may be provided on a part of the main surface.
  • the base material steel plate may be a normal steel plate or a steel plate containing additive elements such as chromium, and the chemical composition and metal structure of the base steel plate may be adjusted in consideration of the desired mechanical properties, formability, etc. do it. Further, the thickness of the base material steel plate is not particularly limited either, and may be, for example, 0.2 mm or more and 6.0 mm or less.
  • the Zn-containing plating layer may have a chemical composition known to those skilled in the art.
  • the Zn-containing plating layer may contain additional elements such as Al in addition to Zn, and may also contain Fe and the like when alloyed.
  • the Zn-containing plating layer may be a Zn-Al-Mg alloy plating layer containing at least Al and Mg, or a Zn-Al-Mg-Si alloy plating layer containing Si. good.
  • the contents (concentrations) of these elements are, in mass%, Al: 0-60%, Mg: 0-10%, Si: 0-2%, Mn: 0-1%, Ni: 0-1%, Sb :0 to 1%, Fe:0 to 20%.
  • the Zn-containing plating layer may be an alloyed hot-dip galvanizing layer, a hot-dip galvanizing layer, or an electrogalvanizing layer.
  • the amount of adhesion of the zinc-containing plating layer to the base steel sheet is not particularly limited, and may be a general amount of adhesion.
  • the thickness of the Zn-based alloy plating layer may be 1 to 30 ⁇ m.
  • the surface treatment layer is provided on at least one main surface of the plated steel sheet.
  • the surface treatment layer may be provided only on one main surface of the plated steel sheet, or may be provided on both main surfaces. Moreover, the surface treatment layer may be provided on the entire main surface of the plated steel sheet, or may be provided on a part of the main surface.
  • the surface treatment layer may be laminated on the surface of the Zn-containing plating layer among the surfaces of the plated steel sheet.
  • the surface treatment layer has at least a coating film as an outer layer.
  • the surface treatment layer may consist only of a coating film, or may have a two-layer structure of a coating film as an outer layer and a chemical conversion coating as an inner layer. When the surface treatment layer has the two-layer structure, better corrosion resistance and the like can be exhibited. On the other hand, when the surface treatment layer does not have a chemical conversion coating as an inner layer, better spot weldability can be exhibited.
  • the coating film includes a binder resin, an oil absorbent, and a conductive agent.
  • Binder resin includes epoxy resin.
  • the epoxy resin may be an aromatic epoxy resin, an aliphatic epoxy resin, or an epoxy resin such as amines.
  • Specific examples of epoxy resins include bisphenol A epoxy resin, bisphenol F epoxy resin, hydrogenated bisphenol A epoxy resin, brominated bisphenol A epoxy resin, bisphenol S epoxy resin, phenol novolak epoxy resin, and cresol. Examples thereof include novolac type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, and triphenylmethane type epoxy resin.
  • the epoxy resin may be combined with a curing agent. As the curing agent, various epoxy curing agents such as phenol resin can be employed.
  • the binder resin may contain a resin other than the epoxy resin.
  • resins other than epoxy resins include various thermosetting resins and thermoplastic resins. Examples include at least one resin selected from polyester resins, urethane resins, acrylic resins, nylon resins, and olefin resins.
  • the polyester resin may have a glass transition temperature Tg of -20 to 70°C and a number average molecular weight of 3000 to 30000.
  • the urethane resin may have a Tg of 0 to 50°C and a number average molecular weight of 5,000 to 25,000.
  • the acrylic resin When an acrylic resin is employed as the binder resin, the acrylic resin may have a Tg of 0 to 50°C and a number average molecular weight of 3,000 to 25,000.
  • the binder resin may contain a curing agent other than the epoxy curing agent. For example, melamine resin, isocyanate resin, etc. may be employed.
  • the proportion of the epoxy resin in the binder resin is 25% by volume or more. That is, the proportion of the epoxy resin is 25% by volume or more, with the entire binder resin being 100% by volume.
  • the proportion of the epoxy resin may be 30 volume% or more, 40 volume% or more, 50 volume% or more, 60 volume% or more, 70 volume% or more, 80 volume% or more, or 90 volume% or more. If the proportion of the epoxy resin in the binder resin is too small, the adhesion between the coating film and the electrodeposition coating film may become insufficient, and there is a risk that the corrosion resistance after SDT may become insufficient.
  • the upper limit of the proportion of the epoxy resin in the binder resin is not particularly limited, and the proportion of the epoxy resin may be 100% by volume.
  • the content of the binder resin in the coating film is not particularly limited, and may be, for example, 50 volume% or more or 60 volume% or more, and 90 volume% or less, 80 volume% or less, or 70 volume% or less. There may be.
  • the oil absorbing agent has a function of absorbing resin, and may have an oil absorption amount of 50 ml/100 g or more, for example.
  • materials having an oil absorption amount of 50 ml/100 g or more include oxide-based materials such as silica, iron oxide, and titanium oxide, and barium-based materials such as barium carbonate and barium sulfate. These can also function as pigments. That is, the oil-absorbing agent may be an oil-absorbing pigment.
  • one having a function as a rust preventive agent may be employed. That is, the oil absorbing agent may be an oil absorbing rust preventive agent.
  • the oil-absorbing agent when the oil-absorbing agent is silica, the silica exhibits high rust prevention properties and tends to further improve the corrosion resistance of the surface-treated steel sheet.
  • the oil-absorbing agent has a particle size that is at least half the average thickness of the coating film and no more than the same size. Further, the oil absorbing agent occupies 5% by volume or more of the coating film.
  • the oil-absorbing agent has a particle size that is more than half and equal to or less than the average thickness of the coating film, and occupies 5% by volume of the coating film, the following effects can be expected.
  • Figure 1 (A) when a coating film is formed using a paint containing an oil absorbent, the oil absorbent containing the solvent in the paint spits out the solvent when the paint is heated to dry and solidify. After that, the oil absorbent absorbs surrounding resin, etc. (resin, etc. moves to the oil absorbent as indicated by the white arrow in the figure), and it is thought that there is a shortage of resin, etc. around the oil absorbent. As a result, irregularities are formed on the surface of the coating film.
  • the surface area of the coating film increases, and the physical adhesion between the coating film and the electrodeposited coating film can be improved. Furthermore, the frequency of contact between the chemical components contained in the coating film and the electrodeposition coating film increases, and the chemical adhesion between the coating film and the electrodeposition coating film can also be improved.
  • the coating film does not contain an oil-absorbing agent (instead of an oil-absorbing agent, it contains a non-oil-absorbing agent), if the particle size of the oil-absorbing agent is too small, and/or if the oil-absorbing agent content is too small. If the amount is too small, the unevenness formed on the surface of the coating film becomes small (FIG.
  • the oil absorbing agent tends to protrude significantly from the surface of the coating film, and the oil absorbing agent tends to fall off from the coating film, resulting in a decrease in corrosion resistance. Furthermore, during spot welding, the oil absorbing agent tends to come into contact with the tip of the electrode, which impedes contact between the electrode and the conductive agent, and there is a possibility that spot weldability may deteriorate.
  • the oil absorption amount of the oil absorbing agent is, for example, 50 ml/100 g or more.
  • the oil absorption amount of the oil absorbing agent may be 60 ml/100 g or more, 70 ml/100 g or more, 80 ml/100 g or more, 90 ml/100 g or more, or 100 ml/100 g or more, and 500 ml/100 g or less, 450 ml/100 g or less, 400 ml /100g or less, 350ml/100g or less, or 300ml/100g or less.
  • the "oil absorption amount” of the oil absorbent before being included in the coating film is defined as "JIS K5101-13-1:2004 Pigment test method - Part 13: Oil absorption amount - Section 1: Refined linseed oil method. ”.
  • the "oil absorption amount” of the oil absorbing agent after being included in the coating film can be measured as follows (1) to (3). In the following, a method for measuring oil absorption when "silica” is used as an oil absorbent will be exemplified. When an oil absorbing agent containing element M is used instead of element Si, the oil absorption amount of the oil absorbing agent can be measured by using element M as an analysis target instead of element Si in the elemental analysis below.
  • the particle size of the oil-absorbing agent described above is at least half (50% or more) of the average film thickness of the coating film and at least the same size (100% or less).
  • the particle size of the oil absorbing agent may be 55% or more, 60% or more, or 65% or more of the average film thickness of the coating film, or less than 100%, 95% or less, 90% or less, or 85% or less. good.
  • the "particle size" of the oil-absorbing agent contained in the coating film is specified as follows. That is, a surface-treated steel plate with a coating film formed thereon is cut, its cross section is exposed and polished, and the thus obtained polished cross section is observed with a scanning electron microscope to obtain an observed image. .
  • the specified Feret diameter is regarded as the "particle size" of the oil absorbent. Note that whether or not the particles in the observed image are oil-absorbing agents can be easily determined by elemental analysis or the like.
  • the content of the above oil absorbing agent in the coating film is 5% by volume or more.
  • the upper limit of the content of the oil absorbing agent can be determined by taking into consideration the durability, conductivity, etc. of the coating film.
  • the content of the oil absorbing agent in the coating film may be 10 volume% or more, 15 volume% or more, or 20 volume% or more, and may be 40 volume% or less, 35 volume% or less, or 30 volume% or less.
  • the coating film may contain a rust inhibitor.
  • the rust preventive may be an inorganic rust preventive or an organic rust preventive.
  • the rust preventive agent may contain at least one of P and V, which are elements that exhibit a rust preventive function.
  • Examples of rust preventives containing P include phosphoric acids such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid, ammonium salts such as triammonium phosphate and diammonium hydrogen phosphate, Na, and Mg.
  • metal phosphates with Al, K, Ca, Mn, Ni, Zn, Fe, etc. aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra(methylenephosphonic acid), diethylenetriamine
  • aminotri(methylenephosphonic acid) 1-hydroxyethylidene-1,1-diphosphonic acid
  • ethylenediaminetetra(methylenephosphonic acid) diethylenetriamine
  • Examples include phosphonic acids such as penta(methylenephosphonic acid) and their salts, and organic phosphoric acids such as phytic acid and their salts.
  • the rust preventive may be a guanidino group-containing compound, a piguanidino group-containing compound, a thiocarbonyl group-containing compound, or the like.
  • the rust preventive may be in the form of particles, for example.
  • the rust inhibitor may be water-soluble or water-insoluble. If the rust preventive agent is water-soluble, for example, when the coating film is exposed to a humid environment, the rust preventive agent will dissolve in water and elute, exerting its rust preventive function to suppress corrosion of the plating layer. obtain.
  • the content of the rust preventive in the coating film is not particularly limited. The content of the rust preventive agent may be greater than, less than, or the same as the content of the oil absorbent.
  • the content of the rust inhibitor in the coating film may be 0 volume% or more, 0.5 volume% or more, 1.0 volume% or more, or 5.0 volume% or more, and 15 volume% or less or 10 volume% or more. It may be less than % by volume.
  • the conductive agent has the function of improving the conductivity of the coating film and improving the weldability of the surface-treated steel sheet.
  • a material having a volume resistivity of 1.0 ⁇ 10 3 ⁇ /cm or less can be used as the conductive agent.
  • the conductive agent include metals and metal compounds. Specifically, magnesium, aluminum, silicon, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, strontium, yttrium, zirconium, niobium, molybdenum, technetium, and ruthenium.
  • magnesium aluminum, silicon, phosphorus, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, It may be an alloy of arsenic, strontium, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, tellurium, etc.; or a compound such as an oxide of the above metal elements. .
  • magnesium, aluminum, silicon, chromium, iron, nickel, zinc, tin, zinc-aluminum alloy, zinc-aluminum-magnesium alloy, zinc-aluminum-magnesium-silicon alloy, zinc-iron alloy, zinc-chromium alloy, zinc -Nickel alloy, iron-nickel alloy, iron-chromium alloy, stainless steel, ferrosilicon, ferromanganese, ferrophosphor, zinc oxide, etc. are easily available.
