WO2020066968A1 - 導電性ペースト - Google Patents

導電性ペースト Download PDF

Info

Publication number
WO2020066968A1
WO2020066968A1 PCT/JP2019/037179 JP2019037179W WO2020066968A1 WO 2020066968 A1 WO2020066968 A1 WO 2020066968A1 JP 2019037179 W JP2019037179 W JP 2019037179W WO 2020066968 A1 WO2020066968 A1 WO 2020066968A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
particles
fine particles
conductive paste
mass
Prior art date
Application number
PCT/JP2019/037179
Other languages
English (en)
French (fr)
Inventor
昌志 梶田
北村 昌広
樋口 貴之
宜司 水村
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to JP2020549189A priority Critical patent/JP7323944B2/ja
Priority to US17/280,256 priority patent/US11817398B2/en
Priority to CN201980062109.9A priority patent/CN112771628B/zh
Priority to KR1020217010868A priority patent/KR20210066836A/ko
Priority to EP19865615.9A priority patent/EP3859751A4/en
Publication of WO2020066968A1 publication Critical patent/WO2020066968A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29238Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29247Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29369Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • H01L2224/29391The principal constituent being an elastomer, e.g. silicones, isoprene, neoprene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83065Composition of the atmosphere being reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83095Temperature settings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Definitions

