WO2023190080A1 - 接合体の製造方法及び被接合体の接合方法 - Google Patents

接合体の製造方法及び被接合体の接合方法 Download PDF

Info

Publication number
WO2023190080A1
WO2023190080A1 PCT/JP2023/011636 JP2023011636W WO2023190080A1 WO 2023190080 A1 WO2023190080 A1 WO 2023190080A1 JP 2023011636 W JP2023011636 W JP 2023011636W WO 2023190080 A1 WO2023190080 A1 WO 2023190080A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating step
heating
joined
copper
bonded
Prior art date
Application number
PCT/JP2023/011636
Other languages
English (en)
French (fr)
Inventor
哲 紺野
真一 山内
圭 穴井
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2023190080A1 publication Critical patent/WO2023190080A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present invention relates to a method for manufacturing a bonded body and a method for joining objects to be bonded.
  • Patent Document 1 a paste containing two types of copper particles having different particle sizes is applied between two objects to be joined, and the paste is sintered by heating in a reducing atmosphere. Describes how to join things together.
  • a reducing gas such as hydrogen or formic acid is used as the reducing atmosphere.
  • an object of the present invention is to provide a method for manufacturing a bonded body and a method for joining objects to be bonded, in which the generation of voids during sintering of particles is suppressed.
  • the present invention is a method for manufacturing a bonded body in which a first body to be bonded and a second body to be bonded are bonded via a bonding layer, a step of applying a paste containing copper particles and an organic solvent to the first object to be joined to form a coating film; placing the second object to be joined on the coating film to form a laminate; a first heating step of heating the laminate gradually; a second heating step of heating the laminate at a temperature higher than the heating temperature in the first heating step and 250° C. or lower to sinter the copper particles in the coating film and form the bonding layer. , performing the first heating step in an inert atmosphere;
  • the present invention provides a method for manufacturing a bonded body in which the second heating step is performed in a reducing atmosphere.
  • the present invention provides a method for joining objects to be bonded, which includes bonding a first object to be bonded and a second object to be bonded via a bonding layer, a step of applying a paste containing copper particles and an organic solvent to the first object to be joined to form a coating film; placing the second object to be joined on the coating film to form a laminate; a first heating step of heating the laminate gradually; The laminate is heated at a temperature higher than the heating temperature in the first heating step and 250° C. or lower to sinter the copper particles in the coating film and form the first object to be joined and the second object to be joined. and a second heating step for joining the performing the first heating step in an inert atmosphere;
  • the present invention provides a method for joining objects to be joined, in which the second heating step is performed in a reducing atmosphere.
  • the bonded body manufactured by the method of the present invention has a structure in which a first object to be bonded and a second object to be bonded are bonded via a bonding layer.
  • the bonding layer is made of a sintered body formed by firing a paste containing copper particles and an organic solvent.
  • the method for manufacturing the joined body of the present invention is roughly divided into the following steps.
  • a first heating step of heating the laminate gradually.
  • these steps are performed sequentially. Each of these steps will be explained below.
  • a paste containing copper particles and an organic solvent (hereinafter also referred to as "copper paste”) is applied to the first object to be joined to form a coating film.
  • the first object to be welded includes metal on its surface to be welded.
  • a member having a surface made of metal can be used as the first object to be joined.
  • metal refers to a metal itself that does not form a compound with other elements, or an alloy of two or more metals. Examples of such metals include copper, silver, gold, aluminum, palladium, nickel, and alloys consisting of a combination of two or more thereof.
  • the surface made of metal may be made of one type of metal, or may be made of two or more types of metal. When composed of two or more metals, the surface may be an alloy. Generally, it is preferable that the metal surface be a flat surface, but it may be a curved surface in some cases.
  • the first object to be bonded examples include a spacer made of the above-mentioned metal, a heat sink, a semiconductor element, a substrate having at least one of the above-mentioned metals on its surface, and the like.
  • the substrate examples include an insulating substrate having a metal layer such as copper on the surface of a ceramic or aluminum nitride plate.
  • the semiconductor element can contain one or more elements such as Si, Ga, Ge, C, N, and As.
  • the copper particles contained in the copper paste include both pure copper particles and copper-based alloy particles.
  • the copper particles contained in the copper paste may be pure copper particles only, copper-based alloy particles only, or a mixture of pure copper particles and copper-based alloy particles.
  • copper is contained in an amount of 90% by mass or more.
  • the copper particles contained in the copper paste have a particle size of 0.11 ⁇ m or more.
  • the particle size of the copper particles is preferably less than 1 ⁇ m, more preferably 0.8 ⁇ m or less, and even more preferably 0.6 ⁇ m or less.
  • the particle size of copper particles refers to the average particle size of primary particles, and specifically refers to the particle size determined by the following method.
  • Copper particles can be manufactured by various methods known in the art.
  • copper powder can be produced by a wet reduction method, an atomization method, an electrolytic method, or the like.
  • the method to be adopted can be selected as appropriate depending on the particle size, shape, etc. of the copper powder.
  • the copper particles may have, for example, a spherical shape, a polyhedral shape such as a hexahedron or an octahedron, a flake shape (plate shape), or an irregular shape.
  • the copper paste may be composed of copper particles having only one of these shapes, or may be composed of a combination of copper particles having two or more shapes. Alternatively, a mixture of copper particles having a predetermined average particle size and copper particles having a different average particle size may be used.
  • cuprous particles having an average particle size of 0.11 ⁇ m or more and less than 1 ⁇ m and cupric particles having an average particle size of 1 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size is preferably 1 ⁇ m or more and 8 ⁇ m or less, more preferably 1 ⁇ m or more and 6 ⁇ m or less.
  • both the cuprous particles and the cupric particles be spherical from the viewpoint of making the above-mentioned advantages even more remarkable.
  • the ratio of the cuprous particles to the total mass of the cuprous particles and the cupric particles is preferably 10% by mass or more and 95% by mass or less, from the viewpoint of making the above-mentioned advantages even more remarkable. It is more preferably at least 75% by mass, and even more preferably at least 20% by mass and at most 55% by mass.
  • the surface of the copper particles may be treated with an organic surface treatment agent.
  • the organic surface treatment agent is an agent for suppressing aggregation between copper particles.
  • Agents suitably used in the present invention to suppress agglomeration between copper particles are, for example, various fatty acids, aliphatic amines, and complexing agents having an affinity for copper.
  • fatty acids or aliphatic amines include benzoic acid, pentanoic acid, hexanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, palmitic acid, oleic acid, stearic acid, pentylamine, hexylamine, Examples include octylamine, decylamine, laurylamine, oleylamine, and stearylamine.
  • complexing agents having an affinity for copper include amino acids such as glycine, dimethylglyoxime, and the like. These fatty acids, aliphatic amines, and complexing agents can be used alone or in combination of two or more.
  • the proportion of copper particles contained in the copper paste is preferably 76% by mass or more, more preferably 80% by mass or more, and even more preferably 85% by mass or more. On the other hand, it is preferably 97% by mass or less, and may be 96% by mass or less. By setting the proportion of copper particles to 76% by mass or more, it is possible to make it difficult for voids to occur in the sintered body. On the other hand, by setting the proportion of copper particles to 97% by mass or less, or 96% by mass or less, the workability when applying the copper paste to the first object to be joined becomes good. In addition, when the said copper particle is comprised by combining two or more types, the ratio of the copper particle contained in the said copper paste shall be calculated based on the total amount of the copper particle.
  • organic solvent contained in the copper paste conventionally known organic solvents can be used without particular limitation. Examples include monoalcohols, polyhydric alcohols, ketones, ethers, polyhydric alcohol alkyl ethers, polyhydric alcohol aryl ethers, aliphatic organic acids, esters, nitrogen-containing heterocyclic compounds, amides, amines, and saturated hydrocarbons. It will be done. These organic solvents can be used alone or in combination of two or more.
  • alcohols such as propylene glycol, ethylene glycol, hexylene glycol, diethylene glycol, 1,3-butanediol, 1,4-butanediol, dipropylene glycol, tripropylene glycol, terpineol and dihydroterpineol, ethyl carbitol and At least one of ethers such as butyl carbitol and aliphatic organic acids are preferred, and aliphatic organic acids are particularly preferred.