  • the content of the conductive agent in the coating film is not particularly limited, and may be appropriately determined in consideration of the desired weldability and corrosion resistance.
  • the conductive agent is a doped oxide particle, a Si alloy containing 50% by mass or more of Si, a Si compound containing 50% by mass or more of Si, or a composite thereof, the conductivity (welding properties) as well as the adhesion of the electrodeposition coating film to the outer layer.
  • the content of the conductive agent in the coating film may be 5% by volume or more and 30% by volume or less.
  • the doped oxide particles include doped zinc oxide particles.
  • the doped zinc oxide particles for example, at least one doping element selected from the group consisting of Group 13 elements of the periodic table such as B, Al, Ga, and In, and elements of group 15 of the periodic table such as P and As, Examples include those whose conductivity is improved by doping zinc oxide particles.
  • the doping element is Al or Ga, the conductivity can be further improved.
  • the content of the doping element may be, for example, 0.05 atom % or more, or 0.1 atom % or more, and 5 atom % or less, based on the undoped zinc oxide particles.
  • the conductive agent is a Si alloy or a Si compound
  • a specific example of the Si alloy or Si compound is ferrosilicon containing 70% by mass or more of Si.
  • ferrosilicon As a conductive agent in the coating film, it is easy to improve the electrical conductivity and corrosion resistance of the coating film.
  • ferrosilicon containing 70% by mass or more of Si has excellent corrosion resistance and moldability.
  • the conductive agent may be in the form of particles, for example.
  • the average particle diameter thereof is not particularly limited, and an appropriate size may be selected in consideration of the thickness of the coating film, etc. If the particle size of the conductive agent is too small relative to the thickness of the coating film, the conductivity tends to decrease. On the other hand, if the particle size of the conductive agent is too large relative to the thickness of the coating film, the conductive agent will easily fall off from the coating film. In this regard, the particle diameter of the conductive agent may be 1/10 or more or 1/5 or more of the thickness of the coating film, or may be 2 times or less or the same size or less.
  • the average particle diameter of the conductive agent may be, for example, 0.1 ⁇ m or more, 0.3 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more, or 20 ⁇ m or less, 10 ⁇ m or less, 8.0 ⁇ m or less, 6. It may be 0 ⁇ m or less, 5.0 ⁇ m or less, 4.0 ⁇ m or less, or 2.5 ⁇ m or less.
  • the "average particle size" of the conductive agent refers to the average primary particle size when the particles present in the coating film exist as primary particles, and refers to the average secondary particle size when the particles exist as aggregates. The average particle diameter is measured as follows.
  • a surface-treated steel plate with a coating film formed thereon is cut, its cross section is exposed and polished, and the thus obtained polished cross section is observed with a scanning electron microscope to obtain an observed image.
  • Several conductive particles are arbitrarily selected from among the conductive particles present in the field of view of the observed image, the equivalent circle diameter of each particle is determined, and the average value is taken as the average particle diameter. Whether or not the particles in the observed image are conductive agents can be easily determined by elemental analysis or the like.
  • the coating film may contain components other than those described above.
  • Other components include various additives. Examples include pigments other than the above-mentioned oil-absorbing agents and conductive agents (such as bright pigments for the purpose of improving design), lubricants, antifoaming agents, thickeners, and the like.
  • the content of other components in the coating film is not particularly limited.
  • the coating film has an average thickness of 1.0 ⁇ m or more and 10.0 ⁇ m. If the coating film is too thin, sufficient corrosion resistance may not be obtained. On the other hand, if the coating film is too thick, spot weldability may deteriorate.
  • the average thickness of the coating film may be 2.0 ⁇ m or more or 3.0 ⁇ m or more, and may be 9.0 ⁇ m or less, 7.0 ⁇ m or less, or 5.0 ⁇ m or less.
  • the average film thickness of the coating film is measured as follows. That is, a surface-treated steel plate with a coating film formed thereon is cut, its cross section is exposed and polished, and the thus obtained polished cross section is observed with a scanning electron microscope to obtain an observed image. .
  • the thickness of the coating film present in the field of view of the observed image is measured at 10 or more points at intervals of 1.0 ⁇ m in the surface direction of the plated steel plate, and the average value is taken as the average film thickness.
  • the average thickness of the coating film may be determined by determining the density of the coating film from the components contained in the coating film and then measuring the weight of the coating film.
  • the average film thickness characterized by any method may be 1.0 ⁇ m or more and 10.0 ⁇ m or less.
  • the amount of coating film adhered is not particularly limited.
  • the coating weight may be 2.0 g/m 2 or more, 3.5 g/m 2 or more, or 5.0 g/m 2 or more, 20 g/m 2 or less, 15 g/m 2 or less, or It may be 10 g/m 2 or less.
  • the amount of coating film deposited on the surface-treated steel sheet can be measured by a gravimetric method or cross-sectional observation. To measure the adhesion amount using the gravimetric method, after measuring the initial weight of a steel plate cut to a specified size, the coating film can be removed using a solvent or special chemical that can dissolve the binder resin, or resin beads or alumina beads can be used. It is possible to calculate by measuring the weight of the steel plate from which the coating has been removed by using the method of removing the coating by blasting, and calculating the difference between the two.
  • the surface treatment layer may have an inorganic or organic-inorganic composite coating as an inner layer between the coating film and the steel sheet.
  • the film may have an average thickness of 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the film can also be called a chemical conversion film. That is, the surface treatment layer may have a two-layer structure including a coating film as an outer layer and a chemical conversion treatment film as an inner layer.
  • the chemical conversion coating may be a layer that does not substantially contain chromium (chromate-free layer).
  • Chromate-free treatment liquids used in chemical conversion treatments include liquid-phase silica, gas-phase silica, silica-based treatment liquids whose main component is silicon compounds such as silicate, and zircon-based treatment liquids whose main component is zircon-based compounds. , mixtures thereof, and the like.
  • the chemical conversion coating may contain a binder resin.
  • the chemical conversion coating may contain at least one of the binder resins listed as binder resins that can constitute the above-mentioned coating.
  • the content of the binder resin and the content of components other than the binder resin in the chemical conversion film are not particularly limited.
  • the content of the binder resin in the chemical conversion film may be 0 volume% or more and 50 volume% or less, and the content of components other than the binder resin may be 50 volume% or more and 100 volume% or less.
  • the chemical conversion coating as the inner layer may be an inorganic coating containing an inorganic component as a binder, or may be an organic-inorganic composite coating.
  • the chemical conversion coating may contain various additives. Examples include bright pigments, lubricants, antifoaming agents, thickeners, etc. for the purpose of improving design.
  • the content of other components in the chemical conversion film is not particularly limited.
  • the average film thickness of the chemical conversion film is not particularly limited. From the viewpoint of further improving the adhesion between the plated steel sheet and the coating film, and from the viewpoint of further improving corrosion resistance and weldability, the average film thickness of the chemical conversion coating is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the average film thickness of the chemical conversion film can be measured in the same manner as the average film thickness of the coating film. That is, a surface-treated steel sheet on which a chemical conversion coating has been formed is cut, its cross section is exposed and polished, and the thus obtained polished cross section is observed with a scanning electron microscope to obtain an observed image. obtain.
  • the thickness of the chemical conversion coating present in the field of view of the observed image is measured at 10 or more points at intervals of 1 ⁇ m in the surface direction of the plated steel sheet, and the average value is taken as the average film thickness.
  • the average thickness of the chemical conversion film may be determined by determining the density of the chemical conversion film from the components contained in the chemical conversion film and then measuring the weight of the chemical conversion film.
  • the amount of the chemical conversion coating applied is not particularly limited.
  • the amount of the chemical conversion coating applied is 200 mg/m 2 or more and 2000 mg/m 2 or less, it is easier to further improve the corrosion resistance of the surface-treated steel sheet.
  • the amount of adhesion of the chemical conversion coating on the surface-treated steel sheet can be measured by fluorescent X-rays and cross-sectional analysis. Specifically, a calibration curve plate is prepared for each chemical conversion treatment. The chemical conversion treatment board and the calibration curve plate are measured using fluorescent X-rays, and the amount of adhesion on the produced chemical conversion treatment board is calculated from the X-ray intensity of the contained elements and the X-ray intensity of the calibration curve plate.
  • the oil-absorbing agent is contained in the coating film, so that unevenness is formed on the surface of the coating film.
  • the unevenness of the surface of the coating film improves the adhesion between the coating film and the electrodeposition coating film, suppressing blistering and coating peeling during SDT, and ensuring excellent corrosion resistance even after SDT. I can do it.
  • excellent weldability can also be ensured by ensuring that the average thickness of the coating film is below a certain level and the particle size of the oil-absorbing agent in the coating film is below a certain level.
  • the surface-treated steel sheet according to the present embodiment has excellent weldability, corrosion resistance, and coating film adhesion after electrodeposition coating. For example, the occurrence of blisters and coating peeling during SDT after electrodeposition coating is suppressed, and it has excellent corrosion resistance even after SDT.
  • the surface-treated steel sheet according to this embodiment tends to have a 60° gloss within a certain range due to the unevenness formed on the surface of the coating film. That is, the surface-treated steel sheet according to the present embodiment may have a 60° gloss of 1% or more and 20% or less. As described above, when the 60° gloss of the surface-treated steel sheet is 1% or more and 20% or less, the adhesion between the coating film and the electrodeposition coating film tends to be even more excellent.
  • the 60° gloss of a surface-treated steel sheet can vary depending on the amount of the above-mentioned oil absorbent contained in the coating film.
  • the surface-treated steel sheet according to the present embodiment may have a coating film containing 10% by volume or more of the above-mentioned oil absorbing agent, and the surface-treated steel sheet has a 60° gloss of 1% or more and 15% or less. It may be. Note that the 60° gloss of the surface-treated steel sheet can be measured using a gloss meter (Glossmeter GM-1 manufactured by Suga Test Instruments Co., Ltd.).
  • the above-mentioned surface-treated steel sheet can be manufactured, for example, by the following method.
  • the method for manufacturing surface-treated steel sheets is as follows: Obtaining a plated steel sheet having a zinc-containing plating layer, and forming a coating film by applying a paint containing a binder resin, an oil absorbent, and a conductive agent to at least one main surface of the plated steel sheet; May contain.
  • the method for manufacturing surface-treated steel sheets is Obtaining a plated steel sheet having a zinc-containing coating layer; Forming a chemical conversion coating by applying chemical conversion treatment to at least one main surface of the plated steel sheet, and forming a coating film by applying a paint containing a binder resin, an oil absorbent, and a conductive agent to the surface of the chemical conversion coating; may contain.
  • a plated steel plate having a Zn-containing plating layer can be produced by, for example, obtaining a slab by continuous casting, hot rolling the slab to obtain a hot rolled plate, or obtaining a hot rolled plate by subjecting the slab to hot rolling. winding up the hot-rolled sheet, cold-rolling the hot-rolled sheet to obtain a cold-rolled sheet, annealing the cold-rolled sheet, subjecting the annealed sheet to a plating treatment, and optionally It can be obtained by doing a skin pass, etc.
  • Continuous casting conditions, hot rolling conditions, winding conditions, cold rolling conditions, annealing conditions, and plating conditions may be conventionally known general conditions.
  • a chemical conversion treatment film may be formed as an inner layer by performing a chemical conversion treatment on at least one main surface of the plated steel sheet obtained as described above.
  • the chemical conversion treatment can be performed by applying various treatment liquids as described above to the surface of the steel plate and drying it.
  • a binder resin and an oil absorbing agent are applied to the surface of the plated steel sheet obtained as described above or the surface of the chemical conversion treatment film formed as described above.
  • a coating film as an outer layer may be formed by applying and drying a coating material containing a conductive agent.