  • the present invention relates to a conductive paste, a die attach agent, and a semiconductor device manufactured using the die attach agent.
  • a conductive adhesive such as a die attach agent is used to bond and fix a semiconductor element such as a semiconductor chip to a supporting member for mounting a semiconductor element (for example, a metal plate such as a lead frame).
  • the metal particles used for the conductive adhesive include metal particles such as silver (Ag), gold (Au), copper (Cu), nickel (Ni), palladium (Pd), tin (Sn), and alloys thereof. And inorganic fillers coated with gold, silver and palladium.
  • Patent Document 1 discloses a bonding material using an inexpensive copper nanoparticle paste without using silver that causes electrochemical migration as a main component. Patent Literature 1 further achieves high bonding strength in pressureless low-temperature sintering by improving bonding properties by mixing copper microparticles and the like with copper nanoparticles and focusing on the bonding atmosphere. It is disclosed.
  • the specific resistance of the conductor obtained after firing may increase, or the bonding strength (die shear strength) may decrease.
  • a conductive paste is used as a conductive adhesive such as a die attach agent, a conductive paste having low resistance and high bonding strength (die shear strength) is required.
  • An object of the present invention is to provide a conductive paste that achieves both low resistance and high adhesive strength (die shear strength).
  • the first embodiment of the present invention (A) copper fine particles having an average particle diameter of 50 nm or more and 400 nm or less, and a crystallite diameter of 20 nm or more and 50 nm or less; (B) copper particles having an average particle diameter of 0.8 ⁇ m or more and 5 ⁇ m or less, and (A) a copper particle having a ratio of crystallite diameter to crystallite diameter of the copper fine particles of 1.0 or more and 2.0 or less; (C) a solvent; It is a conductive paste containing.
  • a second embodiment of the present invention is a die attach agent including the conductive paste of the first embodiment.
  • the third embodiment of the present invention is a semiconductor device manufactured using the die attach agent of the second embodiment.
  • the conductive paste obtained does not generate
  • a touch agent can be provided. Further, according to the present invention, it is possible to provide a semiconductor device including a conductor which realizes both low resistance and high adhesive strength (die shear strength).
  • the conductive paste according to the first embodiment of the present invention includes (A) copper fine particles having an average particle diameter of 50 nm or more and 400 nm or less and a crystallite diameter of 20 nm or more and 50 nm or less; Including (A) copper particles having a diameter of not less than 0.8 ⁇ m and not more than 5 ⁇ m and (A) a ratio of a crystallite diameter to a crystallite diameter of copper fine particles being not less than 1.0 and not more than 2.0, and (C) a solvent. .
  • the mechanism is not clear, but (A) copper fine particles and (B) copper particles are used in combination, and the ratio of the crystallite diameter of (A) copper fine particles to the crystallite diameter of (B) copper particles is specified. With this value, it is possible to realize both low resistance and high adhesive strength (die shear strength) without causing cracks in the obtained conductor (improvement in crack resistance).
  • the (A) copper fine particles and the (B) copper particles may be used in the form of primary particles, may be used in the form of secondary particles, or may be used in the form of primary particles and secondary particles. It may be mixed.
  • the average particle diameter in the case of using the primary particles can be measured by an average value (number average value) of the particle diameters when 200 primary particles observed by a scanning electron microscope (SEM) are observed. it can.
  • the average particle diameter when used as secondary particles can be measured by the average value (number average value) of the particle diameters when 200 secondary particles observed by a scanning electron microscope (SEM) are observed. it can.
  • the average particle diameter in the case where the primary particles and the secondary particles are mixed is the average of the particle diameters when a total of 200 primary particles and secondary particles observed by a scanning electron microscope (SEM) are observed. It can be measured by the value (number average value).
  • the magnification of the SEM when observing with the SEM can be appropriately selected for observing (A) the copper fine particles and (B) the copper particles. Usually, a magnification of 3000 to 50,000 times is used.
  • the primary particles and the secondary particles are based on the definition described in JIS H7008 (ultrafine metal particles).
  • the crystallite diameter is obtained by calculating the half value width of the plane index (111) plane peak from the measurement by the powder X-ray diffraction method using the K ⁇ line of Cu as a radiation source, and calculating from the Scherrer equation.
  • the aspect ratio refers to an average value of the ratio of the major axis to the minor axis when 50 particles are observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the aspect ratio refers to an average value of a ratio between a major axis and a thickness of the particles.
  • the conductive paste of the present invention contains (A) copper fine particles having an average particle diameter of 50 nm or more and 400 nm or less and a crystallite diameter of 20 nm or more and 50 nm or less.
  • the copper fine particles (A) of the present invention have an average particle diameter of 50 nm or more and 400 nm or less, preferably 70 nm or more, more preferably 80 nm or more, further preferably 100 nm or more, and particularly preferably 110 nm or more. On the other hand, it is preferably 350 nm or less, more preferably 320 nm or less, and still more preferably 300 nm or less.
  • the average particle diameter of the copper fine particles is in the range set by these upper and lower limits, remarkable oxidation of the surface is prevented and sintering at a low temperature becomes possible.
  • the (A) copper fine particles of the present invention have a crystallite diameter of 20 nm or more and 50 nm or less, preferably 25 nm or more, while preferably 45 nm or less, more preferably 40 nm or less.
  • the crystallite diameter is in the range set by these upper and lower limits, the sinterability is excellent as a result of being excellent in oxidation resistance as compared with a smaller crystallite diameter.
  • the shape of the (A) copper fine particles of the present invention is not particularly limited, but may be, for example, a sphere, a substantially sphere, a lump, a needle, or a flake, and is preferably a sphere or a substantially sphere.
  • the aspect ratio is 1.0 or more and 4.0 or less, and more preferably 1.0 or more and 2.0 or less.
  • the copper fine particles (A) of the present invention are prepared, for example, by mixing a copper salt of a carboxylic acid and an aliphatic primary amine, and then adding a reducing agent to precipitate copper fine particles at a reaction temperature of 5 ° C. to 80 ° C. It can be manufactured by the following.
  • a copper carboxylate and an aliphatic primary amine are mixed to obtain a solution in which the copper carboxylate is dissolved. It is considered that in the solution, the aliphatic primary amine coordinates to the copper salt of the carboxylic acid to form a kind of amine complex.
  • the copper salt of a carboxylic acid may be a copper salt of an aliphatic or aromatic carboxylic acid.
  • the copper salt of a carboxylic acid may also be a copper salt of a monocarboxylic acid or a copper salt of a polycarboxylic acid such as a dicarboxylic acid.
  • the copper salt of an aliphatic carboxylic acid may be a copper salt of a chain aliphatic carboxylic acid or a copper salt of a cyclic aliphatic carboxylic acid.
  • the copper salt of a carboxylic acid used in the present invention is preferably a copper salt of a linear aliphatic monocarboxylic acid, more preferably copper formate, copper acetate, copper propionate or copper butyrate, particularly copper formate. is there.
  • These copper salts of carboxylic acids can be used alone or in combination of two or more.
  • the aliphatic primary amine may be a chain aliphatic primary amine or a cycloaliphatic primary amine.
  • the aliphatic primary amine may also be a monoamine compound or a polyamine compound such as a diamine compound.
  • Aliphatic primary amines include those in which an aliphatic hydrocarbon group is substituted with an alkoxy group such as a hydroxyl group, a methoxy group, an ethoxy group, and a propyl group.
  • the aliphatic primary amine used in the present invention is preferably 3-methoxypropylamine, 3-aminopropanol and 1,2-diaminocyclohexane, more preferably 3-methoxypropylamine. These aliphatic primary amines can be used alone or in combination of two or more.
  • the amount of the aliphatic primary amine to be used is determined by the requirements and equipment for the process such as the post-treatment of the produced copper fine particles. However, from the viewpoint of obtaining copper fine particles having a controlled particle size, the copper salt of carboxylic acid 1 It is preferable that the amount is 1 equivalent or more with respect to the equivalent.
  • the amount of the aliphatic primary amine to be used is preferably 1.0 equivalent to 4.0 equivalent to 1 equivalent of the copper salt of carboxylic acid.
  • the mixing of the carboxylic acid copper salt and the aliphatic primary amine can be performed in the absence or presence of an organic solvent. Mixing can be facilitated by the use of organic solvents.
  • organic solvents include alcohols such as ethanol, propanol and butanol, ethers such as propylene glycol dibutyl ether, and aromatic hydrocarbons such as toluene. These organic solvents can be used alone or in combination of two or more.
  • the amount of the organic solvent used may be any amount from the viewpoint of convenience of mixing and productivity of copper fine particles in the subsequent step.
  • the mixture of the copper salt of the carboxylate and the aliphatic primary amine is, for example, a primary aliphatic amine or a mixture of the primary aliphatic amine and an organic solvent, while stirring the copper salt of the carboxylic acid. Addition is performed. After completion of the addition, stirring can be continued as appropriate. During that time, the temperature is preferably maintained between 20 ° C and 80 ° C, more preferably between 20 ° C and 60 ° C.
  • a reducing agent is added to precipitate copper fine particles.
  • a reducing agent formic acid, formaldehyde, ascorbic acid or hydrazine is preferable, and hydrazine is more preferable, from the viewpoint of controlling the reaction.
  • these reducing agents can be used alone or in combination of two or more.
  • the amount of the reducing agent used is usually not less than the oxidation-reduction equivalent to the copper salt of carboxylic acid, and the oxidation-reduction equivalent is preferably 1 to 5 times, more preferably 1 to 3 times.
  • the amount of hydrazine used in terms of mol is 0.5 to 1 mol per mol of the copper salt of dicarboxylic acid. It is preferably 0.5 mol, more preferably 0.75 mol to 1.25 mol, even more preferably 0.9 mol to 1.1 mol.
  • the temperature is preferably between 5 ° C and 70 ° C, more preferably between 5 ° C and 60 ° C. When the temperature is in this range, the grain growth of the copper fine particles is sufficient, the productivity is high, and the secondary aggregation is suppressed.
  • the time required for the addition of the reducing agent and the subsequent reaction depends on the scale of the reactor, but is usually 10 minutes to 10 hours.
  • alcohols such as ethanol, propanol and butanol
  • ethers such as propylene glycol dibutyl ether
  • organic solvents such as aromatic hydrocarbons such as toluene
  • the copper of the carboxylic acid is added to the total volume (L) of the mixed solution of the copper salt of the carboxylic acid and the aliphatic primary amine, the reducing agent, and any organic solvent.
  • the amount (mol) of the salt is preferably in the range of 1.0 mol / L to 6.0 mol / L, more preferably 2.0 mol / L to 5.0 mol / L, and still more preferably 2 mol / L to 5.0 mol / L. It is from 0.0 mol / L to 4.0 mol / L.
  • the reaction liquid is sufficiently stirred and the reaction heat can be removed, so that the average particle diameter of the precipitated copper fine particles becomes appropriate, and thus, the sedimentation decant in the subsequent process, solvent replacement, and the like. There is no hindrance to the operation of.
  • the copper fine particles precipitated by the reaction are sedimented and the supernatant is removed by decantation or the like, or the copper fine particles can be fractionated by adding a solvent such as an alcohol such as methanol, ethanol or terpineol.
  • the layer containing copper fine particles can be used as it is as a conductive paste.
  • an alcohol such as methanol or ethanol may be added to the layer containing the (A) copper fine particles to accelerate the precipitation of the (A) copper fine particles.
  • the remaining solvent can be distilled off by an evaporator as needed to increase the copper content contained in the layer.
  • the layer containing the (A) copper fine particles precipitated by the reaction is used as a conductive paste
  • (A) the copper fine particles are used immediately before the solvent contained in the layer is distilled off by an evaporator in order to adjust the viscosity of the paste. May be added to the layer containing (C).
  • the content of (A) copper fine particles is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, and still more preferably 30 parts by mass, based on a total of 100 parts by mass of (A) copper fine particles and (B) copper particles. Or more, preferably 80 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 60 parts by mass or less, particularly preferably 55 parts by mass or less. Such a lower limit is preferable from the viewpoint of lowering the resistance. Further, such an upper limit is preferable from the viewpoint of crack resistance.
  • the method of measuring the crystallite diameter of the (A) copper fine particles and the (B) copper particles is as follows. Diluted with a suitable solvent (which may be the same as or different from the following (C) solvent), and then subjecting the (A) copper fine particles and (B) copper particles to a conductive paste using gravity, centrifugal force, filtering, etc. It should just be separated from. After this separation, the solvent is removed, and the crystallite size of (A) the copper fine particles and (B) the copper particles can be measured. After separation and solvent removal by the same method, the particle diameter of (A) copper fine particles and (B) copper particles may be measured.
  • a suitable solvent which may be the same as or different from the following (C) solvent