  • Examples of the aliphatic organic acids include carboxylic acids.
  • Examples of the carboxylic acid include a branched primary carboxylic acid, a secondary carboxylic acid, and a tertiary carboxylic acid, preferably a secondary or tertiary carboxylic acid, and more preferably a secondary or tertiary carboxylic acid. It is a tertiary carboxylic acid.
  • carboxylic acid By using such a carboxylic acid, the bulkiness of the molecular structure of the carboxylic acid makes it possible to maintain appropriate dispersibility among particles, making it easier to suppress the generation of voids when copper particles are sintered together. .
  • Suitable carboxylic acids in the present invention include, for example, isobutyric acid, pivalic acid, 2,2-methylbutyric acid, isopentanoic acid, isohexanoic acid, isoheptanoic acid, isooctanoic acid, isononanoic acid, isodecanoic acid, neodecanoic acid, isotridecanoic acid, Branched and aliphatic saturated monocarboxylic acids such as tetradecanoic acid, isopalmitic acid, and isostearic acid; branched aliphatic unsaturated monocarboxylic acids such as methacrylic acid; unsaturated tricarboxylic acids such as aconitic acid, etc.
  • One or more types can be mentioned. These can be used alone or in combination.
  • the amount of organic solvent in the copper paste is not particularly limited as long as it has a viscosity that allows the copper paste to be made into a coating film, but generally it is contained in 3% by mass or more and 24% by mass or less in 100% by mass of the copper paste. It is preferable.
  • the copper paste may contain an appropriate adjusting agent for adjusting various properties.
  • the modifier include reducing agents, viscosity modifiers, and surface tension modifiers.
  • the viscosity of the copper paste can be measured using a rheometer MARS III manufactured by Thermo Scientific. From the viewpoint of improving the coatability or printability of the copper paste, the viscosity value at a shear rate of 10 s -1 is preferably 10 Pa-s or more and 200 Pa-s or less, and preferably 15 Pa-s or more and 200 Pa-s or less. More preferred.
  • the conditions for measuring the viscosity of copper paste are as follows. Measurement mode: Shear rate dependent measurement Sensor: Parallel type ( ⁇ 20mm) Measurement temperature: 25°C Gap: 0.300mm Shear rate: 0.05 ⁇ 120.01s -1 Measurement time: 2 minutes
  • a copper paste containing the above components is applied to the first object to be bonded to form a coating film.
  • the method for applying the copper paste is not particularly limited, and examples thereof include screen printing, gravure printing, dispense printing, reverse coating, and doctor blade methods.
  • the thickness of the coating film thus formed is preferably 1 ⁇ m or more and 500 ⁇ m or less, more preferably 5 ⁇ m or more and 300 ⁇ m or less.
  • the second object to be bonded is placed on this coating film, and the first object, the coating film, and the second object to be bonded are laminated in this order. to form a laminate.
  • the same one as the first object to be bonded described above can be used without particular limitation.
  • the first object to be bonded is, for example, a substrate
  • the second object to be bonded is, for example, a spacer, a heat sink, or a semiconductor element.
  • First heating step The laminate formed as described above is subjected to a first heating step in which it is heated gradually. In this step, the laminate is generally heated from around room temperature to remove the organic solvent contained in the coating film. In this step, sintering of the copper particles contained in the coating film does not occur.
  • heating gradually means heating continuously from the start of heating in the first heating step until reaching the maximum temperature described below. Note that after reaching the maximum temperature, the temperature may be kept constant (for example, for about 10 minutes or more and 120 minutes or less). Further, in the first heating step, it is acceptable that the heating temperature temporarily becomes constant (preferably less than 5 minutes, more preferably within 3 minutes) or that the heating temperature decreases.
  • the organic solvent contained in the coating film can be gradually removed, making it difficult for voids to occur when copper particles are sintered in the second heating step, which will be described later. There is an advantage.
  • Heating in this step may be performed so that the temperature increases linearly with the passage of time, may be performed so that the temperature increases exponentially, or may be performed so that the temperature increases logarithmically. Alternatively, a temperature increase line may be drawn by combining them. Regardless of the heating mode, it is desirable to perform the heating in an inert atmosphere. By performing the first heating in an inert atmosphere, together with the second heating in an atmosphere described later, it is possible to effectively suppress the generation of voids in the sintered body formed by firing. . In contrast, when the first heating step is performed in a reducing atmosphere, the removal of the organic solvent from the coating film and the sintering of the copper particles in the coating proceed simultaneously, resulting in a sintered body. Voids are more likely to occur inside.
  • Examples of the inert atmosphere employed in the first heating step include a nitrogen gas atmosphere and a rare gas atmosphere such as argon and neon. From the viewpoint of economy, it is preferable to use a nitrogen gas atmosphere.
  • the inert atmosphere used in the main heating process does not contain gases other than inert gases, such as reducing gases such as hydrogen gas, and oxidizing gases such as oxygen gas and air, except for gases that are unavoidably mixed in. Not done.
  • the heating of the laminate in the first heating step is performed at a temperature increase rate of 0.01°C/s or more and 1°C/s or less, so that the organic solvent contained in the coating film can be gradually removed.
  • the heating rate in this step is more preferably 0.01°C/s or more and 0.8°C/s or less, and 0.01°C/s or more and 0.8°C/s or less. More preferably, it is .6°C/s or less.
  • the end temperature of the first heating step in other words, the maximum temperature of heating in the first heating step is preferably 110°C or more and Bp°C or less, where Bp is the boiling point of the organic solvent contained in the copper paste. This is preferable because the solvent evaporates and the water absorbed by the copper paste evaporates well, making it easier to suppress the generation of voids. From the viewpoint of making this advantage even more remarkable, the maximum temperature in the first heating step is more preferably 140°C or more and 240°C or less, and even more preferably 160°C or more and 240°C or less.
  • the organic solvent contained in the copper paste is an aliphatic organic acid
  • setting the maximum heating temperature in the first heating step to 240°C or less suppresses the generation of voids due to rapid evaporation of the organic solvent component. It is preferable from the viewpoint of possibility.
  • the laminate subjected to the first heating step is then subjected to the second heating step.
  • the laminate is heated to a temperature equal to or higher than the heating temperature in the first heating step to sinter the copper particles in the coating film to form a sintered body, that is, a bonding layer.
  • the second heating step is distinguished from the first heating step described above by the difference in atmosphere. Specifically, while the atmosphere in the first heating step was an inert atmosphere, the atmosphere in the second heating step was a reducing atmosphere. Thus, in this manufacturing method, by employing a combination of an inert atmosphere and a reducing atmosphere, the generation of voids in the sintered body is effectively suppressed.
  • the reducing atmosphere employed in the second heating step is an atmosphere containing a reducing gas.
  • the reducing gas include hydrogen, formic acid, carbon monoxide, and ammonia.
  • One type of these reducing gases can be used alone, or two or more types can be used in combination.
  • these reducing gases when a gas containing formic acid is used, the oxide film existing on the surface of the copper particles is easily removed by the formic acid, thereby increasing the surface activity of the copper particles and sintering the copper particles together at low temperatures. This is preferable because it makes it easier to proceed.
  • the reducing atmosphere employed in the second heating step only a reducing gas may be used, or other gases may be used in addition to the reducing gas.
  • the other gas include an inert gas used in the first heating step. Specifically, nitrogen gas, rare gas, etc. can be used.
  • the concentration of the reducing gas in the mixed atmosphere is preferably 1 vol% or more, particularly 2 vol% or more. This is preferable because the oxide film present on the surface of the copper particles is easily removed by a reducing gas such as formic acid, thereby increasing the surface activity of the copper particles and facilitating sintering of the copper particles with each other at low temperatures.
  • the temperature change rate itself in the second heating step is -0.1°C/s or more and 1.0°C/s or less, assuming that the heating temperature in the second heating step is higher than or equal to the heating temperature in the first heating step.
  • the sintering temperature is ⁇ 0.1° C./s or more and 0.5° C./s or less because sintering can proceed appropriately without causing uneven sintering.
  • the temperature increase rate in the second heating step is -0.1°C/s or more and 0.3°C/s or less.
  • the rate of temperature change in the second heating step is not constant, it is sufficient that the average value of the rate of temperature change falls within the above range. Note that the temperature change rate includes 0° C./s.
  • the maximum heating temperature in the second heating step is 250° C. or lower from the viewpoint of suppressing voids that may occur due to the residual solvent volatilizing all at once.