  • the surface treated steel sheet according to the above embodiment can be obtained. According to the new findings of the present inventors, it is possible to further improve the roughness of the coating film by rapidly heating it during drying after the coating film is formed.
  • the temperature increase rate during drying of the coating film is preferably 20° C./s or more, more preferably 40° C./s or more.
  • the temperature increase rate during coating drying is 20°C/s or more, the 60° gloss value of the surface-treated steel sheet becomes less than 20%, and the temperature increase rate during coating drying is less than 20%.
  • the temperature is 40° C./s or more, the 60° gloss value of the surface-treated steel sheet is 17% or less.
  • the upper limit of the heating rate is not particularly limited.
  • the practical upper limit of the temperature increase rate is set. is 100°C/s.
  • the surface-treated steel sheet of the present disclosure may have the following configuration. That is, the surface treated steel sheet according to the modification includes a plated steel sheet having a Zn-containing plating layer, and a surface treatment layer provided on at least one main surface of the plated steel sheet.
  • the surface treatment layer has at least a coating film as an outer layer
  • the coating film has an average thickness of 1.0 ⁇ m or more and 10.0 ⁇ m or less
  • the coating film includes a binder resin, an oil absorbing agent and a conductive agent
  • the binder resin includes an epoxy resin
  • the proportion of the epoxy resin in the binder resin is 25% by volume or more
  • the oil absorbing agent is half of the average film thickness.
  • the coating film contains the oil absorbing agent in an amount of 5% by volume or more, and the surface-treated steel sheet has a 60° gloss of 1% or more and 20% or less.
  • the surface-treated steel sheet according to the modification for example, by including an oil absorbent of a predetermined size with respect to the film thickness, the resin around the oil absorbent is absorbed by the oil absorbent, and as a result, roughness is imparted.
  • 60° gloss is 1% or more and 20% or less.
  • a surface-treated steel sheet having such a configuration has excellent weldability, corrosion resistance, and coating film adhesion after electrodeposition coating. For example, the occurrence of blisters and coating peeling during SDT after electrodeposition coating is suppressed, and it has excellent corrosion resistance even after SDT.
  • GA Alloyed hot-dip galvanized steel sheet (thickness 0.8 mm, 10 mass% Fe, coating weight 45 g/m 2 )
  • ZA1 Zn-Al-Mg ternary hot-dip galvanized steel sheet (Zn-11%Al-3%Mg-0.2%Si) (plate thickness 0.8 mm, 10 mass% Fe, coating weight 60 g/m 2 )
  • ZA2 Zn-Al-Mg ternary hot-dip galvanized steel sheet (Zn-6%Al-3%Mg) (plate thickness 0.8 mm, 10 mass% Fe, coating weight 60 g/m 2 )
  • ZL Electric Zn-10% by mass Ni alloy plated steel plate (plate thickness 0.8 mm, coating weight 40 g/m 2 )
  • GI Hot-dip galvanized steel plate (thickness 0.8 mm, coating weight 60 g/m 2 )
  • EG Electrogalvanized steel sheet (thickness 0.8 mm, coating weight 40 g/m 2 )
  • each layer was mixed so that the solid content concentration was the same as in Tables 1 and 2.
  • the components were mixed to prepare a coating composition for forming a coating film.
  • This composition was coated with a bar coater on a base metal plate or a chemical conversion film while changing the bar coat number and dilution rate so that the coating amount was as shown in Tables 3 and 4, and the maximum temperature reached was 200°C.
  • a coating film as an outer layer was formed by drying in an oven under the following conditions.
  • the average film thickness of the coating film was the film thickness ( ⁇ m) shown in Tables 3 and 4.
  • the components contained in the coating composition are shown below.
  • (Oil-absorbing pigment) SC Calcium ion exchange silica (Ca exchange rate 9%) (oil absorption 300ml/100g, particle size 2 ⁇ m)
  • Si1 Silica (oil absorption 250ml/100g, particle size 2 ⁇ m)
  • Si2 Silica (oil absorption 100ml/100g, particle size 1, 2, 3, 5 or 10 ⁇ m)
  • Si3 Silica (oil absorption 50ml/100g, particle size 2 ⁇ m)
  • FeO iron oxide (oil absorption 60ml/100g, particle size 2 ⁇ m)
  • PA Aluminum tripolyphosphate (oil absorption 10ml/100g, particle size 2 ⁇ m)
  • PM Magnesium phosphate (oil absorption 30ml/100g, particle size 2 ⁇ m)
  • Si4 Silica (oil absorption 30ml/100g, particle size 2 ⁇ m)
  • FeSi Ferrosilicon particles (average particle size 3 ⁇ m, containing 70% by mass or more of Si)
  • SUS SUS particles (average particle size 4 ⁇ m)
  • ZnO Doped zinc oxide particles (23-Kt manufactured by Hakusui Tech Co., Ltd., average particle size 0.5 ⁇ m)
  • binder resin B1 Epoxy resin (ADEKA Resin EP-4100 manufactured by ADEKA)
  • B2 Polyester resin (Byron 200 manufactured by Byron)
  • B3 Epoxy resin (ADEKA Resin EM-0461N manufactured by ADEKA)
  • B4 Polyester resin (Vyronal MD1480 manufactured by Byron)
  • B5 Urethane resin (Superflex 150 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
  • B6 Melamine resin (Cymel 325 manufactured by Allnex)
  • Blister area ratio from the evaluation side is 50% or more 2: Blister area ratio from the evaluation side is 5% or more and less than 50% 3: Blister area ratio from the evaluation side is 1% or more and less than 5% 4: From the evaluation side Blisters occur less than 1% of the time 5: No blisters occur
  • the number of dots is 10 or more and less than 50.
  • the number of dots is 50 or more and less than 200.
  • the number of dots is 200.
  • the number of RBIs is 1,000 or more and less than 2,000 RBIs 6: The number of RBIs is 2,000 or more
  • the Si4 contained in the coating film is a non-oil-absorbing pigment with an oil absorption amount of less than 50 ml/100 g, so that resin etc. are not absorbed into the non-oil-absorbing pigment during coating film formation, and the surface of the coating film is smoothed. did. As a result, sufficient adhesion between the coating film and the electrodeposition coating film could not be obtained, resulting in poor corrosion resistance after SDT.
  • the PA and PM contained in the coating film are non-oil-absorbing pigments with an oil absorption amount of less than 50 ml/100 g, and resins etc. are not absorbed into the non-oil-absorbing pigments during coating film formation, resulting in the formation of a coating film.
  • the surface has been smoothed. As a result, a large amount of blisters were generated during SDT, and the corrosion resistance after SDT was also poor.
  • the particle size of the oil-absorbing pigment was 0.33 times (1/3) the thickness of the coating film, which was less than half, so the resin etc. was sufficiently absorbed into the oil-absorbing pigment during coating film formation.
  • the surface of the coating film was smoothed. As a result, sufficient adhesion between the coating film and the electrodeposition coating film was not obtained, a large amount of blisters were generated during SDT, and the corrosion resistance after SDT was also poor.
  • the particle size of the oil-absorbing pigment was 1.67 times and 3.33 times the thickness of the paint film, which was more than the same size, so the oil-absorbing pigment easily fell off from the paint film. there were.
  • the oil-absorbing pigment excessively absorbed the resin in the coating film, resulting in an excessively thin resin.
  • a large amount of blisters were generated during SDT.
  • the tip of the electrode came into contact with the oil-absorbing pigment during spot welding, which inhibited conduction to the conductive pigment, resulting in a decrease in spot weldability.
  • the film thickness of the coating film was too thick at 15.0 ⁇ m, resulting in poor spot weldability.
  • the coating film is 1.0 ⁇ m or more 10
  • the coating film contains a binder resin, an oil absorbing agent, and a conductive agent;
  • the binder resin contains an epoxy resin;
  • the binder resin contains an epoxy resin;
  • the proportion of the epoxy resin is 25% by volume or more, (5) the oil-absorbing agent has an oil absorption amount of 50 ml/100 g or more, and (6) the oil-absorbing agent has particles that are more than half the average film thickness and less than the same size.
  • the coating film contains 5% by volume or more of an oil absorbent, it has excellent weldability, suppresses blistering during SDT, and has excellent corrosion resistance after SDT. Ta.
  • the binder resins B1 and B2 are solvent-based resins
  • the binder resins B3 to B5 are water-based resins.
  • the technology of the present disclosure is applicable to both solvent-based resins and water-based resins.
  • a surface-treated steel sheet that satisfies the following requirements has excellent weldability and corrosion resistance, and also has excellent coating film adhesion after electrodeposition coating.