  • the conductive paste of the present invention contains (B) copper particles.
  • the (B) copper particles have an average particle diameter of 0.8 ⁇ m or more and 5 ⁇ m or less, and (A) the ratio of the crystallite diameter to the crystallite diameter of the copper fine particles is 1.0 or more and 2.0 or less.
  • the copper particles (B) of the present invention have an average particle diameter of 0.8 ⁇ m or more and 5 ⁇ m or less, preferably 0.85 ⁇ m or more, more preferably 0.9 ⁇ m or more, and preferably 4.5 ⁇ m or less. And more preferably 4 ⁇ m or less.
  • the average particle size of the copper particles is in the range set by these upper and lower limits, the sinterability is controlled, and both low-temperature sinterability and crack resistance can be achieved.
  • the ratio of the crystallite diameter to the crystallite diameter of the copper fine particles (A) is 1.0 or more and 2.0 or less, preferably 1.2 or more, more preferably 1.3. As described above, it is more preferably 1.4 or more, particularly preferably 1.5 or more, while preferably 1.9 or less, more preferably 1.8 or less. When the ratio of the crystallite diameters is in the range set by these upper and lower limits, it is possible to achieve both low resistance and high adhesive strength (die shear strength).
  • the crystallite size of the (B) copper particles is, for example, desired if the (B) copper particles are produced by a water atomization method by increasing the particle size to reduce the crystal growth rate. Crystals having a crystallite size can be obtained.
  • the shape of the copper particles (B) of the present invention is not particularly limited, but may be, for example, a sphere, a substantially sphere, a lump, a needle, or a flake, and is preferably a sphere or a substantially sphere.
  • the ratio is usually 1.0 or more and 4.0 or less, preferably 1.0 or more and 2.0 or less. When the aspect ratio is in this range, the contact between the copper particles (B) or the copper particles (A) increases, so that the sinterability is excellent and the resistance value is low.
  • copper particles (B) of the present invention commercially available ones can be used.
  • Commercially available copper particles include, for example, EFC-09 (manufactured by Fukuda Metal Foil & Powder Co., Ltd.), CS-10D (manufactured by Mitsui Mining & Smelting Co., Ltd.), HXR-Cu (manufactured by Nippon Atomize Processing Co., Ltd.), DCX -99 (manufactured by DOWA Electronics Co., Ltd.) and DCX-160 (manufactured by DOWA Electronics Co., Ltd.).
  • the content of (B) copper particles is preferably 20 parts by mass or more and 80 parts by mass or less based on 100 parts by mass in total of (A) copper fine particles and (B) copper particles.
  • the content of the copper particles is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, further preferably 40 parts by mass or more, particularly preferably 45 parts by mass or more, while preferably 80 parts by mass.
  • the content is more preferably 75 parts by mass or less, further preferably 70 parts by mass or less.
  • the total content of (A) copper fine particles and (B) copper particles is usually 80 parts by mass or more based on 100 parts by mass of the entire conductive paste. It is preferably at least 82 parts by mass, more preferably at least 84 parts by mass, while it is usually at most 96 parts by mass, preferably at most 94 parts by mass, more preferably at most 92 parts by mass.
  • copper particles having a particle diameter or an average particle diameter other than (A) copper fine particles and (B) copper particles may be contained as long as the object of the present invention is not impaired.
  • copper particles having other average particle diameters or particle diameters other than (A) copper fine particles and (B) copper particles are included, such an embodiment is also provided as long as the object of the present invention is not hindered. It is not excluded from the present invention.
  • the conductive paste of the present invention contains (C) a solvent.
  • the solvent can be included for adjusting the viscosity of the conductive paste and the like, which evaporates and evaporates when the conductive paste is fired.
  • solvent for example, alcohols such as methanol, ethanol and isopropyl alcohol (IPA), organic acids such as ethylene acetate, aromatic hydrocarbons such as toluene and xylene, N-methyl-2-pyrrolidone (NMP )), Amides such as N, N-dimethylformamide (DMF), ketones such as methyl ethyl ketone (MEK), terpineol (TEL), dihydroterpineol (DTEL), 2-ethyl-1,3 -Hexanediol (2EHD), texanol (TEX), butyl carbitol (BC), butyl carbitol acetate (BCA), dipropylene glycol and the like.
  • solvents may be used alone or as a mixture of two or more.
  • the content of (C) the solvent is not particularly limited, but is preferably 1 part by mass or more and 100 parts by mass or less, more preferably 3 parts by mass, based on 100 parts by mass of the total of (A) copper fine particles and (B) copper particles. Not less than 60 parts by mass.
  • the conductive paste of the present invention can preferably contain (D) an amine compound. By containing the (D) amine compound, (A) aggregation of the copper fine particles can be prevented.
  • the amine compound includes a compound represented by the formula: NHR 1 R 4 (wherein R 1 is a carbon atom substituted with one of substituents selected from the group consisting of a hydroxyl group, a methoxy group, an ethoxy group, and an amino group) Represents a linear or branched alkyl group having 2 to 4 atoms, and R 4 represents hydrogen or an alkyl group having 1 to 3 carbon atoms which may be substituted with an amino group.) And an amine compound represented by the formula: NH 2 R 5 wherein R 5 is a C 2-4 carbon atom substituted by one of the substituents selected from the group consisting of a hydroxyl group, a methoxy group and an ethoxy group. An amine compound represented by a linear or branched alkyl group is more preferred.
  • amine compound examples include, for example, 3-methoxypropylamine, 3-ethoxypropylamine, 1-amino-2-propanol, 3-amino-1-propanol, 2-aminoethanol, 2-amino-2-methyl -1-propanol, N-methyl-1,3-diaminopropane, 3,3′-diaminodipropylamine, 2-methoxyethylamine, 1,3-diaminopropane, 2- (2-aminoethylamino) ethanol and the like
  • Compounds containing a primary amino group, compounds containing a secondary amino group such as N-methylethanolamine, 2,2'-iminodiethanol, or compounds containing a tertiary amino group such as 2-dimethylaminoethanol Among them, 3-methoxypropylamine is preferable.
  • the amine compound contained in the conductive paste of the present invention is (A) the aliphatic primary amine used in the production of the copper fine particles, and (A) the aliphatic primary amine present around the copper fine particles. Also includes those in which the primary amine has migrated into the conductive paste.
  • the amine compound is 1 part by mass or more and 40 parts by mass or less, preferably 1 part by mass or more and 18 parts by mass or less, more preferably 1 part by mass or more and 15 parts by mass or less based on 100 parts by mass of the copper fine particles (A). And particularly preferably 1 to 12 parts by mass.
  • the amine compound is 0.2 to 10 parts by mass, preferably 0.2 to 8 parts by mass, more preferably 0.2 part by mass, based on 100 parts by mass of the conductive paste. To 6 parts by mass, particularly preferably 0.2 to 4 parts by mass.
  • the amine compound may be one type or a combination of two or more types.
  • the amine compound can be analyzed using a desired device and method such as a mass spectrometer and NMR.
  • the conductive paste of the present invention may further include metal particles other than copper as long as the effects of the present invention are not impaired.
  • Examples of the metal constituting the metal particles other than copper include silver (Ag), nickel (Ni), palladium (Pd), gold (Au), platinum (Pt), and alloys thereof.
  • the conductive paste of the present invention may contain other additives, for example, a dispersant, a rheology modifier, a pigment, and the like.
  • the conductive paste of the present invention further contains a plasticizer (eg, a copolymer such as carboxyl group-terminated polybutadiene-acrylonitrile, a resin powder such as silicone rubber, silicone rubber powder, silicone resin powder, and acrylic resin powder), an antifoaming agent, and the like. May be contained.
  • a plasticizer eg, a copolymer such as carboxyl group-terminated polybutadiene-acrylonitrile, a resin powder such as silicone rubber, silicone rubber powder, silicone resin powder, and acrylic resin powder
  • an antifoaming agent e.g, a copolymer such as carboxyl group-terminated polybutadiene-acrylonitrile, a resin powder such as silicone rubber, silicone rubber powder, silicone resin powder, and acrylic resin powder
  • an antifoaming agent e.g, a copolymer such as carboxyl group-terminated polybutadiene-acrylonitrile, a resin powder such as silicone rubber, silicone rubber powder, silicone
  • the viscosity of the conductive paste of the present invention is usually 10 to 300 Pa ⁇ s, preferably 20 to 100 Pa ⁇ s.
  • the viscosity is a value measured using an E-type viscometer (3 ° cone) manufactured by Tokyo Keiki Co., Ltd. at 5 rpm while maintaining the temperature of the sample at 25 ⁇ 1 ° C.
  • the conductive paste of the present invention can be produced by mixing the above components using, for example, a raikai machine, a pot mill, a three-roll mill, a rotary mixer, a twin-screw mixer, or the like.
  • the production temperature is not particularly limited, and for example, it can be produced at room temperature.
  • the conductive paste of the present invention is applied to a substrate or the like, and is heated from room temperature to 200 to 300 ° C. in a non-oxidizing atmosphere and kept at 200 to 300 ° C. for 5 to 20 minutes to obtain the solvent (C).
  • a conductor By (A) evaporating the organic matter on the surface of the copper fine particles and sintering the (A) copper fine particles and the (B) copper particles together, a conductor can be obtained.
  • the non-oxidizing atmosphere include a neutral or weak reducing atmosphere such as a nitrogen gas, a nitrogen-hydrogen mixed gas (eg, a hydrogen concentration of about 3 to 5%), and an argon gas.
  • the rate of temperature rise is preferably from 5 ° C./min to 100 ° C./min, and more preferably from 10 ° C./min to 30 ° C./min, from the viewpoint of forming a densely sintered conductor.
  • the sintering temperature is preferably from 200 to 300 ° C, more preferably from 220 to 280 ° C. From the viewpoint of the uniformity of sintering of the conductor, it is preferable to maintain the sintering temperature for 5 to 20 minutes.
  • the conductive paste of the present invention can be suitably used as a conductive adhesive for plating bases, electrodes, die attach agents and the like.
  • the conductive paste of the present invention can further exert the effect of high adhesive strength (die shear strength) when the support member is a base metal such as copper, for example, when it is a copper lead frame or a copper substrate, and is useful. High in nature.
  • the die attach agent according to the second embodiment of the present invention includes the conductive paste according to the first embodiment.
  • bonding can be performed by applying the conductive paste to a lead frame, a substrate, or the like, mounting a semiconductor element, a heat radiating member, or the like, and performing a heat treatment.
  • the semiconductor device according to the third embodiment of the present invention is manufactured using the die attach agent of the second embodiment, and includes a conductor obtained by heat-treating the die attach agent.
  • Adhesion can be performed by applying the die attach agent of the second embodiment to a lead frame, a substrate, or the like, mounting a semiconductor element, a heat dissipation member, or the like, and performing a heat treatment.
  • the conditions for the heat treatment the conditions described in the section of the conductive paste according to the first embodiment can be applied.
  • the semiconductor device can be obtained by sealing through wire bonding.
  • This semiconductor device can be various electronic components by being solder-mounted on a printed wiring board.
  • the surface to which the die attach agent is applied is copper because the effect of high adhesive strength (die shear strength) can be further exhibited.
  • the liquid in the upper layer was removed by decantation, and methanol was added and allowed to stand, and 10 g of 2-ethyl-1,3-hexanediol was added to a paste obtained by repeating decantation and mixed, and the mixture was left by an evaporator. Methanol was distilled off to obtain (A) a copper fine particle slurry containing copper fine particles and having a copper content of 90% by mass.
  • the amount of the (A) copper fine particles shown in Table 1 is the amount of the copper component.
  • 2% by mass is 3-methoxypropylamine and 8% by mass is 2-ethyl-1,3-hexanediol. This was confirmed using a thermogravimetric differential thermal analyzer (TG / DTA).
  • the average particle diameter is the average value (number average value) of the particle diameter when 200 arbitrary particles are observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the scanning electron microscope (SEM) used was S-3400N (manufactured by Hitachi High-Technologies Corporation).
  • Crystallite diameter The crystallite diameter was calculated from the Scherrer's formula by determining the half width of the plane index (111) plane peak from measurement by a powder X-ray diffraction method using Cu K ⁇ radiation as a radiation source.
  • the Scherrer constant used was 1.33.
  • Ultima IV manufactured by Rigaku Corporation
  • a 1 mm ⁇ 1 mm gold-coated silicon chip was mounted on a copper lead frame using the conductive pastes of Examples and Comparative Examples, and was placed under a non-oxidizing atmosphere (nitrogen-hydrogen mixed gas (hydrogen concentration about 3 to 5%)). ), The temperature was raised from room temperature (25 ° C.) to 250 ° C. at a rate of 10 ° C./min, and the temperature was maintained at 250 ° C. for 20 minutes to perform firing. After firing, the die shear strength was measured at room temperature (25 ° C.) using a bond tester. As the bond tester, a 40-universal bond tester (manufactured by Nordson DAGE) was used.
  • the conductors obtained by firing the conductive pastes of Examples 1 to 4 had no cracks, low specific resistance, and high die shear strength. More specifically, as “(B) the crystallite diameter of the copper particles” / “(A) the crystallite diameter of the copper fine particles” increases, the specific resistance value decreases, and “(B) the crystallites of the copper particles” It can be seen that the die shear strength decreases as it approaches 1.0 or 2.0, with the maximum when the "particle diameter" / "(A) crystallite diameter of copper fine particles” is 1.6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は、焼成後に、得られる導電体の低抵抗及び高接着強度(ダイシェア強度)の両立を実現する、導電性ペーストを提供することを課題とする。 本発明は、(A)平均粒子径が50nm以上400nm以下であり、かつ、結晶子径が20nm以上50nm以下である銅微粒子と、(B)平均粒子径が0.8μm以上5μm以下であり、かつ、(A)銅微粒子の結晶子径に対する結晶子径の比が1.0以上2.0以下である銅粒子と、(C)溶剤と、を含む導電性ペーストを提供する。