  • the heating time in the second heating step is 10 minutes or more and 180 minutes or less.
  • the completion of the second heating step is performed by switching the atmosphere within the system to an inert atmosphere and lowering the temperature within the system.
  • heating may be stopped and the system may be cooled naturally, or a cooling gas (this gas is an inert gas) may be circulated.
  • a cooling gas this gas is an inert gas
  • the type of inert atmosphere may be the same as in the first heating step.
  • the laminate may be pressurized or may be in a non-pressurized state.
  • the unpressurized state is a state in which no pressure other than its own weight is applied. Since voids occur in a sintered body of copper particles more often in an unpressurized state than in a pressurized state, this manufacturing method, which suppresses the occurrence of voids, is suitable for heating in a non-pressurized state. It is valid.
  • the bonded body obtained by the present manufacturing method the generation of voids in the bonding layer made of the sintered body of copper particles is suppressed, so an increase in the electrical resistance of the bonding layer is suppressed. Therefore, the bonded body obtained by the present manufacturing method is suitably used for devices that handle large currents, such as in-vehicle electronic circuits and electronic circuits in which power devices are mounted.
  • an intermediate heating step in which a constant temperature is maintained in an inert atmosphere may be performed between the first heating step and the second heating step.
  • the inert atmosphere in the intermediate heating step can be the same as in the first heating step.
  • the present invention further discloses the following method for manufacturing a joined body and method for joining objects to be joined.
  • the organic solvent is an aliphatic organic acid
  • a method for joining objects to be bonded which joins a first object to be bonded and a second object to be bonded via a bonding layer, a step of applying a paste containing copper particles and an organic solvent to the first object to be joined to form a coating film; placing the second object to be joined on the coating film to form a laminate; a first heating step of heating the laminate gradually; The laminate is heated at a temperature higher than the heating temperature in the first heating step and 250° C. or lower to sinter the copper particles in the coating film and form the first object to be joined and the second object to be joined. and a second heating step for joining the performing the first heating step in an inert atmosphere; A method for joining objects to be joined, wherein the second heating step is performed in a reducing atmosphere.
  • Example 1 Preparation of copper paste
  • spherical cuprous particles CH-0200L1 manufactured by Mitsui Kinzoku Mining Co., Ltd.
  • Copper particles CS20 manufactured by Mitsui Kinzoku Mining Co., Ltd.
  • Neodecanoic acid Versatic 10 manufactured by Hexion Co., Ltd., boiling point of 270° C. or higher and 280° C. or lower
  • Neodecanoic acid was added to 10% of the copper paste at a concentration of 10% (the proportion of copper particles contained in the copper paste was 90%), and after preliminary kneading with a spatula, a rotating/revolution vacuum mixer manufactured by Shinky Co., Ltd. Using ARE-500, two cycles of stirring mode (1000 rpm x 1 minute) and defoaming mode (2000 rpm x 30 seconds) were performed to form a paste. This paste was further processed using a three-roll mill to perform further dispersion mixing, thereby preparing a copper paste of an example.
  • the copper paste is applied by screen printing to form a coating film on the chip mounting part of a copper lead frame (thickness 2.0 mm) as the first object to be bonded. did.
  • the coating film was formed into a 5 mm square.
  • the thickness of the coating film was 100 ⁇ m.
  • (3) Manufacture of laminate A 3 mm square SiC chip (thickness 0.2 mm) as a second object to be bonded is placed on the coating film, and the Digimatic is placed so that the thickness of the coating film is 50 ⁇ m. Adjustment was made using an indicator (manufactured by Mitutoyo).
  • First heating step The laminate was placed in a heating furnace. 100% nitrogen gas was passed through the heating furnace.
  • the flow rate of nitrogen gas was 3 L/min. Under this condition, the laminate was heated from room temperature (25°C) to 200°C. The temperature was increased linearly over time, and the temperature increase rate was 0.1° C./sec. (5) Second heating step When the temperature inside the heating furnace reached 200° C., the gas flowing through the heating furnace was switched to a reducing gas. Further, the temperature increase was stopped and the temperature in the heating furnace was maintained at 200°C. Nitrogen gas containing 3 vol% formic acid was used as the reducing gas. The flow rate of the reducing gas was 0.5 L/min. In this step, the temperature in the heating furnace was maintained constant at 200° C. for 60 minutes.
  • Example 2 In Example 1, an intermediate heating step was performed after (4) the first heating step and before (5) the second heating step. In the intermediate heating step, the laminate was heated while maintaining the heating temperature at 200° C. for 10 minutes and flowing 100% nitrogen gas at 3 L/min. A joined body was obtained in the same manner as in Example 1 except for this.
  • Example 3 In the preparation of (1) copper paste in Example 2, neodecanoic acid was added to 7.5% (the proportion of copper particles contained in the copper paste was 92.5%) based on 100% of the copper paste, (5) A bonded body was obtained in the same manner as in Example 2, except that the reducing gas used in the second heating step was changed to nitrogen gas containing 5 vol% formic acid.
  • Example 4 Example 2 (1) In preparing the copper paste, except that neodecanoic acid was added to 7.5% (the proportion of copper particles contained in the copper paste was 92.5%) based on 100% of the copper paste. A copper paste was prepared in the same manner as in Example 2 to obtain a bonded body.
  • Example 5 Example 2 except that in (1) preparation of the copper paste in Example 2, neodecanoic acid was added to 5% (the proportion of copper particles contained in the copper paste was 95%) based on 100% of the copper paste. Copper paste was prepared in the same manner. Further, a bonded body was obtained in the same manner as in Example 2 except that the holding time at the heating temperature of 200° C. in the intermediate heating step was changed to 30 minutes.
  • Example 6 In Example 4, (2) coating on the first object to be bonded and (3) manufacturing the laminate were changed to the following methods.
  • the copper paste was applied onto the chip mounting portion of a copper lead frame (thickness: 2.0 mm) as the first object to be bonded using a dispenser (S-SIGMA-CM3-V5, manufactured by Musashi Engineering Co., Ltd.).
  • a 3 mm square SiC chip (thickness 0.2 mm) as a second object to be bonded was placed on the applied copper paste so that the ground plane of the SiC chip was in close contact with the copper paste.
  • the thickness of the coating film after mounting the SiC chip was 50 ⁇ m.
  • the copper paste was distributed all over the ground plane on the SiC chip.
  • a joined body was obtained in the same manner as in Example 4 except for the above.
  • Example 1 the atmosphere for the first heating step was nitrogen gas containing 3 vol% formic acid. A joined body was obtained in the same manner as in Example 1 except for this.
  • the bonding rate of the bonding layer was checked as an index for determining whether the generation of voids was suppressed during sintering of copper particles.
  • the bonded bodies obtained in Examples and Comparative Examples were observed from the back side of the copper lead frame using an ultrasonic flaw detector (manufactured by Hitachi Power Solutions, model number: FineSAT III). Observation was performed by reflection method using a 75 MHz probe.
  • the delay and width of the S gate were adjusted so that the peak position of the S gate was on the surface of the copper lead frame.
  • the delay of the F gate was adjusted, and the width was set to a peak width of 1.5 wavelengths.
  • the Z-axis coordinate of the probe was adjusted so that the amplitude of the observed peak was maximized, and observation was performed.
  • the contrast of the observed image was adjusted using the auto function.
  • the obtained image data was binarized using image processing software Image-J, and the area ratio of black color in the observed area was calculated. That is, after starting Image-J, I selected Analyze-Set measurement and checked Area, Area fraction, and Limit to Threshold. Thereafter, after selecting File-Open and opening the image data for calculating the bonding rate, the range (A) of the SiC chip mounting area in the image was specified.
  • Edit-Copy to system was selected to copy the specified range (A), and then File-New-System clipboard was selected to paste the image of the specified range (A).
  • Image-Type-8bit was selected, the image was converted, and Image-Adjust-Threshold was selected to adjust the image threshold to 90.
  • a black range (B) existing within the range (A) of the SiC chip mounting portion in the adjusted image was designated.
  • the black area (B) becomes the SiC chip bonding portion, and its bonding rate is calculated by (B)/(A) ⁇ 100. If the above-mentioned bonding rate is high, it indicates that the generation of voids is suppressed.
  • the joined bodies obtained in each example have a higher bonding rate than the joined bodies of the comparative example, so it can be seen that the generation of voids is suppressed compared to the comparative example. . Furthermore, since the bonding layer of the example had a low resistance, it can be seen that the increase in electrical resistance was suppressed.
  • a method for manufacturing a bonded body in which the generation of voids is suppressed during sintering of copper particles and an increase in electrical resistance is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)