  • a surface-treated steel sheet A plated steel sheet having a Zn-containing plating layer, a surface treatment layer provided on at least one main surface of the plated steel sheet,
  • the surface treatment layer has at least a coating film as an outer layer,
  • the coating film has an average thickness of 1.0 ⁇ m or more and 10.0 ⁇ m or less,
  • the coating film includes a binder resin, an oil absorbent, and a conductive agent, the binder resin includes an epoxy resin, The proportion of the epoxy resin in the binder resin is 25% by volume or more,
  • the oil absorbing agent has an oil absorption amount of 50 ml/100 g or more,
  • the oil absorbent has a particle size that is more than half the average film thickness and less than the same size,
  • the coating film contains 5% by volume or more of the oil absorbent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

溶接性及び耐食性に優れる表面処理鋼板を開示する。本開示の表面処理鋼板は、Zn含有めっき層を有する鋼板と、前記鋼板の少なくとも一方の主面に設けられた表面処理層と、を有し、前記表面処理層が、少なくとも、外層としての塗膜を有し、前記塗膜が、1.0μm以上10.0μm以下の平均膜厚を有し、前記塗膜が、バインダー樹脂と、吸油剤と、導電剤とを含み、前記バインダー樹脂が、エポキシ樹脂を含み、前記バインダー樹脂に占める前記エポキシ樹脂の割合が、25体積%以上であり、前記吸油剤が、50ml/100g以上の吸油量を有し、前記吸油剤が、前記平均膜厚の半分以上等倍以下の粒径を有し、前記塗膜が、前記吸油剤を5体積%以上含むことを特徴とする。

Description

表面処理鋼板
 本願は表面処理鋼板を開示する。
 自動車等の構成材として表面処理鋼板が用いられている。表面処理鋼板は、例えば、Zn含有めっき層を有するめっき鋼板と、当該めっき鋼板の少なくとも一方の主面に設けられた表面処理層とを有する。従来技術においては、表面処理層として塗膜を採用し、且つ、塗膜を構成する成分の種類や含有量を調整することで、表面処理鋼板の溶接性や耐食性を向上させている。
 例えば、特許文献1には、めっき鋼板の少なくとも片面に塗膜を有する表面処理鋼板において、前記塗膜に、バインダー樹脂と、Vを含む非酸化物セラミックス粒子と、ドープ型酸化亜鉛粒子とを所定量含ませることで、表面処理鋼板の溶接性や耐食性を向上させる技術が開示されている。
 また、特許文献2には、Zn含有めっき鋼板の少なくとも片面に2層以上の塗膜を形成してなる塗装鋼板において、前記塗膜の最外層を所定の厚みとし、前記塗膜の最外層に所定の非クロム化合物を含ませ、且つ、前記塗装鋼板を所定の条件でイオン交換水に浸漬したときの浸漬水の電気伝導度が30μS/cm以上となるように前記塗膜の構成を工夫することで、塗装鋼板の端面の耐食性を向上させる技術が開示されている。
 また、特許文献3には、金属材の表面に有機皮膜を有する塗装金属材において、前記有機皮膜に、ウレタン結合を有する所定の樹脂と、所定の導電性粒子とを含ませることで、塗装金属材の溶接性や耐食性を向上させる技術が開示されている。
 また、特許文献4には、金属板の表面に被覆層を有する被覆金属板において、前記被覆層に所定の粒径の導電性粒子を所定量含ませることで、被覆金属板の溶接性や耐食性を向上させる技術が開示されている。
国際公開第2018/092244号 特開2012-136025号公報 特開2004-042622号公報 特開2004-183080号公報
 自動車等の構成材としての表面処理鋼板は、上記したような溶接性や耐食性に加え、電着塗装後の塗膜密着性が要求される。例えば、電着塗装後の塗膜密着性を評価する試験として温塩水浸漬試験(SDT)がある。本発明者の新たな知見によると、従来の表面処理鋼板について電着塗装後にSDTを行った場合、SDT後の表面にブリスターや塗膜剥離が発生する場合がある。表面処理鋼板においてブリスターや塗膜剥離が発生すると、赤錆の原因となるなどして、十分な耐食性が確保され難い。従来の表面処理鋼板においては、SDTにおけるブリスターや塗膜剥離の発生を抑制し、且つ、SDT後の耐食性を高めることについて、十分な検討がなされていない。以上の通り、表面処理鋼板において溶接性、耐食性及び電着塗装後の塗膜密着性を両立可能な新たな技術が必要である。
 本願は上記課題を解決するための手段の一つとして、以下の複数の態様を開示する。
<態様1>
 表面処理鋼板であって、
 Zn含有めっき層を有するめっき鋼板と、
 前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有し、
 前記表面処理層が、少なくとも、外層としての塗膜を有し、
 前記塗膜が、1.0μm以上10.0μm以下の平均膜厚を有し、
 前記塗膜が、バインダー樹脂と、吸油剤と、導電剤とを含み、
 前記バインダー樹脂が、エポキシ樹脂を含み、
 前記バインダー樹脂に占める前記エポキシ樹脂の割合が、25体積%以上であり、
 前記吸油剤が、50ml/100g以上の吸油量を有し、
 前記吸油剤が、前記平均膜厚の半分以上等倍以下の粒径を有し、
 前記塗膜が、前記吸油剤を5体積%以上含む、
 表面処理鋼板。
<態様2>
 前記表面処理鋼板が、1%以上20%以下の60°光沢を有する、
 態様1の表面処理鋼板。
<態様3>
 前記吸油剤が、シリカである、
 態様1又は2の表面処理鋼板。
<態様4>
 前記導電剤が、ドープ型酸化物粒子、50質量%以上のSiを含有するSi合金、50質量%以上のSiを含有するSi化合物、又は、これらの複合体であり、
 前記塗膜が、前記導電剤を5体積%以上30体積%以下含む、
 態様1~3のいずれかの表面処理鋼板。
<態様5>
 前記ドープ型酸化物粒子が、ドープ型酸化亜鉛粒子である、
 態様4の表面処理鋼板。
<態様6>
 前記Si合金又は前記Si化合物が、70質量%以上のSiを含有するフェロシリコンである、
 態様4又は5の表面処理鋼板。
<態様7>
 前記塗膜が、前記吸油剤を10体積%以上含み、
 前記表面処理鋼板が、1%以上15%以下の60°光沢を有する、
 態様1~6のいずれかの表面処理鋼板。
<態様8>
 前記表面処理層が、前記塗膜と前記めっき鋼板との間の内層として、無機系又は有機無機複合系の皮膜を有し、
 前記皮膜が、0.1μm以上1.0μm以下の平均膜厚を有する、
 態様1~7のいずれかの表面処理鋼板。
<態様9>
 表面処理鋼板であって、
 Zn含有めっき層を有するめっき鋼板と、
 前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有し、
 前記表面処理層が、少なくとも、外層としての塗膜を有し、
 前記塗膜が、1.0μm以上10.0μm以下の平均膜厚を有し、
 前記塗膜が、バインダー樹脂と、吸油剤と、導電剤とを含み、
 前記バインダー樹脂が、エポキシ樹脂を含み、
 前記バインダー樹脂に占める前記エポキシ樹脂の割合が、25体積%以上であり、
 前記吸油剤が、前記平均膜厚の半分以上等倍以下の粒径を有し、
 前記塗膜が、前記吸油剤を5体積%以上含み、
 前記表面処理鋼板が、1%以上20%以下の60°光沢を有する、
 表面処理鋼板。
 本開示の表面処理鋼板は、溶接性、耐食性及び電着塗装後の塗膜密着性に優れる。例えば、電着塗装後のSDTにおけるブリスターや塗膜剥離の発生が抑制され、SDT後においても優れた耐食性を有する。
50ml/100g以上の吸油量を有する吸油剤による作用及び効果について説明するための概略図である。(A)が塗膜中に吸油量が50ml/100g以上の吸油剤が存在する場合、(B)が塗膜中に吸油量が50ml/100g未満の非吸油剤が存在する場合である。
 以下、本発明の実施形態について説明する。なお、これらの説明は、本発明の実施形態の単なる例示を意図するものであって、本発明は以下の実施形態に限定されない。
 実施形態に係る表面処理鋼板は、Zn含有めっき層を有するめっき鋼板と、前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有する。前記表面処理層は、少なくとも、外層としての塗膜を有する。前記塗膜は、1.0μm以上10.0μm以下の平均膜厚を有する。前記塗膜は、バインダー樹脂と、吸油剤と、導電剤とを含む。前記バインダー樹脂は、エポキシ樹脂を含む。前記バインダー樹脂に占める前記エポキシ樹脂の割合は、25体積%以上である。前記吸油剤は、50ml/100g以上の吸油量を有する。前記吸油剤は、前記平均膜厚の半分以上等倍以下の粒径を有する。前記塗膜は、前記吸油剤を5体積%以上含む。
1.めっき鋼板
 めっき鋼板は、例えば、母材鋼板と、母材鋼板の少なくとも一方の主面に設けられたZn含有めっき層とを有する。本願にいう「主面」とは板の表側又は裏側に相当する面である。Zn含有めっき層は、母材鋼板の一方の主面のみに設けられていてもよいし、両方の主面に設けられていてもよい。また、Zn含有めっき層は、母材鋼板の主面の全体に設けられていてもよいし、主面の一部に設けられていてもよい。
 母材鋼板としては、種々の化学組成や金属組織を有するものを採用し得る。母材鋼板は、普通鋼板であっても、クロム等の添加元素を含む鋼板であってもよく、目的とする機械特性や成形性等を考慮して母材鋼板の化学組成や金属組織を調整すればよい。また、母材鋼板の厚みも特に限定されるものではなく、例えば、0.2mm以上であってもよく、6.0mm以下であってもよい。
 Zn含有めっき層は、当業者に公知の化学組成を有するものであってよい。例えば、Zn含有めっき層は、Zn以外にAl等の添加元素を含んでいてよく、また、合金化処理が施されてなる場合はFe等を含んでいてよい。一例として、Zn含有めっき層は、少なくともAlとMgとを含有するZn-Al-Mg合金めっき層であってもよく、さらにSiを含有するZn-Al-Mg-Si合金めっき層であってもよい。これら元素の含有量(濃度)は、質量%で、Al:0~60%、Mg:0~10%、Si:0~2%、Mn:0~1%、Ni:0~1%、Sb:0~1%、Fe:0~20%であってもよい。Zn含有めっき層は、合金化溶融亜鉛めっき層、溶融亜鉛めっき層又は電気亜鉛めっき層であってもよい。母材鋼板に対する亜鉛含有めっき層の付着量は特に限定されるものではなく、一般的な付着量であってよい。例えば、Zn系合金めっき層の厚さは1~30μmであってもよい。
2.表面処理層
 表面処理層は、めっき鋼板の少なくとも一方の主面に設けられる。表面処理層は、めっき鋼板の一方の主面のみに設けられていてもよいし、両方の主面に設けられていてもよい。また、表面処理層は、めっき鋼板の主面の全体に設けられていてもよいし、主面の一部に設けられていてもよい。表面処理層は、上記のめっき鋼板の表面のうち、Zn含有めっき層の表面に積層され得る。
 表面処理層は、少なくとも、外層としての塗膜を有する。表面処理層は、塗膜のみからなるものであってもよいし、外層としての塗膜と、内層としての化成処理皮膜と、の二層構成を有するものであってもよい。表面処理層が当該二層構成を有するものである場合、より優れた耐食性等を発揮し得る。一方で、表面処理層が内層としての化成処理皮膜を有していない場合、より優れたスポット溶接性を発揮し得る。
2.1 塗膜
 本実施形態に係る表面処理鋼板において、塗膜は、バインダー樹脂と、吸油剤と、導電剤と、を含む。
(バインダー樹脂)
