WO2021060126A1 - 接合材、接合材の製造方法、接合方法及び半導体装置 - Google Patents

接合材、接合材の製造方法、接合方法及び半導体装置 Download PDF

Info

Publication number
WO2021060126A1
WO2021060126A1 PCT/JP2020/035203 JP2020035203W WO2021060126A1 WO 2021060126 A1 WO2021060126 A1 WO 2021060126A1 JP 2020035203 W JP2020035203 W JP 2020035203W WO 2021060126 A1 WO2021060126 A1 WO 2021060126A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
particle powder
bonding material
silver
bonding
Prior art date
Application number
PCT/JP2020/035203
Other languages
English (en)
French (fr)
Inventor
圭一 遠藤
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Publication of WO2021060126A1 publication Critical patent/WO2021060126A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Definitions

  • the present invention relates to a joining material, a joining material manufacturing method, a joining method, and a semiconductor device.
  • a bonding method using a bonding material containing metal fine particle powder a method in which the bonding material is applied to a substrate, a member to be bonded is placed on a coating film, and pressure sintering is performed to form a metal bonding layer is typical.
  • a traditional method if the metal bonding layer to be formed is thin, the bonding layer has a low stress relaxation capacity and is insufficient in terms of bonding reliability.
  • Patent Document 1 proposes a bonding material containing conductive particles obtained by coating resin particles having an average particle diameter of, for example, about 10 ⁇ m with silver, copper, or the like, and metal fine particles. Due to the presence of conductive particles that are much larger than the metal fine particles, the thickness of the metal bonding layer formed from such a bonding material corresponds to the size of the conductive particles. That is, the conductive particles function as a spacer that increases the thickness of the metal bonding layer.
  • the core particles of the conductive particles in Patent Document 1 are resins, which adversely affect the heat dissipation and conductivity of the metal bonding layer.
  • a bonding material containing a metal fine particle powder and a coarse metal large particle powder that functions as a spacer has excellent heat dissipation, conductivity and bonding reliability. They have found that a provided metal bonding layer can be formed, and have completed the present invention.
  • the present invention is as follows. [1] Metal fine particle powder having an average primary particle size of 150 nm or less, a large metal particle powder having a cumulative 90% particle size (D90) of 7 to 30 ⁇ m based on a volume measured by a laser diffraction type particle size distribution measuring device, and a solvent. Joining material including.
  • the metal fine particle powder is composed of silver, copper, gold, aluminum or an alloy of two or more of these.
  • the large metal particle powder is composed of silver, copper, gold, aluminum or an alloy of two or more of these.
  • the bonding material according to [3], wherein the particle powder in the metal is composed of silver, copper, gold, aluminum, or an alloy of two or more of these.
  • Metal fine particle powder having an average primary particle size of 150 nm or less, a large metal particle powder having a cumulative 90% particle size (D90) of 7 to 30 ⁇ m based on a volume measured by a laser diffraction type particle size distribution measuring device, and a solvent.
  • a method for producing a bonding material having a step of mixing.
  • the metal fine particle powder is composed of silver, copper, gold, aluminum or an alloy of two or more of these.
  • the large metal particle powder is composed of silver, copper, gold, aluminum or an alloy of two or more of these.
  • the method for producing a bonding material according to [11], wherein the particle powder in the metal is composed of silver, copper, gold, aluminum, or an alloy of two or more of these.
  • the amounts of the metal fine particle powder and the metal large particle powder used are 7 to 55% by mass and 2 to 20% by mass, respectively, of the contents of the metal fine particle powder and the metal large particle powder in the bonding material.
  • a joining method for joining two members to be joined The joining material according to any one of [1] to [9] or the joining material manufactured by the method for manufacturing the joining material according to any one of [10] to [13] is applied onto one of the members to be joined. And the process of forming a coating film The step of placing the other member to be joined on the coating film, and A bonding method comprising a step of firing a coating film on which the other member to be bonded is placed at 160 to 350 ° C. to form a metal bonding layer from the coating film.
  • a semiconductor device having a substrate and a semiconductor element bonded by a metal bonding layer.
  • a bonding material capable of forming a metal bonding layer having excellent heat dissipation, conductivity and bonding reliability.
  • Embodiments of the bonding material of the present invention include metal fine particle powder having an average primary particle size of 150 nm or less. Fine particle powder of such a size is excellent in sinterability by firing at a low temperature (hereinafter, also referred to as “low temperature sinterability”). From the viewpoint of low-temperature sinterability, the average primary particle size of the metal fine particle powder is preferably 130 nm or less, more preferably 100 nm or less. The average primary particle size of the metal fine particle powder is usually 1 nm or more.
  • the average primary particle size is the average value of the primary particle size (number-based average primary particles) obtained from a transmission electron micrograph (TEM image) or a scanning electron micrograph (SEM image) of the particles. Diameter). More specifically, for example, the particles are determined by a transmission electron microscope (TEM) (JEM-1011 manufactured by JEOL Ltd.) or a scanning electron microscope (SEM) (S-4700 manufactured by Hitachi High Technologies Ltd.). Calculate from the primary particle diameter (diameter of a circle (area equivalent circle) having the same area as the particle) of 100 or more, preferably 250 arbitrary particles on the image (SEM image or TEM image) observed at the magnification of. Can be done. The diameter of the circle corresponding to the area can be calculated by, for example, image analysis software (A image-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.).
  • image analysis software A image-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.
  • the content of the metal fine particle powder in the embodiment of the bonding material of the present invention is preferably 75 to 85% by mass from the viewpoint of low temperature sinterability.
  • the bonding material contains the particle powder in metal described later, the preferable content of the fine metal powder varies from the above range, but the content in this case will be described later.
  • the shape of the metal fine particle powder is not particularly limited. It may have any shape such as substantially spherical (average aspect ratio of 1 to 1.5 described later), flakes, and amorphous, but substantially spherical metal fine particle powder is preferable because it is easy to produce.
  • Silver, copper, gold, and aluminum are preferable as the constituent metals of the metal fine particle powder from the viewpoint of heat dissipation and conductivity. Of these, it may be an alloy of two or more kinds of metals. From the same viewpoint and the viewpoint of cost, silver is particularly preferable as the constituent metal of the metal fine particle powder.
  • the metal fine particle powder tends to aggregate easily because the particle size is small.
  • the metal fine particle powder is coated with an organic compound.
  • the organic compound a known compound capable of coating the particle surface of the metal fine particle powder can be used without particular limitation.
  • the organic compound include organic compounds having 1 to 18 carbon atoms having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, an amino group, a thiol group and a disulfide group.
  • the organic compound may have branches and may be saturated or unsaturated.
  • the organic compound preferably has 12 or less carbon atoms and has 2 to 8 carbon atoms so that it is sufficiently separated from the metal fine particle powder by firing at about 160 to 350 ° C. and does not hinder the sintering of the metal fine particle powders.
  • Saturated fatty acids or unsaturated fatty acids and saturated amines or unsaturated amines are more preferable. Examples of such fatty acids and amines include caproic acid, sorbic acid, hexylamine and octylamine.
  • Embodiments of the bonding material of the present invention include large metal particle powder having a cumulative 90% particle size (D90) of 7 to 30 ⁇ m on a volume basis as measured by a laser diffraction type particle size distribution measuring device.
  • D90 cumulative 90% particle size
  • the large metal particle powder functions as spacer particles that increase the thickness of the metal bonding layer.
  • the cumulative 90% particle size (D90) is defined in the particle size distribution according to the study of the present inventor, instead of the particle size generally called the average particle size such as the cumulative 50% particle size (D50).
  • the size of the particles per D90 which is a large region, but not the maximum size, is approximately reflected in the thickness of the metal bonding layer formed from the bonding material containing the large metal particle powder. That is, the thickness of the metal bonding layer corresponds to the size (D90) of one particle constituting the large metal particle powder, and the thickness of the metal bonding layer can be easily adjusted by the size of the particles of the large metal particle powder. Can be adjusted.
  • the D90 of the large metal particle powder is preferably 10 to 28 ⁇ m from the viewpoint of increasing the thickness of the metal bonding layer to improve the bonding reliability and corresponding to the miniaturization of the device.
  • the coating film formed by applying the bonding material on one of the members to be bonded, such as a substrate has particles corresponding to D100.
  • the coating film is thick and the other member to be bonded such as a semiconductor element is placed on it and fired to form a metal bonding layer, the other member to be bonded is formed in the vicinity of a portion of the particles.
  • D100 is preferably 15 to 70 ⁇ m, more preferably 18 to 65 ⁇ m.
  • the content of the large metal particle powder in the embodiment of the bonding material of the present invention is preferably 2% by mass or more in order to sufficiently function as a spacer.
  • the metal large particle powder is a large particle, and even if it is packed tightly, there are many voids. In order to reduce voids and therefore to form a metal bonding layer with excellent bonding reliability, this void is filled with (particles) of metal fine particle powder, but if there is an excessive amount of metal large particle powder, the voids will be filled.
  • the metal fine particle powder may be insufficient to fill the voids. From this, the content of the large metal particle powder in the bonding material is preferably 20% by mass or less.
  • Silver, copper, gold, and aluminum are preferable as the constituent metals of the large metal particle powder from the viewpoint of heat dissipation and conductivity.
  • it may be an alloy of two or more kinds of metals.
  • the metal large particle powder is preferably composed of the same metal or alloy as the metal fine particle powder. ..
  • silver is particularly preferable from the viewpoint of heat dissipation, conductivity and cost.
  • the average aspect ratio of the large metal particle powder is preferably 3 or less, more preferably 1 to 2, still more preferably 1 to 1.5, and particularly preferably 1 to 1.3.
  • the average aspect ratio is large, in the coating film formed by applying the bonding material on a member to be bonded such as a substrate, the long-diameter wire of the large metal particle powder is in a direction close to perpendicular to the substrate (that is, that is). If the large metal particle powder is not arranged vertically), the thickness of the metal bonding layer cannot be increased (the thickness of the metal bonding layer corresponds to the minor axis of the large metal particle powder). However, it is difficult to assume that most of the large metal particle powder having a large average aspect ratio is arranged in this way in the coating film. From the above, the preferable value of the average aspect ratio of the large metal particle powder is defined as described above.
  • the average aspect ratio of the large metal particle powder is the average value obtained by dividing the major axis of the constituent particles of the large metal particle powder by the minor axis, and the aspect ratio is individually obtained for 100 or more arbitrary particles, and the average thereof is obtained. Calculated as a value.
