WO2023188181A1 - 基板搬送システム及び移載ロボット - Google Patents

基板搬送システム及び移載ロボット Download PDF

Info

Publication number
WO2023188181A1
WO2023188181A1 PCT/JP2022/016244 JP2022016244W WO2023188181A1 WO 2023188181 A1 WO2023188181 A1 WO 2023188181A1 JP 2022016244 W JP2022016244 W JP 2022016244W WO 2023188181 A1 WO2023188181 A1 WO 2023188181A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
section
transfer robot
substrate
holding
Prior art date
Application number
PCT/JP2022/016244
Other languages
English (en)
French (fr)
Inventor
敬冶 金澤
Original Assignee
平田機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平田機工株式会社 filed Critical 平田機工株式会社
Priority to PCT/JP2022/016244 priority Critical patent/WO2023188181A1/ja
Priority to PCT/JP2023/013176 priority patent/WO2023190868A1/ja
Priority to TW112112160A priority patent/TW202402482A/zh
Publication of WO2023188181A1 publication Critical patent/WO2023188181A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a substrate transfer system and a transfer robot.
  • a substrate transfer system in which a transfer robot for transferring semiconductor substrates (wafers) is installed in a chamber (clean room) in a vacuum environment, and the wafers are transferred from a load port attached to the front of the chamber.
  • the wafer taken into the chamber by the transfer robot is transported into the chamber or to a process module attached to the chamber, and various semiconductor processing such as film formation processing is performed thereon.
  • the wafer processed in the process module is transferred to the load port again by the transfer robot and sent to the next process.
  • a transfer robot is fixed in a chamber, and the transfer robot transfers a wafer within the chamber without running, thereby preventing particles from being stirred up or airflow turbulence within the chamber.
  • a delivery system is disclosed.
  • the substrate transfer system includes: a robot that transfers a wafer within a chamber having a predetermined length in a first direction; a plurality of wafer transfer destination ports provided outside the chamber and arranged at predetermined intervals in the first direction; Equipped with The robot is equipped with a plurality of horizontally rotatable arms in order to transfer wafers to and from respective ports within a chamber with a limited range of motion.
  • the length of each of the plurality of arms is set to correspond to the movement distance in the first direction within the chamber.
  • the length of the arm is limited by its length within the chamber in a second direction orthogonal to the first direction.
  • the installation position of the robot in the second direction is set as far away from the port as possible, and the space in the second direction is increased to ensure a turning space for the robot arm. Therefore, the operating distance of the arm becomes long, which poses a problem in the efficiency of conveyance work.
  • the length in the second direction will be required to be even larger, and there is a risk that the efficiency of the conveyance operation will be reduced. be.
  • the present invention was made in view of the above circumstances, and an object of the present invention is to provide a substrate transfer system and a transfer robot that can efficiently transfer substrates.
  • the substrate transport system includes a transport section in which a range in which the substrate is transported is defined, a first mounting section and a second mounting section on which the substrates are placed, and an interior of the transport section. , a transfer robot that transports the substrate from the first mounting section to the second mounting section, and the range of the transporting section extends between the first mounting section and the second mounting section in a first direction.
  • a predetermined first length that allows a plurality of storage units to be arranged side by side, and a second length that is orthogonal to the first direction and shorter than the first length, and the transfer robot a main body disposed within the section; a swing support part connected to the main body part and rotated with respect to the main body part; an arm support part connected to the swing support part and rotated with respect to the swing support part; , an arm part connected to the arm support part and rotating with respect to the arm support part, and a holding part connected to the arm part and holding the substrate, the arm part being connected to the rotation support part. and a second arm connected to the holding part, the first arm having a first end rotatably connected to the arm support part.
  • the transfer robot rotates in a plan view about a connecting part with the main body part as a rotation axis, the arm part rotates in a plan view about the arm support part as a rotation axis, and the transfer robot is supported by the main body part.
  • the main body is arranged such that the center of the support section is located in the center of the range of the transfer section.
  • the transport unit includes a robot support unit that supports the main body of the transfer robot, and a plurality of mounting units provided with the first mounting unit and the second mounting unit. It may also include an installation section.
  • the main body portion may include a robot control unit that controls driving of the transfer robot.
  • the holding section includes a first holding hand and a second holding hand provided below the first holding hand, and the first holding hand and the second holding hand. may each include a hand tip portion that holds the substrate, and a hand base end portion that is rotatably supported with respect to the second arm moving end portion.
  • the first mounting section and the second mounting section are arranged along the periphery of the transport section, and the transfer robot moves between the first mounting section and the second mounting section. It may be arranged between the second mounting section and the second mounting section.
  • a plurality of the first mounting section and the second mounting section are provided facing each other along the periphery of the transporting section with the transfer robot in between in a plan view, and
  • the plurality of first mounting parts and the plurality of second mounting parts may be arranged at regular intervals in the first direction.
  • a plurality of the transfer robots are provided in the transfer unit, a first transfer unit that can be transferred by a first transfer robot, and a second transfer unit that can be transferred by a second transfer robot.
  • a first carrying unit group provided in the first carrying unit and on which the substrate is placed, and a second carrying unit group provided in the second carrying unit and on which the substrate is placed.
  • a relay loading unit for transferring the substrate between the first transfer robot and the second transfer robot, and the relay loading unit includes two loading unit groups. , may be provided around the transport section and between the first placing section group and the second placing section group.
  • the transfer robot according to the present invention is a transfer robot that transfers a substrate from a first placement section to a second placement section provided along a transfer section in which a range in which the substrate is transferred is defined, and comprises: a main body disposed inside a conveying section; a swing support part connected to the main body part and rotating with respect to the main body part; and an arm connected to the swing support part and rotated with respect to the swing support part. a support part; an arm part connected to the arm support part and rotating with respect to the arm support part; and a holding part connected to the arm part and holding the substrate;
  • the first arm includes a first arm connected to the swing support part, and a second arm connected to the holding part, and the first arm has a first end rotatably connected to the arm support part.
  • the main body part rotates in plan view about the connection part with the main body part as a rotation axis
  • the arm part rotates in plan view about the arm support part as the rotation axis
  • the center of the swing support part supported by the main body part In the transfer robot, the main body part is arranged such that the main body part is located in the center of the range of the transport part.
  • the main body portion may include a robot control unit that controls driving of the transfer robot.
  • the holding section includes a first holding hand and a second holding hand provided at a lower part of the first holding hand, and the first holding hand and the second holding hand may each include a hand tip portion that holds the substrate, and a hand base end portion that is rotatably supported with respect to the second arm moving end portion.
  • FIG. 1 is a plan view showing a substrate transport system according to the present invention.
  • FIG. 1 is a perspective view showing a transfer robot according to the present invention.
  • FIG. 1 is a perspective view showing a transfer robot according to the present invention.
  • FIG. 3 is a partial plan view showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 3 is a plan view schematically showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 3 is a plan view schematically showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 3 is a plan view schematically showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 3 is a plan view schematically showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 3 is a plan view schematically showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 3 is a plan view schematically showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 3 is a plan view schematically showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 3 is a plan view schematically showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 3 is a plan view schematically showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 2 is a plan view schematically showing the operating procedure of the transfer robot according to the present invention.
  • FIG. 1 is a plan view showing a substrate transport system according to the present invention.
  • FIG. 3 is a plan view showing another form of the substrate transport system according to the present invention.
  • the substrate transport system 1 includes a transport section 2 in which a range of transport work is set, a first mounting section 3, a plurality of second mounting sections 4, and a transfer robot 5. We are prepared.
  • the substrate transport system 1 is a transport system that operates a transfer robot 5 to transport the substrate 10 from the first mounting section 3 to the second mounting section 4.
  • the substrate 10 is a disk-shaped semiconductor wafer (hereinafter, the "substrate 10" will be referred to as the "wafer 10").
  • a mark (for example, an orientation flat or a notch) 10a indicating the orientation or surface of the wafer 10 is formed on the wafer 10.
  • the conveyance unit 2 is formed, for example, into a shell having a rectangular shape in plan view.
  • the conveyance unit 2 includes a first long wall 2a and a second long wall 2b that are arranged to face each other and extend in the first direction A short wall 2d is provided.
  • the first long wall 2a and the second long wall 2b have a first length.
  • the first short wall 2c and the second short wall 2d have a second length different from the first length.
  • the conveyance section 2 includes a lower support body 2e connected to the first long wall 2a, the second long wall 2b, the first short wall 2c, and the second short wall 2d at the lower part.
  • the transport section 2 includes a plurality of placement sections in which a first placement section 3 and a plurality of second placement sections 4 are installed.
  • a first placing section 3 is provided in a placing section provided on a first long wall 2a
  • a plurality of second placing sections 4 are provided on a plurality of placing sections provided on a second long wall 2b. They are connected at regular intervals along the second long wall 2b.
  • a robot support section 2e1 that supports the transfer robot 5 is provided on the lower support body 2e.
  • the longitudinal direction (extending direction of the first long wall 2a and second long wall 2b), which is the first direction of the conveying section 2, is the X direction
  • the short direction is perpendicular to the first direction
  • the short direction is the second direction of the conveying section 2.
  • the direction (extending direction of the first short wall 2c and the second short wall 2d) is referred to as the Y direction
  • the height direction (vertical direction) of the conveying section 2 orthogonal to the X direction and the Y direction is referred to as the Z direction.
  • the inside of the range surrounded by the first long wall 2a, the second long wall 2b, the first short wall 2c, and the second short wall 2d is set as a movement area A where the transport work is performed.
  • a transfer robot 5 is disposed inside the transport section 2, and a first mounting section 3 and a plurality of second mounting sections 4 are arranged along the periphery of the transport section 2.
  • the transfer robot 5 is arranged at the center.
  • an area on one side in the Y direction is set as a first movement area A1, with the center C2 in the central part where the transfer robot 5 is arranged as a border, and an area on the other side in the Y direction is set as a second movement area A1.
  • the first movement area A1 is an area on the second long wall 2b side where the second mounting section 4 is installed.
  • the second moving area A2 is an area on the first long wall 2a side where the first mounting section 3 is installed.
  • the airflow inside the transport section 2 is controlled so that it moves from above to below, and is normally maintained at a positive pressure state.
  • a load port 21 as a first loading section 3 is connected to a first long wall 2a
  • a plurality of processing ports 22 as a plurality of second loading sections 4 are connected to a second long wall 2b.
  • the plurality of processing ports 22 are connected at regular intervals in the longitudinal direction of the second long wall 2b.
  • the conveyance unit 2 maintains the interior in a clean state by setting the internal air pressure to a positive pressure state and controlling airflow from above to below.
  • the load port 21 is a port for supplying and recovering the wafer 10, and the plurality of processing ports 22 are used for relaying between processing steps that perform various semiconductor surface treatments such as film formation on the wafer 10. It is a port.
  • the wafer 10 is transferred from the load port 21 to the processing port 22 by the transfer robot 5.
  • the load port 21 corresponds to the first mounting section 3 and the processing port 22 corresponds to the second mounting section 4.
  • the surface-treated wafer 10 is placed in the processing port 22, and then transferred from the processing port 22 to the load port 21 again by the transfer robot 5, and replaced with the next wafer 10 to be surface-treated.
  • the processing port 22 corresponds to the first mounting section 3 and the load port 21 corresponds to the second mounting section 4.
  • a container containing a plurality of wafers 10 is placed on the load port 21 and sequentially transported to the processing port 22 by the transfer robot 5.
  • the container may have a configuration in which a predetermined number of wafers 10, for example about 25, are stacked at predetermined intervals in the Z direction.
  • the load port 21 and the processing port 22 are provided with an inlet/outlet section for loading and unloading the wafer 10 from the transport section 2 .
  • the entrance and exit portions of the wafers 10 of the plurality of processing ports 22 are formed in the same direction.
  • the load port 21 is connected to a loading port mounting portion 2a1 provided at the center of the first long wall 2a in the X direction.
  • four processing ports 22 are provided at equal intervals in the X direction, and are connected to a processing port mounting portion two b1 provided on the second long wall 2b.
  • the plurality of processing ports 22 are arranged such that the center C1 of the interval L1 in the X direction between the two processing ports 22, 22 arranged at the center in the X direction substantially coincides with the center part in the X direction of the first long wall 2a.
  • the transfer robot 5 is provided inside the transfer unit 2 and transfers the wafer 10 between the load port 21 and the plurality of processing ports 22.
  • the transfer robot 5 is a robot configured to place and move the wafer 10. Transfer of the wafer 10 includes exchange transfer in which the wafer 10 is exchanged between a plurality of processing ports 22, and sequential transfer in which the wafer 10 is transferred to a plurality of processing ports 22 in a preset order. It will be done.
  • the transfer robot 5 is arranged in the middle in the Y direction between the first long wall 2a and the second long wall 2b in a plan view, and is arranged between the load port 21 and the plurality of processing ports 22 in a plan view. That is, the transfer robot 5 is arranged between the load port 21 and the plurality of processing ports 22 in plan view.
  • the load port 21 and the plurality of processing ports 22 face each other across the transfer robot 5 in plan view.
  • the transfer robot 5, the load port 21, and the processing port 22 are centered at C2, centered at the center of the transfer robot 5 in plan view, C3, centered at the center of the load port 21 in plan view, and two processing ports 22 at the center in the X direction.
  • 22 in the X direction is set as a center C1
  • the centers C1 to C3 are arranged so that their respective positions in the X direction substantially coincide with each other on a line extending in the Y direction.