 バインダー樹脂は、エポキシ樹脂を含む。塗膜がバインダー樹脂としてエポキシ樹脂を含むことで、電着塗膜との密着性が向上し易い。エポキシ樹脂は、芳香族エポキシ樹脂であってもよいし、脂肪族エポキシ樹脂であってもよいし、アミン類等のエポキシ樹脂であってもよい。エポキシ樹脂の具体例として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は硬化剤と組み合わされたものであってよい。硬化剤としてはフェノール樹脂等の各種のエポキシ硬化剤が採用され得る。
 バインダー樹脂は、エポキシ樹脂に加えて、エポキシ樹脂以外の樹脂を含んでいてもよい。エポキシ樹脂以外の樹脂としては、各種の熱硬化性樹脂や熱可塑性樹脂が挙げられる。例えば、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ナイロン樹脂及びオレフィン樹脂から選ばれる少なくとも1種の樹脂が挙げられる。バインダー樹脂としてポリエステル樹脂が採用される場合、当該ポリエステル樹脂は、-20~70℃のガラス転移温度Tgを有するものであってもよく、3000~30000の数平均分子量を有するものであってもよい。バインダー樹脂としてウレタン樹脂が採用される場合、当該ウレタン樹脂は、0~50℃のTgを有するものであってもよく、5000~25000の数平均分子量を有するものであってもよい。バインダー樹脂としてアクリル樹脂が採用される場合、当該アクリル樹脂は、0~50℃のTgを有するものであってもよく、3000~25000の数平均分子量を有するものであってもよい。バインダー樹脂は、エポキシ硬化剤以外の硬化剤を含んでいてもよい。例えば、メラミン樹脂やイソシアネート樹脂等が採用され得る。
 バインダー樹脂に占めるエポキシ樹脂の割合は、25体積%以上であることが重要である。すなわち、バインダー樹脂全体を100体積%として、エポキシ樹脂の割合が25体積%以上である。エポキシ樹脂の割合は、30体積%以上、40体積%以上、50体積%以上、60体積%以上、70体積%以上、80体積%以上又は90体積%以上であってもよい。バインダー樹脂に占めるエポキシ樹脂の割合が少な過ぎると、塗膜と電着塗装膜との密着性が不十分となる場合があり、SDT後の耐食性が不十分となる虞がある。バインダー樹脂に占めるエポキシ樹脂の割合の上限は特に限定されず、当該エポキシ樹脂の割合が100体積%であってもよい。
 塗膜におけるバインダー樹脂の含有量は、特に限定されるものではなく、例えば、50体積%以上又は60体積%以上であってもよく、90体積%以下、80体積%以下又は70体積%以下であってもよい。
(吸油剤)
 吸油剤は、樹脂を吸い取る機能を有するものであり、例えば、50ml/100g以上の吸油量を有するものであってよい。50ml/100g以上の吸油量を有する材料としては、例えば、シリカ、酸化鉄、酸化チタンといた酸化物系の材料や、炭酸バリウム、硫酸バリウムといったバリウム系の材料等が挙げられる。これらは、顔料としても機能し得る。すなわち、吸油剤は、吸油性顔料であってもよい。また、これら吸油剤のうち、防錆剤としての機能を有するものを採用してもよい。すなわち、吸油剤は、吸油性防錆剤であってもよい。特に、当該吸油剤がシリカである場合、当該シリカが高い防錆性を発揮し、表面処理鋼板の耐食性を一層向上させ易い。本実施形態において、吸油剤は、上記の塗膜の平均膜厚の半分以上、且つ、等倍以下の粒径を有する。また、吸油剤は、塗膜の5体積%以上を占める。
 吸油剤が、塗膜の平均膜厚の半分以上等倍以下の粒径を有し、且つ、塗膜の5体積%を占める場合、以下の効果が期待できる。すなわち、図1(A)に示されるように、吸油剤を含む塗料を用いて塗膜を形成した場合、塗料の乾燥・固化の加熱時に、塗料中の溶媒を含んだ吸油剤が溶媒を吐き出した後、吸油剤が周囲の樹脂等を吸い取り(図中白抜き矢印のように樹脂等が吸油剤へと移動し)、吸油剤の周囲に樹脂等が不足した状態となるものと考えられる。その結果、塗膜の表面に凹凸が形成される。塗膜の表面に凹凸が形成されることで、塗膜の表面積が増え、塗膜と電着塗装膜との物理的な密着性が向上し得る。また、塗膜に含まれる化学成分と電着塗装膜との接触頻度が高まり、塗膜と電着塗装膜との化学的な密着性も向上し得る。これに対し、塗膜に吸油剤が含まれない場合(吸油剤に替えて、非吸油剤が含まれる場合)、吸油剤の粒径が小さ過ぎる場合、及び/又は、吸油剤の含有量が少な過ぎる場合は、塗膜の表面に形成される凹凸が小さくなり(図1(B))、電着塗装膜に対する高い密着性を確保することが難しくなる。また、吸油剤の粒径が塗膜の平均膜厚に対して大き過ぎる場合、吸油剤が塗膜の表面から大きく突出し易くなり、吸油剤が塗膜から脱落して耐食性が低下し易くなる。また、スポット溶接時に電極の先端に吸油剤が接触し易くなり、電極と導電剤との接触が阻害され、スポット溶接性が低下する虞がある。
 上記の通り、吸油剤の吸油量は、例えば、50ml/100g以上である。吸油剤の吸油量は、60ml/100g以上、70ml/100g以上、80ml/100g以上、90ml/100g以上又は100ml/100g以上であってもよく、且つ、500ml/100g以下、450ml/100g以下、400ml/100g以下、350ml/100g以下又は300ml/100g以下であってもよい。尚、本願において、塗膜に含まれる前の吸油剤の「吸油量」は、「JIS K5101-13-1:2004 顔料試験方法-第13部:吸油量-第1節:精製あまに油法」に準拠して測定することができる。一方、塗膜に含まれた後の吸油剤の「吸油量」は、以下の(1)~(3)のようにして測定することができる。尚、以下においては、吸油剤として「シリカ」を用いた場合の吸油量の測定方法を例示する。元素Siに替えて元素Mを含む吸油剤を用いた場合は、以下の元素分析において、元素Siに替えて元素Mを分析対象とすることで、吸油剤の吸油量を測定することができる。
 (1)SEM-EDX(日本電子社製JSM-7200F(SEM)、JED-2300/F(EDS))により、塗膜の断面を観察し、塗膜に含まれるシリカ粒子を特定し、当該シリカ粒子に含まれる元素C、O、Siについてのatomic%を求める。ここで、元素Si及びOが80atomic%以上で分布する粒径1μm以上の領域をシリカ粒子として特定し、当該領域のうち、外縁部0.2μmを除いた部分(中心部)の領域分析、または、中心部の点分析において、元素C、O、Siについてのatomic%を求めるものとする。断面観察は、樹脂埋め込み、研磨、Auによる蒸着を行ったうえで実施する。
 (2)atomic%に基づいて、シリカ分と樹脂分との質量比を求める。このとき、樹脂分のOは、SEM-EDXにより求めたO分から、シリカ分(SiO分)を差し引いた残部(残部O)である。すなわち、樹脂分は、Cと残部Oである。
 (3)シリカ分と樹脂分との質量比から、シリカ100gに対する樹脂分の体積を求め、吸油量(ml/100g)を特定する。樹脂の比重は1.2とする。
 上記の吸油剤の粒径は、塗膜の平均膜厚の半分以上(50%以上)、且つ、等倍以下(100%以下)である。吸油剤の粒径は、塗膜の平均膜厚の55%以上、60%以上又は65%以上であってもよく、100%未満、95%以下、90%以下又は85%以下であってもよい。尚、本願において、塗膜に含まれる吸油剤の「粒径」は以下のようにして特定する。すなわち、塗膜が形成された表面処理鋼板を切断し、その断面を露出させたうえで研磨し、このようにして得られた研磨後断面を走査型電子顕微鏡で観察して、観察像を得る。観察像に視野に存在する吸油剤の粒子の形状を特定する。吸油剤の形状について、塗膜の膜厚方向に沿った方向のフェレ径を特定する。特定された当該フェレ径を吸油剤の「粒径」とみなす。尚、観察像中の粒子が吸油剤であるか否かは、元素分析等を行うことで容易に判断することができる。
 塗膜における上記の吸油剤の含有量は、5体積%以上である。吸油剤の含有量の上限は、塗膜の耐久性や導電性等を考慮して決定され得る。塗膜における吸油剤の含有量が多過ぎる場合、バインダー樹脂や導電剤の含有量が相対的に少なくなり、塗膜の耐久性や導電性等が相対的に低下する場合がある。塗膜における吸油剤の含有量は、10体積%以上、15体積%以上又は20体積%以上であってもよく、40体積%以下、35体積%以下又は30体積%以下であってもよい。
(防錆剤)
 塗膜は、防錆剤を含んでいてもよい。防錆剤は、無機防錆剤であってもよいし、有機防錆剤であってもよい。防錆剤は、防錆機能を発揮する元素であるP及びVのうちの少なくとも1種を含むものであってもよい。Pを含む防錆剤としては、例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等のリン酸類、リン酸三アンモニウム、リン酸水素二アンモニウム等のアンモニウム塩、Na、Mg、Al、K、Ca、Mn、Ni、Zn、Fe等との金属リン酸塩、アミノトリ(メチレンホスホン酸)、1-ヒドロキシエチリデン-1,1-ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等のホスホン酸類及びそれらの塩、フィチン酸等の有機リン酸類及びそれらの塩等が挙げられる。また、Vを含む防錆剤としては、五酸化バナジウム、メタバナジン酸HVO、メタバナジウム酸アンモニウム、オキシ三塩化バナジウムVOCl、三酸化バナジウムV、二酸化バナジウム、オキシ硫酸バナジウムVOSO、バナジウムオキシアセチルアセトネートVO(OC(=CH)CHCOCH、バナジウムアセチルアセトネートV(OC(=CH)CHCOCH、三塩化バナジウムVCl等が挙げられる。また、防錆剤は、グアニジノ基含有化合物、ピグアニジノ基含有化合物、チオカルボニル基含有化合物等であってもよい。防錆剤の形態は、例えば、粒子状であってよい。防錆剤は水溶性であっても非水溶性であってもよい。防錆剤が水溶性である場合、例えば、塗膜が湿潤環境下に晒された場合に、防錆剤が水に溶解して溶出し、めっき層の腐食を抑制する防錆機能が発揮され得る。塗膜における防錆剤の含有量は、特に限定されるものではない。防錆剤の含有量は、上記の吸油剤の含有量よりも多くてもよいし、少なくてもよいし、同じであってもよい。例えば、塗膜における防錆剤の含有量は、0体積%以上、0.5体積%以上、1.0体積%以上又は5.0体積%以上であってもよく、15体積%以下又は10体積%以下であってもよい。
(導電剤)
 導電剤は、塗膜の導電性を向上させて、表面処理鋼板の溶接性を向上させる機能を有する。本願においては、例えば、体積抵抗率として1.0×10Ω/cm以下を有するものが導電剤となり得る。導電剤としては、例えば、金属や金属化合物が挙げられる。具体的には、マグネシウム、アルミニウム、シリコン、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、インジウム、錫等の金属;マグネシウム、アルミニウム、シリコン、リン、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ヒ素、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、インジウム、錫、アンチモン、テルル等の合金;又は上記した金属元素の酸化物等の化合物であってよい。中でも、マグネシウム、アルミニウム、シリコン、クロム、鉄、ニッケル、亜鉛、錫、亜鉛-アルミニウム合金、亜鉛-アルミニウム-マグネシウム合金、亜鉛-アルミニウム-マグネシウム-シリコン合金、亜鉛-鉄合金、亜鉛-クロム合金、亜鉛-ニッケル合金、鉄-ニッケル合金、鉄-クロム合金、ステンレス鋼、フェロシリコン、フェロマンガン、フェロホスホル、酸化亜鉛等が入手し易い。塗膜における導電剤の含有量は特に限定されるものではなく、目的とする溶接性と耐食性とを考慮して適宜決定されればよい。
 特に、導電剤が、ドープ型酸化物粒子、50質量%以上のSiを含有するSi合金、50質量%以上のSiを含有するSi化合物、又は、これらの複合体である場合、導電性(溶接性)とともに外層に対する電着塗装膜の密着性等を向上させ易い。この場合、塗膜における導電剤の含有量は、5体積%以上30体積%以下であってもよい。
 導電剤がドープ型酸化物粒子である場合、当該ドープ型酸化物粒子の具体例としては、ドープ型酸化亜鉛粒子が挙げられる。ドープ型酸化亜鉛粒子としては、例えば、B、Al、Ga、In等の周期表13族元素、及び、P、As等の周期表15族元素よりなる群から選ばれる少なくとも一種のドープ元素を、酸化亜鉛粒子にドープすることによって導電性を向上させたものが挙げられる。ドープ元素がAl又はGaである場合、導電性を一層向上させ易い。ドープ元素の含有量は、未ドープの酸化亜鉛粒子に対して、例えば、0.05atom%以上又は0.1atom%以上であってよく、5atom%以下であってよい。