  • the major axis and the minor axis are the major axis and the minor axis in the planar shape of each constituent particle, which can be seen in the image of the large metal particle powder observed by SEM at a predetermined magnification.
  • the average aspect ratios of the above-mentioned metal fine particle powder and the later-described metal medium particle powder can also be calculated in the same manner as the metal fine particle powder.
  • the large metal particle powder may be coated with an organic compound from the viewpoint of enhancing the dispersibility in the bonding material and enabling dense filling with the metal fine particle powder.
  • an organic compound a known compound capable of coating the particle surface of the large metal particle powder can be used without particular limitation.
  • the organic compound include an organic compound having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, an amino group, a thiol group and a disulfide group and having 12 to 24 carbon atoms.
  • the organic compound may have branches and may be saturated or unsaturated. Examples of such organic compounds include lauric acid, myristic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, myristoleic acid, palmitic acid and the like.
  • Embodiments of the bonding material of the present invention preferably include particle powder in a metal having an average primary particle diameter of 250 to 400 nm.
  • a metal having an average primary particle diameter of 250 to 400 nm By including the powder of particles larger than the metal fine particle powder and smaller than the metal large particle powder in this way, denser particle filling can be realized, and a metal bonding layer having more excellent bonding reliability can be formed.
  • the method for measuring the average primary particle size is the same as for the metal fine particle powder. From the viewpoint of filling dense particles, the average primary particle size of the particle powder in the metal is preferably 260 to 360 nm.
  • Silver, copper, gold, and aluminum are preferable as the constituent metals of the particle powder in the metal from the viewpoint of heat dissipation and conductivity.
  • it may be an alloy of two or more kinds of metals.
  • the metal fine particle powder, the metal large particle powder and the metal medium particle powder are the same metal or It is preferably composed of an alloy.
  • silver is particularly preferable from the viewpoint of heat dissipation, conductivity and cost.
  • the shape of the particle powder in the metal is not particularly limited. It may have any shape such as substantially spherical (average aspect ratio is 1 to 1.5), flakes, and amorphous, but substantially spherical particle powder in metal is preferable because it is easy to produce.
  • the particle powder in the metal may be coated with an organic compound from the viewpoint of enhancing the dispersibility in the bonding material and enabling dense filling with the fine metal powder and the large metal particle powder.
  • an organic compound a known compound capable of coating the particle surface of the particle powder in the metal can be used without particular limitation.
  • the organic compound include an organic compound having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, an amino group, a thiol group and a disulfide group and having 12 to 24 carbon atoms.
  • the organic compound may have branches and may be saturated or unsaturated. Examples of such organic compounds include lauric acid, myristic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, myristoleic acid, palmitic acid and the like.
  • the content of the particle powder in the metal in the embodiment of the bonding material of the present invention is preferably 25 to 85% by mass from the viewpoint of enabling close emphasis on the fine metal powder and the large metal particle powder. More preferably, it is 32 to 80% by mass.
  • the content of the metal fine particle powder in the bonding material is preferably 7 to 55 from the viewpoint of low temperature sinterability and manufacturing cost of the bonding material. It is by mass, more preferably 10 to 50% by mass.
  • the content of the large metal particle powder in the bonding material functions as a spacer and the voids between the particles of the large metal particle powder are formed into the metal fine particle powder.
  • the content of the large metal particle powder in the bonding material is preferably 2 to 20% by mass, more preferably 5 to 15% by mass, from the viewpoint of effectively filling with (particles) of the particle powder in the metal. ..
  • the total content of the fine particle powder in the metal and the particle powder in the metal in the bonding material is preferably 70% by mass or more.
  • the bonding material contains the metal fine particle powder and the metal medium particle powder in a high content as described above, a metal bonding layer having few voids and excellent bonding reliability can be formed from the bonding material. If the total is too large, the viscosity of the bonding material (affecting printing characteristics) may increase. From these viewpoints, the total content of the metal fine particle powder and the metal medium particle powder in the bonding material is preferably 75 to 92% by mass.
  • the bonding material contains particle powder in metal
  • the large metal particle powder sufficiently exerts a function as a spacer, and the particles are densely packed to reduce voids and have excellent bonding reliability.
  • the powder + medium particle powder in metal: large particle powder in metal is preferably 1: 0.02 to 1: 0.3, more preferably 1: 0.08 to 1: 0.2.
  • Embodiments of the bonding material of the present invention include a solvent.
  • a solvent that can disperse metal fine particle powder and metal large particle powder (or particle powder in metal if further contained) and has substantially no reactivity with components in a bonding material is widely used. It is possible.
  • the content of the solvent in the bonding material is preferably 2 to 18% by mass, more preferably 2.5 to 16% by mass.
  • a polar solvent or a non-polar solvent can be used as this solvent, but it is preferable to use a polar solvent from the viewpoint of compatibility with other components in the bonding material and an environmental load.
  • polar solvents examples include water; turpineol, texanol, phenoxypropanol, 1-octanol, 1-decanol, 1-dodecanol, 1-tetradecanol, tersolve MTPH (manufactured by Nippon Terpen Chemical Co., Ltd.), dihydroterpinyloxy.
  • Monoalcohols such as ethanol (manufactured by Nippon Terpen Chemical Co., Ltd.), Telsolve TOE-100 (manufactured by Nippon Telpen Chemical Co., Ltd.), Telsolve DTO-210 (manufactured by Nippon Telpen Chemical Co., Ltd.); 3-methyl-1,3-butanediol , 2-Ethyl-1,3-hexanediol (octanediol), hexyldiglycol, 2-ethylhexylglycol, dibutyldiglycol, glycerin, dihydroxytarpineol, 3-methylbutane-1,2,3-triol (isoprentriol A (isoprentriol A) IPTL-A), Nippon Terpen Chemical Co., Ltd.), 2-methylbutane-1,3,4-triol (isoprentriol B (IPTL-B), Nippon Terpen Chemical Co., Ltd.) and other polyols
  • Embodiments of the bonding material of the present invention may contain additives known as other components.
  • additives such as acid-based dispersants, sintering accelerators such as glass frit, antioxidants, viscosity regulators, pH adjusters, buffers, defoamers, leveling agents, and volatilization suppression. Agents can be mentioned.
  • the content of the additive in the bonding material is preferably 2% by mass or less (when the bonding material contains an additive, the content is usually 0.01% by mass or more).
  • the resin is not substantially blended in the embodiment of the bonding material of the present invention.
  • the content of the resin in the bonding material is preferably 0.3% by mass or less, more preferably 0.1% by mass or less, and particularly preferably 0.05% by mass or less. preferable.
  • the embodiment of the bonding material of the present invention is produced by kneading the metal fine particle powder, the metal large particle powder and the solvent described above, and other optional components (particle powder in metal and additives) by a known method. can do.
  • the content of each component in the bonding material is the one described above as a preferable content thereof (that is, for example, the content of the metal fine particle powder is preferably 7 to 55).
  • the amount used is preferably 2 to 20% by mass, and the content of the large metal particle powder is preferably 2 to 20% by mass).
  • the kneading method is not particularly limited.
  • each component is prepared individually, and in any order, an ultrasonic disperser, a disper, a three-roll mill, a ball mill, a bead mill, a twin-screw kneader, a planetary mixer, etc.
  • the bonding material can be manufactured by kneading with a revolving rotation type stirrer or the like.
  • the embodiment of the bonding method of the present invention includes a coating film forming step, a mounting step, and a metal bonding layer forming step, and other pre-drying steps and the like may be carried out. Hereinafter, each of these steps will be described.
  • the bonding material produced according to the embodiment of the bonding material of the present invention or the method of manufacturing the bonding material of the present invention is printed on one of the members to be bonded (for example, metal mask printing, screen printing). Apply by printing, pin transfer), etc. to form a coating film.
  • An example of the one member to be joined includes a substrate.
  • a metal substrate such as a copper substrate, an alloy substrate of copper and some metal (for example, W (tungsten) or Mo (molybdenum)), or a ceramic in which a copper plate is sandwiched between SiN (silicon nitride) or AlN (aluminum nitride).
  • Examples thereof include a substrate, a plastic substrate such as a PET (polyethylene terephthalate) substrate, and a PCB substrate such as FR4. Further, a laminated substrate in which these are laminated can also be used in the joining method of the present invention.
  • the part to which the joining material of one of the members to be joined is applied may be plated with metal.
  • the metal plating is the same metal plating as the constituent metal of the metal fine particle powder.
  • the other member to be joined is placed on the coating film formed on the one member to be joined.
  • the other member to be joined include semiconductor elements such as Si chips, SiC, and GaN chips, and substrates similar to those mentioned as examples of one member to be joined. Since a highly reliable metal bonding layer can be formed from the coating film, the embodiment of the bonding method of the present invention is preferably used for bonding a substrate and a semiconductor element. That is, a semiconductor element is preferable as the other member to be joined.
  • the part (bottom surface) in contact with the coating film of the other member to be joined may be plated with metal.
  • the metal plating of the other member to be bonded is preferably the same metal plating as the constituent metal of the metal fine particle powder. Further, when the other member to be joined is placed on the coating film, a pressure in the direction of compressing the coating film may or may not be applied between the two members to be joined.
  • ⁇ Preliminary drying process> When the coating film on which the other member to be bonded is placed is heated to sinter the metal fine particle powder, the other member to be bonded is placed on the coating film in order to reduce voids in the metal bonding layer formed.
  • a pre-drying step of pre-drying the coating film may be performed before or after mounting (before or after the mounting step).
  • the purpose of the pre-drying is to remove the solvent from the coating film, and the solvent is dried under conditions where the solvent is volatilized and the metal fine particle powder does not substantially cause sintering. Therefore, pre-drying is preferably carried out by heating the coating film at 60 to 150 ° C. Drying by heating may be performed under atmospheric pressure, or may be performed under reduced pressure or vacuum. Further, in the metal bonding layer forming step described below, if the rate of temperature rise to the firing temperature is about 7 ° C./min or less, the pre-drying step can be carried out by raising the temperature to the firing temperature.
  • Metal bonding layer forming process After carrying out the mounting step and, if necessary, the pre-drying step, the coating film sandwiched between the two members to be joined is fired at 160 to 350 ° C. to sinter the fine metal fine powder. A metal bonding layer is formed and the two members to be bonded are joined. By this step, the large metal particle powder (and the particle powder in the metal if the bonding material is contained) is connected by the sintered metal fine particle powder (although the shape of the particles usually does not remain) and is continuous. A dense metal bonding layer is formed.