Abstract

接合層を介して第1被接合体と第2被接合体とが接合されてなる接合体の製造方法である。銅粒子及び有機溶媒を含むペーストを第1被接合体に塗布して塗膜を形成する。前記塗膜上に第2被接合体を載置して積層体を形成する。第一加熱工程において前記積層体を漸増的に加熱する。第二加熱工程において前記積層体を、第一加熱工程における加熱温度以上の温度且つ250℃以下で加熱して、前記塗膜中の前記銅粒子を焼結させ接合層を形成する。第一加熱工程を不活性雰囲気で行う。第二加熱工程を還元雰囲気で行う。

Description

接合体の製造方法及び被接合体の接合方法
 本発明は、接合体の製造方法及び被接合体の接合方法に関する。
 近年、インバータなど電力変換・制御装置としてIGBTなどのパワーデバイスと呼ばれる半導体デバイスが盛んに用いられるようになってきている。このような半導体デバイスを製造するために半導体素子を回路基板などと接合する手段として金属ペーストを用いることが種々提案されている。
 例えば特許文献1には、二つの接合対象物の間に、粒径が異なる二種類の銅粒子を含むペーストを施し、還元雰囲気下で加熱して該ペーストを焼結させることで、両接合対象物を接合する方法が記載されている。還元雰囲気としては、水素やギ酸などの還元性ガスが用いられる。
EP3778069A1
 一般に、焼結体の電気抵抗を低減するためには、ペースト中に含まれる粒子どうしの焼結を確実に行うことが必要である。粒子どうしを焼結させるには、ペースト中に含まれる溶媒成分が十分に揮発し、溶媒成分に起因したボイドが焼結体内に極力生じないようにすることが望まれる。しかし、上述した技術では、ボイドの生成を十分に抑制することができず、粒子どうしの焼結が十分に行われない。したがって本発明の課題は、粒子どうしの焼結時にボイドの発生が抑制された接合体の製造方法及び被接合体の接合方法を提供することにある。
 本発明は、接合層を介して第1被接合体と第2被接合体とが接合されてなる接合体の製造方法であって、
 銅粒子及び有機溶媒を含むペーストを前記第1被接合体に塗布して塗膜を形成する工程と、
 前記塗膜上に前記第2被接合体を載置して積層体を形成する工程と、
 前記積層体を漸増的に加熱する第一加熱工程と、
 前記積層体を、前記第一加熱工程における加熱温度以上の温度且つ250℃以下で加熱して、前記塗膜中の前記銅粒子を焼結させ前記接合層を形成する第二加熱工程とを備え、
 前記第一加熱工程を不活性雰囲気で行い、
 前記第二加熱工程を還元雰囲気で行う、接合体の製造方法を提供するものである。
 更に本発明は、接合層を介して第1被接合体と第2被接合体とを接合する被接合体の接合方法であって、
 銅粒子及び有機溶媒を含むペーストを前記第1被接合体に塗布して塗膜を形成する工程と、
 前記塗膜上に前記第2被接合体を載置して積層体を形成する工程と、
 前記積層体を漸増的に加熱する第一加熱工程と、
 前記積層体を、前記第一加熱工程における加熱温度以上の温度且つ250℃以下で加熱して、前記塗膜中の前記銅粒子を焼結させ前記第1被接合体と前記第2被接合体とを接合する第二加熱工程とを備え、
 前記第一加熱工程を不活性雰囲気で行い、
 前記第二加熱工程を還元雰囲気で行う、被接合体の接合方法を提供するものである。
 以下、本発明の接合体の製造方法及び被接合体の接合方法を、その好ましい実施形態に基づき説明する。本発明の方法によって製造される接合体は、第1被接合体と第2被接合体とが、接合層を介して接合された構造になっている。接合層は、後述するとおり、銅粒子及び有機溶媒を含むペーストを焼成してなる焼結体から構成されている。
 本発明の接合体の製造方法は以下の工程に大別される。
 銅粒子及び有機溶媒を含むペーストを前記第1被接合体に塗布して塗膜を形成する塗膜形成工程。
 前記塗膜上に前記第2被接合体を載置して積層体を形成する積層体形成工程。
 前記積層体を漸増的に加熱する第一加熱工程。
 前記積層体を、前記第一加熱工程における加熱温度以上の温度且つ250℃以下で加熱して、前記塗膜中の前記銅粒子を焼結させ前記接合層を形成する第二加熱工程。
 本製造方法においては、これらの工程が順次行われる。以下、これらの工程についてそれぞれ説明する。
〔塗膜形成工程〕
 本工程においては、銅粒子及び有機溶媒を含むペースト(以下「銅ペースト」ともいう。)を第1被接合体に塗布して塗膜を形成する。
 第1被接合体の種類に特に制限はない。一般的には、第1被接合体は、その接合対象面に金属を含むことが好ましい。例えば第1被接合体として、金属からなる面を有する部材を用いることができる。なお、本明細書でいう「金属」とは、他の元素と化合物を形成していない金属そのもの、又は2種以上の金属の合金のことである。このような金属としては、例えば銅、銀、金、アルミニウム、パラジウム、ニッケル又はそれらの2種以上の組み合わせからなる合金が挙げられる。
 第1被接合体が、金属からなる面を有する部材である場合、該金属からなる面は1種の金属から構成されていてもよく、あるいは2種以上の金属から構成されていてもよい。2種以上の金属から構成されている場合には、当該面は合金であってもよい。金属からなる面は一般には平面であることが好ましいが、場合によっては曲面であってもよい。
 第1被接合体の具体例としては、例えば上述の金属からなるスペーサー、放熱板、半導体素子、及び上述した金属の少なくとも1種を表面に有する基板等が挙げられる。
 基板としては、例えば、セラミックス又は窒化アルミニウム板の表面に銅等の金属層を有する絶縁基板等が挙げられる。
 被接合体として半導体素子を用いる場合、半導体素子は、Si、Ga、Ge、C、N、As等の元素のうち1種以上を含むことができる。
 銅ペーストに含まれる前記銅粒子は、純銅の粒子及び銅基合金の粒子の双方を包含する。銅ペーストに含まれる銅粒子は、純銅の粒子のみでもよく、銅基合金の粒子のみでもよく、あるいは純銅の粒子と銅基合金の粒子との混合物であってもよい。なお、粒子が銅基合金の場合、銅が90質量%以上含まれることが好ましい。
 銅ペーストに含まれる銅粒子は、その粒径が0.11μm以上であることが好ましい。一方、銅粒子の粒径は1μm未満であることが好ましく、0.8μm以下であることが更に好ましく、0.6μm以下であることが一層好ましい。銅粒子の粒径をこの範囲に設定することによって、銅ペースト中での銅粒子の凝集を防止し、銅粒子の分散性を好適なものとすることができるため、銅粒子どうしの焼結時におけるボイドの発生を抑制しやすくなる。
 本明細書において銅粒子の粒径とは一次粒子の平均粒径のことであり、具体的には次の方法で決定される粒径のことである。すなわち、10,000倍以上150,000倍以下の倍率の範囲で撮影した銅粒子の走査型電子顕微鏡像から輪郭がはっきりとしたものを無作為に50個以上選んで粒径(ヘイウッド径)を測定する。次いで得られた粒径から、粒子が真球であると仮定したときの体積を算出する。この体積の累積体積50容量%における体積累積粒径を、本明細書における平均粒径と定義する。
 銅粒子は、当該技術分野において知られている様々な方法で製造することができる。例えば湿式還元法、アトマイズ法、電解法などによって銅粉を製造できる。どのような方法を採用するかは、銅粉の粒径や形状等に応じて適宜選択できる。銅粒子は、例えば球状、六面体や八面体等の多面体状、フレーク状(板状)及び異形状であってもよい。銅ペーストは、これらの形状のうちの1種の形状の銅粒子のみから構成されていてもよく、あるいは2種以上の形状の銅粒子の組み合わせから構成されていてもよい。また、所定の平均粒径を有する銅粒子と、これとは平均粒径が異なる銅粒子との混合物を用いてもよい。
 特に銅ペーストが、上述した銅粒子(第一銅粒子)とこれよりも平均粒径の大きい銅粒子(第二銅粒子)とを含むことが、ボイドの発生が抑制された焼結体が得られやすくなる点から好ましい。具体的には、平均粒径0.11μm以上1μm未満の第一銅粒子と、平均粒径1μm以上10μm以下の第二銅粒子とを含むことが好ましい。
 前述の第二銅粒子は、銅ペーストを焼結した際に密な接合構造となり電気抵抗の上昇を抑制しやすくなる観点及び銅ペーストを電子部品用材料に塗布する際の塗布性を向上させる観点から、その平均粒径が好ましくは1μm以上8μm以下であり、更に好ましくは1μm以上6μm以下である。
 第一銅粒子及び第二銅粒子はいずれも球状であることが、上述した利点を一層顕著なものとする観点から好ましい。