Description

導電性ペースト
 本発明は、導電性ペースト、ダイアタッチ剤、及びダイアタッチ剤を用いて作製された半導体装置に関する。
 半導体装置の製造において、半導体チップ等の半導体素子を半導体素子搭載用支持部材(例えば、リードフレーム等の金属板)に接着・固定するため、ダイアタッチ剤等の導電性接着剤が用いられている。導電性接着剤に用いられる金属粒子としては、銀(Ag)、金(Au)、銅(Cu)、ニッケル(Ni)、パラジウム(Pd)、スズ(Sn)及びこれらの合金等の金属粒子、並びに金、銀、パラジウムでコーティングされた無機フィラーが挙げられる。
 特許文献1には、エレクトロケミカルマイグレーションを起こす銀を主成分として用いることなく、安価な銅ナノ粒子ペーストを用いた接合材が開示されている。特許文献1には、さらに、銅ナノ粒子に、銅マイクロ粒子等を混合して接合性を向上させ、かつ、接合雰囲気に着目することにより、無加圧低温焼結において高接合強度を達成したことが開示されている。
特開2014-167145号公報
 ところが、導電性ペーストにおいて銅ナノ粒子と銅マイクロ粒子とを併用すると、焼成後に得られる導電体の比抵抗値が高くなる場合や、接着強度(ダイシェア強度)が低くなる場合があることがわかった。ダイアタッチ剤等の導電性接着剤として導電性ペーストを使用する場合、低抵抗で接着強度(ダイシェア強度)の高い導電性ペーストが要求される。
 本発明は、低抵抗及び高接着強度(ダイシェア強度)の両立を実現する、導電性ペーストを提供することを課題とする。
 前記課題を解決するための具体的手段は以下の通りである。
 本発明の第一の実施形態は、
 (A)平均粒子径が50nm以上400nm以下であり、かつ、結晶子径が20nm以上50nm以下である銅微粒子と、
 (B)平均粒子径が0.8μm以上5μm以下であり、かつ、(A)銅微粒子の結晶子径に対する結晶子径の比が1.0以上2.0以下である銅粒子と、
 (C)溶剤と、
を含む導電性ペーストである。
 本発明の第二の実施形態は、第一の実施形態の導電性ペーストを含む、ダイアタッチ剤である。
 本発明の第三の実施形態は、第二の実施形態のダイアタッチ剤を用いて作製された半導体装置である。
 本発明によれば、焼成後に、得られる導電体にクラックが生じることなく(耐クラック性の向上)、かつ、低抵抗及び高接着強度(ダイシェア強度)の両立を実現する、導電性ペースト及びダイアタッチ剤を提供することができる。また、本発明によれば、低抵抗及び高接着強度(ダイシェア強度)の両立を実現した導電体を含む半導体装置を提供することができる。
[導電性ペースト]
 本発明の第一の実施形態である導電性ペーストは、(A)平均粒子径が50nm以上400nm以下であり、かつ、結晶子径が20nm以上50nm以下である銅微粒子と、(B)平均粒子径が0.8μm以上5μm以下であり、かつ、(A)銅微粒子の結晶子径に対する結晶子径の比が1.0以上2.0以下である銅粒子と、(C)溶剤とを含む。そのメカニズムは明らかではないが、(A)銅微粒子と(B)銅粒子とを併用し、かつ、(A)銅微粒子の結晶子径と(B)銅粒子の結晶子径との比を特定の値とすることで、得られる導電体にクラックが生じることなく(耐クラック性の向上)、かつ、低抵抗及び高接着強度(ダイシェア強度)の両立を実現することができる。
 本明細書において、(A)銅微粒子および(B)銅粒子は、1次粒子の状態で用いてもよいし、2次粒子の状態で用いてもよいし、1次粒子と2次粒子が混在した状態でもよい。1次粒子で用いる場合の平均粒径は、走査型電子顕微鏡(SEM)にて観察される1次粒子200個を観察した際の粒子の径の平均値(個数平均値)により測定することができる。2次粒子で用いる場合の平均粒径は、走査型電子顕微鏡(SEM)にて観察される2次粒子200個を観察した際の粒子の径の平均値(個数平均値)により測定することができる。1次粒子と2次粒子が混在した場合の平均粒径は、走査型電子顕微鏡(SEM)にて観察される1次粒子及び2次粒子の合計200個を観察した際の粒子の径の平均値(個数平均値)により測定することができる。このSEMでの観察を行う場合のSEMの倍率は、(A)銅微粒子および(B)銅粒子を観察するのに適宜、適切なサイズを選択することができる。通常は、3000~50000倍の倍率を用いる。なお、1次粒子および2次粒子は、JIS H7008(金属超微粒子)に記載の定義に基づくものである。
 また、本明細書において、結晶子径は、CuのKα線を線源とした粉末X線回折法による測定から、面指数(111)面ピークの半値幅を求め、Scherrerの式より計算した結果をいう。
 また、本明細書において、アスペクト比は、走査型電子顕微鏡(SEM)にて粒子50個を観察した際の粒子の長径と短径との比の平均値をいう。粒子が、板状、鱗片状(フレーク状)等の平板状の形状である場合には、アスペクト比は、粒子の長径と厚さとの比の平均値をいう。
(A)銅微粒子
 本発明の導電性ペーストは、(A)平均粒子径が50nm以上400nm以下であり、かつ、結晶子径が20nm以上50nm以下である銅微粒子を含む。
 本発明の(A)銅微粒子は、平均粒子径が50nm以上400nm以下であり、好ましくは70nm以上であり、より好ましくは80nm以上であり、さらに好ましくは100nm以上であり、特に好ましくは110nm以上であり、一方、好ましくは350nm以下であり、より好ましくは320nm以下であり、さらに好ましくは300nm以下である。(A)銅微粒子の平均粒子径がこれら上限及び下限で設定される範囲であると、表面の著しい酸化が防止されると共に、低温で焼結することが可能となる。
 本発明の(A)銅微粒子は、結晶子径が20nm以上50nm以下であり、好ましくは25nm以上であり、一方、好ましくは45nm以下であり、より好ましくは40nm以下である。結晶子径がこれら上限及び下限で設定される範囲であると、これより小さい結晶子径に比べ耐酸化に優れる結果、焼結性に優れる。
 本発明の(A)銅微粒子の形状は、特に限定されるものではないが、例えば、球状、略球状、塊状、針条、フレーク状をとり得、好ましくは、球状及び略球状であり、より好ましくは、アスペクト比が1.0以上4.0以下であり、さらに好ましくは1.0以上2.0以下である。(A)銅微粒子のアスペクト比がこの範囲であると、(A)銅微粒子同士あるいは(B)銅粒子との接触が増えるため、焼結性に優れ抵抗値が低くなる。
 本発明の(A)銅微粒子は、例えば、カルボン酸の銅塩と脂肪族第一級アミンとを混合し、次いで還元剤を添加して、反応温度5℃~80℃で銅微粒子を析出させることにより製造することができる。
 より具体的には、カルボン酸の銅塩と脂肪族第一級アミンとを混合して、カルボン酸の銅塩を溶解させた溶液を得る。溶液中では、カルボン酸の銅塩に脂肪族第一級アミンが配位し、一種のアミン錯体を形成していると考えられる。
 カルボン酸の銅塩は、脂肪族、芳香族いずれのカルボン酸の銅塩であってもよい。カルボン酸の銅塩はまた、モノカルボン酸の銅塩であっても、ジカルボン酸等のポリカルボン酸の銅塩であってもよい。脂肪族カルボン酸の銅塩は、鎖状脂肪族カルボン酸の銅塩であっても、環状脂肪族カルボン酸の銅塩であってもよい。本発明で使用されるカルボン酸の銅塩は、好ましくは鎖状脂肪族モノカルボン酸の銅塩であり、より好ましくはギ酸銅、酢酸銅、プロピオン酸銅又は酪酸銅であり、特にギ酸銅である。これらカルボン酸の銅塩は、単独で、又は2種以上を併用することができる。
 脂肪族第一級アミンは、鎖状脂肪族第一級アミンであっても、環状脂肪族第一級アミンであってもよい。脂肪族第一級アミンはまた、モノアミン化合物であっても、ジアミン化合物等のポリアミン化合物であってもよい。脂肪族第一級アミンには、脂肪族炭化水素基が、ヒドロキシル基、メトキシ基、エトキシ基、プロピル基等のアルコキシ基、で置換されたものも含む。本発明で使用される脂肪族第一級アミンは、好ましくは3-メトキシプロピルアミン、3-アミノプロパノール及び1,2-ジアミノシクロヘキサン、より好ましくは3-メトキシプロピルアミンである。これら脂肪族第一級アミンは、単独で、又は2種以上を併用することができる。
 脂肪族第一級アミンの使用量は、生成する銅微粒子の後処理等プロセス上の要請や装置から決められるが、制御された粒子径の銅微粒子を得る点からは、カルボン酸の銅塩1当量に対して、1当量以上であることが好ましい。脂肪族第一級アミンの使用量は、カルボン酸の銅塩1当量に対して、1.0当量~4.0当量であることが好ましい。
 カルボン酸の銅塩と脂肪族第一級アミンとの混合は、有機溶媒の非存在下又は存在下に行うことができる。有機溶媒の使用により、混合を容易にすることができる。有機溶媒としては、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素等が挙げられる。これら有機溶媒は、単独で、又は2種以上を併用することができる。有機溶媒の使用量は、混合の利便性、後続の工程での銅微粒子の生産性の点から、任意の量とすることができる。
 カルボン酸塩の銅塩と脂肪族第一級アミンとの混合は、例えば、第一級脂肪族アミン、又は第一級脂肪族アミンと有機溶媒の混合物を攪拌しながら、カルボン酸の銅塩を添加して行う。添加終了後も、適宜、攪拌を続けることができる。その間、温度を、20℃~80℃に維持することが好ましく、より好ましくは20℃~60℃である。
 その後、還元剤を添加して、銅微粒子を析出させる。還元剤としては、反応の制御の点から、ギ酸、ホルムアルデヒド、アスコルビン酸又はヒドラジンが好ましく、より好ましくはヒドラジンである。これら還元剤は単独で、又は2種以上を併用することができる。
 還元剤の使用量は、通常、カルボン酸の銅塩に対して酸化還元当量以上であり、酸化還元当量が、1倍~5倍であることが好ましく、より好ましくは1倍~3倍である。カルボン酸の銅塩がジカルボン酸の銅塩であり、還元剤としてヒドラジンを使用する場合、ヒドラジンのモル換算での使用量は、ジカルボン酸の銅塩1モルに対して、0.5モル~1.5モルであることが好ましく、より好ましくは0.75モル~1.25モル、さらに好ましくは0.9モル~1.1モルである。