  • the loading step is typically carried out at room temperature. Therefore, in this metal bonding layer forming step, the temperature is first raised to the firing temperature of 160 to 350 ° C.
  • the rate of temperature rise is not particularly limited, but can be, for example, 1.5 ° C./min to 10 ° C./min, preferably 2 ° C./min to 6 ° C./min. Then, it is held at the firing temperature for, for example, 1 minute to 2 hours to form a metal bonding layer from the coating film of the bonding material.
  • the firing temperature is preferably 175 to 280 ° C. from the viewpoint of the bonding strength and cost of the formed metal bonding layer.
  • the time to hold at the firing temperature is preferably 10 to 90 minutes from the viewpoint of the bonding strength and cost of the formed metal bonding layer. If the firing temperature is set to 280 ° C. or higher and the temperature is raised at the above-mentioned heating rate, a metal bonding layer is formed by the time the firing temperature is reached, so that the holding time at the firing temperature may be 0 minutes.
  • this metal bonding layer forming step it is not necessary to apply a pressure (in the direction of compressing the coating film) between the members to be bonded, but a pressure of 5 MPa or less (usually 15 Pa or more) may be applied.
  • a pressure of 5 MPa or less usually 15 Pa or more
  • the sandwich structure of the member to be bonded-the coating film-the member to be bonded is pressure-fired one by one to perform the bonding. If so, the productivity is very low. In order to increase productivity, it is conceivable to pressurize and bake many sandwich structures at the same time, but it is not easy to apply the same pressurization to the sandwich structures in the same direction at the same time, and at the same time. When pressure firing is performed, there is a concern about the uniformity of the quality of the obtained product. From the above, in the present invention, it is preferable to carry out the metal bonding layer forming step without pressurizing to form the metal bonding layer.
  • the metal bonding layer forming step may be carried out in an atmospheric atmosphere or an inert atmosphere such as a nitrogen atmosphere, but it is preferably carried out in an inert atmosphere from the viewpoint of preventing oxidation. Further, from the viewpoint of cost, it is more preferable to carry out this step in a nitrogen atmosphere.
  • a silver nitrate aqueous solution prepared by dissolving 33.8 g of silver nitrate crystals (manufactured by Wako Pure Chemical Industries, Ltd.) in 180 g of water was prepared as a silver salt aqueous solution, and the temperature of the silver salt aqueous solution was adjusted to 60 ° C. 0.00008 g (1 ppm in terms of copper with respect to silver) of copper nitrate trihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the silver salt aqueous solution.
  • the copper nitrate trihydrate was added by diluting an aqueous solution of copper nitrate trihydrate having a high concentration to some extent so as to add the target amount of copper.
  • the above silver salt aqueous solution was added to the above reducing agent solution all at once, mixed, and the reduction reaction was started with stirring. About 10 seconds after the start of this reduction reaction, the color change of the slurry as the reaction solution was completed, and after aging for 10 minutes with stirring, the stirring was finished and solid-liquid separation by suction filtration was performed to obtain the obtained product.
  • the solid was washed with pure water and vacuum dried at 40 ° C. for 12 hours to obtain a dry powder of silver fine particle powder 1 (coated with hexanoic acid).
  • the proportion of silver in the silver fine particle powder 1 was calculated to be 97% by mass from the weight after removing the caproic acid by heating. Further, the average primary particle size of the silver fine particle powder 1 was determined by a transmission electron microscope (TEM) and found to be 20 nm. The maximum primary particle size of the silver fine particle powder 1 was 27 nm.
  • TEM transmission electron microscope
  • aqueous silver nitrate solution was prepared as a raw material solution by putting 180.0 g of pure water in a 300 mL beaker and adding 33.6 g of silver nitrate (manufactured by Toyo Chemical Co., Inc.) to dissolve it.
  • the liquid containing the agglomerates of the silver fine particles was No.
  • the mixture was filtered through a 5C filter paper, and the recovered product was washed with pure water to obtain an agglomerate of silver fine particles.
  • the aggregates of silver fine particles were dried in a vacuum dryer at 80 ° C. for 12 hours to obtain a dry powder (silver fine particle powder 2) of the aggregates of silver fine particles.
  • the dry powder thus obtained was crushed to adjust the size of the secondary agglomerates.
  • the average primary particle size of the silver fine particle powder 2 was determined by a scanning electron microscope (SEM) and found to be 80 nm.
  • the maximum primary particle size of the silver fine particle powder 2 was 100 nm.
  • spherical large silver particle powder 1 having a volume-based cumulative 90% particle size (D90) of 12.92 ⁇ m and an average aspect ratio of about 1.0 measured by a laser diffraction type particle size distribution measuring device, manufactured by AMES. 2709-NM1 was prepared.
  • the D90 is a volume of silver large particle powder 1 at a dispersion pressure of 5 bar using a laser diffraction type particle size distribution measuring device (a Heros particle size distribution measuring device manufactured by SYMPATEC (HELOS & RODOS (air flow type dispersion module))). It was determined by measuring the reference particle size distribution.
  • the cumulative 90% particle size (D90) of the volume standard measured by the laser diffraction type particle size distribution measuring device by the same method as described above is 24.82 ⁇ m, and the average aspect ratio is about 1.0.
  • the particle powder 2 27019-NM1 manufactured by AMES was prepared.
  • resin balls (AUEZ-020A-S manufactured by Sekisui Chemical Co., Ltd., D90 is 23 ⁇ m, the particle surface is gold-plated, average aspect ratio: about 1.0) were prepared.
  • Silver fine particle powder 1 is 14.7% by mass
  • silver fine particle powder 2 is 27.1% by mass
  • silver medium particle powder 51.3% by mass and butoxyethoxyacetic acid (BEA) as a dispersant (Tokyo Kasei Kogyo Co., Ltd.) 0.5% by mass (manufactured by the company), 1.4% by mass of 1-dodecanol (monoalcohol) as a solvent, 1.5% by mass of octanediol manufactured by Fuji Film Wako Pure Chemical Industries, and triol (manufactured by Nippon Terupen Chemical Co., Ltd.) Telsolve IPTL-B) 3.5% by mass was kneaded to prepare a silver paste.
  • BEA butoxyethoxyacetic acid
  • This silver paste was diluted by adding 1-dodecanol in order to adjust the viscosity to be suitable for printing.
  • the silver concentration in the obtained diluted silver paste (this diluted silver paste was used as a bonding material in Comparative Example 1 described later) was determined by the ignition loss method and found to be 91.5% by mass.
  • a copper substrate having a size of 10 mm ⁇ 10 mm ⁇ 1 mm and an Ag-plated semiconductor chip having a size of 1 mm ⁇ 1 mm ⁇ 0.1 mm were prepared after being degreased with ethanol and then treated with 10% by mass sulfuric acid.
  • the above-mentioned bonding material was applied onto the copper substrate by pin transfer (the inner diameter of the pin was 393 ⁇ m).
  • the Ag-plated portion of the semiconductor chip was arranged so as to be in contact with the bonding material.
  • a load of 10 g is applied twice between the bonding material and the semiconductor chip by pressing the entire upper surface of the chip, and then the temperature is raised from 25 ° C in the atmosphere to 210 ° C at a heating rate of 6 ° C / min by a lamp furnace.
  • the mixture was fired at 210 ° C. for 60 minutes to form a silver bonding layer, and the semiconductor chip was bonded to the copper substrate by the silver bonding layer.
  • the longitudinally divided cross section of the bonded portion (silver bonded layer) was observed with a scanning electron microscope (SEM) at a magnification of 5,000 (shown in FIG. 1), and the results were obtained.
  • the silver bonding layer had a thickness of 13 ⁇ m.
  • the thickness of the silver bonding layer is the thickness of the thinnest part under the semiconductor chip of the silver bonding layer (the thickness of the thinnest part considered to be a bottleneck of reliability was measured). ..
  • FIG. 2 shows the results of photographing the joint portion of the semiconductor chip-silver joint layer-copper substrate of the joint with a microfocus X-ray fluoroscope (SMX-16LT, manufactured by Shimadzu Corporation).
  • SMX-16LT microfocus X-ray fluoroscope
  • the resistivity of the obtained fired film was measured by the four-probe method, the film thickness was measured with a surface roughness meter, and the specific resistance of the fired film was determined from these results.
  • the specific resistance was 3.3 u ⁇ ⁇ cm.
  • Example 2 A bonding material was prepared in the same manner as in Example 1 except that 10 parts by mass of silver large particle powder 2 was added instead of silver large particle powder 1 to 90 parts by mass of the diluted silver paste prepared in Example 1. Using this, the same bonding test and conductivity evaluation as in Example 1 were carried out.
  • Example 1 Using the diluted silver paste prepared in Example 1 as a bonding material, a bonding test and an evaluation of conductivity were carried out in the same manner as in Example 1.
  • Example 2 In Example 1, a resin ball was used instead of the silver large particle powder 1, and a bonding material was prepared in the same manner as in Example 1 except that 1 part by mass of the resin ball was added to 99 parts by mass of the diluted silver paste. Then, using this, the same bonding test and conductivity evaluation as in Example 1 were carried out.
  • FIG. 3 shows the results of observing the longitudinally split cross section of the joint portion (silver joint layer) of the joint obtained in the joint test with a scanning electron microscope (SEM) at a magnification of 5,000 times.
  • SEM scanning electron microscope
  • FIG. 4 shows the results of photographing the joint portion of the semiconductor chip-silver joint layer-copper substrate of the joint with a microfocus X-ray fluoroscope (SMX-16LT, manufactured by Shimadzu Corporation).
  • SMX-16LT microfocus X-ray fluoroscope
  • Comparative Example 3 A bonding material was prepared in the same manner as in Comparative Example 2 except that the amount of the diluted silver paste used was 97 parts by mass and the amount of the resin balls added was 3 parts by mass. A test and an evaluation of conductivity were carried out.
  • Comparative Example 4 A bonding material was prepared in the same manner as in Comparative Example 2 except that the amount of the diluted silver paste used was 95 parts by mass and the amount of the resin balls added was 5 parts by mass. A test and an evaluation of conductivity were carried out.
  • the amount of silver in the bonding material excluding silver derived from the spacer particles can be approximated to the total content of the metal fine particle powder and the metal particle powder in the bonding material according to the present invention. ..
  • the “content ratio of metal fine particle powder + metal medium particle powder: metal large particle powder (spacer particles) in the bonding material” was determined based on the above approximation. Further, as for “the amount of silver in the bonding material excluding silver derived from spacer particles", 10 parts of silver large particle powder 1 was added to 90 parts by mass of the diluted silver paste in which the bonding material had a silver concentration of 91.5% by mass. Since it was prepared by adding parts by mass, it was determined by multiplying 91.5 by 0.9.
  • the bonding material contained some spacer particles, but a silver bonding layer having a thickness substantially corresponding to each D90 was formed.
  • the thickness of the silver bonding layer is as small as 6 ⁇ m, and there is a concern in terms of bonding reliability.
  • the specific resistance of the fired films obtained in Examples 1 and 2 was smaller than the specific resistance of the fired films obtained in Comparative Examples 2 to 4, and the conductivity was excellent.
  • the spacer particles of the bonding material of Example 1 are composed of silver
  • the spacer particles of the bonding material of Comparative Examples 2 to 4 are composed of resin, which adversely affects the conductivity. It is thought that this is because it is.
  • it is predicted that the fired films obtained in Examples 1 and 2 are superior in heat dissipation (thermal conductivity) to the fired films of Comparative Examples 2 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