 第一銅粒子と第二銅粒子との合計質量に対する第一銅粒子の割合は、上述した利点を一層顕著なものとする観点から、10質量%以上95質量%以下とすることが好ましく、15質量%以上75質量%以下とすることが更に好ましく、20質量%以上55質量%以下とすることが一層好ましい。
 銅粒子は、その表面に有機表面処理剤が施されていてもよい。有機表面処理剤は、銅粒子間での凝集を抑制するための剤である。銅粒子間での凝集を抑制するための剤として本発明において好適に用いられるものは、例えば各種の脂肪酸、脂肪族アミン、及び銅への親和性を有する錯化剤である。特に炭素数が6以上18以下、とりわけ炭素数が10以上18以下である飽和又は不飽和脂肪酸あるいは脂肪族アミン並びにこれらの銅塩を用いることが、耐酸化性向上の点から好ましい。そのような脂肪酸あるいは脂肪族アミンの具体例としては、安息香酸、ペンタン酸、ヘキサン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、パルミチン酸、オレイン酸、ステアリン酸、ペンチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ラウリルアミン、オレイルアミン、ステアリルアミンなどが挙げられる。また、銅への親和性を有する錯化剤としては、例えばグリシンなどのアミノ酸、及びジメチルグリオキシムなどが挙げられる。これらの脂肪酸、脂肪族アミン、及び錯化剤は、それぞれ1種を単独で、又は2種以上を組み合わせて用いることができる。
 銅ペーストに含まれる銅粒子の割合は、76質量%以上とすることが好ましく、80質量%以上とすることが更に好ましく、85質量%以上とすることが一層好ましい。一方、97質量%以下とすることが好ましく、96質量%以下としてもよい。銅粒子の割合を76質量%以上とすることにより、ボイドが焼結体内に発生しにくくすることができる。一方、銅粒子の割合を97質量%以下、又は96質量%以下とすることにより、銅ペーストを第1被接合体に塗布する際の作業性が良好なものとなる。なお、前記銅粒子が2種以上を組み合わせて構成されてなるものである場合は、前記銅ペーストに含まれる銅粒子の割合はその銅粒子の合計量に基づいて算出するものとする。
 銅ペーストに含まれる有機溶媒としては、従来知られているものを特に制限なく用いることができる。例えばモノアルコール、多価アルコール、ケトン、エーテル、多価アルコールアルキルエーテル、多価アルコールアリールエーテル、脂肪族有機酸、エステル類、含窒素複素環化合物、アミド類、アミン類、飽和炭化水素などが挙げられる。これらの有機溶媒は、一種を単独で又は二種以上を組み合わせて用いることができる。それらの中でも、プロピレングリコール、エチレングリコール、へキシレングリコール、ジエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ジプロピレングリコール、トリプロピレングリコール、ターピネオール及びジヒドロターピネオール等のアルコール、エチルカルビトール及びブチルカルビトール等のエーテル、並びに脂肪族有機酸のうち少なくとも一種が好ましく、とりわけ脂肪族有機酸を用いることが好ましい。これらを用いることで銅粒子の表面に存在し得る酸化膜を除去し、活性の高い銅粒子を析出させて焼結させることができるため、電気抵抗の上昇が抑制された接合体を得やすくなるからである。
 前記脂肪族有機酸としてはカルボン酸が挙げられる。カルボン酸としては、分枝鎖を有する第一級カルボン酸、第二級カルボン酸、及び第三級カルボン酸が挙げられ、好ましくは第二級又は第三級のカルボン酸であり、更に好ましくは第三級カルボン酸である。
 このようなカルボン酸を用いることによって、カルボン酸の分子構造の嵩高さによって粒子どうしの分散性を適度に維持することができるので、銅粒子どうしの焼結時におけるボイドの発生が抑制しやすくなる。これに加えて、銅ペーストの焼結性を十分に高めて、被接合体との接合強度とが高いレベルで両立した接合層を容易に得ることができる。
 本発明において好適なカルボン酸としては、例えば、イソ酪酸、ピバル酸、2,2-メチル酪酸、イソペンタン酸、イソヘキサン酸、イソヘプタン酸、イソオクタン酸、イソノナン酸、イソデカン酸、ネオデカン酸、イソトリデカン酸、イソテトラデカン酸、イソパルミチン酸、イソステアリン酸等の分枝鎖且つ脂肪族飽和モノカルボン酸;メタクリル酸等の分枝鎖の脂肪族不飽和モノカルボン酸;アコニット酸などの不飽和トリカルボン酸等のうちの一種以上が挙げられる。これらは単独で又は組み合わせて使用することができる。
 銅ペーストに占める有機溶媒の量は、銅ペーストを塗膜にできる程度の粘度を有する限り特に制限はないが、一般的には銅ペースト100質量%中に3質量%以上24質量%以下含まれることが好ましい。
 銅ペーストには、各種特性を調整するための調整剤を適宜含有させてもよい。調整剤としては、例えば還元剤、粘度調整剤、表面張力調整剤が挙げられる。
 銅ペーストの粘度はThermo Scientific社製のレオメーターMARS IIIを用いて測定することができる。銅ペーストの塗布性又は印刷性を高める観点から、せん断速度10s-1のときの粘度値が10Pa・s以上200Pa・s以下であることが好ましく、15Pa・s以上200Pa・s以下であることがより好ましい。銅ペーストの粘度の測定条件は以下のとおりである。
 測定モード : せん断速度依存性測定
 センサー  : パラレル型(Φ20mm)
 測定温度  : 25℃
 ギャップ  : 0.300mm
 せん断速度 : 0.05~120.01s-1
 測定時間  : 2分
 以上の成分を含む銅ペーストを第1被接合体に塗布して塗膜を形成する。銅ペーストの塗布方法は特に限定されないが、例えば、スクリーン印刷法、グラビア印刷法、ディスペンス印刷法、リバースコート法及びドクターブレード法を挙げることができる。このようにして形成された塗膜は、その厚さが1μm以上500μm以下であることが好ましく、5μm以上300μm以下であることがより好ましい。この範囲の厚さの塗膜を形成することで、第1被接合体と第2被接合体とを確実に接合することができる。
〔積層体形成工程〕
 第1被接合体の表面に塗膜が形成されたら、この塗膜上に第2被接合体を載置して、第1被接合体、塗膜及び第2被接合体がこの順で積層されてなる積層体を形成する。第2被接合体としては、先に述べた第1被接合体と同様のものを特に制限なく用いることができる。第1被接合体が例えば基板である場合には、第2被接合体は、例えばスペーサー、放熱板又は半導体素子のいずれかであることが好ましい。
〔第一加熱工程〕
 上述のようにして形成された積層体は、これを漸増的に加熱する第一加熱工程に付される。本工程においては、一般に積層体を室温付近から加熱を開始して、塗膜に含まれる有機溶媒を除去する。本工程においては、塗膜に含まれる銅粒子どうしの焼結は生じない。
 本工程においては、積層体を漸増的に加熱する。本明細書において「漸増的に加熱する」とは、第一加熱工程における加熱の開始から後述する最高温度に達するまで連続的に上昇するように加熱を行うことをいう。なお、前記最高温度に達した後は温度を一定(例えば10分以上120分以下程度)に保つようにしてもよい。また、第一加熱工程において一時的に加熱温度が一定となる場合(好ましくは5分未満、より好ましくは3分以内)や加熱温度が低下することは許容されるものとする。
 第一加熱工程を漸増的に行うことで、塗膜に含まれている有機溶媒を徐々に除去できることから、後述する第二加熱工程において銅粒子を焼結させるときに、ボイドが発生しづらくなるという利点がある。
 本工程における加熱は、時間の経過とともに温度が直線的に上昇するように行ってもよく、温度が指数関数的に上昇するように行ってもよく、温度が対数関数的に上昇するように行ってもよく、あるいはそれらを組み合わせた温度上昇線を描くように行ってもよい。いずれの加熱態様であっても、加熱を不活性雰囲気で行うことが望ましい。不活性雰囲気で第一加熱を行うことで、後述する雰囲気での第二加熱と相俟って、焼成によって形成された焼結体中にボイドが発生することを効果的に抑制することができる。このこととは対照的に、第一加熱工程を還元雰囲気で行うと、塗膜からの有機溶媒の除去と、塗膜中の銅粒子どうしの焼結とが同時に進行することから、焼結体中にボイドが発生しやすくなる。