 還元剤の添加及びその後の反応においては、温度を5℃~80℃に維持する。温度は、5℃~70℃であることが好ましく、より好ましくは、5℃~60℃である。温度がこの範囲にあると、銅微粒子の粒成長が十分であり、生産性も高く、また二次凝集も抑制される。還元剤の添加及びその後の反応に要する時間は、反応装置の規模に依存するが、通常、10分~10時間である。なお、還元剤の添加及びその後の反応に際して、必要に応じて、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素等の有機溶媒を追加で添加することができる。
 還元剤の添加及びその後の反応においては、カルボン酸の銅塩と脂肪族第一級アミンとを混合した溶液、還元剤、及び任意の有機溶媒の合計の容積(L)に対する、カルボン酸の銅塩の量(mol)が、1.0mol/L~6.0mol/Lの範囲となるようにすることが好ましく、より好ましくは、2.0mol/L~5.0mol/L、さらに好ましくは2.0mol/L~4.0mol/Lである。濃度がこの範囲にあると、反応液の攪拌を十分行い、反応熱を除去することができるため、析出する銅微粒子の平均粒子径が適切となり、ひいては後続する工程での沈降デカント、溶媒置換等の操作に支障を来すこともない。
 反応により析出した銅微粒子は沈降させて、デカンテーション等により上澄みを除去するか、又はメタノール、エタノール、テルピネオール等のアルコール等の溶媒を添加して分取することができる。銅微粒子を含む層はそのまま、導電ペーストとして使用することもできる。(A)銅微粒子を沈降させる際、メタノールやエタノール等のアルコール類を、(A)銅微粒子を含む層に添加して(A)銅微粒子の沈降を早めることもできる。また、(A)銅微粒子を含む層は、必要に応じてエバポレーターによって残存する溶媒を留去して層に含まれる銅含有率を高めることもできる。反応により析出した(A)銅微粒子を含む層を導電ペーストとして使用する場合には、ペーストの粘度を調整するために、エバポレーターで層に含まれる溶媒を留去する直前に、(A)銅微粒子を含む層に、後述の(C)溶剤を加えておくこともできる。
 (A)銅微粒子の周囲には、脂肪族第一級アミン等のアミン類が存在していると考えられる。銅微粒子の周囲に存在するアミン類は、銅微粒子同士の凝集を防いでいると推測される。
 (A)銅微粒子の含有量は、(A)銅微粒子及び(B)銅粒子の合計100質量部に対して、好ましくは20質量部以上、より好ましくは25質量部以上、さらに好ましくは30質量部以上であり、一方、好ましくは80質量部以下、より好ましくは70質量部以下、さらに好ましくは60質量部以下、特に好ましくは55質量部以下である。このような下限は、低抵抗化の観点から好ましい。また、このような上限は、耐クラック性の観点から好ましい。(A)銅微粒子の含有量がこれら上限及び下限で設定される範囲であると、(A)銅微粒子及び(B)銅粒子の焼結性が制御され、低温焼結性と耐クラック性を両立できるため、好ましい。
 (A)銅微粒子および(B)銅粒子が導電性ペーストに含有されている場合に、(A)銅微粒子および(B)銅粒子の結晶子径を測定する方法としては、導電性ペーストを過剰な溶剤(下記(C)溶剤と同一であっても異なっていてもよい)で希釈した後、重力、遠心力、フィルタリング等を用いて(A)銅微粒子および(B)銅粒子を導電性ペーストから分離すればよい。この分離後に、溶剤を除去し、(A)銅微粒子および(B)銅粒子の結晶子径を測定することができる。同様の方法で分離及び溶剤除去後、(A)銅微粒子および(B)銅粒子の粒子径を測定してもよい。
 (B)銅粒子
 本発明の導電性ペーストは、(B)銅粒子を含む。この(B)銅粒子は、平均粒子径が0.8μm以上5μm以下であり、かつ、(A)銅微粒子の結晶子径に対する結晶子径の比が1.0以上2.0以下である。
 本発明の(B)銅粒子は、平均粒子径が0.8μm以上5μm以下であり、好ましくは0.85μm以上であり、より好ましくは0.9μm以上であり、一方好ましくは4.5μm以下であり、より好ましくは4μm以下である。(B)銅粒子の平均粒子径がこれら上限及び下限で設定される範囲であると、焼結性が制御され、低温焼結性と耐クラック性を両立できる。
 本発明の(B)銅粒子は、(A)銅微粒子の結晶子径に対する結晶子径の比が1.0以上2.0以下であり、好ましくは1.2以上、より好ましくは1.3以上、さらに好ましくは1.4以上、特に好ましくは1.5以上であり、一方好ましくは1.9以下、より好ましくは1.8以下である。結晶子径の比がこれら上限及び下限で設定される範囲であると、低抵抗及び高接着強度(ダイシェア強度)の両立を実現することができる。(B)銅粒子の結晶子径は、例えば、(B)銅粒子が水アトマイズ法で製造されるものであれば、粒子径を大きくすることで結晶の成長速度を遅くすることにより、所望する結晶子径のものを得ることができる。
 本発明の(B)銅粒子の形状は、特に限定されるものではないが、例えば、球状、略球状、塊状、針条、フレーク状をとり得、好ましくは、球状及び略球状であり、アスペクト比が、通常1.0以上4.0以下であり、好ましくは1.0以上2.0以下である。アスペクト比がこの範囲であると、(B)銅粒子同士あるいは(A)銅微粒子との接触が増えるため、焼結性に優れ抵抗値が低くなる。
 本発明の(B)銅粒子としては、市販されているものを用いることができる。市販されている銅粒子としては、例えば、EFC-09(福田金属箔粉工業株式会社製)、CS-10D(三井金属鉱業株式会社製)、HXR-Cu(日本アトマイズ加工株式会社製)、DCX-99(DOWAエレクトロニクス株式会社製)、DCX-160(DOWAエレクトロニクス株式会社製)を挙げることができる。
 (B)銅粒子の含有量は、(A)銅微粒子及び(B)銅粒子の合計100質量部に対して、好ましくは20質量部以上80質量部以下である。(B)銅粒子の含有量は、好ましくは20質量部以上、より好ましくは30質量部以上、さらに好ましくは40質量部以上、特に好ましくは45質量部以上であり、一方、好ましくは80質量部以下、より好ましくは75質量部以下、さらに好ましくは70質量部以下である。(B)銅粒子の含有量がこれら上限及び下限で設定される範囲であると、(A)銅微粒子及び(B)銅粒子の焼結性が制御され、低温焼結性と耐クラック性を両立できるため、好ましい。なお、低抵抗化および取り扱いの観点から、(A)銅微粒子と(B)銅粒子の合計含有量は、導電性ペーストの全体の重量を100質量部とした場合に対し、通常80質量部以上、好ましくは82質量部以上、より好ましくは84質量部以上とし、一方、通常96質量部以下、好ましくは94質量部以下、より好ましくは92質量部以下とする。
 なお、本発明においては、本発明の目的を阻害しない範囲内で(A)銅微粒子及び(B)銅粒子以外の粒子径又は平均粒子径を有する銅粒子を含有させてもよい。例えば、(A)銅微粒子、(B)銅粒子以外に他の平均粒子径又は粒子径を有する銅粒子群が含まれていたとしても、本発明の目的が阻害されない限り、そのような態様も本発明から排除されることはない。
 (C)溶剤
 本発明の導電性ペーストは、(C)溶剤を含む。(C)溶剤は、導電性ペーストの粘度調整等のために含むことができ、これは、導電性ペーストの焼成時に蒸発・気化するものである。
 (C)溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)等のアルコール類、酢酸エチレン等の有機酸類、トルエン、キシレン等の芳香族炭化水素類、N-メチル-2-ピロリドン(NMP)等のN-アルキルピロリドン類、N,N-ジメチルホルムアミド(DMF)等のアミド類、メチルエチルケトン(MEK)等のケトン類、テルピネオール(TEL)、ジヒドロテルピネオール(DTEL)、2-エチル-1,3-ヘキサンジオール(2EHD)、テキサノール(TEX)、ブチルカルビトール(BC)、ブチルカルビトールアセテート(BCA)、ジプロピレングリコール等が挙げられる。これらの溶剤は、単独で使用してもよく、2種類以上を混合して使用してもよい。
 (C)溶剤の含有量は、特に限定されないが、(A)銅微粒子及び(B)銅粒子の合計100質量部に対して、好ましくは1質量部以上100質量部以下、より好ましくは3質量部以上60質量部以下である。
 (D)アミン化合物
 本発明の導電性ペーストは、好ましくは、(D)アミン化合物を含むことができる。(D)アミン化合物を含むことにより、(A)銅微粒子同士の凝集を防ぐことができる。
 (D)アミン化合物としては、式:NHR14(式中、R1は、水酸基、メトキシ基、エトキシ基及びアミノ基からなる群より選択される置換基の1個で置換されている炭素数2~4の直鎖状又は分岐状のアルキル基を表し、R4は、水素であるか、又はアミノ基で置換されていてもよい炭素数1~3のアルキル基を表す。)で示されるアミン化合物が好ましく、式:NH25(式中、R5は、水酸基、メトキシ基及びエトキシ基からなる群より選択される置換基の1個で置換されている炭素数2~4の直鎖状又は分岐状のアルキル基を表す。)で示されるアミン化合物がより好ましい。
 アミン化合物の具体例としては、例えば、3-メトキシプロピルアミン、3-エトキシプロピルアミン、1-アミノ-2-プロパノール、3-アミノ-1-プロパノール、2-アミノエタノール、2-アミノ-2-メチル-1-プロパノール、N-メチル-1,3-ジアミノプロパン、3,3'-ジアミノジプロピルアミン、2-メトキシエチルアミン、1,3-ジアミノプロパン、2-(2-アミノエチルアミノ)エタノール等の第1級アミノ基を含有する化合物、N-メチルエタノールアミン、2,2’-イミノジエタノール等の第2級アミノ基を含有する化合物、又は2-ジメチルアミノエタノール等の第3級アミノ基を含有する化合物が挙げられ、このうち、3-メトキシプロピルアミンが好ましい。
 本発明の導電性ペースト中に含まれるアミン化合物としては、(A)銅微粒子の製造の際に使用した脂肪族第一級アミンであって、(A)銅微粒子の周囲に存在する脂肪族第一級アミンが導電性ペースト中に移動したものも含む。