平均一次粒子径が150nm以下の金属微粒子粉末、レーザー回折型粒度分布測定装置により測定される体積基準の累積90%粒子径(D90)が7~30μmの金属大粒子粉末、及び溶剤を含む接合材。

Description

接合材、接合材の製造方法、接合方法及び半導体装置
 本発明は、接合材、接合材の製造方法、接合方法及び半導体装置に関する。
 近年、Power LEDや高周波デバイス、インバーター等のパワーデバイスの分野などにおいて、デバイスの小型化及び高出力化に伴い、デバイスの発熱の問題が大きくなってきており、このサーマルマネジメントの議論が活発になってきている。また、他の半導体デバイスにおいても、従来のシリコン系から化合物半導体への変更の検討も進み、ジャンクション温度が高くなる傾向にある。
 これらの技術的背景のもとに、各種半導体デバイスと基板等を接合する材料に求められてくるのは、放熱性及び接合信頼性である。昨今、焼結銀などの金属微粒子粉末を用いた接合材はこの放熱性と接合信頼性とを実現し得る材料として注目されている。またこのような接合材は低温で焼結して金属接合層を形成するので、基板として耐熱性の低いものを使用し得るという点でも注目されている。
 金属微粒子粉末を含む接合材を使用した接合方法としては、接合材を基板に塗布し、塗膜上に被接合部材を載置し、加圧焼結して金属接合層を形成する方法が代表的な方法として知られている。ここで、形成される金属接合層が薄いものであると、その接合層は応力緩和能力が低く、接合信頼性の点で不十分である。
 このような不都合に対して、特許文献1では、平均粒子径が例えば10μm程度の樹脂粒子を銀や銅などでコートした導電性粒子と、金属微粒子とを含む接合材が提案されている。金属微粒子に比べて非常に大きい導電性粒子の存在により、このような接合材から形成される金属接合層の厚みは導電性粒子の大きさに対応したものとなる。つまり前記導電性粒子は金属接合層の厚みをかせぐスペーサとして機能している。
特開2016-195126号公報
 しかし特許文献1の導電性粒子のコア粒子は樹脂であり、これは金属接合層の放熱性や導電性に対して悪影響を及ぼす。
 そこで本発明は、優れた放熱性、導電性及び接合信頼性を備えた金属接合層を形成し得る接合材を提供することを課題とする。
 本発明者は上記課題を解決するために鋭意検討した結果、金属微粒子粉末と、スペーサとして機能する粗大な金属大粒子粉末とを含む接合材が、優れた放熱性、導電性及び接合信頼性を備えた金属接合層を形成し得ることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の通りである。
[1]平均一次粒子径が150nm以下の金属微粒子粉末、レーザー回折型粒度分布測定装置により測定される体積基準の累積90%粒子径(D90)が7~30μmの金属大粒子粉末、及び溶剤を含む接合材。
[2]前記金属大粒子粉末の前記累積90%粒子径(D90)が10~28μmである、[1]に記載の接合材。
[3]更に平均一次粒子径が250~400nmの金属中粒子粉末を含む、[1]又は[2]に記載の接合材。
[4]前記金属微粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成され、
 前記金属大粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成され、
 前記金属中粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成されている、[3]に記載の接合材。
[5]前記金属微粒子粉末が銀により構成され、前記金属大粒子粉末が銀により構成され、前記金属中粒子粉末が銀により構成されている、[3]又は[4]に記載の接合材。
[6]前記金属微粒子粉末及び金属中粒子粉末の前記接合材中の含有量(質量割合)の合計と、前記金属大粒子粉末の前記接合材中の含有量(質量割合)との比(金属微粒子粉末+金属中粒子粉末:金属大粒子粉末)が、1:0.02~1:0.3である、[3]~[5]のいずれかに記載の接合材。
[7]前記金属微粒子粉末の前記接合材中の含有量が、7~55質量%である、[3]~[6]のいずれかに記載の接合材。
[8]前記金属大粒子粉末の前記接合材中の含有量が、2~20質量%である、[3]~[7]のいずれかに記載の接合材。
[9]前記金属大粒子粉末の平均アスペクト比が3以下である、[1]~[8]のいずれかに記載の接合材。
[10]平均一次粒子径が150nm以下の金属微粒子粉末、レーザー回折型粒度分布測定装置により測定される体積基準の累積90%粒子径(D90)が7~30μmの金属大粒子粉末、及び溶剤を混合する工程を有する接合材の製造方法。
[11]前記金属微粒子粉末、金属大粒子粉末及び溶剤へ更に平均一次粒子径が250~400nmの金属中粒子粉末を添加して混合する、[10]に記載の接合材の製造方法。
[12]前記金属微粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成され、
 前記金属大粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成され、
 前記金属中粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成されている、[11]に記載の接合材の製造方法。
[13]前記金属微粒子粉末及び前記金属大粒子粉末の使用量が、前記接合材中の前記金属微粒子粉末及び前記金属大粒子粉末の含有量が、それぞれ7~55質量%及び2~20質量%となる量である、[11]又は[12]に記載の接合材の製造方法。
[14]2つの被接合部材を接合する接合方法であって、
 一方の前記被接合部材上に[1]~[9]のいずれかに記載の接合材又は[10]~[13]のいずれかに記載の接合材の製造方法で製造された接合材を塗布して塗膜を形成する工程と、
 該塗膜上に他方の前記被接合部材を載置する工程と、
 該他方の被接合部材が載置された塗膜を160~350℃で焼成して、前記塗膜から金属接合層を形成する工程とを有する、接合方法。
[15]前記一方の被接合部材が基板であり、前記他方の被接合部材が半導体素子である、[14]に記載の接合方法。
[16]金属接合層により接合された基板及び半導体素子を有する半導体装置であって、
 前記金属接合層が、一次粒子径が7~30μmの金属粒子を含み、その厚みが前記金属粒子の一次粒子径に対応したものである、半導体装置。
 本発明によれば、優れた放熱性、導電性及び接合信頼性を備えた金属接合層を形成し得る接合材が提供される。
実施例1の接合材を用いた接合試験で得られた接合体の銀接合層の縦割断面を走査型電子顕微鏡(SEM)により5千倍の倍率で観察した結果を示す図である。 実施例1の接合材を用いた接合試験で得られた接合体の半導体チップ-銀接合層-銅基板の接合部を、マイクロフォーカスX線透視装置で撮影した結果を示す図である。 比較例2の接合材を用いた接合試験で得られた接合体の銀接合層の縦割断面を走査型電子顕微鏡(SEM)により5千倍の倍率で観察した結果を示す図である。 比較例2の接合材を用いた接合試験で得られた接合体の半導体チップ-銀接合層-銅基板の接合部を、マイクロフォーカスX線透視装置で撮影した結果を示す図である。
 以下、本発明の接合材、接合材の製造方法及び接合方法の実施の形態について説明する。
[接合材]<金属微粒子粉末>
 本発明の接合材の実施の形態は、平均一次粒子径が150nm以下の金属微粒子粉末を含む。このようなサイズの微粒子粉末は、低温での焼成による焼結性(以下「低温焼結性」ともいう)に優れる。低温焼結性の観点から、金属微粒子粉末の平均一次粒子径は好ましくは130nm以下であり、より好ましくは100nm以下である。また、金属微粒子粉末の平均一次粒子径は通常1nm以上である。
 なお本明細書において、平均一次粒子径とは、粒子の透過型電子顕微鏡写真(TEM像)又は走査型電子顕微鏡写真(SEM像)から求められる一次粒子径の平均値(個数基準の平均一次粒子径)をいう。更に具体的には、例えば、透過型電子顕微鏡(TEM)(日本電子株式会社製のJEM-1011)又は走査型電子顕微鏡(SEM)(日立ハイテクノロジーズ株式会社製のS-4700)により粒子を所定の倍率で観察した画像(SEM像又はTEM像)上の100個以上、好ましくは250個の任意の粒子の一次粒子径(粒子と面積が同じ円(面積相当円)の直径)から算出することができる。面積相当円の直径の算出は、例えば、画像解析ソフト(旭化成エンジニアリング株式会社製のA像くん(登録商標))により行うことができる。
 本発明の接合材の実施の形態における金属微粒子粉末の含有量は、低温焼結性の観点から、好ましくは75~85質量%である。なお、接合材が後述する金属中粒子粉末を含む場合には、金属微粒子粉末の好ましい含有量は前記の範囲から変わるが、この場合の含有量については後述する。
 金属微粒子粉末の形状は特に制限されない。略球状(後述する平均アスペクト比が1~1.5)、フレーク状、不定形などいずれの形状でもよいが、略球状の金属微粒子粉末が、製造が容易で好ましい。
 金属微粒子粉末の構成金属としては、放熱性及び導電性の観点から銀、銅、金、アルミニウムが好ましい。これらのうち2種以上の金属の合金であってもよい。同様な観点及びコストの観点から、金属微粒子粉末の構成金属としては銀が特に好ましい。
 なお金属微粒子粉末は粒子径が小さいため凝集し易い傾向にある。これを防止するため、金属微粒子粉末は有機化合物で被覆されていることが好ましい。この有機化合物としては金属微粒子粉末の粒子表面を被覆可能な公知のものを特に制限なく使用可能である。前記有機化合物の例としては、ヒドロキシル基、カルボキシル基、アミノ基、チオール基及びジスルフィド基からなる群より選ばれる少なくとも1種の官能基を有する炭素数1~18の有機化合物が挙げられる。この有機化合物は分岐を有してもよく、飽和であっても不飽和であってもよい。