  • the center of the port located at the center in the X direction in plan view is set as the center C3.
  • the center of the interval in the X direction between the two ports located at the center in the X direction is the center C1.
  • the center C2 of the transfer robot 5 is set at the center of the transport section 2 in the Y direction.
  • FIGS. 2 and 3 are perspective views of the transfer robot 5.
  • the transfer robot 5 includes a main body portion 51, a rotation support portion 52, an arm support portion 53, an arm portion 54, and a holding portion 55.
  • the main body section 51 includes a base 511, an elevating section 512, an elevating motor 513, a swing motor 514, an arm support drive motor 515, a control unit 516, and a storage body 517.
  • the base 511 is fixed to the robot support part 2e1 provided on the lower support body 2e, which is the bottom of the transport part 2.
  • the main body section 51 is supported within the transport section 2 via a base 511.
  • the elevating section 512 , the elevating motor 513 , the swing motor 514 , and the arm support drive motor 515 are housed within the storage body 517 .
  • the arm support drive motor 515 is arranged on the upper end side in the Z direction inside the storage body 517.
  • the control unit 516 is arranged inside the storage body 517 on the base 511.
  • the elevating section 512 is provided within the storage body 517 on the base 511 so as to be movable up and down.
  • a swing support section 52 is rotatably supported on the upper part of the elevating section 512 with respect to the elevating section 512 .
  • the elevating mechanism of the elevating part 512 by the elevating motor 513 includes, for example, a ball screw extending in the elevating direction, and a guide member (screwed onto the ball screw, moved in the elevating direction by the operation of the ball screw, and connected to the elevating part 512).
  • a ball screw mechanism with a nut is adopted.
  • the elevating part 512 rotates a ball screw using an elevating motor 513 to move the swing support part 52, the arm support part 53, the arm part 54, and the holding part 55, which are arranged above the main body part 51 in the Z direction, together with the main body part 51. Raise and lower.
  • the transfer robot 5 can change the holding height of the wafer 10 according to the respective arrangement heights of the load port 21 and the plurality of processing ports 22 by adjusting the height using the lifting section 512.
  • the elevating part 512 and the elevating motor 513 of the transfer robot 5 may be omitted.
  • a control unit 516 is provided within the storage body 517 and controls the transfer operation of the wafer 10 by the transfer robot 5.
  • the transfer robot 5 can connect the control unit 516 to the control devices (for example, output devices such as various motors and sensors) configured in the transfer robot 5.
  • the control devices for example, output devices such as various motors and sensors
  • the swing support part 52 is arranged at the upper part of the main body part 51 in the Z direction.
  • the swing support part 52 is arranged at the upper part of the main body part 51 in the Z direction, with a first end 52 a provided on one side connected to the upper end of the elevating part 512 of the main body part 51 .
  • the swing support part 52 has an arm shape that extends in the lateral direction, and a first end 52a serving as one end in the longitudinal direction is connected to the upper end of the elevating part 512 of the main body part 51.
  • the swing support section 52 is rotated by a swing motor 514 with respect to the main body section 51 in plan view using a first end 52a as a rotation shaft (hereinafter referred to as "first rotation shaft 61").
  • the first rotating shaft 61 is centered on the same center line CZ1 as the center C2.
  • the swing support portion 52 includes a first end 52a corresponding to the centerline CZ1 and a second end 52b corresponding to the centerline CZ2 different from the centerline CZ1.
  • the first rotating shaft 61 is arranged along the Z direction and rotates about the center line CZ1.
  • the swing support portion 52 rotates approximately horizontally about the center line CZ1.
  • the main body part 51 is arranged within the conveyance part 2 so that the center (center part) of the swing support part 52 is at the same position as the center C2.
  • the arm support portion 53 includes a pivot attachment portion 53a and an arm attachment portion 53b.
  • the arm support section 53 is arranged above the rotation support section 52 in the Z direction.
  • a second end 52b opposite to the first end 52a in the longitudinal direction of the swing support part 52 is provided below the swing attachment part 53a in the Z direction.
  • the pivot attachment portion 53a is connected to the second end portion 52b of the pivot support portion 52.
  • the arm attachment portion 53b is provided at the upper portion in the Z direction and is connected to the arm portion 54.
  • the swing attachment part 53a rotates with respect to the swing support part 52 in plan view by an arm support rotation mechanism including an arm support drive motor 515.
  • a center line CZ2 is set at the second end portion 52b, and the arm support portion 53 is supported by the swing support portion 52 so as to be rotatable about the center line CZ2.
  • the arm support section 53 includes an arm motor 543 including an arm drive mechanism 543a that operates the arm section 54 about the center line CZ2.
  • the arm section 54 includes a first arm 541, a second arm 542, an arm operating mechanism 54a, a first holding hand motor 544, a second holding hand motor 545, and a hand drive transmission mechanism 546.
  • the arm portion 54 is arranged above the arm support portion 53 in the Z direction.
  • the arm operation mechanism 54a transmits the driving force of the arm motor 543 and causes the first arm 541 and the second arm 542 to perform predetermined operations.
  • the first arm 541 has a first end portion 541a as a first arm base end portion that is rotatably connected to the arm support portion 53, and a first arm moving end portion that rotatably supports the second arm 542. and a second end 541b.
  • the first end 541a and the second end 541b are located at both ends of the first arm 541 in the longitudinal direction.
  • the first arm 541 has a first end 541a and an arm attachment portion 53b of the arm support portion 53 connected to each other.
  • the first arm 541 is arranged below the second arm 542.
  • the first arm 541 has a first end 541a connected to an arm drive mechanism 543a.
  • the first arm 541 rotates with respect to the swing support part 52 in a plan view with the first end 541a as a rotation axis (hereinafter referred to as “second rotation axis 62”) as the rotation attachment part 53a rotates. .
  • the first arm 541 also has a first end portion 541a as a rotation axis (hereinafter referred to as “second rotation axis 62”) due to the rotational operation of the arm drive mechanism 543a by the arm motor 543, and the arm support portion 53 in a plan view. Rotate against.
  • the second rotation axis 62 is centered on a center line CZ2 that is different from the center line CZ1.
  • Center line CZ2 is a line along the Z direction and parallel to center line CZ1.
  • the first arm 541 rotates around the second rotation axis 62 about the center line CZ2 at the first end 541a.
  • the arm support portion 53 serves as a pivot for the swing support portion 52 and the arm portion 54 located above and below in the Z direction.
  • the arm support section 53 rotates independently with respect to the rotation support section 52 and the arm section 54.
  • the arm support part 53 is independently rotated with respect to the swing support part 52 by the arm support drive motor 515.
  • the arm portion 54 is independently rotated with respect to the arm support portion 53 by an arm motor 543.
  • the second arm 542 has a first end 542a as a second arm proximal end that is rotatably connected to a second end 541b as a first arm moving end, and a holding part 55 that is rotatable. and a second end 542b as a second arm moving end supported by the second arm.
  • the first end 542a and the second end 542b are located at both ends of the second arm 542 in the longitudinal direction.
  • the second arm 542 has a first end 542a connected to a second end 541b of the first arm 541, and is supported by the first arm 541.
  • the second arm 542 is configured with a first end 542a as a rotation axis (hereinafter referred to as "third rotation axis 63") by rotation of an arm drive mechanism 543a by an arm motor 543 when viewed from above with respect to the first arm 541.
  • the third rotation axis 63 is centered on a center line CZ3 that is different from the center lines CZ1 and CZ2.
  • Center line CZ3 is a line along the Z direction, and is parallel to center line CZ1 and center line CZ2.
  • the second arm 542 rotates around the third rotation axis 63 about the center line CZ3 at the first end 542a.
  • the second arm 542 has a first holding hand motor 544 and a second holding hand motor 545 built in, and a hand drive transmission mechanism 546 built in the second end 542b side.
  • the first holding hand motor 544 and the second holding hand motor 545 are arranged in parallel in the Y direction.
  • the hand drive transmission mechanism 546 includes a first hand drive transmission mechanism 546a that transmits the driving force of the first holding hand motor 544, and a second hand drive transmission mechanism 546b that transmits the driving force of the second holding hand motor 545. include.
  • the hand drive transmission mechanism 546 includes a first hand drive transmission mechanism 546a that transmits the driving force of the first holding hand motor 544, and a second hand drive transmission mechanism 546b that transmits the driving force of the second holding hand motor 545. include.
  • the arm portion 54 rotates along the center line CZ3 by transmitting the driving force of the arm motor 543 via the arm drive mechanism 543a to rotate the first arm 541 and the second arm 542 according to a predetermined operation in plan view.
  • the maximum length of the arm portion 54 is adjusted by bending and extending the entire arm portion 54 around .
  • the arm portion 54 is aligned with the center line CZ2 and the center line with respect to the first end portion 541a as the first arm base end portion.
  • the length of the arm portion 54 is adjusted by moving the second end portion 542b as the second arm moving end portion toward or away from each other along the straight line connecting it to CZ4.
  • the holding section 55 includes a first holding hand 551, a second holding hand 552, a first supporting section 553, and a second supporting section 554.
  • the holding part 55 is arranged at the upper part of the arm part 54 in the Z direction.
  • the first holding hand 551 and the second holding hand 552 are arranged at a constant interval in the Z direction.
  • the first holding hand 551 is provided above the second holding hand 552.
  • the first holding hand 551 includes a first hand tip 551a that holds the wafer 10.
  • the second holding hand 552 includes a second hand tip 552a that holds the wafer 10.
  • the first holding hand 551 and the second holding hand 552 hold the wafer 10 at the first hand tip 551a and the second hand tip 552a, respectively, by a holding mechanism (not shown).
  • the method of holding the wafer 10 is not limited, and for example, a configuration may be adopted in which a hand is inserted into the lower part of the wafer 10, the wafer 10 is scooped up and placed, and then the wafer 10 is attracted to the hand using negative pressure and held. .
  • the first support portion 553 includes a first hand base end portion 551c rotatably supported by the second arm 542.
  • a first holding hand 551 is connected to a distal end 551b of the first support portion 553.
  • the second support portion 554 includes a second hand base end portion 552c rotatably supported by the second arm 542.
  • a second holding hand 552 is connected to a distal end 552b of the second support portion 554.
  • the first support part 553 is rotated in plan view with respect to the second arm 542 by the first holding hand motor 544 shown in FIG.
  • the second support part 554 is rotated by the second holding hand motor 545 shown in FIG. 3 with respect to the second arm 542 in a plan view.
  • the rotation axis of the first support part 553 will be referred to as a fourth rotation axis 64
  • the rotation axis of the second support part 554 will be referred to as a fifth rotation axis 65.
  • the center of the fourth rotation axis 64 and the center of the fifth rotation axis 65 coincide with a center line CZ4 that is different from the center line CZ1, the center line CZ2, and the center line CZ3.
  • Center line CZ4 is a line along the Z direction, and is parallel to center line CZ1, center line CZ2, and center line CZ3.
  • the first support part 553 and the second support part 554 rotate around the fourth rotation axis 64 and the fifth rotation axis 65 centering on the center line CZ4.
  • the first support part 553 and the second support part 554 each rotate independently.
  • the first support part 553 and the second support part 554 each rotate independently in forward and reverse directions.
  • the first mounting section 3 and the second mounting section 4 have a mounting position set as the position of the mounting section where the wafer 10 is mounted, and a first mounting section 3 and a second mounting section 4.
  • respective pre-loading positions are set as positions in front of the loading units respectively set within the range of the transport unit 2.
  • a loading position 21Pa is set as the position of the loading section 210
  • a pre-loading position 21Fa is set as the position in front of the loading section 210. be done.
  • mounting positions 22Pa to 22Pd are set as the positions of the mounting sections 220a to 220d corresponding to the respective processing ports 22, and Pre-placement positions 22Fa to 22Fd are set as positions before 220d.
  • the control unit 516 (robot control unit), when controlling the transfer operation of the wafer 10 by the transfer robot 5 or controlling the operation of taking out the wafer 10, controls the respective mounting positions and the positions set according to the respective operation controls. The movement of the holding part 55 through each pre-placement position is controlled.
  • the control unit 516 operates between the loading position 21Pa set at the load port 21 and the pre-loading position 21Fa, or between the loading positions 22Pa to 22Pd set to the respective processing ports 22 and the respective loading positions 22Pa to 22Pa. This includes first movement control for moving the holding part 55 between pre-placement positions 22Fa to 22Fd set corresponding to 22Pd.
  • the control unit 516 includes a second movement control that moves the holding part 55 between the respective pre-loading positions 22Fa to 22Fd set inside the transport part 2 at least along the first direction.
  • the first movement control includes second linear interpolation movement control that linearly interpolates the holding part 55 along the second direction.
  • the second movement control includes first linear interpolation movement control that linearly interpolates the holding part 55 along the first direction, swing rotation control that moves the swing support part 52 in a predetermined swing direction, and arm support
  • An operation control (offset operation control) for rotating the part 53 in a direction opposite to the rotation direction of the rotation support part 52 is included.
  • the control unit 516 executes the first movement control by controlling the movement of the holding part 55 in the second direction, or executes the second movement control by controlling the movement of the holding part 55 in the first direction. By performing this, it is possible to move the holding unit 55 and transport the wafer 10 while maintaining the mark 10a of the wafer 10 in the same fixed direction with respect to each mounting position. In order to move the holding part 55 from each mounting position to another different mounting position along the shortest moving path, each pre-mounting position can be set, and the transport of the substrate in the substrate transport system 1 is improved. Can be implemented efficiently.