 (D)アミン化合物は、(A)銅微粒子100質量部に対して、1質量部以上40質量部以下、好ましくは1質量部以上18質量部以下、より好ましくは1質量部以上15質量部以下、特に好ましくは1質量部以上12質量以下含むことができる。(D)アミン化合物の含有量をこの範囲とすることにより、(A)銅微粒子同士の凝集をより防ぐことができる。また、(D)アミン化合物は、導電性ペースト100質量部に対して、0.2質量部以上10質量部以下、好ましくは0.2質量部以上8質量部以下、より好ましくは0.2質量部以上6質量部以下、特に好ましくは0.2質量部以上4質量部以下含むことができる。
 (D)アミン化合物は、1種類でもよく、また、2種以上を組み合わせてもよい。(D)アミン化合物は、質量分析計やNMR等、所望の装置、方法を用いて分析することができる。
 (E)銅以外の金属粒子
 本発明の導電性ペーストは、本発明の効果を損なわない限り、銅以外の金属粒子をさらに含んでいてもよい。(E)銅以外の金属粒子を構成する金属としては、銀(Ag)、ニッケル(Ni)、パラジウム(Pd)、金(Au)、白金(Pt)及びこれらの合金等が挙げられる。
 (F)その他成分
 本発明の導電性ペーストは、その他の添加剤、例えば、分散剤、レオロジー調整剤、顔料などを含有してもよい。
 本発明の導電性ペーストは、さらに、可塑剤(例えば、カルボキシル基末端ポリブタジエン-アクリロニトリルなどのコポリマー、シリコーンゴム、シリコーンゴムパウダー、シリコーンレジンパウダー、アクリル樹脂パウダーなどの樹脂パウダー)、消泡剤などを含有してもよい。
 本発明の導電性ペーストの粘度は、通常10~300Pa・s、好ましくは20~100Pa・sである。粘度は、東京計器株式会社製E型粘度計(3°コーン)を用いて、試料の温度を25±1℃に保ち、5rpmにて測定した値である。導電性ペーストの粘度がこの範囲に調整されることによって、導電性ペーストの金属板への塗布性や取り扱い性が良好になる。
 本発明の導電性ペーストは、上記の各成分を、例えば、ライカイ機、ポットミル、三本ロールミル、回転式混合機、二軸ミキサー等を用いて混合することで製造することができる。製造温度は特に制限されず、例えば常温で製造することができる。
 本発明の導電性ペーストは、基板等に塗布し、非酸化性雰囲気下において、室温から200~300℃まで昇温し、200~300℃で5~20分間保持することにより、(C)溶剤や(A)銅微粒子表面の有機物を揮発させ、(A)銅微粒子及び(B)銅粒子同士を焼結させることにより、導電体を得ることができる。非酸化性雰囲気としては、例えば、窒素ガス、窒素水素混合ガス(例えば、水素濃度約3~5%)、アルゴンガス等の中性又は弱還元性雰囲気が挙げられる。昇温速度は、緻密に焼結した導電体を形成する観点から、好ましくは5℃/分~100℃/分、さらに好ましくは10℃/分~30℃/分である。また、焼結温度は、200~300℃が好ましく、より好ましくは220~280℃である。また、導電体の焼結の均一性の点から、焼結温度では5~20分間保持することが、好ましい。
 本発明の導電性ペーストは、メッキ下地用、電極用、ダイアタッチ剤等の導電性接着剤として好適に用いることができる。本発明の導電性ペーストは、支持部材が銅等の卑金属である場合に、例えば銅リードフレームや銅基板である場合に、高接着強度(ダイシェア強度)の効果を一層発揮することができ、有用性が高い。
[ダイアタッチ剤]
 本発明の第二の実施形態であるダイアタッチ剤は、上記第一の実施形態の導電性ペーストを含む。本発明の導電性ペーストをダイアタッチ剤として使用する場合は、リードフレームや基板等に適用し、半導体素子や放熱部材等をマウントし、熱処理することにより、接着を行うことができる。
[半導体装置]
 本発明の第三の実施形態である半導体装置は、上記第二の実施形態のダイアタッチ剤を用いて作製されたものであり、ダイアタッチ剤を熱処理して得られた導電体を含む。第二の実施形態のダイアタッチ剤を、リードフレームや基板等に適用し、半導体素子や放熱部材等をマウントし、熱処理することにより、接着を行なうことができる。熱処理の条件は、上記第一の実施形態である導電性ペーストの欄で記載した条件を適用することができる。次いで、ワイヤボンディングを経て、封止することにより、半導体装置を得ることができる。この半導体装置は、プリント配線基板上にはんだ実装して、各種の電子部品とすることができる。本実施形態において、ダイアタッチ剤を適用した表面が銅であることが、高接着強度(ダイシェア強度)の効果を一層発揮することができるので、好ましい。
 以下、本発明を実施例及び比較例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[導電性ペーストの調製]
 以下の成分を、表1に記載した実施例1~4並びに比較例1及び2の割合で混合して導電性ペーストを調製した。なお、表1に示す各成分の割合は、全て質量部で示しており、空欄は未配合であることを意味する。
(A)銅微粒子
 反応容器に3-メトキシプロピルアミン400g(4.5mol)を入れ、撹拌しながら反応温度を40℃以下に保持しつつ、ギ酸銅450g(2.0mol)を添加すると、ギ酸銅は濃青色な溶液となって溶解した。そこへヒドラジン100g(2.0mol)をゆっくり滴下し、その間、反応温度を5~60℃に保持すると、ヒドラジンの添加とともに銅微粒子が生成していき、濃青色な溶液が次第に濃茶褐色へと変化した。ヒドラジンを全量滴下して反応を終了させた後、得られた反応混合物に撹拌しながらメタノールを添加し、その後25℃で静置すると二層に分かれた。上層は淡黄色澄明な液であり、下層には茶褐色の(A)銅微粒子が沈降した。上層の液をデカンテーションで除去し、更にメタノール添加と静置、そしてデカンテーションを繰り返して得られたペーストに、2-エチル-1,3-ヘキサンジオール10gを加えて混合し、エバポレーターによって残存するメタノールを留去して、(A)銅微粒子を含む銅含有率90質量%の銅微粒子スラリーを得た。なお、表1に示す(A)銅微粒子の量は、銅成分の量である。また、この銅微粒子スラリーの残り10質量%のうち、2質量%が3-メトキシプロピルアミン、8質量%が2-エチル-1,3-ヘキサンジオールである。このことを、熱重量示差熱分析(TG/DTA)装置を用いて確認した。
(B)銅粒子1
 EFC-09(福田金属箔粉工業株式会社製)
(B)銅粒子2
 CS-10D(三井金属鉱業株式会社製)
(B)銅粒子3
 HXR-Cu(日本アトマイズ加工株式会社製)
(B)銅粒子4
 DCX-99(DOWAエレクトロニクス株式会社製)
(C)溶剤
 2-エチル-1,3-ヘキサンジオール(富士フイルム和光純薬株式会社製)
 表1には、上記(A)銅微粒子を含む銅含有率90質量%の銅微粒子スラリー中に含まれる2-エチル-1,3-ヘキサンジオールの他、溶剤が必要な場合には別途添加した2-エチル-1,3-ヘキサンジオールの合計量を記載している。
(D)アミン化合物
 3-メトキシプロピルアミン(東京化成工業株式会社)
 表1には、上記(A)銅微粒子を含む銅含有率90質量%の銅微粒子スラリー中に含まれる3-メトキシプロピルアミン量を記載している。
 実施例及び比較例における測定方法は、以下のとおりである。
[平均粒子径]
 平均粒子径は、走査型電子顕微鏡(SEM)にて任意の粒子200個を観察した際の粒子の径の平均値(個数平均値)である。走査型電子顕微鏡(SEM)はS-3400N(株式会社日立ハイテクノロジーズ製)を用いた。
[結晶子径]
 結晶子径は、CuのKα線を線源とした粉末X線回折法による測定から、面指数(111)面ピークの半値幅を求め、Scherrerの式より計算した。なお、Scherrer定数は1.33を用いた。X線回折装置としては、Ultima IV(株式会社リガク製)を用いた。
[クラック発生の測定]
 実施例及び比較例の導電性ペーストを、幅5mm、長さ50mm、厚さ0.05mmの形状でガラス基板上に塗布し、非酸化性雰囲気下(窒素水素混合ガス(水素濃度約3~5%))において、室温(25℃)から250℃まで10℃/分の昇温速度で昇温し、250℃で20分間保持することにより焼成して、導電体を形成した。導電体中のクラック発生の有無(薄膜中の収縮の有無)を目視にて観察した。
 無:導電体中のクラックの個数が0。
 有:導電体中のクラックの個数が1以上。
[比抵抗の測定]
 上記クラック発生の測定で作製した試験片を、比抵抗の測定に使用した。LCRメーターを用い、4端子法で比抵抗(抵抗率)を測定した。
[ダイシェア強度]
 1mm×1mmの金コートシリコンチップを、実施例及び比較例の導電性ペーストを用いて、銅リードフレーム上にマウントし、非酸化性雰囲気下(窒素水素混合ガス(水素濃度約3~5%))において、室温(25℃)から250℃まで10℃/分の昇温速度で昇温し、250℃で20分間保持することにより、焼成した。焼成後、ボンドテスターを用いて、室温(25℃)でダイシェア強度を測定した。ボンドテスターは4000万能型ボンドテスター(Nordson DAGE社製)を用いた。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果からわかる通り、実施例1~4の導電性ペーストを焼成して得られる導電体は、クラックの発生が無く、比抵抗値が低く、ダイシェア強度が高かった。より詳細には、「(B)銅粒子の結晶子径」/「(A)銅微粒子の結晶子径」が大きくなるにつれ、比抵抗値が小さくなり、また、「(B)銅粒子の結晶子径」/「(A)銅微粒子の結晶子径」が1.6のときを最大として、1.0あるいは2.0に近づくにつれダイシェア強度が小さくなっていくのがわかる。これに対し、比較例1の導電性ペーストを焼成して得られる導電体は、クラックの発生が確認され、比抵抗値及びダイシェア強度を測定するに足る試験片を作製することができなかった。比較例2の導電性ペーストを焼成して得られる導電体は、クラックは発生しなかったものの、導電体が脆く、ダイシェア強度を測定することができなかった。また、比抵抗値は高かった。
 日本国特許出願2018-183879号(出願日:2018年9月28日)の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (7)