 160~350℃程度での焼成により十分に金属微粒子粉末から分離して金属微粒子粉末同士の焼結を阻害しないように、前記有機化合物としては炭素数12以下のものが好ましく、炭素数2~8の飽和脂肪酸もしくは不飽和脂肪酸や飽和アミンもしくは不飽和アミンがより好ましい。このような脂肪酸やアミンの例として、ヘキサン酸、ソルビン酸、ヘキシルアミン及びオクチルアミンが挙げられる。
<金属大粒子粉末>
 本発明の接合材の実施の形態は、レーザー回折型粒度分布測定装置により測定される体積基準の累積90%粒子径(D90)が7~30μmの金属大粒子粉末を含む。
 接合材がこのような大きな粒子の粉末を含むことにより、低温焼結性を維持しつつ、その大きさに応じた金属接合層を形成可能となる。すなわち金属大粒子粉末は金属接合層の厚みを大きくするスペーサ粒子として機能する。
 なお累積50%粒子径(D50)のような一般に平均粒子径と言われている粒子径ではなく、累積90%粒子径(D90)を規定するのは、本発明者の検討により、粒度分布における大きい領域、ただし最大サイズではないD90あたりの粒子のサイズが、この金属大粒子粉末を含む接合材から形成される金属接合層の厚みにおおよそ反映されることが判明したためである。すなわち、前記金属接合層の厚みは金属大粒子粉末を構成する粒子1粒の大きさ(D90)に対応した厚みとなり、金属接合層の厚みを、金属大粒子粉末の粒子の大きさにより容易に調整することができる。
 金属接合層の厚みを大きくして接合信頼性を高める観点と、デバイスの小型化に対応する観点から、金属大粒子粉末のD90は好ましくは10~28μmである。
 なお金属大粒子粉末の累積100%粒子径(D100)があまりに大きいと、接合材を基板等の一方の被接合部材上に塗布して形成される塗膜について、D100に対応する粒子のある部分だけ塗膜が厚く、この上に半導体素子等の他方の被接合部材を載置し焼成を実施して金属接合層を形成したときに、前記粒子のある部分の近傍において、前記他方の被接合部材と金属接合層との間に空隙が生じたり、二つの被接合部材を平行に接合できない可能性がある。このような事態を回避する観点から、D100は好ましくは15~70μmであり、より好ましくは18~65μmである。
 本発明の接合材の実施の形態における金属大粒子粉末の含有量について、スペーサとして十分に機能させるためには、2質量%以上であることが好ましい。また、金属大粒子粉末は大きな粒子であり、これが最密充填したとしても空隙が多く存在する。ボイドを低減してそれゆえ接合信頼性に優れた金属接合層を形成するために、この空隙を金属微粒子粉末(の粒子)で埋めることとなるが、金属大粒子粉末が過度に多いと、その空隙を埋めるのに金属微粒子粉末が足りなくなる場合がある。このことから、金属大粒子粉末の接合材中の含有量は20質量%以下であることが好ましい。
 金属大粒子粉末の構成金属としては、放熱性及び導電性の観点から銀、銅、金、アルミニウムが好ましい。これらのうち2種以上の金属の合金であってもよい。なお、金属微粒子粉末と線膨張係数をそろえて接合信頼性に優れた金属接合層を形成する観点からは、金属大粒子粉末は金属微粒子粉末と同様の金属又は合金で構成されていることが好ましい。また、金属大粒子粉末の構成金属としては、放熱性、導電性及びコストの観点から銀が特に好ましい。
 金属大粒子粉末の平均アスペクト比は好ましくは3以下であり、より好ましくは1~2であり、更に好ましくは1~1.5であり、特に好ましくは1~1.3である。平均アスペクト比が大きいと、接合材を基板等の被接合部材上に塗布して形成される塗膜中において、金属大粒子粉末の長径の線が基板に対して垂直に近い方向に(つまりは金属大粒子粉末が縦に)配置されないと、金属接合層の厚みをかせげない(金属接合層の厚みが金属大粒子粉末の短径に対応したものとなってしまう)。しかし塗膜中で平均アスペクト比の大きい金属大粒子粉末の大部分がこのように配置されるとは想定しがたい。以上から金属大粒子粉末の平均アスペクト比の好ましい値が前記のように規定される。
 なお金属大粒子粉末の平均アスペクト比は、金属大粒子粉末の構成粒子の長径を短径で除した数値の平均値であり、100個以上の任意の粒子について個別にアスペクト比を求め、その平均値として算出される。前記長径及び短径は、金属大粒子粉末を所定の倍率でSEMにより観察した画像中で見える、各構成粒子の平面形状における長径と短径である。なお、上述した金属微粒子粉末および後述する金属中粒子粉末それぞれの平均アスペクト比についても、金属第微粒子粉末と同様に算出することができる。
 接合材中での分散性を高めて金属微粒子粉末との密な充填を可能とする観点から、金属大粒子粉末は有機化合物で被覆されていてもよい。この有機化合物としては金属大粒子粉末の粒子表面を被覆可能な公知のものを特に制限なく使用可能である。前記有機化合物の例としては、ヒドロキシル基、カルボキシル基、アミノ基、チオール基及びジスルフィド基からなる群より選ばれる少なくとも1種の官能基を有する炭素数12~24の有機化合物が挙げられる。この有機化合物は分岐を有してもよく、飽和であっても不飽和であってもよい。このような有機化合物の例としては、ラウリン酸、ミリスチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ミリストレイン酸、パルミチン酸などが挙げられる。
<金属中粒子粉末>
 本発明の接合材の実施の形態は、好ましくは平均一次粒子径が250~400nmの金属中粒子粉末を含む。このように金属微粒子粉末より大きく金属大粒子粉末より小さな粒子の粉末を含むことにより、より密な粒子の充填が実現され、より接合信頼性に優れた金属接合層を形成可能となる。平均一次粒子径の測定方法は、金属微粒子粉末の場合と同様である。密な粒子の充填の観点から、金属中粒子粉末の平均一次粒子径は好ましくは260~360nmである。
 金属中粒子粉末の構成金属としては、放熱性及び導電性の観点から銀、銅、金、アルミニウムが好ましい。これらのうち2種以上の金属の合金であってもよい。なお、金属微粒子粉末及び金属大粒子粉末と線膨張係数をそろえて接合信頼性に優れた金属接合層を形成する観点からは、金属微粒子粉末、金属大粒子粉末及び金属中粒子粉末が同じ金属又は合金で構成されていることが好ましい。また、金属中粒子粉末の構成金属としては、放熱性、導電性及びコストの観点から銀が特に好ましい。
 金属中粒子粉末の形状は特に制限されない。略球状(平均アスペクト比が1~1.5)、フレーク状、不定形などいずれの形状でもよいが、略球状の金属中粒子粉末が、製造が容易で好ましい。
 接合材中での分散性を高めて金属微粒子粉末及び金属大粒子粉末との密な充填を可能とする観点から、金属中粒子粉末は有機化合物で被覆されていてもよい。この有機化合物としては金属中粒子粉末の粒子表面を被覆可能な公知のものを特に制限なく使用可能である。前記有機化合物の例としては、ヒドロキシル基、カルボキシル基、アミノ基、チオール基及びジスルフィド基からなる群より選ばれる少なくとも1種の官能基を有する炭素数12~24の有機化合物が挙げられる。この有機化合物は分岐を有してもよく、飽和であっても不飽和であってもよい。このような有機化合物の例としては、ラウリン酸、ミリスチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ミリストレイン酸、パルミチン酸などが挙げられる。
 本発明の接合材の実施の形態における金属中粒子粉末の含有量は、金属微粒子粉末及び金属大粒子粉末との密な重点を可能とする観点から、25~85質量%であることが好ましく、32~80質量%であることがより好ましい。
 本発明の接合材の実施の形態が金属中粒子粉末を含有する場合、接合材中の金属微粒子粉末の含有量は、低温焼結性及び接合材の製造コストの観点から、好ましくは7~55質量%であり、より好ましくは10~50質量%である。
 本発明の接合材の実施の形態が金属中粒子粉末を含有する場合、接合材中の金属大粒子粉末の含有量は、スペーサとしての機能と金属大粒子粉末の粒子同士の空隙を金属微粒子粉末及び金属中粒子粉末(の粒子)で効果的に埋める観点から、金属大粒子粉末の接合材中の含有量は、好ましくは2~20質量%であり、より好ましくは5~15質量%である。
 また、接合材が金属中粒子粉末を含有する場合、接合材中の金属微粒子粉末及び金属中粒子粉末の含有量の合計は、70質量%以上であることが好ましい。このように接合材が高含有量で金属微粒子粉末及び金属中粒子粉末を含有すると、その接合材からボイドが少なく接合信頼性に優れた金属接合層を形成できる。なお、前記合計が大き過ぎると接合材の粘度(印刷特性に影響)が高くなる場合がある。これらの観点から、接合材中の金属微粒子粉末及び金属中粒子粉末の含有量の合計は、好ましくは75~92質量%である。
 さらに、接合材が金属中粒子粉末を含有する場合、金属大粒子粉末にスペーサとしての機能を十分に発揮させ、また粒子を密に充填させて、ボイドが少なく接合信頼性に優れた金属接合層を形成する観点から、金属微粒子粉末及び金属中粒子粉末の接合材中の含有量(質量割合)の合計と、金属大粒子粉末の接合材中の含有量(質量割合)との比(金属微粒子粉末+金属中粒子粉末:金属大粒子粉末)は、1:0.02~1:0.3であることが好ましく、1:0.08~1:0.2であることがより好ましい。
<溶剤>
 本発明の接合材の実施の形態は、溶剤を含む。この溶剤としては、金属微粒子粉末及び金属大粒子粉末(更に含有する場合は金属中粒子粉末)を分散させることができ、接合材中の成分との反応性を実質的に有しないものを広く使用可能である。
 接合材中の溶剤の含有量は、2~18質量%であるのが好ましく、2.5~16質量%であるのがより好ましい。この溶剤として、極性溶剤や非極性溶剤を使用することができるが、接合材中の他の成分との相溶性や環境負荷の観点から、極性溶剤を使用するのが好ましい。