  • a method of transporting the wafer 10 by the transfer robot 5 in the substrate transport system 1 will be described below with reference to FIGS. 4A to 7B.
  • the rotation support section 52, arm support section 53, arm section 54, and holding section 55 of the transfer robot 5 will be collectively referred to as an arm 50.
  • the transfer robot 5 receives the wafer 10 from the load port 21, operates the arm 50, and transfers it to the processing port 22 to be transferred.
  • the wafer 10 is first transported from the mounting section 210 (first mounting section 3) in the load port 21 to the mounting section 220a (second mounting section 4) in the first processing port 22a, and is subjected to first processing. It is transported to the surface treatment process via the port 22a.
  • the movement of the arm 50 is controlled by a control unit 516 provided in the main body 51.
  • the transfer robot 5 moves the arm support part 53 and the arm part 54 with the second rotation axis 62 as the rotation axis, and moves the first arm of the arm part 54 with the third rotation axis 63 as the rotation axis.
  • the wafer 10 is taken out from the mounting part 220a by moving the second arm 542 relative to the holding part 541 and moving the holding part 55 using either the fourth rotation axis 64 or the fifth rotation axis 65 as the rotation axis. .
  • the transfer robot 5 takes out the wafer 10 from the mounting section 220a, and rotates the arm support section 53 and the arm section 54 in the moving direction of the holding section 55 and the wafer 10 with the second rotation shaft 62 and the third rotation shaft 63 as rotation axes. Accordingly, each is rotated in the same direction in plan view.
  • the first holding hand 551 is rotated in a predetermined rotation direction using the fourth rotation shaft 64 as a rotation axis
  • the second holding hand 552 is rotated in a predetermined rotation direction using the fifth rotation shaft 65 as a rotation axis.
  • the holding section 55 is placed at the pre-loading position 22Fa in front of the loading section 220a in the Y direction while maintaining the mark 10a of the wafer 10 in a predetermined direction.
  • the arm part 54 is centered with respect to the first end part 541a as the first arm base end part by rotating the second arm 542 in the opposite direction in plan view with respect to the first arm 541 with the third rotation axis 63 as the rotation axis.
  • the arm length is adjusted by bending and extending the second end portion 542b as the second arm moving end portion by approaching or separating the second end portion 542b as the second arm moving end portion along the straight line connecting the line CZ2 and the center line CZ4.
  • the arm portion 54 rotates counterclockwise (counterclockwise) when bent while maintaining the left arm posture, and rotates clockwise (counterclockwise) when extended. That is, in FIGS. 4A to 4C, the arm support part 53 is from the mounting position 22Pd with respect to the mounting part 220d of the processing port 22d, which is longer than the length of the swing support part 52 when the arm support part 53 is located on the right side of the main body part 51.
  • the pre-placement position 22Fd it is clockwise (clockwise), and when it is moved from the pre-placement position Fd to the placing position Pd, it is counterclockwise (counterclockwise).
  • the first arm 541 is rotated clockwise in a plan view using the second rotation axis 62 as the rotation axis, and then 63 as a rotation axis
  • the second arm 542 is rotated clockwise in a plan view so as to maintain the posture of the wafer 10 relative to the amount of rotation of the first arm 541.
  • the wafer 10 is transported from the pre-mounting position 22Fa to the mounting position 22Pa while maintaining the posture of the wafer 10, and the wafer 10 is transported to the first surface treatment process via the first processing port 22a. be done.
  • the wafer 10 that has been subjected to the first surface treatment is placed on the mounting section 220a of the first processing port 22a
  • the wafer 10 is placed on the mounting section 220a (the first mounting section 3 ) to the mounting section 220b (second mounting section 4) in the second processing port 22b.
  • the transfer robot 5 has the arm support part 53 and the arm part 54 with the second rotation axis 62 as the rotation axis, and the second arm 542 of the arm part 54 relative to the first arm 541 with the third rotation axis 63 as the rotation axis.
  • the holding portion 55 is rotated using either the fourth rotation shaft 64 or the fifth rotation shaft 65 as the rotation axis.
  • the wafer 10 is taken out from the mounting section 220a while maintaining the mark 10a of the wafer 10 in a predetermined direction and the posture of the wafer 10, and the wafer 10 is placed at a position in front of the mounting section 220a in the Y direction. It is transported again to the front position 22Fa.
  • the arm 50 adjusts the center 22Pa of the mounting section 220a in plan view and the pre-mounting position when transporting the wafer 10 to the mounting section 220a and when taking out the wafer 10 from the mounting section 220a.
  • the holding unit 55 is moved along the center line LV21 parallel to the Y direction connecting the wafers 10 and 22Fa, and the wafer 10 is transported. Specifically, the holding part 55 is moved along the center line LV21 while maintaining the direction of the mark 10a of the wafer 10 held by the holding part 55.
  • the transfer robot 5 when transferring the wafer 10 to one side in the X direction (first direction), the transfer robot 5 rotates the swing support part 52 clockwise in a plan view with the first rotation axis 61 as the rotation axis.
  • the wafer 10 is transferred by rotating the arm support portion 53 counterclockwise in plan view using the second rotation shaft 62 as the rotation axis.
  • the transfer robot 5 rotates the swing support part 52 counterclockwise in a plan view using the first rotation axis 61 as the rotation axis
  • the arm support portion 53 is rotated clockwise in plan view using the second rotation shaft 62 as the rotation axis to transport the wafer 10 .
  • the wafer 10 can be transferred from one of the pre-loading positions 22Fa to 22Fd to a different pre-loading position while maintaining the mark 10a of the wafer 10 in a predetermined direction.
  • the wafer 10 is placed in the X direction from the pre-loading position 22Fa, which is one of the pre-loading positions 22Fa to 22Fd, in front of the loading section 220a in the Y direction.
  • the wafer 10 can be moved to the mounting section 220b side and transported to the pre-mounting position 22Fb in front of the mounting section 220b in the Y direction with the mark 10a of the wafer 10 maintained in a predetermined direction.
  • the transfer robot 5 moves the arm support section 53 and The arm portion 54 is rotated clockwise in a plan view, and the second arm 542 of the arm portion 54 relative to the first arm 541 is rotated clockwise in a plan view using the third rotation shaft 63 as a rotation axis. Further, the holding portion 55 is rotated using either the fourth rotation shaft 64 or the fifth rotation shaft 65 as the rotation axis.
  • the wafer 10 is transported from the pre-mounting position 22Fb to the mounting section 220b while maintaining the posture of the wafer 10 while maintaining the mark 10a of the wafer 10 in a predetermined direction, and is transferred through the second processing port 22b.
  • the wafer 10 is then transported to a second surface treatment step.
  • the wafer 10 that has been subjected to the second surface treatment is placed on the mounting section 220b of the second processing port 22b
  • the wafer 10 is placed on the mounting section 220b (the first mounting section 3 ) to the loading section 220c (second loading section 4) in the third processing port 22c.
  • the transfer robot 5 rotates the arm support part 53 and the arm part 54 counterclockwise in plan view about the second rotation axis 62, and rotates the first arm 541 of the arm part 54 about the third rotation axis 63 as the rotation axis.
  • the second arm 542 is rotated counterclockwise in a plan view.
  • the holding portion 55 is rotated using either the fourth rotation shaft 64 or the fifth rotation shaft 65 as the rotation axis.
  • the wafer 10 is taken out from the mounting section 220b while maintaining the mark 10a of the wafer 10 in a predetermined direction and the posture of the wafer 10, and the wafer 10 is placed at a position in front of the mounting section 220b in the Y direction. It is transported again to the front position 22Fb.
  • the arm 50 adjusts the center 22Pb of the mounting section 220b in plan view and the pre-mounting position when transporting the wafer 10 to the mounting section 220b and when taking out the wafer 10 from the mounting section 220b.
  • the holding unit 55 is moved along the center line LV22 parallel to the Y direction connecting the wafers 10 and 22Fb, and the wafer 10 is transported. Specifically, the holding part 55 is moved along the center line LV22 while maintaining the direction of the mark 10a of the wafer 10 held by the holding part 55.
  • the transfer robot 5 rotates the first rotation axis 61 as the rotation axis.
  • the arm support portion 53 and the arm portion 54 are rotated counterclockwise in a plan view using the rotation support portion 52 and the second rotation shaft 62 as rotation axes. Further, the holding portion 55 is rotated using either the fourth rotation shaft 64 or the fifth rotation shaft 65 as the rotation axis.
  • the wafer 10 is transferred to the mounting section 220c while maintaining the mark 10a of the wafer 10 in a predetermined direction and the posture of the wafer 10, and the wafer 10 is transferred to the third processing port 22c via the third processing port 22c. transported to the surface treatment process.
  • the wafer 10 that has been subjected to the third surface treatment is placed on the mounting section 220c of the third processing port 22c
  • the wafer 10 is placed on the mounting section 220c (the first mounting section 3 ) to the mounting section 220d (second mounting section 4) in the fourth processing port 22d.
  • the transfer robot 5 rotates the swing support part 52 clockwise in a plan view with the first rotation axis 61 as the rotation axis, and rotates the arm support part 53 and the arm part 54 clockwise in the plan view with the second rotation axis 62 as the rotation axis.
  • the wafer 10 By rotating the wafer 10, the wafer 10 is taken out from the mounting section 220c while maintaining the posture of the wafer 10 while maintaining the mark 10a of the wafer 10 in a predetermined direction, and the wafer 10 is brought to a position in front of the mounting section 220c in the Y direction. It is transported again to the pre-mounting position 22Fc.
  • the arm 50 is positioned between the center 22Pc of the mounting section 220c in plan view and the pre-mounting position when transferring the wafer 10 to the mounting section 220c and when taking out the wafer 10 from the mounting section 220c.
  • the holding unit 55 is moved along the center line LV23 parallel to the Y direction connecting the wafers 10 and 22Fc, and the wafer 10 is transported. Specifically, the holding part 55 is moved along the center line LV23 while maintaining the direction of the mark 10a of the wafer 10 held by the holding part 55.
  • the transfer robot 5 moves the second rotation axis 62 to the rotation axis.
  • the arm support portion 53 and the arm portion 54 are rotated clockwise in a plan view, and the second arm 542 of the arm portion 54 relative to the first arm 541 is rotated counterclockwise in a plan view using the third rotation shaft 63 as the rotation axis.
  • the holding portion 55 is rotated using either the fourth rotation shaft 64 or the fifth rotation shaft 65 as the rotation axis.
  • the wafer 10 is transported from the pre-mounting position 22Fd to the mounting section 220d while maintaining the mark 10a of the wafer 10 in a predetermined direction and the posture of the wafer 10, and is transferred through the fourth processing port 22d.
  • the wafer 10 is then transported to a fourth surface treatment step.
  • the wafer 10 that has been subjected to the fourth surface treatment is placed on the mounting section 220d of the fourth processing port 22d
  • the wafer 10 is placed on the mounting section 220d (the first mounting section 3 ) and transported again to the loading section 210 (second loading section 4) in the load port 21.
  • the transfer robot 5 rotates the arm support part 53 and the arm part 54 clockwise in plan view about the second rotation axis 62, and rotates the arm part 54 relative to the first arm 541 about the third rotation axis 63.
  • the second arm 542 is rotated clockwise in plan view.
  • the holding portion 55 is rotated using either the fourth rotation shaft 64 or the fifth rotation shaft 65 as the rotation axis.
  • the wafer 10 is taken out from the mounting section 220d while maintaining the mark 10a of the wafer 10 in a predetermined direction and the posture of the wafer 10, and is moved to the pre-mounting position 22Fd in front of the mounting section 220d in the Y direction. Transport it again.
  • the arm 50 is positioned between the center 22Pd of the mounting section 220d in plan view and the pre-mounting position when transporting the wafer 10 to the mounting section 220d and when taking out the wafer 10 from the mounting section 220d.
  • the holding unit 55 is moved along the center line LV24 parallel to the Y direction connecting the wafers 10 and 22Fd, and the wafer 10 is transported. Specifically, the holding part 55 is moved along the center line LV24 while maintaining the direction of the mark 10a of the wafer 10 held by the holding part 55.
  • the swing support section 52 and the arm section 54 are rotated clockwise in a plan view. Further, the holding portion 55 is rotated using either the fourth rotation shaft 64 or the fifth rotation shaft 65 as the rotation axis. Then, the wafers 10 that have undergone all the surface treatments in each processing port 22 are transferred to the mounting section 210, and the surface treatment of the wafers 10 is completed.
  • the above operation is repeated to sequentially perform surface treatment on all wafers 10 stored in the container.
  • the substrate transfer system 1 allows the first holding hand 551 and the second holding hand 552 to hold the wafers 10, respectively, and rotates them relative to each other in a plan view, so that the two wafers 10 are transferred simultaneously by shifting their positions in a plan view.
  • the processing may be performed continuously.
  • the transfer robot 5 when transporting the wafers 10 to each processing port 22, the transfer robot 5 first transports one of the wafers 10 to the mounting section of the processing port 22.
  • the wafer 10 is then transported to a surface treatment process via the transported processing port 22, thereby performing surface treatment on the wafer 10.
  • the transfer robot 5 takes it out to the pre-placement position, which is a position in front of the placement section of the processing port 22 in the Y direction. .