  1.  (A)平均粒子径が50nm以上400nm以下であり、かつ、結晶子径が20nm以上50nm以下である銅微粒子と、
     (B)平均粒子径が0.8μm以上5μm以下であり、かつ、(A)銅微粒子の結晶子径に対する結晶子径の比が1.0以上2.0以下である銅粒子と、
     (C)溶剤と、
    を含む導電性ペースト。
  2.  (B)銅粒子のアスペクト比が1.0以上2.0以下である、請求項1に記載の導電性ペースト。
  3.  さらに(D)アミン化合物を含む、請求項1又は2に記載の導電性ペースト。
  4.  (B)銅粒子の含有量が、(A)銅微粒子及び(B)銅粒子の合計100質量部に対して、20質量部以上80質量部以下である、請求項1~3のいずれか1項に記載の導電性ペースト。
  5.  請求項1~4のいずれか1項に記載の導電性ペーストを含む、ダイアタッチ剤。
  6.  請求項5に記載のダイアタッチ剤を用いて作製された半導体装置。
  7.  請求項5に記載のダイアタッチ剤を適用した表面が銅である、請求項6記載の半導体装置。
PCT/JP2019/037179 2018-09-28 2019-09-24 導電性ペースト WO2020066968A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020549189A JP7323944B2 (ja) 2018-09-28 2019-09-24 導電性ペースト
US17/280,256 US11817398B2 (en) 2018-09-28 2019-09-24 Conductive paste
CN201980062109.9A CN112771628B (zh) 2018-09-28 2019-09-24 导电性糊剂
KR1020217010868A KR20210066836A (ko) 2018-09-28 2019-09-24 도전성 페이스트
EP19865615.9A EP3859751A4 (en) 2018-09-28 2019-09-24 CONDUCTIVE PASTE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018183879 2018-09-28
JP2018-183879 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066968A1 true WO2020066968A1 (ja) 2020-04-02