 極性溶剤の例としては、水;ターピネオール、テキサノール、フェノキシプロパノール、1-オクタノール、1-デカノール、1-ドデカノール、1-テトラデカノール、テルソルブMTPH(日本テルペン化学株式会社製)、ジヒドロターピニルオキシエタノール(日本テルペン化学株式会社製)、テルソルブTOE-100(日本テルペン化学株式会社製)、テルソルブDTO-210(日本テルペン化学株式会社製)等のモノアルコール;3-メチル-1,3-ブタンジオール、2-エチル-1,3-ヘキサンジオール(オクタンジオール)、ヘキシルジグリコール、2-エチルヘキシルグリコール、ジブチルジグリコール、グリセリン、ジヒドロキシターピネオール、3-メチルブタン-1,2,3-トリオール(イソプレントリオールA(IPTL-A)、日本テルペン化学株式会社製)、2-メチルブタン-1,3,4-トリオール(イソプレントリオールB(IPTL-B)、日本テルペン化学株式会社製)等のポリオール;ブチルカルビトール、ジエチレングリコールモノブチルエーテル、ターピニルメチルエーテル(日本テルペン化学株式会社製)、ジヒドロターピニルメチルエーテル(日本テルペン化学株式会社製)等のエーテル化合物;ブチルカルビトールアセテート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート;1-メチルピロリジノン、ピリジン等の含窒素環状化合物;γ―ブチロラクトン、メトキシブチルアセテート、メトキシプロピルアセテート、乳酸エチル、3-ヒドロキシ-3-メチルブチルアセテート、ジヒドロターピニルアセテート、テルソルブIPG-2Ac(日本テルペン化学株式会社製)、テルソルブTHA-90(日本テルペン化学株式会社製)、テルソルブTHA-70(日本テルペン化学株式会社製)等のエステル化合物;などを使用することができる。これらは1種単独で使用しても、2種以上を組み合わせて使用してもよい。
<その他の成分(添加剤)>
 本発明の接合材の実施の形態は、その他の成分として公知の添加剤を含んでいてもよい。添加剤として具体的には、酸系分散剤などの分散剤、ガラスフリットなどの焼結促進剤、酸化防止剤、粘度調整剤、pH調整剤、緩衝剤、消泡剤、レベリング剤、揮発抑制剤が挙げられる。添加剤の接合材における含有量は、2質量%以下であることが好ましい(接合材が添加剤を含む場合、通常その含有量は0.01質量%以上とされる)。 
 なお、接合材には樹脂を配合して金属微粒子粉末同士のバインダーとして機能させるタイプのものがあるが、このような樹脂は、接合材から形成される金属接合層中に残存し、放熱性や導電性に悪影響を与えるおそれがある。特許文献2で使用されている、樹脂粒子を銀や銅などでコートした導電性粒子も、樹脂部分が放熱性等に悪影響を与える。また樹脂は金属とは線膨張係数が大きく異なるので、金属接合層が冷熱サイクルを受けたときに前記の相違に起因して応力が発生して、接合信頼性に悪影響する。
 以上から、本発明の接合材の実施の形態には樹脂を実質的に配合しないことが好ましい。具体的には、接合材中の樹脂の含有量は0.3質量%以下であることが好ましく、0.1質量%以下であることがより好ましく、0.05質量%以下であることが特に好ましい。
[接合材の製造方法]
 本発明の接合材の実施の形態は、以上説明した金属微粒子粉末、金属大粒子粉末及び溶剤、更に他の任意成分(金属中粒子粉末や添加剤)を公知の方法で混練することで、製造することができる。なお、各成分の使用量については、接合材中の各成分の含有量が、それらの好ましい含有量として上記で説明したものとなる(すなわち、例えば金属微粒子粉末の含有量が好ましくは7~55質量%であり、金属大粒子粉末の含有量が好ましくは2~20質量%)となる使用量であることが好ましい。
 混練の方法は特に制限されるものではなく、例えば、各成分を個別に用意し、任意の順で、超音波分散機、ディスパー、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、プラネタリーミキサー、又は公転自転式攪拌機などで混練することによって、接合材を製造することができる。
[接合方法]
 本発明の接合方法の実施の形態は、本発明の接合材の実施の形態、又は本発明の接合材の製造方法の実施の形態により製造された接合材を用いて2つの被接合部材を接合する方法である。本発明の接合方法の実施の形態は、塗膜形成工程と、載置工程と、金属接合層形成工程とを有し、その他予備乾燥工程等を実施してもよい。以下、これら各工程について説明する。
<塗膜形成工程>
 本工程では、一方の被接合部材上に本発明の接合材の実施の形態又は本発明の接合材の製造方法の実施の形態により製造された接合材を、(印刷(例えばメタルマスク印刷、スクリーン印刷、ピン転写)などにより)塗布して塗膜を形成する。前記一方の被接合部材の例としては、基板が挙げられる。基板としては、銅基板などの金属基板、銅と何らかの金属(例えばW(タングステン)やMo(モリブデン))との合金基板、銅板をSiN(窒化珪素)やAlN(窒化アルミニウム)などに挟んだセラミック基板、更にPET(ポリエチレンテレフタレート)基板などのプラスチック基板、FR4などのPCB基板などが挙げられる。さらにこれらを積層した積層基板も、本発明の接合方法において使用可能である。
 なお、前記一方の被接合部材の接合材が塗布される個所は、金属でメッキされていてもよい。塗膜中の金属微粒子粉末との接合相性の観点からは、金属メッキは金属微粒子粉末の構成金属と同じ金属のメッキであることが好ましい。
<載置工程>
 続いて、前記の一方の被接合部材上に形成された塗膜の上に、他方の被接合部材を載置する。この他方の被接合部材の例としては、SiチップやSiC、GaNチップなどの半導体素子、一方の被接合部材の例として挙げたのと同様の基板が挙げられる。前記塗膜からは信頼性に優れた金属接合層が形成されうることから、本発明の接合方法の実施の形態は、基板と半導体素子の接合に使用されることが好ましい。すなわち、前記他方の被接合部材としては半導体素子が好ましい。
 他方の被接合部材の塗膜と接触する個所(底面)は、金属でメッキされていてもよい。塗膜中の金属微粒子粉末との接合相性の観点からは、前記他方の被接合部材の金属メッキは、金属微粒子粉末の構成金属と同じ金属のメッキであることが好ましい。また塗膜上に他方の被接合部材を載置する際には、2つの被接合部材の間に、塗膜を圧縮する方向の圧力をかけてもかけなくてもよい。
<予備乾燥工程>
 他方の被接合部材が載置された塗膜を加熱して金属微粒子粉末を焼結させる際に、形成される金属接合層中のボイドを低減するため、塗膜上に他方の被接合部材を載置する前又は後に(載置工程の前又は後に)、塗膜を予備乾燥する予備乾燥工程を実施してもよい。予備乾燥は塗膜から溶剤を除去することを目的としており、溶剤が揮発し、かつ金属微粒子粉末が焼結を実質的に起こさないような条件で乾燥する。このため、予備乾燥は塗膜を60~150℃で加熱することによって実施することが好ましい。この加熱による乾燥は大気圧下で行ってもよいし、減圧ないし真空下で行ってもよい。また、次に説明する金属接合層形成工程において、焼成温度までの昇温速度が7℃/分以下程度であれば、焼成温度までの昇温をもって予備乾燥工程を実施することができる。
<金属接合層形成工程>
 載置工程を実施して、必要に応じて予備乾燥工程を実施した後、2つの被接合部材にサンドイッチされた塗膜を160~350℃で焼成し、微細な金属微粒子粉末を焼結させることで、金属接合層を形成し、2つの被接合部材を接合する。なおこの工程により、金属大粒子粉末(及び接合材が含有している場合は金属中粒子粉末)が、焼結した金属微粒子粉末(粒子の形状は通常残存していないが)で連結され、連続した緻密な金属接合層が形成される。
 予備乾燥工程を除いて載置工程までは代表的には室温で実施されるため、この金属接合層形成工程では、まず前記160~350℃の焼成温度まで昇温する。昇温速度は特に限定されるものではないが、例えば1.5℃/分~10℃/分とすることができ、2℃/分~6℃/分とすることが好ましい。そして焼成温度で例えば1分~2時間保持して、接合材の塗膜から金属接合層を形成する。
 焼成温度は、形成される金属接合層の接合強度やコストの観点から、175~280℃であることが好ましい。
 焼成温度で保持する時間は、形成される金属接合層の接合強度やコストの観点から、10~90分であることが好ましい。なお、焼成温度を280℃以上として、上記の昇温速度で昇温すれば、焼成温度に達するまでに金属接合層が形成されるので、焼成温度での保持時間は0分としてもよい。
 また、この金属接合層形成工程において、被接合部材間に(塗膜を圧縮する方向の)圧力を加える必要はないが、5MPa以下(通常15Pa以上)の圧力を加えてもよい。なお、前記のように圧力を加える加圧焼成で金属接合層を形成する場合には、被接合部材-塗膜-被接合部材のサンドイッチ構造物を一つ一つ加圧焼成して接合を実施したのでは、生産性は非常に低い。生産性を高めるためには、多くのサンドイッチ構造物を同時に加圧焼成することが考えられるが、サンドイッチ構造物に対して同一の方向で同一の加圧を同時に行うのは容易ではなく、同時の加圧焼成を実施した場合には、得られる製品の品質の均一性に懸念がある。以上から、本発明においては、加圧せずに金属接合層形成工程を実施して金属接合層を形成することが好ましい。
 また金属接合層形成工程は大気雰囲気中で実施しても窒素雰囲気などの不活性雰囲気中で実施してもよいが、酸化防止の観点から不活性雰囲気中で実施することが好ましい。更にコストの観点から、本工程を窒素雰囲気中で実施することがより好ましい。
 以下、本発明を実施例及び比較例を用いてより詳細に説明するが、本発明はこれらにより何ら限定されるものではない。
<銀微粒子粉末1の製造>
 5Lの反応槽に水3400gを入れ、この反応槽の下部に設けたノズルから3000mL/分の流量で窒素を反応槽内の水中に600秒間流して溶存酸素を除去した後、反応槽の上部から3000mL/分の流量で窒素を反応槽中に供給して反応槽内を窒素雰囲気にするとともに、反応槽内に設けた撹拌羽根付き撹拌棒により撹拌しながら、反応槽内の水の温度が60℃になるように調整した。この反応槽内の水に28質量%のアンモニアを含むアンモニア水7gを添加した後、1分間撹拌して均一な溶液にした。この反応槽内の溶液に有機化合物として飽和脂肪酸であるヘキサン酸(和光純薬工業株式会社製)45.5g(銀に対するモル比は1.98)を添加して4分間撹拌して溶解した後、還元剤として50質量%のヒドラジン水和物(大塚化学株式会社製)23.9g(銀に対して4.82当量)を添加して、還元剤溶液とした。