  • the transfer robot 5 rotates the first support part 553 and the second support part 554 about the center line CZ4 in plan view, and transfers the wafer 10 that has not undergone surface treatment to the Y of the mounting part of the processing port 22. It is placed at the pre-loading position 22Fa, which is the front position in the direction, and transported to the loading section of the processing port 22 using the same procedure. The wafer 10 is then transported to a surface treatment process via the transported processing port 22, thereby performing surface treatment on the wafer 10. When the surface-treated wafer 10 is placed on the mounting section of the processing port 22 after the surface treatment is completed, the transfer robot 5 transfers the surface-treated wafer 10 from the processing port 22's mounting section. Take it out.
  • the rotational direction of the rotation support part 52 and the arm part 54 in plan view during transport to each second mounting part 4 is not limited to the above, but may be determined depending on the layout of the substrate transport system 1, the order of transport to each mounting part, etc. It may be determined depending on the conditions.
  • the swing support section 52 and the arm section 54 rotate, the arm support section 53 operates, so that the direction of the posture of the wafer 10 is changed to a predetermined direction on one side or the other side of the Y direction (second direction). Always held in the same direction.
  • the rotation of the arm support section 53 and the arm section 54 is such that the movement direction of the wafer 10 is between the center of the second mounting section 4 in plan view and a position before the second mounting section 4 in the Y direction, and a pre-mounting position. This is an operation to prevent the moving trajectory of the wafer 10 supported by the holding portion 55 from deviating from the center line connecting the wafers 10 and 10.
  • the elevating section of the main body section 51 512 When the wafer 10 is placed at the pre-loading position in front of the second loading section 4 in the Y direction, if the heights of the wafer 10 and the second loading section 4 in the Z direction are different, the elevating section of the main body section 51 512, the height of the wafer 10 is adjusted.
  • the first movement area A1 has a first area length A1L defined as the distance between the center C2 in plan view where the main body 51 of the transfer robot 5 is installed and the second long wall 2b. is set.
  • the first region length A1L is set as the length between the first rotating shaft 61 set at the first end 52a of the swing support section 52 and the external tip of the swing support section 52 on the second end 52b side.
  • the distance is set to the same length as the turning tip length 52La.
  • a second area length A2L is set as the distance between the center C2 in plan view where the main body portion 51 of the transfer robot 5 is installed and the first long wall 2a.
  • the second region length A2L is set as the length between the first rotating shaft 61 set at the first end 52a of the swing support 52 and the external tip of the swing support 52 on the second end 52b side.
  • the distance is set to the same length as the turning tip length 52La. That is, the second area length A2L is set to be the same distance as the first area length A1L, and includes a second movement area A2 equivalent to the first movement area A1.
  • the swing support part 52 is movably connected to the main body part 51 about a center C2 in plan view where the main body part 51 of the transfer robot 5 is installed with respect to the first movement area A1 and the second movement area A2. Ru. In other words, the pivoting support portion 52 can freely pivot within the movement area A.
  • a port distance 22L is set as the interval between the plurality of processing ports 22 arranged along the second long wall 2b provided on the first movement area A1 side of the transport section 2.
  • the port distance 22L is the length of the first rotation axis 61 set at the first end 52a of the rotation support part 52 and the second rotation axis 62 set at the second end 52b of the rotation support part 52.
  • the distance is set as twice the length of the pivot axis length 52L, which is set as .
  • the second rotating shaft 62 set at the second end 52b of the swing support part 52 which revolves around the center C2, is arranged at the same distance as the diameter of a circle having a circumferential orbit.
  • the mounting position of one of the inner processing ports 22 arranged between the other processing ports 22 is at a position that coincides with the position of a straight line passing through the center C2. Placed.
  • the inner processing port 22 and the other processing ports 22 arranged on both sides are spaced apart from each other by a distance equal to the port distance 22L.
  • the position between the two processing ports 22, 22 arranged between them and the other processing ports 22 is at a position that coincides with the position of a straight line passing through the center C2. Placed.
  • the port distance 22La of the processing ports 22 arranged on one side and the other side with the position between the two processing ports 22, 22 as the center is the distance between the two processing ports 22, 22, and the second end 52b of the swing support part 52 that turns around the center C2.
  • the second rotation axis 62 to be set is arranged at the same distance as the radius of a circle having a circumferential orbit.
  • the other processing ports 22 arranged outside the two processing ports 22, 22 are arranged at intervals equal to the port distance 22L.
  • the arrangement positions where the plurality of processing ports 22 are arranged are set at intervals of an integral multiple of the port distance 22La, which is set to the same distance as the length 52L between turning axes, around the center C2, and are arranged at odd numbers.
  • the ports are arranged in an even number and in the case where they are arranged in an even number, the ports are arranged with a difference of one port distance 22La.
  • the load port 21 arranged along the first long wall 2a provided on the second movement area A2 side is also arranged at a position set by the port distance 22La as the position where the processing port 22 is arranged.
  • the movement area A including the first movement area A1 and the second movement area A2 provided in the substrate transport system 1, and the load port 21 as the first mounting part 3 arranged around the movement area A.
  • the plurality of processing ports 22 as the plurality of second loading sections 4, and the positions and lengths of the pivot axis length 52L and the pivot tip length 52La of the pivot support section 52 configured in the transfer robot 5 are based on the center C2. is set to With this setting, the movement of the transfer robot 5 can be carried out efficiently.
  • the wafer 10 can be transported by positioning the wafer 10 mark 10a for the load port 21 and the plurality of processing ports 22 in a predetermined direction. Furthermore, the movement trajectory of the wafer 10 within the movement area A can be set at the shortest distance.
  • the substrate transfer system 1 includes an arm support section 53 between the rotation support section 52 and the arm section 54 of the arm 50 of the transfer robot 5, so that the substrate transfer system 1 can move within the first movement area A1 and within the second movement area A2. It is possible to facilitate calculation control for the movement of the robot. Furthermore, by providing the arm support section 53 between the rotation support section 52 and the arm section 54 of the arm 50 of the transfer robot 5, the movement trajectory of the arm 50 can be made to move with a minimum movement trajectory. Therefore, the range of the movement area A1 and the movement area A2 (the length of the movement area A1 and the movement area A2 in the Y direction) can be narrowed. Therefore, the transport section 2 in which the transfer robot 5 is installed can be made more compact.
  • the transfer robot 5 is provided with the arm support section 53 between the swing support section 52 and the arm section 54 of the arm 50, thereby making the movement of the arm 50 more compact and capable of transferring the wafer 10 with high efficiency.
  • the substrate transfer system 1 includes an arm support section 53 between the rotation support section 52 and the arm section 54 of the arm 50 of the transfer robot 5, so that the wafer can be moved while maintaining the mark 10a of the wafer 10 in a predetermined direction. Since the wafer 10 can be transported while maintaining the orientation of the wafer 10, there is no need to adjust the orientation of the wafer 10 when taking the wafer 10 into each mounting section, and the processing connected via each processing port 22 is eliminated. The surface treatment of the wafer 10 in the process can be efficiently performed.
  • the transfer robot 5 is provided with an arm support section 53 between a rotation support section 52 and an arm section 54 and is controlled to move the wafer 10 onto the first placement section 3 and the second placement section 4. Since the wafer 10 can be transported while aligning the orientation, the wafer 10 can be transported efficiently.
  • the transfer robot 5, the load port 21, and the plurality of processing ports 22 are located at the center C2 of the transfer robot 5 in plan view, the center C3 of the load port 21 in plan view, and two processing ports located at the center in the X direction. 22, 22 are arranged so that the positions of the centers C1 of the distance L1 in the X direction between them in the X direction substantially coincide with each other in the Y direction.
  • the transfer robot 5 includes the arm support section 53 between the rotation support section 52 and the arm section 54, is arranged around the center C2 in the plan view inside the transfer section 2, and is arranged around the load port 21.
  • the movement distance of the arm 50 can be shortened, and the wafer 10 can be Conveyance can be made highly efficient.
  • the substrate transfer system 1 can take out the wafer 10 from each platform in parallel to the Y direction while maintaining the position of the mark 10a of the wafer 10.
  • the substrate transfer system 1 rotates the arm 50 to move the wafer 10 in the X direction while maintaining the position of the mark 10a on the wafer 10. can be moved in parallel.
  • the transfer robot 5 transfers the wafer 10 by linear movement while maintaining the posture of the wafer 10. Therefore, the transfer robot 5 can shorten the operation of aligning the orientation of the wafer 10, and can efficiently transport the wafer 10.
  • each port and each mounting section are arranged in consideration of the operating range of the arm 50 when transporting the wafer 10. There is no need to make it large, and it is possible to suppress the increase in size of the device.
  • the substrate transfer system 1 can move the wafer 10 in a linear direction, controlling the direction of the arm when transferring the wafer 10 to the second mounting section 4 is not complicated, and the control of the arm is simplified. can be converted into
  • the arm 50 of the substrate transfer system 1 has an arm section 54 including two connecting arms capable of bending around a connecting section, in a first posture in which it is bent in one direction and in a second posture in which it is bent in the other direction.
  • the wafer 10 can be transferred without changing the direction of the bent posture of the arm section 54. Therefore, it is possible to eliminate shock and vibration when changing the bent posture of the arm portion 54.
  • FIG. 9 Another form of the substrate transfer system of this embodiment will be described using FIG. 9.
  • the transfer unit 102 is equipped with two transfer robots 105A and 105B.
  • the transport unit 102 defines an area that can be transported by the first transfer robot 105A as a first transport unit 111, and a region that can be transported by the second transfer robot 105B as a second transport unit. 112 is set.
  • a first placing part group 121 on which a substrate can be placed is provided around the first transporting part 111, and a second placing part group 121 on which a substrate can be placed is provided around the second transporting part 112.
  • a group 122 is provided.
  • the transfer unit 102 is equipped with a relay placement unit 130 that transfers substrates between the first transfer robot 105A and the second transfer robot 105B.
  • the relay placement section 130 is included in the transferable area of each of the first transfer section 111 and the second transfer section 112, and is located between the first placement section group 121 and the second placement section group 122. It is provided.
  • the substrate is transferred by the first transfer robot 105A from a relay port (not shown) to the first port 121a of the first platform group 121, and the substrate is subjected to the first process. Thereafter, the substrate is transferred from the first port 121a to the second port 121b by the first transfer robot 105A, and the substrate is subjected to a second process.
  • the substrate subjected to the second process is transported to the first relay port 130a of the relay placement section 130 by the first transfer robot 105A.
  • the substrate transferred to the first relay port 130a of the relay placement section 130 is transferred to the third port 122a by the second transfer robot 105B, where the substrate is subjected to a third process. Thereafter, the substrates are sequentially transported by the second transfer robot 105B from the third port 122a to the fourth port 122b and the fifth port 122c that are lined up in one direction in the transport direction. The substrates transported to the fourth port 122b and the fifth port 122c are subjected to a fourth process at the fourth port 122b and a fifth process at the fifth port 122c. The substrate subjected to the fifth process is transported from the fifth port 122c to the sixth port 122d by the second transfer robot 105B, and is subjected to the sixth process.
  • the substrates subjected to the sixth process are sequentially transported by the second transfer robot 105B from the sixth port 122d to the seventh port 122e and eighth port 122f, which are lined up in one direction of the transport direction and the other direction, which is the opposite direction. be done.
  • the substrates transported to the seventh port 122e and the eighth port 122f are subjected to a seventh process at the seventh port 122e, and are subjected to an eighth process at the eighth port 122f.
  • the substrate that has been subjected to the eighth process is transported to the second relay port 130b, and then transported to a relay port (not shown) by the first transfer robot 105A.
  • the wafers 10 are sequentially transferred clockwise from the first relay port 130a as shown by arrow D in FIG.
  • the arrangement of the transport section, the mounting section group, and the relay mounting section can be arbitrarily set, and each section may be appropriately arranged within a range that can be transported by the transfer robot.
  • the substrate transport system 1 includes one load port 21 and four processing ports 22, but is not limited to the above configuration, and may include, for example, one load port 21 and three processing ports 22. It may be a configuration in which three load ports 21 and three processing ports 22 are provided, or a configuration in which a plurality of load ports 21 and one processing port 22 are provided. If either the load port 21 or the processing port 22 is one and the other is two or more, the transfer robot 5 is arranged to face one of the two or more loading units in the Y direction. You may.
  • a load port 21 is arranged on the first long wall 2a side in the Y direction with the transfer robot 5 in between, and a processing port 22 is arranged on the second long wall 2b side in the Y direction.
  • the present invention is not limited to this configuration, and for example, the load port 21 and the processing port 22 may be arranged in parallel in either the X direction or the Y direction.
  • a plurality of transfer robots 5 are arranged in the same direction as the load port 21 and the processing port 22, and wafers are transferred between the adjacent transfer robots 5, 5 between the load port 21 and the processing port 22.
  • a relay section on which the wafer 10 is temporarily placed may be provided. In the case of the above configuration, the relay section becomes the second mounting section 4 when temporarily mounting the transported wafer 10, and the first mounting section 3 when taking out the temporarily mounted wafer 10. becomes.
  • substrates can be transferred efficiently.