 導電剤がSi合金又はSi化合物である場合、当該Si合金又はSi化合物の具体例としては、70質量%以上のSiを含有するフェロシリコンが挙げられる。塗膜に導電剤としてフェロシリコンを含ませることで、塗膜の導電性とともに耐食性を向上させ易い。特に、70質量%以上のSiを含有するフェロシリコンは、耐食性と成形性とに優れる。
 導電剤は例えば粒子状であってよい。導電剤が粒子状である場合、その平均粒子径は、特に限定されるものではなく、塗膜の厚み等を考慮して適切な大きさのものが選択されればよい。導電剤の粒子径が塗膜の厚みに対して小さ過ぎると、導電性が低下し易い。一方で、導電剤の粒子径が塗膜の厚みに対して大き過ぎると、導電剤が塗膜から脱落し易くなる。この点、導電剤の粒子径は、塗膜の厚みの1/10以上又は1/5以上であってよく、また、2倍以下又は等倍以下であってよい。導電剤の平均粒子径は、例えば、0.1μm以上、0.3μm以上、0.5μm以上又は1.0μm以上であってもよく、また、20μm以下、10μm以下、8.0μm以下、6.0μm以下、5.0μm以下、4.0μm以下又は2.5μm以下であってもよい。尚、導電剤の「平均粒子径」とは、塗膜に存在する粒子が一次粒子として存在する場合は平均一次粒子径をいい、凝集して存在する場合は平均二次粒子径をいう。平均粒子径は、以下の通りにして測定する。すなわち、塗膜が形成された表面処理鋼板を切断し、その断面を露出させたうえで研磨し、このようにして得られた研磨後断面を走査型電子顕微鏡で観察して、観察像を得る。観察像の視野に存在する導電粒子から数個を任意に選び出し、それぞれの粒子の円相当直径を求め、その平均値を平均粒子径とする。観察像中の粒子が導電剤であるか否かは、元素分析等を行うことで容易に判断することができる。
(その他の成分)
 塗膜には、上記した成分以外のその他の成分が含まれていてもよい。その他の成分としては、各種添加剤が挙げられる。例えば、上記した吸油剤や導電剤以外の顔料(意匠性の向上を目的とした光輝顔料等)、潤滑剤、消泡剤、増粘剤等である。塗膜におけるその他の成分の含有量は特に限定されるものではない。
(平均膜厚)
 本実施形態において、塗膜は、1.0μm以上10.0μmの平均膜厚を有する。塗膜が薄過ぎると、十分な耐食性が得られない場合がある。一方、塗膜が厚過ぎると、スポット溶接性が低下する場合がある。塗膜の平均膜厚は、2.0μm以上又は3.0μm以上であってもよく、9.0μm以下、7.0μm以下又は5.0μm以下であってもよい。塗膜の平均膜厚は、以下の通りにして測定する。すなわち、塗膜が形成された表面処理鋼板を切断し、その断面を露出させたうえで研磨し、このようにして得られた研磨後断面を走査型電子顕微鏡で観察して、観察像を得る。観察像の視野に存在する塗膜の厚みを、めっき鋼板の面方向に1.0μmの間隔で10点以上測定し、その平均値を平均膜厚とする。或いは、塗膜に含まれる成分から塗膜の密度を割り出したうえで、塗膜の重量を測定することで、塗膜の平均膜厚を特定してもよい。本実施形態においては、いずれかの方法により特性された平均膜厚が1.0μm以上10.0μm以下であればよい。
(付着量)
 塗膜の付着量は、特に限定されるものではない。例えば、塗膜の付着量は、2.0g/m以上、3.5g/m以上又は5.0g/m以上であってもよく、20g/m以下、15g/m以下又は10g/m以下であってもよい。尚、表面処理鋼板における塗膜の付着量は、重量法や断面観察によって測定することができる。重量法での付着量測定としては、所定サイズに切断した鋼板の初期重量を測定した後、バインダー樹脂を溶解可能な溶剤や専用の薬剤を用いて塗膜を取り除く方法や樹脂ビーズ、アルミナビーズを用いたブラスト処理により塗膜を取り除く方法、を用いることで塗膜を取り除いた鋼板の重量測定を行い、これら差分を求めることで算出することが可能である。
2.2 化成処理皮膜
 本実施形態に係る表面処理鋼板において、表面処理層は、前記塗膜と前記鋼板との間の内層として、無機系又は有機無機複合系の皮膜を有していてもよく、前記皮膜が、0.1μm以上1.0μm以下の平均膜厚を有していてもよい。当該皮膜は、化成処理皮膜とも言い得る。すなわち、表面処理層は、外層としての塗膜と、内層としての化成処理皮膜との二層構成を有するものであってもよい。
(構成成分)
 めっき鋼板の表面に内層として化成処理皮膜を設け、さらに当該化成処理皮膜の表面に上述の塗膜を設けることで、めっき鋼板に対する塗膜の密着性等が向上する。化成処理皮膜は、クロムを実質的に含有しない層(クロメートフリー層)であってもよい。化成処理に用いられるクロメートフリーの処理液としては、液相シリカ、気相シリカ、ケイ酸塩等のケイ素化合物を主成分とするシリカ系処理液、ジルコン系化合物を主成分とするジルコン系処理液、これらの混合物等が挙げられる。化成処理皮膜はバインダー樹脂を含んでいてもよい。例えば、化成処理皮膜は、上述の塗膜を構成し得るバインダー樹脂として例示されたもののうちの少なくとも1種を含んでいてもよい。化成処理皮膜におけるバインダー樹脂の含有量やバインダー樹脂以外の成分の含有量は、特に限定されるものではない。例えば、化成処理皮膜におけるバインダー樹脂の含有量は0体積%以上50体積%以下であってもよく、また、バインダー樹脂以外の成分の含有量は50体積%以上100体積%以下であってもよい。内層としての化成処理皮膜は、バインダーとして無機成分を含む無機系の皮膜であってもよいし、有機無機複合系の皮膜であってもよい。化成処理皮膜には、各種添加剤が含まれていてもよい。例えば、意匠性の向上を目的とした光輝顔料、潤滑剤、消泡剤、増粘剤等である。化成処理皮膜におけるその他の成分の含有量は特に限定されるものではない。
(平均膜厚)
 化成処理皮膜の平均膜厚は、特に限定されるものではない。めっき鋼板と塗膜との密着性を一層向上させる観点、耐食性や溶接性を一層向上させる観点等から、化成処理皮膜の平均膜厚は、0.1μm以上1.0μm以下であるとよい。化成処理皮膜の平均膜厚は、塗膜の平均膜厚と同様にして測定することができる。すなわち、化成処理皮膜が形成された表面処理鋼板を切断し、その断面を露出させたうえで研磨し、このようにして得られた研磨後断面を走査型電子顕微鏡で観察して、観察像を得る。観察像の視野に存在する化成処理皮膜の厚みを、めっき鋼板の面方向に1μmの間隔で10点以上測定し、その平均値を平均膜厚とする。或いは、化成処理皮膜に含まれる成分から化成処理皮膜の密度を割り出したうえで、化成処理皮膜の重量を測定することで、化成処理皮膜の平均膜厚を特定してもよい。
(付着量)
 表面処理鋼板において、化成処理皮膜の付着量は、特に限定されるものではない。例えば、化成処理皮膜の付着量が、200mg/m以上2000mg/m以下である場合、表面処理鋼板の耐食性を一層向上させ易い。尚、表面処理鋼板における化成処理皮膜の付着量は、蛍光X線ならびに断面分析によって測定することができる。具体的には、各化成処理に対して検量線板を作製する。化成処理板ならびに検量線板を蛍光X線で測定し、含有される元素のX線強度と検量線板のX線強度より、作製した化成処理板の付着量を算出する。
3.効果
 上述したように、本実施形態に係る表面処理鋼板においては、塗膜中に吸油剤が含まれることで、塗膜の表面に凹凸が形成される。塗膜の表面の凹凸によって、塗膜と電着塗装膜との密着性が向上し、SDTにおけるブリスターや塗膜剥離を抑制することができ、また、SDT後においても優れた耐食性を確保することができる。また、塗膜の平均膜厚が一定以下で、且つ、塗膜中の吸油剤の粒径が一定以下であることで、優れた溶接性を確保することもできる。このように、本実施形態に係る表面処理鋼板は、溶接性、耐食性及び電着塗装後の塗膜密着性に優れる。例えば、電着塗装後のSDTにおけるブリスターや塗膜剥離の発生が抑制され、SDT後においても優れた耐食性を有する。
 本実施形態に係る表面処理鋼板は、塗膜の表面に形成された凹凸に起因して、60°光沢が一定範囲内となり易い。すなわち、本実施形態に係る表面処理鋼板は、1%以上20%以下の60°光沢を有するものであってもよい。このように、表面処理鋼板の60°光沢が1%以上20%以下であることで、塗膜と電着塗装膜との密着性に一層優れたものとなり易い。表面処理鋼板の60°光沢は、塗膜に含まれる上記の吸油剤の量等によって変化し得る。例えば、本実施形態に係る表面処理鋼板は、塗膜が上記の吸油剤を10体積%以上含んでいてもよく、且つ、表面処理鋼板が、1%以上15%以下の60°光沢を有するものであってもよい。尚、表面処理鋼板の60°光沢は、光沢度計(スガ試験機社製グロスメーターGM-1)を用いて測定することができる。
4.表面処理鋼板の製造方法
 上記の表面処理鋼板は、例えば、以下の方法によって製造することができる。すなわち、表面処理鋼板の製造方法は、
 亜鉛含有めっき層を有するめっき鋼板を得ること、及び、
 前記めっき鋼板の少なくとも一方の主面にバインダー樹脂と、吸油剤と、導電剤とを含む塗料を塗布することで、塗膜を形成すること、
 を含んでいてもよい。
 或いは、表面処理鋼板の製造方法は、
 亜鉛含有めっき層を有するめっき鋼板を得ること、
 前記めっき鋼板の少なくとも一方の主面に化成処理を施すことで、化成処理皮膜を形成すること、及び、
 前記化成処理皮膜の表面にバインダー樹脂と、吸油剤と、導電剤とを含む塗料を塗布することで、塗膜を形成すること、
 を含んでいてよい。
4.1 めっき鋼板の作製
 Zn含有めっき層を有するめっき鋼板は、例えば、連続鋳造によってスラブを得ること、前記スラブに対して熱間圧延を施して熱延板を得ること、前記熱延板を巻き取ること、前記熱延板に対して冷間圧延を施して冷延版を得ること、前記冷延板を焼鈍すること、焼鈍後の板に対してめっき処理を施すこと、及び、任意にスキンパスを行うこと、等を経て得ることができる。連続鋳造条件、熱間圧延条件、巻き取り条件、冷間圧延条件、焼鈍条件、及び、めっき条件については、従来公知の一般的な条件であってよい。
4.2 化成処理
 本開示の製造方法においては、上記のようにして得られためっき鋼板の少なくとも一方の主面に化成処理を施すことで、内層としての化成処理皮膜を形成してもよい。化成処理は、上述したような各種の処理液を鋼板表面に塗布して乾燥することによって行うことができる。
4.3 塗膜の形成
 本開示の製造方法においては、上記のようにして得られためっき鋼板の表面、又は、上記のようにして形成された化成処理皮膜の表面に、バインダー樹脂、吸油剤及び導電剤を含む塗料を塗布して乾燥することで、外層としての塗膜を形成してもよい。ここで、塗膜に含まれる吸油剤の種類、吸油剤の含有量、塗膜の厚み等を調整することで、上記の実施形態に係る表面処理鋼板を得ることができる。尚、本発明者の新たな知見によると、塗膜形成後の乾燥の際、急速に加熱することでより塗膜のラフネスをさらに向上させることが可能である。一般的な塗装鋼板では、塗膜乾燥時に急速に加熱した場合、塗料中の溶媒が揮発しきる前に塗膜表面が硬化するため、気泡を内在する塗膜、つまり塗膜ワキが生じる。そのため溶剤が揮発するまではゆっくり加熱し、その後加熱速度を上げるのが通常である。これに対し、本発明者の新たな知見によると、1.0μm以上10.0μm以下の平均膜厚を有する塗膜を形成する場合は、塗膜乾燥時に急速加熱を行ってもワキ等が生じ難い。塗膜乾燥時に急速に加熱することで、吸油剤中に内在している溶剤が速やかに系外に排出され、吸油剤へと取り込まれる樹脂が増加し、塗膜のラフネスが一層向上する。この点、本開示の製造方法においては、塗膜乾燥時の昇温速度が、好ましくは20℃/s以上であり、より好ましくは40℃/s以上である。本発明者が確認した限りでは、塗膜乾燥時の昇温速度が20℃/s以上である場合、表面処理鋼板の60°光沢値が20%未満となり、塗膜乾燥時の昇温速度が40℃/s以上である場合、表面処理鋼板の60°光沢値が17%以下となる。昇温速度の上限は特に制限されない。塗膜ワキ等の塗装欠陥の発生を抑制する観点、また、吸油剤に含まれていた溶剤の排出及び吸油剤による樹脂分の取り込みを十分に行わせる観点から、実質的な昇温速度の上限は100℃/sである。
5.変形例