 また、硝酸銀の結晶(和光純薬工業株式会社製)33.8gを水180gに溶解した硝酸銀水溶液を銀塩水溶液として用意し、この銀塩水溶液の温度が60℃になるように調整し、この銀塩水溶液に硝酸銅三水和物(和光純薬工業株式会社製)0.00008g(銀に対して銅換算で1ppm)を添加した。なお、硝酸銅三水和物の添加は、ある程度高濃度の硝酸銅三水和物の水溶液を希釈した水溶液を狙いの銅の添加量になるように添加することによって行った。
 次に、上記の銀塩水溶液を上記の還元剤溶液に一挙に添加して混合して、攪拌しながら還元反応を開始させた。この還元反応の開始から約10秒で反応液であるスラリーの色の変化が終了し、攪拌しながら10分間熟成させた後、攪拌を終了し、吸引濾過による固液分離を行い、得られた固形物を純水で洗浄し、40℃で12時間真空乾燥して、(ヘキサン酸で被覆された)銀微粒子粉末1の乾燥粉末を得た。なお、この銀微粒子粉末1中の銀の割合は、加熱によりヘキサン酸を除去した後の重量から、97質量%であることが算出された。また、この銀微粒子粉末1の平均一次粒子径を透過型電子顕微鏡(TEM)により求めたところ、20nmであった。また銀微粒子粉末1の最大一次粒子径は27nmであった。
<銀微粒子粉末2の製造>
 300mLビーカーに純水180.0gを入れ、硝酸銀(東洋化学株式会社製)33.6gを添加して溶解させることにより、原料液として硝酸銀水溶液を調製した。 
 また、5Lビーカーに3322.0gの純水を入れ、この純水内に窒素を30分間通気させて溶存酸素を除去しながら、40℃まで昇温させた。この純水に(銀微粒子粉末の被覆用の)有機化合物としてソルビン酸(和光純薬工業株式会社製)44.8gを添加した後、安定化剤として濃度28質量%のアンモニア水(和光純薬工業株式会社製)7.1gを添加した。
 このアンモニア水を添加した後の水溶液を撹拌しながら、アンモニア水の添加時点(反応開始時)から5分経過後に、還元剤として純度80%の含水ヒドラジン(大塚化学株式会社製)14.91gを添加して、還元液として還元剤含有水溶液を調製した。反応開始時から9分経過後に、液温を40℃に調整した原料液(硝酸銀水溶液)を還元液(還元剤含有水溶液)へ一挙に添加して反応させ、さらに80分間撹拌し、その後、昇温速度1℃/分で液温を40℃から60℃まで昇温させて撹拌を終了した。
 このようにしてソルビン酸で被覆された銀微粒子の凝集体を形成させた後、この銀微粒子の凝集体を含む液をNo.5Cのろ紙で濾過し、この濾過による回収物を純水で洗浄して、銀微粒子の凝集体を得た。この銀微粒子の凝集体を、真空乾燥機中において80℃で12時間乾燥させ、銀微粒子の凝集体の乾燥粉末(銀微粒子粉末2)を得た。このようにして得られた乾燥粉末を解砕して、2次凝集体の大きさを調整した。なお、この銀微粒子粉末2の平均一次粒子径を走査型電子顕微鏡(SEM)により求めたところ、80nmであった。また銀微粒子粉末2の最大一次粒子径は100nmであった。
<銀中粒子粉末の準備>
 平均一次粒子径が300nmであり、最大一次粒子径が650nmの銀中粒子粉末として、AG-2-1C(DOWAハイテック株式会社製)を準備した。
<スペーサ粒子(銀大粒子粉末1及び2、樹脂ボール)の準備>
 レーザー回折型粒度分布測定装置により測定した体積基準の累積90%粒子径(D90)が12.92μmであり、平均アスペクト比が約1.0である球状の銀大粒子粉末1として、AMES社製27009-NM1を準備した。なお前記D90は、レーザー回折式粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の分散モジュール)))を使用して、分散圧5barで銀大粒子粉末1の体積基準の粒度分布を測定することにより、求めた。
 また、レーザー回折型粒度分布測定装置により前記と同様の方法で測定した体積基準の累積90%粒子径(D90)が24.82μmであり、平均アスペクト比が約1.0である球状の銀大粒子粉末2として、AMES社製27019-NM1を準備した。
 以上の銀大粒子粉末1及び2の粒度分布を以下に示す。
Figure JPOXMLDOC01-appb-T000001
 更に、比較用のスペーサ粒子として、樹脂ボール(積水化学社製AUEZ-020A-S、D90は23μm、粒子表面が金めっきされている、平均アスペクト比:約1.0)を準備した。
[実施例1]
 銀微粒子粉末1を14.7質量%と、銀微粒子粉末2を27.1質量%と、銀中粒子粉末51.3質量%と、分散剤としてのブトキシエトキシ酢酸(BEA)(東京化成工業株式会社製)0.5質量%と、溶剤として、1-ドデカノール(モノアルコール)1.4質量%、富士フィルム和光純薬製のオクタンジオール1.5質量%及びトリオール(日本テルペン化学株式会社製のテルソルブIPTL-B)3.5質量%とを混錬して、銀ペーストを調製した。
 この銀ペーストは印刷に適した粘度に調整するため、1-ドデカノールを添加して希釈した。得られた希釈銀ペースト(この希釈銀ペーストは後述する比較例1で接合材として使用した)中の銀濃度を強熱減量法により求めたところ、91.5質量%であった。
 希釈銀ペースト90質量部に対し、銀大粒子粉末1を10質量部添加して、実施例1の接合材を得た。この接合材中の銀濃度を強熱減量法により求めたところ、92.4質量%であった。
<接合試験>
 エタノールで脱脂した後に10質量%硫酸で処理した10mm×10mm×1mmの大きさの銅基板と、Agめっきを施した1mm×1mm×0.1mmの大きさの半導体チップを用意した。
 次に、前記銅基板上にピン転写(ピンの内径は393μm)で上記の接合材を塗布した。銅基板上に塗布された接合材上に、上記の半導体チップのAgめっきした部分が接合材に接するように配置した。接合材と半導体チップの間に、チップの上面全体を押すことで10gの荷重を2回かけた後、ランプ炉により大気雰囲気中において25℃から昇温速度6℃/minで210℃まで昇温させ、210℃で60分間保持する焼成を行って、銀接合層を形成し、この銀接合層によって半導体チップを銅基板に接合した。
 このようにして得られた接合体について、接合部(銀接合層)の縦割断面を走査型電子顕微鏡(SEM)により5千倍の倍率で観察したところ(図1に示す)、得られた銀接合層は厚み13μmであった。
 なお銀接合層の厚みは、銀接合層の半導体チップの下にある部分のうち、一番薄い箇所の厚みである(信頼性のボトルネックになると考えられる一番薄い箇所の厚みを測定した)。
 また、接合体の半導体チップ-銀接合層-銅基板の接合部を、マイクロフォーカスX線透視装置(SMX-16LT、島津製作所製)で撮影した結果を図2に示す。
<導電性の評価>
 アルミナ基板の上にメタルマスク印刷で上記の接合材を10mm×10mm、30μmの厚さで印刷した。これを焼成炉にて、上記接合試験における焼成と同様の温度プロファイルにて焼成した。
 得られた焼成膜について四探針法で抵抗を測定し、表面粗度計で膜厚を測定し、これらの結果から焼成膜の比抵抗を求めた。比抵抗は3.3uΩ・cmであった。
[実施例2]
 実施例1で調製した希釈銀ペースト90質量部に対し、銀大粒子粉末1のかわりに銀大粒子粉末2を10質量部添加した以外は、実施例1と同様にして接合材を調製し、これを用いて実施例1と同様の接合試験及び導電性の評価を実施した。
[比較例1]
 実施例1で調製した希釈銀ペーストを接合材として使用して、実施例1と同様に接合試験及び導電性の評価を実施した。
[比較例2]
 実施例1において、銀大粒子粉末1にかえて樹脂ボールを使用し、希釈銀ペースト99質量部に対して樹脂ボール1質量部を添加した以外は、実施例1と同様にして接合材を調製し、これを用いて実施例1と同様の接合試験及び導電性の評価を実施した。
 接合試験で得られた接合体の接合部(銀接合層)の縦割断面を走査型電子顕微鏡(SEM)により5千倍の倍率で観察した結果を、図3に示す。
 また、接合体の半導体チップ-銀接合層-銅基板の接合部を、マイクロフォーカスX線透視装置(SMX-16LT、島津製作所製)で、撮影した結果を図4に示す。
[比較例3]
 希釈銀ペーストの使用量を97質量部とし、樹脂ボールの添加量を3質量部とした以外は、比較例2と同様にして接合材を調製し、これを用いて実施例1と同様の接合試験及び導電性の評価を実施した。
[比較例4]
 希釈銀ペーストの使用量を95質量部とし、樹脂ボールの添加量を5質量部とした以外は、比較例2と同様にして接合材を調製し、これを用いて実施例1と同様の接合試験及び導電性の評価を実施した。
 以上の評価結果を下記表2にまとめる。
Figure JPOXMLDOC01-appb-T000002
 表2において、「接合材中の、スペーサ粒子由来の銀を除いた銀量」が、本発明でいう金属微粒子粉末及び金属中粒子粉末の接合材中の含有量の合計と近似することができる。「接合材中の金属微粒子粉末+金属中粒子粉末:金属大粒子粉末(スペーサ粒子)の含有量比」は、前記の近似に基づいて求めた。また、「接合材中の、スペーサ粒子由来の銀を除いた銀量」は、接合材が、銀濃度91.5質量%である希釈銀ペースト90質量部に対し、銀大粒子粉末1を10質量部添加して調製したものであることから、91.5に0.9をかけることによって求めた。
 比較例1以外は接合材が何らかのスペーサ粒子を含有しているが、それぞれのD90におおよそ対応した厚みの銀接合層が形成された。一方接合材がスペーサ粒子を含んでいない比較例1の場合は、銀接合層の厚みは6μmと小さく、接合信頼性の点で懸念がある。
 また、実施例1及び2で得られた焼成膜の比抵抗は、比較例2~4で得られた焼成膜の比抵抗よりも小さく、導電性に優れていた。これは、実施例1の接合材ではスペーサ粒子が銀で構成されているのに対して、比較例2~4の接合材ではスペーサ粒子が樹脂で構成されており、これが導電性に悪影響しているためであると考えられる。同様な理由で、実施例1及び2で得られた焼成膜の方が、比較例2~4の焼成膜より放熱性(熱伝導性)に優れていることが予測される。