Abstract

基板搬送システム(1)は、基板が搬送される範囲が規定される搬送部(2)と、基板が載置される第一載置部(3)及び第二載置部(4)と、搬送部の内部に設けられ、基板を第一載置部から第二載置部に搬送する移載ロボット(5)と、を備え、移載ロボットは、搬送部内に配置される本体部(51)と、本体部に連結される旋回支持部(52)と、旋回支持部に連結されるアーム支持部(53)と、アーム支持部に連結されるアーム部(54)と、アーム部に連結される保持部(55)と、を備え、アーム部は、旋回支持部に連結される第一アーム(541)と、保持部が連結される第二アーム(542)と、を備え、旋回支持部は、本体部との連結部を回転軸として回転し、アーム部は、アーム支持部を回転軸として回転し、移載ロボットは、本体部に支持される旋回支持部の中心部が搬送部の範囲の中央部に位置するように本体部が配置される。

Description

基板搬送システム及び移載ロボット
 本発明は、基板搬送システム及び移載ロボットに関する。
 真空環境下のチャンバ(クリーンルーム)内に半導体基板(ウェハ)を搬送する移載ロボットを設置し、チャンバの前面に取り付けられたロードポートからウェハの搬送を行う基板搬送システムが知られている。上記の基板搬送システムにおいて、移載ロボットによりチャンバ内に取り込まれたウェハは、チャンバ内やチャンバに取り付けられたプロセスモジュールに搬送され、成膜処理等の各種半導体処理が行われる。プロセスモジュールにおいて処理が行われたウェハは、移載ロボットにより再度ロードポートに搬送され次の工程に送られる。
 例えば、特許文献1から3には、チャンバ内に移載ロボットが固定され、チャンバ内において移載ロボットが走行することなくウェハを搬送し、チャンバ内にパーティクルの巻き上げや気流の乱れを発生させない基板搬送システムが開示されている。
日本国特開2011-119556号公報 日本国特許第5199117号公報 日本国特許第4746027号公報
 上記基板搬送システムでは、第一方向に所定の長さを有するチャンバ内でウェハを搬送するロボットと、チャンバ外に設けられ、第一方向に所定間隔で並べた複数のウェハ搬送先のポートと、を備える。ロボットは、動作範囲の制限があるチャンバ内でそれぞれのポートに対してウェハの移載を行うため、水平方向に回動可能な複数のアームを備える。複数のアームは、チャンバ内の第一方向への移動距離に対応可能にそれぞれのアームの長さが設定される。アームの長さは、第一方向と直交する第二方向のチャンバ内の長さにより制限される。
 そのため、第二方向におけるロボットの設置位置をポートからできるだけ離間させた位置に設定し、第二方向の間隔を大きく取ることでロボットのアームの旋回スペースを確保している。そのため、アームの動作距離が大きくなり、搬送作業の効率に課題がある。また、第二方向の一方に構成されるポートに対向する第二方向の他方に更にポートを構成させる場合、第二方向の長さが更に大きく必要になり、搬送作業の効率が低下する虞がある。
 本発明は上記の事情に鑑みてなされたもので、基板の搬送を効率よく実施できる基板搬送システム及び移載ロボットを提供することを目的とする。
 本発明に係る基板搬送システムは、基板が搬送される範囲が規定される搬送部と、基板が載置される第一載置部及び第二載置部と、前記搬送部の内部に設けられ、前記基板を前記第一載置部から前記第二載置部に搬送する移載ロボットと、を備え、前記搬送部の範囲は、第一方向に前記第一載置部及び前記第二載置部を複数並べて配置可能な所定の第一の長さ、および、前記第一方向と直交し、前記第一の長さより短い第二の長さに設定され、前記移載ロボットは、前記搬送部内に配置される本体部と、前記本体部に連結され、前記本体部に対して回転する旋回支持部と、前記旋回支持部に連結され、前記旋回支持部に対して回転するアーム支持部と、前記アーム支持部に連結され、前記アーム支持部に対して回転するアーム部と、前記アーム部に連結され、前記基板を保持する保持部と、を備え、前記アーム部は、前記旋回支持部に連結される第一アームと、前記保持部が連結する第二アームと、を備え、前記第一アームは、第一端部が前記アーム支持部に回転可能に連結される第一のアーム基端部と、第二端部が前記第二アームを回転可能に支持する第一のアーム移動端部と、を備え、前記第二アームは、第一端部が前記第一のアーム移動端部に回動可能に連結される第二のアーム基端部と、第二端部が前記保持部を回転可能に支持する第二のアーム移動端部と、を備え、前記旋回支持部は、前記本体部との連結部を回転軸として平面視で回転し、前記アーム部は、前記アーム支持部を回転軸として平面視で回転し、前記移載ロボットは、前記本体部に支持される前記旋回支持部の中心部が前記搬送部の範囲の中央部に位置するように前記本体部が配置される、基板搬送システムである。
 本発明に係る基板搬送システムにおいて、前記搬送部は、前記移載ロボットの前記本体部を支持するロボット支持部と、前記第一載置部及び前記第二載置部が設けられる複数の載置設置部と、を備えていてもよい。
 本発明に係る基板搬送システムにおいて、前記本体部に前記移載ロボットの駆動を制御するロボット制御ユニットを備えていてもよい。
 本発明に係る基板搬送システムにおいて、前記保持部は、第一保持ハンドと、前記第一保持ハンドの下部に設けられる第二保持ハンドと、を備え、前記第一保持ハンド及び前記第二保持ハンドはそれぞれ前記基板を保持するハンド先端部と、前記第二のアーム移動端部に対してそれぞれ回転可能にそれぞれ支持されるハンド基端部と、を備えていてもよい。
 本発明に係る基板搬送システムにおいて、前記第一載置部及び前記第二載置部は、前記搬送部の周囲に沿って配置されると共に、前記移載ロボットが前記第一載置部と前記第二載置部との間に配置されていてもよい。
 本発明に係る基板搬送システムにおいて、前記第一載置部及び前記第二載置部は、平面視で前記移載ロボットを挟んで前記搬送部の周囲に沿って対向して複数設けられ、前記複数の第一載置部及び前記複数の第二載置部は、前記第一方向に一定の間隔でそれぞれ配置されていてもよい。
 本発明に係る基板搬送システムにおいて、前記移載ロボットが前記搬送部に複数備えられ、第一の移載ロボットで搬送可能な第一の搬送部と、第二の移載ロボットで搬送可能な第二の搬送部と、を備え、前記第一の搬送部に設けられ、前記基板を載置する第一載置部群と、前記第二の搬送部に設けられ、前記基板を載置する第二載置部群と、を備え、前記第一の移載ロボットと、前記第二の移載ロボットとの間で前記基板の受け渡しが行われる中継載置部を備え、前記中継載置部は、前記搬送部の周囲であって、前記第一載置部群と前記第二載置部群との間に設けられていてもよい。
 本発明に係る移載ロボットは、基板が搬送される範囲が規定される搬送部に沿って設けられる第一載置部から第二載置部に基板を搬送する移載ロボットであって、前記搬送部の内部に配置される本体部と、前記本体部に連結され、前記本体部に対して回転する旋回支持部と、前記旋回支持部に連結され、前記旋回支持部に対して回転するアーム支持部と、前記アーム支持部に連結され、前記アーム支持部に対して回転するアーム部と、前記アーム部に連結され、前記基板を保持する保持部と、を備え、前記アーム部は、前記旋回支持部に連結される第一アームと、前記保持部が連結する第二アームと、を備え、前記第一アームは、第一端部が前記アーム支持部に回転可能に連結される第一のアーム基端部と、第二端部が前記第二アームを回転可能に支持する第一のアーム移動端部と、を備え、前記第二アームは、第一端部が前記第一の移動端部に回動可能に連結される第二のアーム基端部と、第二端部が前記保持部を回転可能に支持する第二のアーム移動端部と、を備え、前記旋回支持部は、前記本体部との連結部を回転軸として平面視で回転し、前記アーム部は、前記アーム支持部を回転軸として平面視で回転し、前記本体部に支持される前記旋回支持部の中心部が、前記搬送部の範囲の中央部に位置するように前記本体部が配置される、移載ロボットである。
 本発明に係る移載ロボットにおいて、前記本体部に前記移載ロボットの駆動を制御するロボット制御ユニットを備えていてもよい。
 本発明に係る移載ロボットにおいて、前記保持部は、第一保持ハンドと、前記第一保持ハンドの下部に設けられる第二保持ハンドと、を備え、前記第一保持ハンド及び前記第二保持ハンドはそれぞれ前記基板を保持するハンド先端部と、前記第二のアーム移動端部に対してそれぞれ回転可能にそれぞれ支持されるハンド基端部と、を備えていてもよい。
 本発明によれば、基板の搬送を効率よく実施できる基板搬送システム及び移載ロボットを提供することができる。
本発明に係る基板搬送システムを示す平面図である。 本発明に係る移載ロボットを示す斜視図である。 本発明に係る移載ロボットを示す斜視図である。 本発明に係る移載ロボットの操作手順を示す部分平面図である。 本発明に係る移載ロボットの操作手順を模式的に示す平面図である。 本発明に係る移載ロボットの操作手順を模式的に示す平面図である。 本発明に係る移載ロボットの操作手順を模式的に示す平面図である。 本発明に係る移載ロボットの操作手順を模式的に示す平面図である。 本発明に係る移載ロボットの操作手順を模式的に示す平面図である。 本発明に係る移載ロボットの操作手順を模式的に示す平面図である。 本発明に係る移載ロボットの操作手順を模式的に示す平面図である。 本発明に係る移載ロボットの操作手順を示す模式的に示す平面図である。 本発明に係る基板搬送システムを示す平面図である。 本発明に係る基板搬送システムの別の形態を示す平面図である。
 本発明に係る基板搬送システム及び移載ロボットの実施形態について以下に説明する。
 図1に示すように、基板搬送システム1は、搬送作業の範囲が設定される搬送部2と、第一載置部3と、複数の第二載置部4と、移載ロボット5とを備えている。
 基板搬送システム1は、移載ロボット5を操作して基板10を第一載置部3から第二載置部4に搬送する搬送システムである。基板10は、円板形状の半導体ウェハである(以下、「基板10」を「ウェハ10」と記載する)。ウェハ10には、ウェハ10の向きや面を示す目印(例えば、オリエンテーションフラットやノッチ)10aが形成されている。
 搬送部2は、例えば、平面視矩形形状の殻体に形成される。搬送部2は、基板が搬送される範囲が規定される。搬送部2は、対向して配置されると共に第一方向Xに延びる第一長壁2aおよび第二長壁2bと、第一方向と直交すると共に対向して配置される第一短壁2cおよび第二短壁2dとを備えている。第一長壁2aおよび第二長壁2bは第一の長さを有する。第一短壁2cおよび第二短壁2dは第一の長さと異なる第二の長さを有する。搬送部2は、第一長壁2a、第二長壁2b、第一短壁2c、および第二短壁2d、に連結する下部支持体2eを下部に備える。搬送部2は、第一載置部3および複数の第二載置部4が設置される複数の載置設置部を備える。搬送部2は、第一長壁2aに設けられる載置設置部に第一載置部3が設けられ、第二長壁2bに設けられる複数の載置設置部に複数の第二載置部4が第二長壁2bに沿って一定の間隔で接続される。搬送部2は、移載ロボット5を支持するロボット支持部2e1が下部支持体2eに設けられる。
 以下、搬送部2の第一方向となる長手方向(第一長壁2a及び第二長壁2bの延在方向)をX方向、第一方向に直交し、搬送部2の第二方向となる短手方向(第一短壁2c及び第二短壁2dの延在方向)をY方向、X方向及びY方向に直交する搬送部2の高さ方向(上下方向)をZ方向と記載する。
 搬送部2は、第一長壁2a、第二長壁2b、第一短壁2cおよび第二短壁2dによって囲まれる範囲の内部が搬送作業の範囲である移動領域Aとして設定される。搬送部2は、内部に移載ロボット5が配置され、搬送部2の周囲に沿って第一載置部3および複数の第二載置部4が配置される。移動領域Aは、中央部に移載ロボット5が配置される。移動領域Aは、移載ロボット5が配置される中央部の中心C2を境に、Y方向の一方側の領域が第一の移動領域A1として設定され、Y方向の他方側の領域を第二の移動領域A2として設定される。第一の移動領域A1は、第二載置部4が設置される第二長壁2b側の領域である。第二の移動領域A2は、第一載置部3が設置される第一長壁2a側の領域である。
 搬送部2の内部は、気流が上方から下方に向かって移動する様に気流が制御され、通常、陽圧状態に保たれている。搬送部2は、第一長壁2aに第一載置部3としてのロードポート21が接続され、第二長壁2bに複数の第二載置部4としての複数の処理ポート22が接続されている。複数の処理ポート22は、第二長壁2bの長手方向に一定の間隔で接続されている。搬送部2は、内部の気圧を陽圧状態にすると共に上方から下方への気流の制御を行うことで内部を清浄な状態に保持する。
 ロードポート21は、ウェハ10の供給および回収をするポートであり、複数の処理ポート22は、ウェハ10に成膜処理等の各種半導体の表面処理を行う処理工程との間で中継用に用いられるポートである。ウェハ10は、移載ロボット5によりロードポート21から処理ポート22に搬送される。この際、ロードポート21は第一載置部3、処理ポート22は第二載置部4に相当する。表面処理が行われたウェハ10は、処理ポート22に載置され、その後、移載ロボット5により処理ポート22から再度ロードポート21に搬送され、次の表面処理対象のウェハ10と取り替えられる。この際、処理ポート22は第一載置部3、ロードポート21は第二載置部4に相当する。ロードポート21には、複数のウェハ10が収容される容器が載置され、移載ロボット5により順次処理ポート22に搬送される。容器は、例えば25基程度の所定数のウェハ10がZ方向に所定の間隔を空けて積み上げられている構成が挙げられる。ロードポート21及び処理ポート22には、搬送部2内からウェハ10を出し入れする出入り部が設けられている。複数の処理ポート22のウェハ10の出入り部は同一方向に合わせて形成されている。