 第一加熱工程で採用される不活性雰囲気としては、例えば窒素ガス雰囲気、アルゴンやネオン等の希ガス雰囲気などが挙げられる。経済性の観点からは窒素ガス雰囲気を用いることが好ましい。本加熱工程で採用される不活性雰囲気には、不可避的に混入するガスを除き、不活性ガス以外のガス、例えば水素ガスなどの還元性ガスや、酸素ガス及び大気などの酸化性ガスは含有されない。
 第一加熱工程における積層体の加熱は、昇温速度が0.01℃/s以上1℃/s以下となるように行われることが、塗膜に含まれている有機溶媒を徐々に除去できることから好ましい。この利点を一層顕著なものとする観点から、本工程における加熱の昇温速度は0.01℃/s以上0.8℃/s以下であることが更に好ましく、0.01℃/s以上0.6℃/s以下であることが一層好ましい。
 第一加熱工程における昇温速度が一定でない場合には、該昇温速度の平均値が前記の範囲内に収まっていればよい。
 第一加熱工程の終了温度、換言すれば、第一加熱工程における加熱の最高温度は、銅ペーストに含まれる有機溶媒の沸点をBpとしたとき、110℃以上Bp℃以下とすることが、有機溶媒の揮発及び銅ペーストが吸湿した水分の揮発が良好となり、ボイドの発生を抑制しやすくなる点から好ましい。この利点を一層顕著なものとする観点から、第一加熱工程における最高温度は、140℃以上240℃以下とすることが更に好ましく、160℃以上240℃以下とすることが一層好ましい。
 特に、銅ペーストに含まれる有機溶媒が脂肪族有機酸である場合、第一加熱工程における加熱の最高温度を240℃以下とすることが、有機溶媒成分が急激に蒸発することによるボイド発生を抑制し得る観点から好ましい。
〔第二加熱工程〕
 第一加熱工程に付された積層体は次いで第二加熱工程に付される。本工程においては、第一加熱工程での加熱温度以上の温度に積層体を加熱して、塗膜中の銅粒子どうしを焼結させ焼結体、すなわち接合層を形成する。
 第二加熱工程は、先に述べた第一加熱工程と、雰囲気の相違によって区別される。詳細には、第一加熱工程での雰囲気は不活性雰囲気であったところ、第二加熱工程での雰囲気は還元雰囲気である。このように、本製造方法においては、不活性雰囲気と還元雰囲気との組み合わせを採用することによって、焼結体中にボイドが発生することを効果的に抑制している。
 第二加熱工程で採用している還元雰囲気とは、雰囲気中に還元性ガスを含む雰囲気のことである。還元性ガスとしては、例えば水素、ギ酸、一酸化炭素、アンモニアなどが挙げられる。これらの還元性ガスのうちの1種を単独で用いることができ、あるいは2種以上を組み合わせて用いることができる。これらの還元性ガスのうち、ギ酸含有ガスを用いると、銅粒子の表面に存在する酸化膜がギ酸によって除去されやすく、それによって銅粒子の表面活性が高くなり、低温で銅粒子どうしの焼結が進行しやすくなるので好ましい。
 第二加熱工程で採用している還元雰囲気においては、還元性ガスのみを用いてもよく、還元性ガスに加えて他のガスを用いてもよい。他のガスとしては例えば第一加熱工程で用いる不活性ガスが挙げられる。具体的には窒素ガスや希ガスなどを用いることができる。第二加熱工程で採用している還元雰囲気が、還元性ガス及び不活性ガスの混合雰囲気である場合、該混合雰囲気における還元性ガスの濃度は、1vol%以上、特に2vol%以上であることが、銅粒子の表面に存在する酸化膜がギ酸等の還元性ガスによって除去されやすく、それによって銅粒子の表面活性が高くなり、低温で銅粒子どうしの焼結が進行しやすくなるので好ましい。
 第二加熱工程における変温速度それ自体は、第二加熱工程における加熱温度が第一加熱工程における加熱温度以上であることを前提として、-0.1℃/s以上1.0℃/s以下、特に-0.1℃/s以上0.5℃/s以下であることが、焼結ムラが生じることなく適切に進むようになる点から好ましい。この利点を一層顕著なものとする観点から、第二加熱工程における昇温速度は-0.1℃/s以上0.3℃/s以下であることが更に好ましい。
 第二加熱工程における変温速度が一定でない場合には、該変温速度の平均値が前記の範囲内に収まっていればよい。なお、前記変温速度には0℃/sも含まれるものとする。
 第二加熱工程における加熱の最高温度は250℃以下であることが、残溶媒が一気に揮発することで発生し得るボイドを抑制する点から好ましい。また、第二加熱工程における加熱時間は10分以上180分以下であることが好ましい。
 積層体を第二加熱工程に付すことによって、ペーストの塗膜から焼結体が生成し、該焼結体が第1被接合体と第2被接合体とを接合する。これによって目的とする接合体が得られる。第二加熱工程の完了、すなわち冷却工程の開始は、系内の雰囲気を不活性雰囲気に切り替え且つ系内の温度を低下させることで行われる。系内の温度を低下させるには例えば加熱を停止して自然冷却してもよく、あるいは冷却用のガス(このガスは不活性ガスである)を流通させてもよい。冷却工程を行っている間は、系内を不活性雰囲気に保つことが接合体の酸化を防止し得る点から好ましい。不活性雰囲気の種類は、第一加熱工程と同じであってもよい。
 第二加熱工程における加熱中、積層体は、これを加圧してもよく、あるいは無加圧状態にしてもよい。無加圧状態とは、自重以外の圧力が加わっていない状態のことである。銅粒子の焼結体にボイドが発生する場面は、加圧状態よりも無加圧状態の方が多いことから、ボイドの発生が抑制される本製造方法は、無加圧状態での加熱に有効である。
 本製造方法によって得られた接合体においては、銅粒子の焼結体からなる接合層にボイドが発生することが抑制されるので、該接合層の電気抵抗の上昇が抑えられる。したがって、本製造方法によって得られた接合体は、大電流を扱うデバイス、例えば車載用電子回路やパワーデバイスが実装された電子回路などに好適に用いられる。
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば第一加熱工程と第二加熱工程との間に、不活性雰囲気下に一定温度を維持する中間加熱工程を行ってもよい。中間加熱工程における不活性雰囲気は、第一加熱工程と同様とすることができる。中間加熱工程を行うことで、銅ペーストの塗膜から有機溶媒を確実に除去することができ、焼結体中にボイドが発生することを一層抑制できる。この観点から、中間加熱工程では銅粒子どうしの焼結は開始しないことが好ましい。
 上述した実施形態に関し、本発明は更に以下の接合体の製造方法及び被接合体の接合方法を開示する。
〔1〕 接合層を介して第1被接合体と第2被接合体とが接合されてなる接合体の製造方法であって、
 銅粒子及び有機溶媒を含むペーストを前記第1被接合体に塗布して塗膜を形成する工程と、
 前記塗膜上に前記第2被接合体を載置して積層体を形成する工程と、
 前記積層体を漸増的に加熱する第一加熱工程と、
 前記積層体を、前記第一加熱工程における加熱温度以上の温度且つ250℃以下で加熱して、前記塗膜中の前記銅粒子を焼結させ前記接合層を形成する第二加熱工程とを備え、
 前記第一加熱工程を不活性雰囲気で行い、
 前記第二加熱工程を還元雰囲気で行う、接合体の製造方法。
〔2〕 前記第一加熱工程における昇温速度が0.01℃/s以上1℃/s以下である、〔1〕に記載の製造方法。
〔3〕 前記第二加熱工程における変温速度が-0.1℃/s以上1.0℃/s以下である、〔1〕又は〔2〕に記載の製造方法。
〔4〕 前記有機溶媒の沸点をBpとしたとき、前記第一加熱工程における加熱の最高温度を110℃以上Bp℃以下とする、〔1〕ないし〔3〕のいずれか一に記載の製造方法。
〔5〕 前記有機溶媒が脂肪族有機酸であり、
 前記第一加熱工程における加熱の最高温度を240℃以下とする、〔1〕ないし〔4〕のいずれか一に記載の製造方法。
〔6〕 前記第二加熱工程をギ酸含有ガス雰囲気で行う、〔1〕ないし〔5〕のいずれか一に記載の製造方法。
〔7〕 接合層を介して第1被接合体と第2被接合体とを接合する被接合体の接合方法であって、
 銅粒子及び有機溶媒を含むペーストを前記第1被接合体に塗布して塗膜を形成する工程と、
 前記塗膜上に前記第2被接合体を載置して積層体を形成する工程と、
 前記積層体を漸増的に加熱する第一加熱工程と、
 前記積層体を、前記第一加熱工程における加熱温度以上の温度且つ250℃以下で加熱して、前記塗膜中の前記銅粒子を焼結させ前記第1被接合体と前記第2被接合体とを接合する第二加熱工程とを備え、
 前記第一加熱工程を不活性雰囲気で行い、
 前記第二加熱工程を還元雰囲気で行う、被接合体の接合方法。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔実施例1〕