Family

ID=69950741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037179 WO2020066968A1 (ja) 2018-09-28 2019-09-24 導電性ペースト

Country Status (6)

Country Link
US (1) US11817398B2 (ja)
EP (1) EP3859751A4 (ja)
JP (1) JP7323944B2 (ja)
KR (1) KR20210066836A (ja)
CN (1) CN112771628B (ja)
WO (1) WO2020066968A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074827A1 (ja) * 2021-10-28 2023-05-04 三井金属鉱業株式会社 銅粒子及びその製造方法
WO2023190080A1 (ja) * 2022-03-30 2023-10-05 三井金属鉱業株式会社 接合体の製造方法及び被接合体の接合方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021744A (ja) * 1996-06-28 1998-01-23 Mitsuboshi Belting Ltd 銅導体ペースト及び該銅導体ペーストを印刷した基板
JP2006183072A (ja) * 2004-12-27 2006-07-13 Namics Corp 銀微粒子、その製造方法及び銀微粒子を含有する導電ペースト
JP2014167145A (ja) 2013-02-28 2014-09-11 Osaka Univ 接合材
WO2016031860A1 (ja) * 2014-08-28 2016-03-03 石原産業株式会社 金属質銅粒子及びその製造方法
JP2017041645A (ja) * 2014-08-29 2017-02-23 三井金属鉱業株式会社 導電体の接続構造及びその製造方法、導電性組成物並びに電子部品モジュール
JP2018183879A (ja) 2017-04-24 2018-11-22 パナソニックIpマネジメント株式会社 積層フィルムと積層フィルムの製造方法および積層フィルムを転写した成形品

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4295406B2 (ja) * 1998-11-16 2009-07-15 中國石油化工集團公司 銅含有触媒およびその製造方法
US8721931B2 (en) * 2005-12-21 2014-05-13 E I Du Pont De Nemours And Company Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
JP5773148B2 (ja) 2011-07-29 2015-09-02 戸田工業株式会社 銀微粒子並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
JP5598739B2 (ja) * 2012-05-18 2014-10-01 株式会社マテリアル・コンセプト 導電性ペースト
JP5590639B2 (ja) * 2012-09-12 2014-09-17 エム・テクニック株式会社 金属微粒子の製造方法
JP6140189B2 (ja) * 2012-11-30 2017-05-31 ナミックス株式会社 導電ペースト及びその製造方法
CN106170851B (zh) 2014-02-04 2019-03-08 株式会社村田制作所 电子元器件模块、以及电子元器件模块的制造方法
US20160057866A1 (en) * 2014-08-19 2016-02-25 Jsr Corporation Metal film forming method and conductive ink used in said method
US10544334B2 (en) * 2015-02-04 2020-01-28 Namics Corporation Heat conductive paste and method for producing the same
JP2017135230A (ja) * 2016-01-27 2017-08-03 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
MY195254A (en) 2017-01-11 2023-01-11 Hitachi Chemical Co Ltd Copper Paste for Pressureless Bonding, Bonded Body And Semiconductor Device
CN212463677U (zh) * 2017-05-26 2021-02-02 株式会社村田制作所 多层布线基板以及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021744A (ja) * 1996-06-28 1998-01-23 Mitsuboshi Belting Ltd 銅導体ペースト及び該銅導体ペーストを印刷した基板
JP2006183072A (ja) * 2004-12-27 2006-07-13 Namics Corp 銀微粒子、その製造方法及び銀微粒子を含有する導電ペースト
JP2014167145A (ja) 2013-02-28 2014-09-11 Osaka Univ 接合材
WO2016031860A1 (ja) * 2014-08-28 2016-03-03 石原産業株式会社 金属質銅粒子及びその製造方法
JP2017041645A (ja) * 2014-08-29 2017-02-23 三井金属鉱業株式会社 導電体の接続構造及びその製造方法、導電性組成物並びに電子部品モジュール
JP2018183879A (ja) 2017-04-24 2018-11-22 パナソニックIpマネジメント株式会社 積層フィルムと積層フィルムの製造方法および積層フィルムを転写した成形品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074827A1 (ja) * 2021-10-28 2023-05-04 三井金属鉱業株式会社 銅粒子及びその製造方法
WO2023190080A1 (ja) * 2022-03-30 2023-10-05 三井金属鉱業株式会社 接合体の製造方法及び被接合体の接合方法

Also Published As

Publication number Publication date
TW202018017A (zh) 2020-05-16
CN112771628B (zh) 2022-09-13
EP3859751A4 (en) 2022-07-06
US20220045026A1 (en) 2022-02-10
JPWO2020066968A1 (ja) 2021-08-30
JP7323944B2 (ja) 2023-08-09
US11817398B2 (en) 2023-11-14
KR20210066836A (ko) 2021-06-07
EP3859751A1 (en) 2021-08-04
CN112771628A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
US10940534B2 (en) Metal paste having excellent low-temperature sinterability and method for producing the metal paste
JP4852272B2 (ja) 金属ペースト
US10541222B2 (en) Conductive composition and electronic parts using the same
KR101559605B1 (ko) 열 경화성 도전 페이스트, 및 그것을 이용하여 형성한 외부 전극을 갖는 적층 세라믹 전자 부품
CN110462752B (zh) 电极形成用树脂组合物以及芯片型电子部件及其制造方法
US9662748B2 (en) Metal nanoparticle dispersion, method for producing metal nanoparticle dispersion, and bonding method
CN108473779B (zh) 树脂组合物、导电性铜浆料及半导体装置
JP7323944B2 (ja) 導電性ペースト
JP7369031B2 (ja) ペースト組成物、及び電子部品装置の製造方法
TWI835866B (zh) 導電性膏
US20170275477A1 (en) Copper-containing conductive pastes and electrodes made therefrom
CN112951477B (zh) 用于白色氧化铝多层陶瓷基板印刷的钨浆料及其制备方法
JP7434786B2 (ja) 銅/酸化銅微粒子ペースト
TW202207245A (zh) 導電組合物、貼片材料、壓力燒結貼片材料和電子零件
TW202231398A (zh) 氧化銅糊料及電子零件之製造方法
JP2020087765A (ja) 接合用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010868

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019865615

Country of ref document: EP

Effective date: 20210428