 ロードポート21は、第一長壁2aのX方向中央部に設けられるロードポートの載置設置部2a1に接続されている。図示例では、処理ポート22は、X方向に均等な間隔で4基(4ポート)設けられ、第二長壁2bに設けられる処理ポートの載置設置部2b1に接続されている。複数の処理ポート22は、X方向中央に配置される2基の処理ポート22,22間のX方向の間隔L1の中心C1と、第一長壁2aのX方向中央部と、が略一致するように配置される。
 移載ロボット5は、搬送部2の内部に設けられ、ウェハ10をロードポート21と複数の処理ポート22との間で搬送を行う。移載ロボット5は、ウェハ10を載置して移動させるように構成されたロボットである。ウェハ10の搬送としては、複数の処理ポート22同士の間でウェハ10の入替えを行う入替搬送、予め設定された順序で複数の処理ポート22に対してウェハ10の搬送を行う順次搬送、が含まれる。移載ロボット5は、平面視で第一長壁2aと第二長壁2bとの間のY方向中間に配置され、平面視でロードポート21と複数の処理ポート22との間に配置される。つまり、移載ロボット5は、平面視でロードポート21と複数の処理ポート22との間に配置される。ロードポート21及び複数の処理ポート22は、平面視で移載ロボット5を挟んで対向する。
 移載ロボット5、ロードポート21及び処理ポート22は、移載ロボット5の平面視の中心を中心C2、ロードポート21の平面視の中心を中心C3及びX方向中央の2基の処理ポート22,22間のX方向の間隔L1の中心を中心C1とし、中心C1~C3のX方向のそれぞれの位置がY方向に延びる線上で略一致するように配置される。ロードポート21及び処理ポート22の設置数がそれぞれ奇数の場合、X方向中央に位置するポートの平面視の中心を中心C3とする。ロードポート21及び処理ポート22の設置数がそれぞれ偶数の場合、X方向中央に位置する2基のポートの間のX方向の間隔の平面視の中心を中心C1とする。移載ロボット5の中心C2は、搬送部2のY方向の中央部に設定される。
 図2および図3は、移載ロボット5の斜視図である。図3は、移載ロボット5の一部を省略して記載している。図2及び図3に示すように、移載ロボット5は、本体部51と、旋回支持部52と、アーム支持部53と、アーム部54と、保持部55と、を備えている。
 図3に示すように、本体部51は、基台511と、昇降部512と、昇降モータ513と、旋回モータ514と、アーム支持駆動モータ515と、制御ユニット516と、格納体517と、を備えている。基台511は搬送部2の底部となる下部支持体2eに設けられるロボット支持部2e1に固定される。本体部51は、基台511を介して搬送部2内に支持される。昇降部512、昇降モータ513、旋回モータ514及びアーム支持駆動モータ515は、格納体517内に内蔵される。アーム支持駆動モータ515は、格納体517内のZ方向上端側に配置されている。制御ユニット516は、基台511上の格納体517の内部に配置される。
 昇降部512は、基台511上の格納体517内に昇降可能に設けられる。昇降部512の上部には、旋回支持部52が昇降部512に対して回動可能に支持される。昇降モータ513による昇降部512の昇降機構としては、例えば、昇降方向に延設されるボールネジと、ボールネジに螺合し、ボールネジの動作により昇降方向に移動すると共に昇降部512に連結するガイド部材(ナット)とを備えるボールネジ機構が採用される。昇降部512は、昇降モータ513によりボールネジを回転させることで、本体部51よりもZ方向上部に配置される旋回支持部52、アーム支持部53、アーム部54及び保持部55を本体部51と共に昇降させる。移載ロボット5は、昇降部512により高さを調整することによって、ロードポート21及び複数の処理ポート22のそれぞれの配置高さに応じてウェハ10の保持高さを変更できる。なお、第一載置部3及び第二載置部4の高さを変更可能に構成することによって、移載ロボット5の昇降部512及び昇降モータ513を省略してもよい。
 制御ユニット516は、格納体517内に設けられ、移載ロボット5によるウェハ10の搬送動作を制御する。移載ロボット5は、制御ユニット516を本体部51の基台511上に配置することにより、制御ユニット516を移載ロボット5に構成される制御機器(例えば、各種モータなどの出力機器やセンサ―等の検出機器)に近づけて配置することによって、制御線を含む電気配線長を短くし、制御速度を向上することが可能となる。
 旋回支持部52は、本体部51のZ方向上部に配置されている。旋回支持部52は、一方に設けられる第一端部52aと本体部51の昇降部512の上端とが連結され、本体部51のZ方向上部に配置されている。旋回支持部52は、横方向に延びるアーム形状を有し、長手方向の一端部となる第一端部52aが本体部51の昇降部512の上端と連結されている。旋回支持部52は、旋回モータ514により第一端部52aを回転軸(以下、「第一回転軸61」と記載する)として本体部51に対して平面視で回転する。第一回転軸61は、中心C2と同一の中心線CZ1を中心とする。旋回支持部52は、中心線CZ1に対応する第一端部52aと、中心線CZ1と異なる中心線CZ2に対応する第二端部52bと、を備える。第一回転軸61は、Z方向に沿って配置され、中心線CZ1を中心に回転する。旋回支持部52は、中心線CZ1を中心に略水平方向に回転する。旋回支持部52の中心(中心部)が中心C2と同一の位置になるように、本体部51が搬送部2内に配置される。
 アーム支持部53は、旋回取付部53aとアーム取付部53bとを備える。アーム支持部53は、旋回支持部52のZ方向上部に配置されている。旋回取付部53aのZ方向下方には、旋回支持部52の長手方向における第一端部52aと反対側の第二端部52bが設けられている。旋回取付部53aは、旋回支持部52の第二端部52bと連結される。アーム取付部53bは、Z方向上部に設けられ、アーム部54と連結される。旋回取付部53aは、アーム支持駆動モータ515を含むアーム支持部回転機構により旋回支持部52に対して平面視で回転する。第二端部52bは、中心線CZ2が設定され、アーム支持部53が中心線CZ2を中心に回転可能に旋回支持部52に支持される。アーム支持部53は、中心線CZ2を中心にアーム部54を動作させるアーム駆動機構543aを含むアームモータ543を備える。
 アーム部54は、第一アーム541と、第二アーム542と、アーム動作機構54aと、第一保持ハンドモータ544と、第二保持ハンドモータ545と、ハンド駆動伝達機構546と、を備える。アーム部54は、アーム支持部53のZ方向上部に配置されている。アーム動作機構54aは、アームモータ543の駆動力を伝達し、第一アーム541および第二アーム542に所定の動作をさせる。
 第一アーム541は、アーム支持部53に回転可能に連結される第一のアーム基端部としての第一端部541aと、第二アーム542を回転可能に支持する第一のアーム移動端部としての第二端部541bと、を備える。第一端部541aと第二端部541bとは、第一アーム541の長手方向の両端部に位置する。第一アーム541は、第一端部541aとアーム支持部53のアーム取付部53bとが連結されている。第一アーム541は、第二アーム542の下部に配置される。第一アーム541は、第一端部541a側がアーム駆動機構543aに接続される。第一アーム541は、旋回取付部53aの回転に伴って第一端部541aを回転軸(以下、「第二回転軸62」と記載する)として平面視で旋回支持部52に対して回転する。また、第一アーム541は、アームモータ543によるアーム駆動機構543aの回転動作により第一端部541aを回転軸(以下、「第二回転軸62」と記載する)として平面視でアーム支持部53に対して回転する。第二回転軸62は、中心線CZ1と異なる中心線CZ2を中心とする。中心線CZ2はZ方向に沿う線であり、中心線CZ1と平行な線である。第一アーム541は、第一端部541aにおいて、中心線CZ2を中心として第二回転軸62回りに回転する。
 アーム支持部53は、Z方向上下に位置する旋回支持部52及びアーム部54の軸台となる。アーム支持部53は、旋回支持部52及びアーム部54に対して単独で回転する。具体的には、アーム支持部53は、アーム支持駆動モータ515により旋回支持部52に対して独自に回転される。アーム部54は、アームモータ543によりアーム支持部53に対して独自に回転される。
 第二アーム542は、第一のアーム移動端部としての第二端部541bに回動可能に連結される第二のアーム基端部としての第一端部542aと、保持部55を回転可能に支持する第二のアーム移動端部としての第二端部542bと、を備える。第一端部542aと第二端部542bとは、第二アーム542の長手方向の両端部に位置する。第二アーム542は、第一端部542aと第一アーム541の第二端部541bとが連結され、第一アーム541に支持されている。第二アーム542は、アームモータ543によるアーム駆動機構543aの回転動作により第一端部542aを回転軸(以下、「第三回転軸63」と記載する)として第一アーム541に対して平面視で回転する。第三回転軸63は、中心線CZ1および中心線CZ2と異なる中心線CZ3を中心とする。中心線CZ3はZ方向に沿う線であり、中心線CZ1および中心線CZ2と平行な線である。第二アーム542は、第一端部542aにおいて、中心線CZ3を中心として第三回転軸63回りに回転する。
 第二アーム542は、第一保持ハンドモータ544及び第二保持ハンドモータ545が内蔵され、第二端部542b側にハンド駆動伝達機構546が内蔵されている。第一保持ハンドモータ544及び第二保持ハンドモータ545は、Y方向に並列に配置される。ハンド駆動伝達機構546は、第一保持ハンドモータ544の駆動力を伝達する第一ハンド駆動伝達機構546aと、第二保持ハンドモータ545の駆動力を伝達する第二ハンド駆動伝達機構546bと、を含む。
 ハンド駆動伝達機構546は、第一保持ハンドモータ544の駆動力を伝達する第一ハンド駆動伝達機構546aと、第二保持ハンドモータ545の駆動力を伝達する第二ハンド駆動伝達機構546bと、を含む。
 アーム部54は、アーム駆動機構543aを介してアームモータ543の駆動力を伝達することで第一アーム541及び第二アーム542に平面視で所定の動作に応じて回転させることにより、中心線CZ3を中心にアーム部54全体を屈伸動作させアーム部54の最大長さを調整する。具体的には、アーム部54は、アームモータ543の駆動力をアーム駆動機構543aにより伝達することで、第一のアーム基端部としての第一端部541aに対して中心線CZ2と中心線CZ4とを結ぶ直線に沿って第二のアーム移動端部としての第二端部542bを接近または離間させてアーム部54の長さを調整する。
 保持部55は、第一保持ハンド551と、第二保持ハンド552と、第一支持部553と、第二支持部554と、を含む。保持部55は、アーム部54のZ方向上部に配置されている。
 第一保持ハンド551及び第二保持ハンド552は、Z方向に一定の間隔を有して配置される。第一保持ハンド551は、第二保持ハンドの552の上部に設けられる。第一保持ハンド551は、ウェハ10を保持する第一のハンド先端部551aを含む。第二保持ハンド552は、ウェハ10を保持する第二のハンド先端部552aを含む。第一保持ハンド551及び第二保持ハンド552は、それぞれ不図示の保持機構によりウェハ10を第一のハンド先端部551aおよび第二のハンド先端部552aに保持する。ウェハ10の保持方法は限定されず、例えばハンドをウェハ10の下部に差し込んでウェハ10を掬って載置した後にウェハ10を負圧によりウェハ10をハンドに吸着させて保持する構成が採用される。
 図2に示すように、第一支持部553及び第二支持部554は、第二アーム542に保持されている。第一支持部553は、第二アーム542に回転可能に支持される第一のハンド基端部551cを備える。第一支持部553の遠位端551bには、第一保持ハンド551が連結されている。第二支持部554は、第二アーム542に回転可能に支持される第二のハンド基端部552cを備える。第二支持部554の遠位端552bには、第二保持ハンド552が連結されている。
 第一支持部553は、図3に示す第一保持ハンドモータ544により第二アーム542に対して平面視で回転する。第二支持部554は、図3に示す第二保持ハンドモータ545により第二アーム542に対して平面視で回転する。以下、第一支持部553の回転軸を第四回転軸64、第二支持部554の回転軸を第五回転軸65と記載する。第四回転軸64の中心および第五回転軸65の中心は、中心線CZ1、中心線CZ2、および中心線CZ3と異なる中心線CZ4に一致する。中心線CZ4はZ方向に沿う線であり、中心線CZ1、中心線CZ2、および中心線CZ3と平行な線である。第一支持部553及び第二支持部554は、中心線CZ4を中心とする第四回転軸64および第五回転軸65まわりに回転する。第一支持部553及び第二支持部554は、それぞれ独立して回転する。例えば、第一支持部553及び第二支持部554はそれぞれ正逆方向に独立して回転する。
 搬送システム1では、第一載置部3及び第二載置部4にウェハ10が載置される載置部の位置としてのそれぞれ設定される載置位置と、第一載置部3及び第二載置部4のそれぞれの載置位置に対応し、搬送部2の範囲内にそれぞれ設定される載置部の前の位置としてのそれぞれの載置前位置と、が設定される。本実施例における第一載置部3に対応するロードポート21には、載置部210の位置として載置位置21Paが設定され、載置部210の前の位置として載置前位置21Faが設定される。また、第二載置部4に対応する複数の処理ポート22には、それぞれの処理ポート22に対応する載置部220a~220dの位置として載置位置22Pa~22Pdが設定され、載置部220a~220dの前の位置として載置前位置22Fa~22Fdが設定される。