(1)銅ペーストの調製
 銅粉として、平均一次粒子径が0.14μmの球状の第一銅粒子(三井金属鉱業社製CH-0200L1)と、平均一次粒子径が2.2μmの球状の第二銅粒子(三井金属鉱業社製CS20)とを用い、第一銅粒子:第二銅粒子=30:70の質量比で混合したものを用いた。
 有機溶媒としてネオデカン酸(ヘキシオン社製バーサティック10、沸点270℃以上280℃以下)を用いた。
 ネオデカン酸を、銅ペースト100%に対して10%(銅ペーストに含まれる銅粒子の割合が90%)となるよう添加し、ヘラで予備混練した後、株式会社シンキー製の自転・公転真空ミキサーARE-500を用いて、攪拌モード(1000rpm×1分間)と脱泡モード(2000rpm×30秒間)を1サイクルとした処理を2サイクル行い、ペースト化した。このペーストを、更に3本ロールミルを用いて処理することで更に分散混合を行い、実施例の銅ペーストを調製した。
(2)第1被接合体への塗布
 第1被接合体としての銅製のリードフレーム(厚み2.0mm)のチップ搭載部上に、スクリーン印刷によって、前記銅ペーストを塗布して塗膜を形成した。塗膜は、5mm四方の正方形に形成した。塗膜の厚みは100μmであった。
(3)積層体の製造
 塗膜の上に、第2被接合体としての3mm四方の正方形のSiCチップ(厚み0.2mm)を載置し、塗膜の厚みが50μmとなるようにデジマチックインジケータ(ミツトヨ社製)で調整した。
(4)第一加熱工程
 積層体を加熱炉内に載置した。加熱炉内に100%窒素ガスを流通させた。窒素ガスの流量は3L/minとした。この状態下に、積層体を室温(25℃)から200℃まで加熱した。昇温は、時間の経過に対して直線的に行い、昇温速度は0.1℃/secとした。
(5)第二加熱工程
 加熱炉内が200℃に達した時点で、加熱炉内に流通させるガスを還元性ガスに切り替えた。また、昇温を停止して加熱炉内の温度を200℃に維持した。還元性ガスとして3vol%のギ酸を含む窒素ガスを用いた。還元性ガスの流量は0.5L/minとした。本工程では、加熱炉内の温度を60分にわたり200℃で一定に維持した。
(6)冷却工程
 第二加熱工程を60分間行った後、加熱炉内に流通させるガスを100%窒素ガスに切り替えた。また、加熱炉内の加熱を停止した。その後、加熱炉内を冷却し、炉内温度が室温まで低下した後に炉内から接合体を取り出した。
  〔実施例2〕
 実施例1において、(4)第一加熱工程の後で且つ(5)第二加熱工程の前に中間加熱工程を行った。中間加熱工程では加熱温度を200℃で10分間維持し且つ100%窒素ガスを3L/min流通させながら積層体を加熱した。これ以外は実施例1と同様にして接合体を得た。
  〔実施例3〕
 実施例2の(1)銅ペーストの調製において、ネオデカン酸を、銅ペースト100%に対して7.5%(銅ペーストに含まれる銅粒子の割合が92.5%)となるよう添加し、(5)第二加熱工程で用いる還元性ガスを5vol%のギ酸を含む窒素ガスに変更した以外は実施例2と同様にして接合体を得た。
  〔実施例4〕
 実施例2の(1)銅ペーストの調製において、ネオデカン酸を、銅ペースト100%に対して7.5%(銅ペーストに含まれる銅粒子の割合が92.5%)となるよう添加した以外は実施例2と同様にして銅ペーストを調製して接合体を得た。
  〔実施例5〕
 実施例2の(1)銅ペーストの調製において、ネオデカン酸を、銅ペースト100%に対して5%(銅ペーストに含まれる銅粒子の割合が95%)となるよう添加した以外は実施例2と同様にして銅ペーストを調製した。また、中間加熱工程での加熱温度200℃の保持時間を30分に変更した以外は実施例2と同様にして接合体を得た。
  〔実施例6〕
 実施例4において、(2)第1被接合体への塗布及び(3)積層体の製造を、以下の方法に変更した。
 第1被接合体としての銅製のリードフレーム(厚み2.0mm)のチップ搭載部上に、ディスペンサー(武蔵エンジニアリング社製:S-SIGMA-CM3-V5)によって、前記銅ペーストを塗布した。次いで、塗布した銅ペースト上に第2被接合体としての3mm四方の正方形のSiCチップ(厚み0.2mm)をそのSiCチップの接地面が銅ペーストと密着するよう載置した。SiCチップ載置後の塗膜の厚みは50μmであった。銅ペーストは、SiCチップにおける接地面の全域に行き渡っていた。それ以外は実施例4と同様にして接合体を得た。
  〔比較例1〕
 実施例1において、第一加熱工程の雰囲気として、3vol%のギ酸を含む窒素ガスとした。これ以外は実施例1と同様にして接合体を得た。
  〔接合層の接合率〕
 銅粒子どうしの焼結時にボイドの発生が抑制されたか否かを判断する指標として、接合層の接合率を確認した。
 実施例及び比較例で得られた接合体を、超音波探傷装置(日立パワーソリューションズ社製、型番:FineSAT III)を用い、銅製のリードフレームの裏面側から観察した。75MHzのプローブを用い、反射法によって観察を行った。接合層の剥離状態を観察する際、ゲインの値を25~35dBの値にした後、Sゲートのピーク位置が銅製のリードフレームの表面となるようSゲートのディレイ及び幅を調節した。接合層の観察範囲を指定するためFゲートのディレイを調整し、幅を1.5波長分のピーク幅に設定した。観察ピークの振幅が最大となるようプローブのZ軸座標を調整し、観察を行った。観察像のコントラストはオート機能を用いて調節した。
 得られた画像データを画像処理ソフトウェアImage-Jを用いて二値化し、観察した面積中における黒色の面積割合を算出した。すなわち、Image-Jを起動した後、Analyze-Set measurementを選択し、Area、Area fraction、Limit to Thresholdにチェックを入れた。その後、File-Openを選択し、接合率を算出する画像データを開いた後に、画像中のSiCチップ搭載部の範囲(A)を指定した。次いで、Edit-Copy to systemを選択し、指定した範囲(A)をコピーした後、File-New-System clipboardを選択して指定した範囲(A)の画像を貼り付けた。その後、接合層を明確にするために、Image-Type-8bitを選択し、画像を変換した後、Image-Adjust-Thresholdを選択して画像の閾値を90に調整した。そして、調整後の画像におけるSiCチップ搭載部の範囲(A)内に存在する黒色範囲(B)を指定した。前記黒色範囲(B)がSiCチップ接合部となり、その接合率は(B)/(A)×100で算出される。前述の接合率が高ければ、ボイドの発生が抑制されていることを示す。
  〔接合層の比抵抗値〕
 実施例1に記載のとおり(1)銅ペーストの調製の工程に沿って銅ペーストを得た後、(2)第1被接合体への塗布の工程で用いた銅製のリードフレームをガラス板(15mm×30mm)に、塗膜を10mm×20mmの長方形に代え、(3)積層体の製造の工程を省略した以外は実施例1と同様にして、ガラス板上に塗膜が形成された試験用サンプルを得た。その後、前記試験用サンプルをそれぞれ実施例1、2及び比較例1に記載のように加熱工程及び冷却工程を行うことで、実施例1、2及び比較例2の銅ペーストの焼結体である導電膜を製造した。
 また、実施例4ないし6の(2)第1被接合体への塗布の工程で用いた銅製のリードフレームをガラス板(15mm×30mm)に、塗膜を10mm×20mmの長方形に代え、(3)積層体の製造の工程を省略した以外は実施例4ないし6とそれぞれ同様にして、ガラス板上に塗膜が形成された試験用サンプルを得た。その後、前記試験用サンプルをそれぞれ実施例4ないし6に記載のように加熱工程及び冷却工程を行うことで、実施例4ないし6の銅ペーストの焼結体である導電膜を製造した。
 これらの導電膜について、三菱アナリテック社製の四探針法比抵抗測定装置であるロレスタMCP-T600を用い、比抵抗(μΩ・cm)を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなとおり、各実施例で得られた接合体は、比較例の接合体よりも接合率が高いため、比較例に比べてボイドの発生が抑制されていることが分かる。また、実施例の接合層が低抵抗であることから、電気抵抗の上昇が抑制されていたことが分かる。
 本発明によれば、銅粒子どうしの焼結時にボイドの発生が抑制され、電気抵抗の上昇が抑制された接合体を製造する方法が提供される。