 本開示の表面処理鋼板は、以下の構成を備えるものであってもよい。すなわち、変形例に係る表面処理鋼板は、Zn含有めっき層を有するめっき鋼板と、前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有する。ここで、前記表面処理層が、少なくとも、外層としての塗膜を有し、前記塗膜が、1.0μm以上10.0μm以下の平均膜厚を有し、前記塗膜が、バインダー樹脂と、吸油剤と、導電剤とを含み、前記バインダー樹脂が、エポキシ樹脂を含み、前記バインダー樹脂に占める前記エポキシ樹脂の割合が、25体積%以上であり、前記吸油剤が、前記平均膜厚の半分以上等倍以下の粒径を有し、前記塗膜が、前記吸油剤を5体積%以上含み、前記表面処理鋼板が、1%以上20%以下の60°光沢を有する。変形例に係る表面処理鋼板においては、例えば、膜厚に対して所定の大きさの吸油剤を含むことで、吸油剤の周囲の樹脂が吸油剤に吸い取られ、結果としてラフネスが付与されて、60°光沢が1%以上20%以下となる。このような構成を備える表面処理鋼板は、溶接性、耐食性及び電着塗装後の塗膜密着性に優れる。例えば、電着塗装後のSDTにおけるブリスターや塗膜剥離の発生が抑制され、SDT後においても優れた耐食性を有する。
 以下、実施例を示しつつ本発明についてさらに説明するが、本発明は以下の実施例に限定されるものではない。本発明は、本発明要旨を逸脱せず、本発明目的を達する限りにおいては、種々の条件を採用可能とするものである。
1.表面処理鋼板の製造
1.1 合金化溶融亜鉛めっき鋼板の準備
 以下の5種の亜鉛系めっき鋼板と冷延鋼板を準備し、水系アルカリ脱脂剤(日本パーカライジング(株)製FC-301)の水溶液(2.5質量%、40℃)に2分間浸漬して表面を脱脂した後、水洗、乾燥して表面処理用の基材金属板とした。
 GA:合金化溶融亜鉛めっき鋼板(板厚0.8mm、10質量%Fe、めっき付着量45g/m
 ZA1:Zn-Al-Mg3元系溶融亜鉛めっき鋼板(Zn-11%Al-3%Mg-0.2%Si)(板厚0.8mm、10質量%Fe、めっき付着量60g/m
 ZA2:Zn-Al-Mg3元系溶融亜鉛めっき鋼板(Zn-6%Al-3%Mg)(板厚0.8mm、10質量%Fe、めっき付着量60g/m
 ZL:電気Zn-10質量%Ni合金めっき鋼板(板厚0.8mm、めっき付着量40g/m
 GI:溶融亜鉛めっき鋼板(板厚0.8mm、めっき付着量60g/m
 EG:電気亜鉛めっき鋼板(板厚0.8mm、めっき付着量40g/m
 CR:冷延鋼板(板厚0.8mm、めっき無し)
1.2 内層(化成処理皮膜)の形成
 次に、以下の化成処理用の処理液Sを準備し、当該処理液を表3及び4に示される付着量となるようにバーコートの番手を変更しつつ、上記の基材金属板上に塗布し、その後、熱風炉にて金属板表面への到達温度が70℃となるようにしつつ乾燥し、風乾することで、金属板の表面に化成処理皮膜を形成した。化成処理皮膜の平均膜厚は0.2μmであった。
 S:Zr化合物、シランカップリング剤、シリカ微粒子、ポリエステル樹脂からなるNv10%の化成処理用の処理液
1.3 外層(塗膜)の形成
 次に、表1及び2に示される組成比(体積%)を有する塗膜を形成するため、表1及び2と同様の固形分濃度となるように各成分を混合し、塗膜形成用の塗料組成物を準備した。この組成物を表3及び4に示される付着量となるようにバーコートの番手や希釈率を変更しつつ、基材金属板上又は化成処理皮膜上にバーコータで塗布し、最高到達温度200℃となる条件でオーブンを用いて乾燥することにより、外層としての塗膜を形成した。塗膜の平均膜厚は表3及び4に示される膜厚(μm)であった。尚、塗料組成物に含まれる成分を以下に示す。
(吸油性顔料)
 SC:カルシウムイオン交換シリカ(Ca交換率9%)(吸油量300ml/100g、粒径2μm)
 Si1:シリカ(吸油量250ml/100g、粒径2μm)
 Si2:シリカ(吸油量100ml/100g、粒径1、2、3、5又は10μm)
 Si3:シリカ(吸油量50ml/100g、粒径2μm)
 FeO:酸化鉄(吸油量60ml/100g、粒径2μm)
(非吸油性顔料)
 PA :トリポリリン酸アルミニウム(吸油量10ml/100g、粒径2μm)
 PM :リン酸マグネシウム(吸油量30ml/100g、粒径2μm)
 Si4:シリカ(吸油量30ml/100g、粒径2μm)
(導電顔料)
 FeSi:フェロシリコン粒子(平均粒径3μm、70質量%以上のSiを含有)
 SUS :SUS粒子(平均粒径4μm)
 ZnO :ドープ型酸化亜鉛粒子(ハクスイテック(株)製23-Kt、平均粒径0.5μm)
(バインダー樹脂)
 B1:エポキシ樹脂(ADEKA社製 アデカレジンEP-4100)
 B2:ポリエステル樹脂(バイロン社製 バイロン200)
 B3:エポキシ樹脂(ADEKA社製 アデカレジンEM-0461N)
 B4:ポリエステル樹脂(バイロン社製 バイロナールMD1480)
 B5:ウレタン樹脂(第一工業製薬社製 スーパーフレックス150)
 B6:メラミン樹脂(allnex社製 サイメル325)
2.性能評価試験
 各々の表面処理鋼板に対して、以下の性能評価試験を行った。
2.1 温塩水浸漬試験(SDT)
(事前準備)
 各々の表面処理鋼板に対して、日本パーカライジング株式会社製の表面調整処理剤プレパレンX(商品名)を用いて、表面調整を室温で20秒実施した。更に、日本パーカライジング株式会社製の化成処理液(リン酸亜鉛処理液)「パルボンド3020(商品名)」を用いて、化成処理(リン酸塩処理)を実施した。化成処理液の温度は43℃とし、熱間プレス成形材を化成処理液に120秒間浸漬後、水洗・乾燥を行った。上記化成処理(リン酸塩処理)を実施した後、日本ペイント株式会社製のカチオン型電着塗料を、電圧160Vのスロープ通電で電着塗装し、更に、焼き付け温度170℃で20分間焼き付け塗装した。電着塗装後の電着塗装膜の膜厚の平均は、いずれのサンプルも10μmであった。
(SDT時耐食性)
 上記電着塗装後、表面処理鋼板の端面をシールテープし、50℃の温度を有する3%NaCl水溶液に、500時間浸漬した。浸漬試験後取り出したサンプルを乾燥し、電着塗膜表面に存在するブリスターの面積率を目視で測定した。かかる耐食性試験において、「3」である場合、ある程度の耐食性を有するものと判断し、「4」又は「5」である場合、耐食性に優れると判断した。結果を表3及び4に示す。
 1:評価面からのブリスター面積率が50%以上
 2:評価面からのブリスター面積率が5%以上50%未満
 3:評価面からのブリスター面積率が1%以上5%未満
 4:評価面からブリスターは、発生するものの1%未満
 5:ブリスター発生なし
2.2 SDT後耐食性試験
 温塩水浸漬試験後の電着塗装を施した表面処理鋼板に対して、下記サイクル条件のサイクル腐食試験を120サイクル実施した。
(サイクル条件)
 塩水噴霧(SST、5%NaCl、35℃雰囲気)2hr、乾燥(60℃)2hr、及び湿潤(50℃、98%RH)4hrを1サイクルとして、実施した。
 その後、平面部からの腐食状況を観察し、下記評点を付与した。かかる耐食性試験において、「3」、「4」又は「5」である場合、耐食性に優れると判断した。結果を表3及び4に示す。
 1:評価面からの白錆発生面積率が50%以上又は、評価面からの赤錆発生が確認
 2:評価面からの白錆発生面積率が10%以上50%未満
 3:評価面からの白錆発生面積率が5%以上10%未満
 4:評価面からの白錆発生面積率が1%以上5%未満
 5:評価面からの白錆発生面積率が1%未満
2.3 スポット溶接性
 各々の表面処理鋼板を、先端径5mm、R40のCF型Cr-Cu電極を用い、加圧力1.96kN、溶接電流8kA、通電時間12サイクル/50Hzにてスポット溶接の連続打点性試験を行い、ナゲット径が3√t(tは板厚)を下回る直前の打点数を求めた。以下の評価点を用いてスポット溶接性の優劣を評価した。かかる溶接性試験において、「4」、「5」又は「6」である場合、溶接性に優れると判断した。結果を表3及び4に示す。
 1:ナゲットが生成せず1点も溶接できない、又は、打点数が10打点未満
 2:打点数が10打点以上50打点未満
 3:打点数が50打点以上200打点未満
 4:打点数が200点以上1000打点未満
 5:打点数が1000点以上2000打点未満
 6:打点数が2000点以上
2.4 60°光沢
 各々の表面処理鋼板について、BYK社製マイクロトリグロスによって60°光沢を測定した。測定された60°光沢値(%)を表3及び4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
3.結果と考察
 表1~4に示される結果から以下のことが分かる。
 No.1及び2は、塗膜に50ml/100gの吸油量を有する吸油性顔料が含まれるものの、その含有量が5体積%未満であったため、塗膜形成時に吸油性顔料へと樹脂等が十分に吸収されず、塗膜の表面が平滑化した。その結果、塗膜と電着塗装膜との間に十分な密着性が得られず、SDT後耐食性に劣る結果となった。
 No.23については、塗膜に含まれるSi4が、吸油量50ml/100g未満の非吸油性顔料であり、塗膜形成時に非吸油性顔料へと樹脂等が吸収されず、塗膜の表面が平滑化した。その結果、塗膜と電着塗装膜との間に十分な密着性が得られず、SDT後耐食性に劣る結果となった。
 No.25及び26については、塗膜に含まれるPA、PMが、吸油量50ml/100g未満の非吸油性顔料であり、塗膜形成時に非吸油性顔料へと樹脂等が吸収されず、塗膜の表面が平滑化した。その結果、SDT時に多量のブリスターが発生し、SDT後耐食性にも劣る結果となった。
 No.28については、塗膜を構成するバインダー樹脂がエポキシ樹脂を含んでいなかったため、塗膜と電着塗装膜との密着性が悪かった。その結果、SDT時に多量のブリスターが発生し、SDT後耐食性にも劣る結果となった。
 No.29及び30については、塗膜を構成するバインダー樹脂に占めるエポキシ樹脂の割合が小さ過ぎたため、塗膜と電着塗装膜との密着性が悪かった。その結果、SDT時に多量のブリスターが発生し、SDT後の耐食性にも劣る結果となった。
 No.43については、吸油性顔料の粒径が塗膜の膜厚の0.33倍(1/3)と半分未満であったことから、塗膜形成時に吸油性顔料へと樹脂等が十分に吸収されず、塗膜の表面が平滑化した。その結果、塗膜と電着塗装膜との間に十分な密着性が得られず、SDT時に多量のブリスターが発生し、SDT後の耐食性にも劣る結果となった。
 No.45及び46については、吸油性顔料の粒径が塗膜の膜厚の1.67倍及び3.33倍と等倍超であったことから、塗膜から吸油性顔料が脱落し易い状態にあった。また、吸油性顔料が塗膜中の樹脂を過剰に吸い取ったことで、樹脂の厚みが過剰に薄くなった。その結果、SDT時に多量のブリスターが発生した。また、No.46については、スポット溶接時に電極の先端が吸油性顔料に接触してしまい、導電顔料への導通を阻害して、スポット溶接性が低下した。
 No.47については、No.1と同様に、塗膜に含まれる吸油性顔料の体積%が5%未満であったため、SDT後耐食性が大きく劣る結果となった。
 No.54及び55については、No.28と同様に、塗膜を構成するバインダー樹脂がエポキシ樹脂を含んでいなかったため、塗膜と電着塗装膜との密着性が悪かった。その結果、SDT時に多量のブリスターが発生し、SDT後耐食性にも劣る結果となった。
 No.63については、Znめっき層を有しない鋼板を用いたため、SDT時に多量のブリスターが発生したほか、SDT後の耐食性に大きく劣る結果となった。
 No.64については、塗膜の膜厚が1.0μm未満であったため、塗膜から吸油性顔料が脱落し易い状態にあった。また、塗膜が薄過ぎたため、十分な耐食性が確保され難かった。その結果、SDT時に多量のブリスターが発生し、SDT後の耐食性にも劣る結果となった。
 No.67については、No.43と同様に、吸油性顔料の粒径が塗膜の膜厚の0.33倍(1/3)と半分未満であったことから、塗膜形成時に吸油性顔料へと樹脂等が十分に吸収されず、塗膜の表面が平滑化した。その結果、塗膜と電着塗装膜との間に十分な密着性が得られず、SDT時に多量のブリスターが発生した。
 No.71については、塗膜の膜厚が15.0μmと厚過ぎたため、スポット溶接性に劣る結果となった。
 これに対し、No.3~22、24、27、31~42、44、48~53、56~62、65、66、68~70、72、及び、73については、(1)塗膜が、1.0μm以上10.0μm以下の平均膜厚を有し、(2)塗膜が、バインダー樹脂と、吸油剤と、導電剤とを含み、(3)バインダー樹脂が、エポキシ樹脂を含み、(4)バインダー樹脂に占めるエポキシ樹脂の割合が、25体積%以上であり、(5)吸油剤が、50ml/100g以上の吸油量を有し、(6)吸油剤が、平均膜厚の半分以上等倍以下の粒径を有し、(7)塗膜が、吸油剤を5体積%以上含むことから、優れた溶接性を有するとともに、SDT時のブリスターも抑制でき、SDT後の耐食性にも優れたものとなった。