 制御ユニット516(ロボット制御ユニット)は、移載ロボット5によるウェハ10の搬送動作制御、またはウェハ10の取出動作制御を行う際に、それぞれの動作制御に応じて設定されるそれぞれの載置位置およびそれぞれの載置前位置を経由する保持部55の移動を制御する。
 制御ユニット516は、ロードポート21に設定される載置位置21Paと載置前位置21Faとの間、またはそれぞれの処理ポート22に設定される載置位置22Pa~22Pdとそれぞれの載置位置22Pa~22Pdに対応して設定される載置前位置22Fa~22Fdとの間、で保持部55を移動させる第一の移動制御を含む。制御ユニット516は、搬送部2の内部において少なくとも第一方向に沿って設定されるそれぞれの載置前位置22Fa~22Fdの間で保持部55を移動させる第二の移動制御、を含む。
 第一の移動制御は、保持部55を第二方向に沿って直線補間移動させる第二の直線補間移動制御を含む。第二の移動制御は、保持部55を第一方向に沿って直線補間移動させる第一の直線補間移動制御と、旋回支持部52を所定の旋回方向へ旋回移動させる旋回回転制御と、アーム支持部53を旋回支持部52の旋回方向に対して逆方向に回転移動させる動作制御(相殺動作制御)と、を含む。
 制御ユニット516は、保持部55の移動制御を第二方向への移動制御として第一の移動制御を実行し、または保持部55の移動制御を第一方向への移動制御として第二の移動制御を実行することにより、ウェハ10の目印10aをそれぞれの載置位置に対して一定の同じ方向に維持したまま保持部55を移動させ、ウェハ10を搬送することができる。保持部55をそれぞれの載置位置から異なる他の載置位置に対して最短の移動経路で移動させるべく、それぞれの載置前位置を設定することができ、基板搬送システム1における基板の搬送を効率よく実施できる。
 上記基板搬送システム1における移載ロボット5によるウェハ10の搬送方法について、図4Aから図7Bを参照して以下に説明する。以下、移載ロボット5の旋回支持部52、アーム支持部53、アーム部54及び保持部55を纏めてアーム50と記載する。
 基板搬送システム1では、移載ロボット5がロードポート21からウェハ10を受け取り、アーム50を操作して搬送対象の処理ポート22に搬送する。ウェハ10は、先ず、ロードポート21内の載置部210(第一載置部3)から第一処理ポート22a内の載置部220a(第二載置部4)に搬送され、第一処理ポート22aを介して表面処理工程へ搬送される。アーム50の運動は、本体部51に設けられた制御ユニット516により制御される。
 図4Aに示すように、移載ロボット5は、第二回転軸62を回転軸としてアーム支持部53およびアーム部54を移動させ、第三回転軸63を回転軸としてアーム部54の第一アーム541に対する第二アーム542を移動させ、かつ、第四回転軸64または第五回転軸65のいずれかを回転軸として保持部55を移動させることによって、載置部220aからウェハ10の取り出しを行う。
 移載ロボット5は、載置部220aからウェハ10を取り出し、第二回転軸62及び第三回転軸63を回転軸としてアーム支持部53及びアーム部54を保持部55及びウェハ10の移動方向に応じて平面視でそれぞれ同方向に回転させる。第四回転軸64を回転軸として第一保持ハンド551を所定の回転方向へ、及び第五回転軸65を回転軸として第二保持ハンド552を所定の回転方向へ回転させる。これらの回転によって、ウェハ10の目印10aを所定の方向に維持しながら保持部55を載置部220aのY方向手前の載置前位置22Faに配置する。アーム部54は、第三回転軸63を回転軸として第一アーム541に対する第二アーム542の平面視逆方向の回転により、第一のアーム基端部としての第一端部541aに対して中心線CZ2と中心線CZ4とを結ぶ直線に沿って第二のアーム移動端部としての第二端部542bを接近または離間させることで屈伸させてアーム長さを調整する。
 アーム部54は、左腕の姿勢のまま屈曲させるときは、左回り(反時計回り)であり、伸長させるときは、右回り(反時計回り)となる。
 つまり、図4Aから図4Cにおいて、アーム支持部53が、本体部51より右側に位置するときの旋回支持部52の長さより大きい位置の処理ポート22dの載置部220dに対する、載置位置22Pdから載置前位置22Fdへ移動させるときは、右回り(時計回り)であり、載置前位置Fdから載置位置Pdへ移動させるときは、左回り(反時計回り)となる。アーム支持部53が、本体部51より左側に位置するときの旋回支持部52の長さより大きい位置の処理ポート22aの載置部220aに対する、載置位置22Paから載置前位置22Faへ移動させるときは、左回り(反時計回り)であり、載置前位置22Faから載置位置22Paへ移動させるときは、右回り(時計回り)となる。
 図4Aに示すように、ウェハ10を載置部220aのY方向手前に配置させた後、第二回転軸62を回転軸として第一アーム541を平面視時計回りに回転させ、第三回転軸63を回転軸として第二アーム542を第一アーム541の回転量に対してウェハ10の姿勢を保持するように平面視時計回りに回転させる。アーム50の回転により、ウェハ10の姿勢を保持したままウェハ10を載置前位置22Faから載置位置22Paに搬送し、第一処理ポート22aを介してウェハ10が第一の表面処理工程に搬送される。
 図4Bに示すように、第一の表面処理が行われたウェハ10が第一処理ポート22aの載置部220aに載置されると、ウェハ10を載置部220a(第一載置部3)から第二処理ポート22b内の載置部220b(第二載置部4)に搬送する。移載ロボット5は、第二回転軸62を回転軸としてアーム支持部53およびアーム部54と、第三回転軸63を回転軸としてアーム部54の第一アーム541に対する第二アーム542と、を平面視反時計回りに回転させる。第四回転軸64または第五回転軸65のいずれかを回転軸として保持部55を回転させる。これらの回転によって、ウェハ10の目印10aを所定の方向に維持しながらウェハ10の姿勢を保持したまま載置部220aからウェハ10を取り出して載置部220aのY方向手前の位置となる載置前位置22Faまで再度搬送する。
 アーム50は、制御装置516の制御によって、載置部220aにウェハ10を搬送する際及び載置部220aからウェハ10を取り出す際に、載置部220aの平面視中心22Paと、載置前位置22Faと、を結ぶY方向に平行な中心線LV21に沿って保持部55を移動し、ウェハ10を搬送する。具体的は、保持部55に保持されるウェハ10の目印10aの方向を維持したまま、保持部55を中心線LV21に沿って移動させる。
 図4Cに示すように、移載ロボット5は、X方向(第一方向)の一方側へウェハ10を搬送する際に、第一回転軸61を回転軸として旋回支持部52を平面視時計回りに回転させ、第二回転軸62を回転軸としてアーム支持部53を平面視反時計回りに回転させてウェハ10の搬送を行う。または、移載ロボット5は、X方向(第一方向)の他方側へウェハ10を搬送する際に、第一回転軸61を回転軸として旋回支持部52を平面視反時計回りに回転させ、第二回転軸62を回転軸としてアーム支持部53を平面視時計回りに回転させてウェハ10の搬送を行う。これらの搬送を行うことによって、ウェハ10の目印10aを所定の方向に維持させた状態で載置前位置22Fa~22Fdの一つの載置前位置から異なる他の載置前位置へ搬送することができる。例えば、ウェハ10の姿勢を保持しながらウェハ10を載置前位置22Fa~22Fdの一つの載置前位置となる載置部220aのY方向手前の載置前位置22FaからX方向に配置される載置部220b側に移動させ、載置部220bのY方向手前の載置前位置22Fbにウェハ10の目印10aを所定の方向に維持させた状態で搬送することができる。
 ウェハ10を載置部220bのY方向手前の載置前位置22Fbに配置させた後、図5Aに示すように、移載ロボット5は、第二回転軸62を回転軸としてアーム支持部53およびアーム部54を平面視時計回りに回転させ、第三回転軸63を回転軸としてアーム部54の第一アーム541に対する第二アーム542を平面視時計回りに回転させる。また、第四回転軸64または第五回転軸65のいずれかを回転軸として保持部55を回転させる。これらの回転によって、ウェハ10の目印10aを所定の方向に維持しながらウェハ10の姿勢を保持したままウェハ10を載置前位置22Fbから載置部220bに搬送し、第二処理ポート22bを介してウェハ10が第二の表面処理工程に搬送される。
 図5Bに示すように、第二の表面処理が行われたウェハ10が第二処理ポート22bの載置部220bに載置されると、ウェハ10を載置部220b(第一載置部3)から第三処理ポート22c内の載置部220c(第二載置部4)に搬送する。移載ロボット5は、第二回転軸62を回転軸としてアーム支持部53およびアーム部54を平面視反時計回りに回転させ、第三回転軸63を回転軸としてアーム部54の第一アーム541に対する第二アーム542を平面視反時計回りに回転させる。また、第四回転軸64または第五回転軸65のいずれかを回転軸として保持部55を回転させる。これらの回転によって、ウェハ10の目印10aを所定の方向に維持しながらウェハ10の姿勢を保持したまま載置部220bからウェハ10を取り出して載置部220bのY方向手前の位置となる載置前位置22Fbまで再度搬送する。
 アーム50は、制御装置516の制御によって、載置部220bにウェハ10を搬送する際及び載置部220bからウェハ10を取り出す際に、載置部220bの平面視中心22Pbと、載置前位置22Fbと、を結ぶY方向に平行な中心線LV22に沿って保持部55を移動しウェハ10を搬送する。具体的は、保持部55に保持されるウェハ10の目印10aの方向を維持したまま、保持部55を中心線LV22に沿って移動させる。
 図6Aに示すように、ウェハ10を載置前位置22Fbから載置部220cのY方向手前の載置前位置22Fcに配置させた後、移載ロボット5は、第一回転軸61を回転軸として旋回支持部52及び第二回転軸62を回転軸としてアーム支持部53およびアーム部54を平面視反時計回りに回転させる。また、第四回転軸64または第五回転軸65のいずれかを回転軸として保持部55を回転させる。これらの回転によって、ウェハ10の目印10aを所定の方向に維持しながらウェハ10の姿勢を保持したままウェハ10を載置部220cに搬送し、第三処理ポート22cを介してウェハ10が第三の表面処理工程に搬送される。
 図6Bに示すように、第三の表面処理が行われたウェハ10が第三処理ポート22cの載置部220cに載置されると、ウェハ10を載置部220c(第一載置部3)から第四処理ポート22d内の載置部220d(第二載置部4)に搬送する。移載ロボット5は、第一回転軸61を回転軸として旋回支持部52を平面視時計回りに回転させ、及び第二回転軸62を回転軸としてアーム支持部53およびアーム部54を平面視時計回りに回転させることによって、ウェハ10の目印10aを所定の方向に維持しながらウェハ10の姿勢を保持したまま載置部220cからウェハ10を取り出して載置部220cのY方向手前の位置となる載置前位置22Fcまで再度搬送する。
 アーム50は、制御装置516の制御によって、載置部220cにウェハ10を搬送する際及び載置部220cからウェハ10を取り出す際に、載置部220cの平面視中心22Pcと、載置前位置22Fcと、を結ぶY方向に平行な中心線LV23に沿って保持部55を移動しウェハ10を搬送する。具体的は、保持部55に保持されるウェハ10の目印10aの方向を維持したまま、保持部55を中心線LV23に沿って移動させる。
 図7Aに示すように、ウェハ10を載置前位置22Fcから載置部220dのY方向手前の載置前位置22Fdに移動させた後、移載ロボット5は、第二回転軸62を回転軸としてアーム支持部53およびアーム部54を平面視時計回りに回転させ、第三回転軸63を回転軸としてアーム部54の第一アーム541に対する第二アーム542を平面視反時計回りに回転させる。また、第四回転軸64または第五回転軸65のいずれかを回転軸として保持部55を回転させる。これらの回転によって、ウェハ10の目印10aを所定の方向に維持しながらウェハ10の姿勢を保持したままウェハ10を載置前位置22Fdから載置部220dに搬送し、第四処理ポート22dを介してウェハ10が第四の表面処理工程に搬送される。
 図7Bに示すように、第四の表面処理が行われたウェハ10が第四処理ポート22dの載置部220dに載置されると、ウェハ10を載置部220d(第一載置部3)から再度ロードポート21内の載置部210(第二載置部4)に搬送する。移載ロボット5は、第二回転軸62を回転軸としてアーム支持部53およびアーム部54を平面視時計回りに回転させ、第三回転軸63を回転軸としてアーム部54の第一アーム541に対する第二アーム542を平面視時計回りに回転させる。また、第四回転軸64または第五回転軸65のいずれかを回転軸として保持部55を回転させる。これらの回転によって、ウェハ10の目印10aを所定の方向に維持しながらウェハ10の姿勢を保持したまま載置部220dからウェハ10を出して載置部220dのY方向手前の載置前位置22Fdまで再度搬送する。
 アーム50は、制御装置516の制御によって、載置部220dにウェハ10を搬送する際及び載置部220dからウェハ10を取り出す際に、載置部220dの平面視中心22Pdと、載置前位置22Fdと、を結ぶY方向に平行な中心線LV24に沿って保持部55を移動し、ウェハ10を搬送する。具体的は、保持部55に保持されるウェハ10の目印10aの方向を維持したまま、保持部55を中心線LV24に沿って移動させる。