Claims (7)

  1.  接合層を介して第1被接合体と第2被接合体とが接合されてなる接合体の製造方法であって、
     銅粒子及び有機溶媒を含むペーストを前記第1被接合体に塗布して塗膜を形成する工程と、
     前記塗膜上に前記第2被接合体を載置して積層体を形成する工程と、
     前記積層体を漸増的に加熱する第一加熱工程と、
     前記積層体を、前記第一加熱工程における加熱温度以上の温度且つ250℃以下で加熱して、前記塗膜中の前記銅粒子を焼結させ前記接合層を形成する第二加熱工程とを備え、
     前記第一加熱工程を不活性雰囲気で行い、
     前記第二加熱工程を還元雰囲気で行う、接合体の製造方法。
  2.  前記第一加熱工程における昇温速度が0.01℃/s以上1℃/s以下である、請求項1に記載の製造方法。
  3.  前記第二加熱工程における変温速度が-0.1℃/s以上1.0℃/s以下である、請求項2に記載の製造方法。
  4.  前記有機溶媒の沸点をBpとしたとき、前記第一加熱工程における加熱の最高温度を110℃以上Bp℃以下とする、請求項1ないし3のいずれか一項に記載の製造方法。
  5.  前記有機溶媒が脂肪族有機酸であり、
     前記第一加熱工程における加熱の最高温度を240℃以下とする、請求項1ないし3のいずれか一項に記載の製造方法。
  6.  前記第二加熱工程をギ酸含有ガス雰囲気で行う、請求項1ないし3のいずれか一項に記載の製造方法。
  7.  接合層を介して第1被接合体と第2被接合体とを接合する被接合体の接合方法であって、
     銅粒子及び有機溶媒を含むペーストを前記第1被接合体に塗布して塗膜を形成する工程と、
     前記塗膜上に前記第2被接合体を載置して積層体を形成する工程と、
     前記積層体を漸増的に加熱する第一加熱工程と、
     前記積層体を、前記第一加熱工程における加熱温度以上の温度且つ250℃以下で加熱して、前記塗膜中の前記銅粒子を焼結させ前記第1被接合体と前記第2被接合体とを接合する第二加熱工程とを備え、
     前記第一加熱工程を不活性雰囲気で行い、
     前記第二加熱工程を還元雰囲気で行う、被接合体の接合方法。
PCT/JP2023/011636 2022-03-30 2023-03-23 接合体の製造方法及び被接合体の接合方法 WO2023190080A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022056553 2022-03-30
JP2022-056553 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190080A1 true WO2023190080A1 (ja) 2023-10-05

Family

ID=88202076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011636 WO2023190080A1 (ja) 2022-03-30 2023-03-23 接合体の製造方法及び被接合体の接合方法

Country Status (2)

Country Link
TW (1) TW202348335A (ja)
WO (1) WO2023190080A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199852A (ja) * 2013-03-29 2014-10-23 独立行政法人産業技術総合研究所 接合方法及び半導体モジュールの製造方法
JP2016011448A (ja) * 2014-06-30 2016-01-21 古河電気工業株式会社 微粒子、微粒子の製造方法、及び微粒子分散溶液
JP2017155166A (ja) * 2016-03-03 2017-09-07 バンドー化学株式会社 接合用組成物
JP2018092798A (ja) * 2016-12-02 2018-06-14 田中貴金属工業株式会社 導電性接合材料及び半導体装置の製造方法
JP2018170228A (ja) * 2017-03-30 2018-11-01 日立化成株式会社 導体形成用組成物、並びに接合体及びその製造方法
WO2019093121A1 (ja) * 2017-11-13 2019-05-16 京セラ株式会社 ペースト組成物、半導体装置及び電気・電子部品
JP2019110264A (ja) * 2017-12-20 2019-07-04 日立化成株式会社 構造体及びその製造方法
WO2020066968A1 (ja) * 2018-09-28 2020-04-02 ナミックス株式会社 導電性ペースト
JP2020087766A (ja) * 2018-11-28 2020-06-04 協立化学産業株式会社 接合用組成物
JP2020113662A (ja) * 2019-01-11 2020-07-27 Jx金属株式会社 導電性塗布材料
WO2022185571A1 (ja) * 2021-03-04 2022-09-09 三井金属鉱業株式会社 接合用導電性組成物及びこれを用いた接合構造及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199852A (ja) * 2013-03-29 2014-10-23 独立行政法人産業技術総合研究所 接合方法及び半導体モジュールの製造方法
JP2016011448A (ja) * 2014-06-30 2016-01-21 古河電気工業株式会社 微粒子、微粒子の製造方法、及び微粒子分散溶液
JP2017155166A (ja) * 2016-03-03 2017-09-07 バンドー化学株式会社 接合用組成物
JP2018092798A (ja) * 2016-12-02 2018-06-14 田中貴金属工業株式会社 導電性接合材料及び半導体装置の製造方法
JP2018170228A (ja) * 2017-03-30 2018-11-01 日立化成株式会社 導体形成用組成物、並びに接合体及びその製造方法
WO2019093121A1 (ja) * 2017-11-13 2019-05-16 京セラ株式会社 ペースト組成物、半導体装置及び電気・電子部品
JP2019110264A (ja) * 2017-12-20 2019-07-04 日立化成株式会社 構造体及びその製造方法
WO2020066968A1 (ja) * 2018-09-28 2020-04-02 ナミックス株式会社 導電性ペースト
JP2020087766A (ja) * 2018-11-28 2020-06-04 協立化学産業株式会社 接合用組成物
JP2020113662A (ja) * 2019-01-11 2020-07-27 Jx金属株式会社 導電性塗布材料
WO2022185571A1 (ja) * 2021-03-04 2022-09-09 三井金属鉱業株式会社 接合用導電性組成物及びこれを用いた接合構造及びその製造方法

Also Published As

Publication number Publication date
TW202348335A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
JP4870223B1 (ja) ペースト状銀粒子組成物、金属製部材接合体の製造方法および金属製部材接合体
TWI694558B (zh) 接合體及半導體裝置
JP5941082B2 (ja) 銅粉
EP3217424B1 (en) Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly
EP3702072A1 (en) Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
JP6842836B2 (ja) 銅ペースト及び銅の焼結体の製造方法
JP6422289B2 (ja) ニッケル粒子組成物、接合材及び接合方法
JP6032110B2 (ja) 金属ナノ粒子材料、それを含有する接合材料、およびそれを用いた半導体装置
JP6722679B2 (ja) 導電性ペースト
JP7210842B2 (ja) 接合体の製造方法、焼結銅ピラー形成用銅ペースト、及び接合用ピラー付部材
JP2020053404A (ja) 銅ペースト及び銅の焼結体の製造方法
JP5733638B2 (ja) 接合材料およびそれを用いた半導体装置、ならびに配線材料およびそれを用いた電子素子用配線
WO2023190080A1 (ja) 接合体の製造方法及び被接合体の接合方法
JP6463195B2 (ja) ニッケル粒子組成物、接合材及びそれを用いた接合方法
US20240116104A1 (en) Conductive composition for bonding, bonding structure using same, and manufacturing method thereof
WO2023210449A1 (ja) 接合用銅ペースト、被接合体の接合方法、接合体の製造方法及び接合用銅ペーストの製造方法
JP2020164894A (ja) 接合材、接合材の製造方法、接合方法、半導体装置
CN110036450B (zh) 导电性接合材料及半导体装置的制造方法
WO2023190573A1 (ja) 接合体の製造方法及び被接合体の接合方法
JP2023152711A (ja) 焼結体及び銅ペースト
WO2023190451A1 (ja) 接合体の製造方法
KIM et al. Rapid pressure-assisted sinter bonding in air using 200 nm Cu particles and enhancement of bonding strength by successive pressureless annealing
CN114845827B (zh) 银膏及其制造方法以及接合体的制造方法
WO2021060126A1 (ja) 接合材、接合材の製造方法、接合方法及び半導体装置
TWI789698B (zh) 氧化銅糊料及電子零件之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780090

Country of ref document: EP

Kind code of ref document: A1