Claims (16)

  1.  平均一次粒子径が150nm以下の金属微粒子粉末、レーザー回折型粒度分布測定装置により測定される体積基準の累積90%粒子径(D90)が7~30μmの金属大粒子粉末、及び溶剤を含む接合材。
  2.  前記金属大粒子粉末の前記累積90%粒子径(D90)が10~28μmである、請求項1に記載の接合材。
  3.  更に平均一次粒子径が250~400nmの金属中粒子粉末を含む、請求項1又は2に記載の接合材。
  4.  前記金属微粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成され、
     前記金属大粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成され、
     前記金属中粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成されている、請求項3に記載の接合材。
  5.  前記金属微粒子粉末が銀により構成され、前記金属大粒子粉末が銀により構成され、前記金属中粒子粉末が銀により構成されている、請求項3又は4に記載の接合材。
  6.  前記金属微粒子粉末及び金属中粒子粉末の前記接合材中の含有量(質量割合)の合計と、前記金属大粒子粉末の前記接合材中の含有量(質量割合)との比(金属微粒子粉末+金属中粒子粉末:金属大粒子粉末)が、1:0.02~1:0.3である、請求項3~5のいずれかに記載の接合材。
  7.  前記金属微粒子粉末の前記接合材中の含有量が、7~55質量%である、請求項3~6のいずれかに記載の接合材。
  8.  前記金属大粒子粉末の前記接合材中の含有量が、2~20質量%である、請求項3~7のいずれかに記載の接合材。
  9.  前記金属大粒子粉末の平均アスペクト比が3以下である、請求項1~8のいずれかに記載の接合材。
  10.  平均一次粒子径が150nm以下の金属微粒子粉末、レーザー回折型粒度分布測定装置により測定される体積基準の累積90%粒子径(D90)が7~30μmの金属大粒子粉末、及び溶剤を混合する工程を有する接合材の製造方法。
  11.  前記金属微粒子粉末、金属大粒子粉末及び溶剤へ更に平均一次粒子径が250~400nmの金属中粒子粉末を添加して混合する、請求項10に記載の接合材の製造方法。
  12.  前記金属微粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成され、
     前記金属大粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成され、
     前記金属中粒子粉末が、銀、銅、金、アルミニウム又はこれらの2種以上の合金により構成されている、請求項11に記載の接合材の製造方法。
  13.  前記金属微粒子粉末及び前記金属大粒子粉末の使用量が、前記接合材中の前記金属微粒子粉末及び前記金属大粒子粉末の含有量が、それぞれ7~55質量%及び2~20質量%となる量である、請求項11又は12に記載の接合材の製造方法。
  14.  2つの被接合部材を接合する接合方法であって、
     一方の前記被接合部材上に請求項1~9のいずれかに記載の接合材又は請求項10~13のいずれかに記載の接合材の製造方法で製造された接合材を塗布して塗膜を形成する工程と、
     該塗膜上に他方の前記被接合部材を載置する工程と、
     該他方の被接合部材が載置された塗膜を160~350℃で焼成して、前記塗膜から金属接合層を形成する工程とを有する、接合方法。
  15.  前記一方の被接合部材が基板であり、前記他方の被接合部材が半導体素子である、請求項14に記載の接合方法。
  16.  金属接合層により接合された基板及び半導体素子を有する半導体装置であって、
     前記金属接合層が、一次粒子径が7~30μmの金属粒子を含み、その厚みが前記金属粒子の一次粒子径に対応したものである、半導体装置。
PCT/JP2020/035203 2019-09-25 2020-09-17 接合材、接合材の製造方法、接合方法及び半導体装置 WO2021060126A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-174120 2019-09-25
JP2019174120A JP2021051913A (ja) 2019-09-25 2019-09-25 接合材、接合材の製造方法、接合方法及び半導体装置

Publications (1)

Publication Number Publication Date
WO2021060126A1 true WO2021060126A1 (ja) 2021-04-01

Family

ID=75158105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035203 WO2021060126A1 (ja) 2019-09-25 2020-09-17 接合材、接合材の製造方法、接合方法及び半導体装置

Country Status (2)

Country Link
JP (1) JP2021051913A (ja)
WO (1) WO2021060126A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002407A1 (ja) * 2011-06-30 2013-01-03 日立金属株式会社 ろう材、ろう材ペースト、セラミックス回路基板、セラミックスマスター回路基板及びパワー半導体モジュール
WO2013058291A1 (ja) * 2011-10-17 2013-04-25 独立行政法人産業技術総合研究所 半導体素子の接合方法および接合構造
JP2013191620A (ja) * 2012-03-12 2013-09-26 Panasonic Corp 部品内蔵基板の製造方法および部品内蔵基板
WO2015122251A1 (ja) * 2014-02-14 2015-08-20 三井金属鉱業株式会社 銅粉
JP2017514020A (ja) * 2014-04-23 2017-06-01 アルファ・アセンブリー・ソリューションズ・インコーポレイテッドAlpha Assembly Solutions Inc. 金属粉末を製造するための方法
WO2019026799A1 (ja) * 2017-07-31 2019-02-07 バンドー化学株式会社 金属接合用組成物、金属接合積層体及び電気制御機器
JP2019055414A (ja) * 2017-09-21 2019-04-11 トヨタ自動車株式会社 接合材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002407A1 (ja) * 2011-06-30 2013-01-03 日立金属株式会社 ろう材、ろう材ペースト、セラミックス回路基板、セラミックスマスター回路基板及びパワー半導体モジュール
WO2013058291A1 (ja) * 2011-10-17 2013-04-25 独立行政法人産業技術総合研究所 半導体素子の接合方法および接合構造
JP2013191620A (ja) * 2012-03-12 2013-09-26 Panasonic Corp 部品内蔵基板の製造方法および部品内蔵基板
WO2015122251A1 (ja) * 2014-02-14 2015-08-20 三井金属鉱業株式会社 銅粉
JP2017514020A (ja) * 2014-04-23 2017-06-01 アルファ・アセンブリー・ソリューションズ・インコーポレイテッドAlpha Assembly Solutions Inc. 金属粉末を製造するための方法
WO2019026799A1 (ja) * 2017-07-31 2019-02-07 バンドー化学株式会社 金属接合用組成物、金属接合積層体及び電気制御機器
JP2019055414A (ja) * 2017-09-21 2019-04-11 トヨタ自動車株式会社 接合材

Also Published As

Publication number Publication date
JP2021051913A (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6337909B2 (ja) 電子部品モジュールの製造方法
TWI716639B (zh) 接合材料及使用其之接合方法
JP4870223B1 (ja) ペースト状銀粒子組成物、金属製部材接合体の製造方法および金属製部材接合体
JP2015011899A (ja) 導電性ペースト
TW201942372A (zh) 銅糊、接合方法以及接合體之製造方法
JP7082231B2 (ja) 導電性組成物、導電性焼結部、および導電性焼結部を備えている部材
WO2021125161A1 (ja) 銀ペースト及びその製造方法並びに接合体の製造方法
JP6923063B2 (ja) 銀ペースト及びその製造方法並びに接合体の製造方法
WO2021060126A1 (ja) 接合材、接合材の製造方法、接合方法及び半導体装置
CN111801183B (zh) 银膏及接合体的制造方法
JP6831416B2 (ja) 接合材及び接合方法
US11801556B2 (en) Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing bonded body using said paste-like metal particle aggregate composition
JP2021138991A (ja) 接合材、接合材の製造方法及び接合方法
WO2018062220A1 (ja) 接合材およびそれを用いた接合方法
JP6947280B2 (ja) 銀ペースト及びその製造方法並びに接合体の製造方法
WO2021039874A1 (ja) 低温焼結性接合ペースト及び接合構造体
JP2020164894A (ja) 接合材、接合材の製造方法、接合方法、半導体装置
JP2022003161A (ja) 接合材、接合材の製造方法及び接合方法
JP7487011B2 (ja) 接合材、接合材の製造方法及び接合方法
WO2020004342A1 (ja) 銀ペースト及び接合体の製造方法
WO2022070294A1 (ja) 接合用金属ペースト及び接合方法
CN114845827B (zh) 银膏及其制造方法以及接合体的制造方法
TWI789698B (zh) 氧化銅糊料及電子零件之製造方法
JP2022049054A (ja) 導電体作製方法、金属ペースト及び導電体
WO2024106149A1 (ja) シート状接合材及びその製造方法、並びに、接合体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869338

Country of ref document: EP

Kind code of ref document: A1