 尚、バインダー樹脂B1及びB2は溶剤系樹脂であり、バインダー樹脂B3~B5は水系樹脂である。上記の結果から明らかなように、本開示の技術は、溶剤系樹脂及び水系樹脂のいずれにも適用可能である。
 以上の結果から、以下の要件を満たす表面処理鋼板は、優れた溶接性及び耐食性を有し、電着塗装後の塗膜密着性にも優れるものといえる。
 表面処理鋼板であって、
 Zn含有めっき層を有するめっき鋼板と、
 前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有し、
 前記表面処理層が、少なくとも、外層としての塗膜を有し、
 前記塗膜が、1.0μm以上10.0μm以下の平均膜厚を有し、
 前記塗膜が、バインダー樹脂と、吸油剤と、導電剤とを含み、
 前記バインダー樹脂が、エポキシ樹脂を含み、
 前記バインダー樹脂に占める前記エポキシ樹脂の割合が、25体積%以上であり、
 前記吸油剤が、50ml/100g以上の吸油量を有し、
 前記吸油剤が、前記平均膜厚の半分以上等倍以下の粒径を有し、
 前記塗膜が、前記吸油剤を5体積%以上含む、
 表面処理鋼板。
4.塗料の乾燥条件についての検討
 鋼板(上記のGA)に対して、上記と同様にして化成処理皮膜を形成したうえで、塗膜形成用の塗料(上記の塗料No.3又は6)を化成処理皮膜上にバーコータで塗布し、最高到達温度200℃となる条件でオーブンを用いて乾燥させて、外層としての塗膜を形成した。このとき、塗料の乾燥条件を変更することで、乾燥条件が塗膜表面のラフネスに与える影響を確認した。具体的には、乾燥時の昇温速度を5.0℃/s、10.0℃/s、25.0℃/s、50.0℃/s又は100.0℃/sに制御した。下記表5に、鋼板の種類、化成処理皮膜の膜厚、塗料の種類、塗膜の膜厚、塗料乾燥時の昇温速度、及び、吸油性顔料の粒子径と塗膜膜厚との比を示す。
 上記のようにして得られた表面処理鋼板について、上記と同様の性能評価を行った。結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示される結果から明らかなように、塗料を乾燥させる際の昇温速度が高速であるほど、塗膜のラフネスが大きくなり、表面処理鋼板の60°光沢値が小さくなることが分かる。以上の通り、塗膜の種類だけでなく、塗膜形成時の乾燥条件を制御することで、表面処理鋼板の60°光沢を一層低下させることができ、電着塗装後の塗膜密着性を一層向上させることができるといえる。

Claims (9)

  1.  表面処理鋼板であって、
     Zn含有めっき層を有するめっき鋼板と、
     前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有し、
     前記表面処理層が、少なくとも、外層としての塗膜を有し、
     前記塗膜が、1.0μm以上10.0μm以下の平均膜厚を有し、
     前記塗膜が、バインダー樹脂と、吸油剤と、導電剤とを含み、
     前記バインダー樹脂が、エポキシ樹脂を含み、
     前記バインダー樹脂に占める前記エポキシ樹脂の割合が、25体積%以上であり、
     前記吸油剤が、50ml/100g以上の吸油量を有し、
     前記吸油剤が、前記平均膜厚の半分以上等倍以下の粒径を有し、
     前記塗膜が、前記吸油剤を5体積%以上含む、
     表面処理鋼板。
  2.  前記表面処理鋼板が、1%以上20%以下の60°光沢を有する、
     請求項1に記載の表面処理鋼板。
  3.  前記吸油剤が、シリカである、
     請求項1又は2に記載の表面処理鋼板。
  4.  前記導電剤が、ドープ型酸化物粒子、50質量%以上のSiを含有するSi合金、50質量%以上のSiを含有するSi化合物、又は、これらの複合体であり、
     前記塗膜が、前記導電剤を5体積%以上30体積%以下含む、
     請求項1~3のいずれか1項に記載の表面処理鋼板。
  5.  前記ドープ型酸化物粒子が、ドープ型酸化亜鉛粒子である、
     請求項4に記載の表面処理鋼板。
  6.  前記Si合金又は前記Si化合物が、70質量%以上のSiを含有するフェロシリコンである、
     請求項4又は5に記載の表面処理鋼板。
  7.  前記塗膜が、前記吸油剤を10体積%以上含み、
     前記表面処理鋼板が、1%以上15%以下の60°光沢を有する、
     請求項1~6のいずれか1項に記載の表面処理鋼板。
  8.  前記表面処理層が、前記塗膜と前記めっき鋼板との間の内層として、無機系又は有機無機複合系の皮膜を有し、
     前記皮膜が、0.1μm以上1.0μm以下の平均膜厚を有する、
     請求項1~7のいずれか1項に記載の表面処理鋼板。
  9.  表面処理鋼板であって、
     Zn含有めっき層を有するめっき鋼板と、
     前記めっき鋼板の少なくとも一方の主面に設けられた表面処理層と、を有し、
     前記表面処理層が、少なくとも、外層としての塗膜を有し、
     前記塗膜が、1.0μm以上10.0μm以下の平均膜厚を有し、
     前記塗膜が、バインダー樹脂と、吸油剤と、導電剤とを含み、
     前記バインダー樹脂が、エポキシ樹脂を含み、
     前記バインダー樹脂に占める前記エポキシ樹脂の割合が、25体積%以上であり、
     前記吸油剤が、前記平均膜厚の半分以上等倍以下の粒径を有し、
     前記塗膜が、前記吸油剤を5体積%以上含み、
     前記表面処理鋼板が、1%以上20%以下の60°光沢を有する、
     表面処理鋼板。
PCT/JP2023/013368 2022-03-31 2023-03-30 表面処理鋼板 WO2023190971A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060595 2022-03-31
JP2022060595 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190971A1 true WO2023190971A1 (ja) 2023-10-05

Family

ID=88202248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013368 WO2023190971A1 (ja) 2022-03-31 2023-03-30 表面処理鋼板

Country Status (1)

Country Link
WO (1) WO2023190971A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107654A (ja) * 2002-08-22 2004-04-08 Nippon Paint Co Ltd 亜鉛めっき鋼板用カチオン電着塗料組成物
JP2004183080A (ja) * 2002-12-06 2004-07-02 Nippon Steel Corp 導電性、耐食性、成形性に優れる被覆金属板
JP2006219731A (ja) * 2005-02-10 2006-08-24 Kansai Paint Co Ltd プレコートメタルの裏面用塗料組成物、及びこれを用いたプレコートメタル
JP2010514886A (ja) * 2006-12-27 2010-05-06 ポスコ 優れた放熱黒色樹脂組成物、これを利用した亜鉛めっき鋼板処理方法、及びこれにより処理されためっき鋼板
JP2017122186A (ja) * 2016-01-08 2017-07-13 新日鐵住金株式会社 塗料組成物およびそれを用いた塗装部材
WO2018092244A1 (ja) * 2016-11-17 2018-05-24 新日鐵住金株式会社 表面処理鋼板および塗装部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107654A (ja) * 2002-08-22 2004-04-08 Nippon Paint Co Ltd 亜鉛めっき鋼板用カチオン電着塗料組成物
JP2004183080A (ja) * 2002-12-06 2004-07-02 Nippon Steel Corp 導電性、耐食性、成形性に優れる被覆金属板
JP2006219731A (ja) * 2005-02-10 2006-08-24 Kansai Paint Co Ltd プレコートメタルの裏面用塗料組成物、及びこれを用いたプレコートメタル
JP2010514886A (ja) * 2006-12-27 2010-05-06 ポスコ 優れた放熱黒色樹脂組成物、これを利用した亜鉛めっき鋼板処理方法、及びこれにより処理されためっき鋼板
JP2017122186A (ja) * 2016-01-08 2017-07-13 新日鐵住金株式会社 塗料組成物およびそれを用いた塗装部材
WO2018092244A1 (ja) * 2016-11-17 2018-05-24 新日鐵住金株式会社 表面処理鋼板および塗装部材

Similar Documents

Publication Publication Date Title
TWI679303B (zh) 表面處理鋼板及表面處理鋼板的製造方法
CN101512045B (zh) 具有优良的耐腐蚀性和涂料密合性的Sn系镀覆钢板用水系处理液以及表面处理钢板的制造方法
ES2934840T3 (es) Composición de solución de tratamiento superficial para láminas de acero chapadas con aleación de zinc por inmersión en caliente con base ternaria, que proporciona una excelente resistencia a la corrosión y resistencia al ennegrecimiento, láminas de acero chapadas con aleación de zinc por inmersión en caliente con base ternaria usando la misma, y proce-dimiento de fabricación de la misma
TWI550099B (zh) Galvanized steel sheet containing aluminum and its manufacturing method
CN110073034B (zh) 表面处理钢板以及涂装构件
WO2016159300A1 (ja) 亜鉛系めっき鋼板
KR101249583B1 (ko) 내식성이 우수한 크로메이트-프리 피복 용융 아연 도금 강판
KR20210129681A (ko) 표면 처리 금속재
KR20170118844A (ko) 아연계 도금 강판
TW202237868A (zh) 溶融Al-Zn-Si-Mg系鍍敷鋼板及其製造方法、表面處理鋼板及其製造方法、以及塗裝鋼板及其製造方法
TWI592516B (zh) Fuel tank steel plate
WO2023190971A1 (ja) 表面処理鋼板
JP6943232B2 (ja) 表面処理液、表面処理鋼板の製造方法、および表面処理鋼板
JP7127628B2 (ja) 表面処理液、表面処理鋼板の製造方法、および表面処理鋼板
JP6680412B1 (ja) 表面処理鋼板
WO2023190979A1 (ja) 表面処理鋼板、及び、部品の製造方法
JP5293050B2 (ja) 自動車部材
JP4283698B2 (ja) 端面耐食性に優れるプレコート鋼板およびその製造方法
JP2010202960A (ja) 溶融金属が表面に付着し難い亜鉛系めっき鋼板
JP2023151286A (ja) 表面処理鋼板
JP2023030634A (ja) 表面処理鋼板
JP3555604B2 (ja) 耐食性、成形性に優れた表面処理鋼板およびその製造方法
WO2022102710A1 (ja) 表面処理金属板
JP2023030618A (ja) 表面処理鋼板
WO2024075833A1 (ja) 表面処理鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780979

Country of ref document: EP

Kind code of ref document: A1