 ウェハ10を載置部220dのY方向手前の載置前位置22Fdまで再度搬送した後、旋回支持部52、アーム部54を平面視時計回りに回転させる。また、第四回転軸64または第五回転軸65のいずれかを回転軸として保持部55を回転させる。そして、各処理ポート22における全ての表面処理を行ったウェハ10を載置部210に搬送し、ウェハ10の表面処理を完了する。ロードポート21に載置されているウェハ10が一つの容器に複数収納される場合は、上記の操作を繰り返し行い、容器に収納される全てのウェハ10の表面処理を順次行う。
 基板搬送システム1は、第一保持ハンド551及び第二保持ハンド552にそれぞれウェハ10を保持させ、平面視で相対回転させることにより、平面視位置をずらして2基のウェハ10を同時に搬送し表面処理を連続して行ってもよい。この場合、各処理ポート22にウェハ10を搬送する際、移載ロボット5は、先ずいずれかのウェハ10を処理ポート22の載置部に搬送する。そして、搬送した処理ポート22を介して表面処理工程にウェハ10が搬送されることでウェハ10の表面処理を行う。表面処理が完了したウェハ10が対応する処理ポート22の載置部に載置されると、移載ロボット5が処理ポート22の載置部のY方向手前の位置となる載置前位置まで取り出す。
 その後、移載ロボット5は、中心線CZ4を中心として第一支持部553及び第二支持部554を平面視で回転させ、表面処理を行っていないウェハ10を処理ポート22の載置部のY方向手前の位置となる載置前位置22Faに配置し、同様の手順で処理ポート22の載置部に搬送する。そして、搬送した処理ポート22を介して表面処理工程にウェハ10が搬送されることでウェハ10の表面処理を行う。表面処理が完了した後に表面処理が完了したウェハ10が処理ポート22の載置部に載置されると、移載ロボット5は、処理ポート22の載置部から表面処理が完了したウェハ10を取り出す。
 各第二載置部4への搬送時における旋回支持部52及びアーム部54の平面視回転方向は上記に限定されず、基板搬送システム1のレイアウトや各載置部への搬送の順番等の条件に応じて決定してよい。旋回支持部52及びアーム部54の回転時において、アーム支持部53が介在して動作することでウェハ10の姿勢の方向はY方向(第二方向)の一方側または他方側においては、所定の方向に常に保持された状態にある。
 アーム支持部53及びアーム部54の回転は、ウェハ10の移動方向が第二載置部4の平面視中心と、第二載置部4のY方向手前の位置となる載置前位置と、を結ぶ中心線から保持部55に支持するウェハ10の移動軌道が外れることを抑制する動作である。
 ウェハ10を第二載置部4のY方向手前の載置前位置に配置した際、ウェハ10と第二載置部4とのZ方向の高さが異なる場合は、本体部51の昇降部512により、ウェハ10の高さを調整する。
 図1、図8に示すように、第一の移動領域A1は、移載ロボット5の本体部51が設置される平面視中心C2と第二長壁2bとの間の距離として第一領域長A1Lが設定される。第一領域長A1Lは、旋回支持部52の第一端部52aに設定される第一回転軸61と、旋回支持部52の第二端部52b側の外形先端と、の長さとして設定される旋回先端長52Laと同等の長さの距離に設定される。
 第二の移動領域A2は、移載ロボット5の本体部51が設置される平面視中心C2と第一長壁2aとの間の距離として第二領域長A2Lが設定される。第二領域長A2Lは、旋回支持部52の第一端部52aに設定される第一回転軸61と、旋回支持部52の第二端部52b側の外形先端と、の長さとして設定される旋回先端長52Laと同等の長さの距離に設定される。つまり、第二領域長A2Lは、第一領域長A1Lと同じ距離で設定され、第一の移動領域A1と同等の第二の移動領域A2を備える。
 旋回支持部52は、第一の移動領域A1および第二の移動領域A2に対して移載ロボット5の本体部51が設置される平面視中心C2を中心に移動可能に本体部51に連結される。つまり、旋回支持部52の旋回移動は、移動領域A内で自由に旋回移動することができる。
 搬送部2の第一の移動領域A1側に設けられる第二長壁2bに沿って配置される複数の処理ポート22の配置間隔としてポート距離22Lが設定される。ポート距離22Lは、旋回支持部52の第一端部52aに設定される第一回転軸61と、旋回支持部52の第二端部52bに設定される第二回転軸62と、の長さとして設定される旋回軸間長52Lに対する二倍の長さの距離として設定される。つまり、中心C2を中心に旋回する旋回支持部52の第二端部52bに設定される第二回転軸62が移動する円周軌道を有する円の直径と同じ距離で配置される。
 設置する複数の処理ポート22が奇数のときは、他の処理ポート22との間に配置される内側の処理ポート22の一つの載置位置が、中心C2を通る直線の位置と一致する位置に配置される。そして、内側の処理ポート22と、両側に配置される他の処理ポート22とは、ポート距離22Lと同等の間隔をそれぞれ空けて配置される。
 設置する複数の処理ポート22が偶数のときは、他の処理ポート22との間に配置される二つの処理ポート22,22の間の位置が、中心C2を通る直線の位置と一致する位置に配置される。二つの処理ポート22,22の間の位置を中心に一方側および他方側に配置される処理ポート22のポート距離22Laは、中心C2を中心に旋回する旋回支持部52の第二端部52bに設定される第二回転軸62が移動する円周軌道を有する円の半径と同じ距離で配置される。そして、二つの処理ポート22,22の外側に配置される他の処理ポート22は、ポート距離22Lと同等の間隔をそれぞれ空けて配置される。
 以上のように複数の処理ポート22が配置される配置位置は、中心C2を中心に旋回軸間長52Lと同じ距離に設定されるポート距離22Laの整数倍の間隔で設定され、奇数で配置される場合と偶数で配置される場合とにおいては、一つのポート距離22Laの分ずらして配置される。また、第二の移動領域A2側に設けられる第一長壁2aに沿って配置されるロードポート21も処理ポート22を配置する位置としてポート距離22Laで設定される位置に配置される。
 以上のように基板搬送システム1に設けられる第一の移動領域A1および第二の移動領域A2を含む移動領域A、移動領域Aの周囲に配置される第一載置部3としてのロードポート21、複数の第二載置部4としての複数の処理ポート22、移載ロボット5に構成される旋回支持部52の旋回軸間長52Lおよび旋回先端長52Laの位置および長さが中心C2を基準に設定される。このように設定されることで移載ロボット5の運動を効率よく実施できる。また、ロードポート21および複数の処理ポート22に対するウェハ10目印10aを所定の方向に位置付けてウェハ10の搬送を行うことができる。また、移動領域Aの内部におけるウェハ10の移動軌道を最短距離で設定することができる。
 本実施形態に係る基板搬送システム及び移載ロボットの作用効果について説明する。
 基板搬送システム1は、移載ロボット5のアーム50の旋回支持部52とアーム部54との間にアーム支持部53を備えることで第一の移動領域A1内及び第二の移動領域A2内での運動のための演算制御を容易化することができる。また、移載ロボット5のアーム50の旋回支持部52とアーム部54との間にアーム支持部53を備えることでアーム50の運動時における動作軌道を最小限の動作軌道で運動させることができるので、移動領域A1及び移動領域A2の範囲(移動領域A1及び移動領域A2のY方向の長さ)を狭めることができる。そのため、移載ロボット5を設置する搬送部2をコンパクト化できる。移載ロボット5は、アーム50の旋回支持部52とアーム部54との間にアーム支持部53を備えることでアーム50の運動をコンパクト化し、高効率にウェハ10を搬送できる。
 基板搬送システム1は、移載ロボット5のアーム50の旋回支持部52とアーム部54との間にアーム支持部53を備えることで、ウェハ10の目印10aを所定の方向に維持した状態でウェハ10の姿勢を保持したままウェハ10を搬送することができるため、ウェハ10を各載置部に取り入れる際にウェハ10の向きを調整する必要がなく、各処理ポート22を介して接続される処理工程におけるウェハ10の表面処理を効率よく行うことができる。移載ロボット5は、旋回支持部52とアーム部54との間にアーム支持部53を備えると共に動作制御されることで、第一載置部3および第二載置部4に対してウェハ10の向きを合わせてウェハ10を搬送できるため、ウェハ10を効率よく搬送することができる。
 基板搬送システム1において、移載ロボット5、ロードポート21及び複数の処理ポート22は、移載ロボット5の平面視中心C2、ロードポート21の平面視中心C3及びX方向中央の2基の処理ポート22,22間のX方向の間隔L1の中心C1のX方向の位置がY方向において略一致するように配置される。上記の構成により、移載ロボット5は、旋回支持部52とアーム部54との間にアーム支持部53を備えると共に搬送部2内の平面視中央の中心C2を中心に配置され、ロードポート21および複数の処理ポート22が中心C2を中心に旋回支持部52の旋回軸間長52Lおよび旋回先端長52Laを基に設定されるため、アーム50の移動距離を短縮することができ、ウェハ10の搬送を高効率化することができる。
 基板搬送システム1は、移載ロボット5のアーム50の回転により、ウェハ10を各載置部からウェハ10の目印10aの位置を維持したまま、Y方向に対して平行に取り出すことができる。基板搬送システム1は、ウェハ10をX方向に複数配置される処理ポート22間において移動させる際に、アーム50の回転により、ウェハ10の目印10aの位置を維持したままウェハ10をX方向に対して平行に移動させることができる。移載ロボット5は、ウェハ10の姿勢を保持しながら直線移動によりウェハ10を搬送する。そのため、移載ロボット5は、ウェハ10の方向合せの動作を短縮することができ、ウェハ10を効率よく搬送することができる。
 基板搬送システム1は、ウェハ10を各載置部からY方向に対して平行に取り出すことができるため、ウェハ10を搬送する際のアーム50の動作範囲を考慮して各ポート及び各載置部を大きく形成する必要がなく、装置の大型化を抑制することができる。また、基板搬送システム1は、ウェハ10を直線方向に移動させることができるため、ウェハ10を第二載置部4に搬送する際のアームの方向の制御が複雑でなくなり、アームの制御を簡略化できる。
 基板搬送システム1のアーム50は、連結部を中心に屈曲動作可能な連結する二つのアームを含むアーム部54が、一方向に屈曲する第一姿勢および他方向に屈曲する第二姿勢の内、いずれか一方の姿勢に維持した状態でアーム50の運動を行うことにより、アーム部54の屈曲姿勢の方向を変更することなくウェハ10の搬送を行うことができる。そのため、アーム部54の屈曲姿勢の姿勢変更時の衝撃・振動を解消することができる。
(基板搬送システムの別の形態)
 本実施形態の基板搬送システムの別の形態について図9を用いて説明する。図9に示すように、基板搬送システム100は、搬送部102に2台の移載ロボット105A,105Bが備えられている。
 搬送部102は、搬送可能な領域として、第一の移載ロボット105Aで搬送可能な領域を第一の搬送部111と、第二の移載ロボット105Bで搬送可能な領域を第二の搬送部112と、が設定される。
 第一の搬送部111の周囲には、基板を載置可能な第一載置部群121が設けられ、第二の搬送部112の周囲には、基板を載置可能な第二載置部群122が設けられている。
 搬送部102は、第一の移載ロボット105Aと、第二の移載ロボット105Bとの間で基板を受け渡しする中継載置部130が備えられている。中継載置部130は、第一の搬送部111および第二の搬送部112のそれぞれの搬送可能な領域に含まれ、第一載置部群121と第二載置部群122との間に設けられている。
 例えば、基板は第一の移載ロボット105Aで図示しない中継ポートから第一載置部群121の第一ポート121aに搬送され、基板に第一処理が施される。その後、基板は、第一の移載ロボット105Aにより第一ポート121aから第二ポート121bに搬送され、基板に第二処理が施される。
 第二処理が施された基板は、第一の移載ロボット105Aにより、中継載置部130の第一中継ポート130aに搬送される。
 中継載置部130の第一中継ポート130aへ搬送された基板は、第二の移載ロボット105Bにより第三ポート122aへ搬送され、基板に第三処理が施される。その後、基板は、第二の移載ロボット105Bにより、第三ポート122aから搬送方向の一方向に並ぶ第四ポート122bおよび第五ポート122cへ順次搬送される。第四ポート122bおよび第五ポート122cへ搬送された基板は、第四ポート122bで第四処理が施され、第五ポート122cで第五処理が施される。
 第五処理が施された基板は、第二の移載ロボット105Bにより、第五ポート122cから第六ポート122dへ搬送され、第六処理が施される。
 第六処理が施された基板は、第二の移載ロボット105Bにより、第六ポート122dから搬送方向の一方向と逆方向となる他方向に並ぶ第七ポート122eおよび第八ポート122fへ順次搬送される。第七ポート122eおよび第八ポート122fへ搬送された基板は、第七ポート122eで第七処理が施され、第八ポート122fで第八処理が施される。
 第八処理まで行われた基板は、第二中継ポート130bへ搬送され、第一の移載ロボット105Aにより、図示しない中継ポートへ搬送される。搬送部102において、ウェハ10の搬送は、第一中継ポート130aから図9に矢印Dで示すように、時計回りに順次搬送される。
 このように構成した基板搬送システム100においても、上記実施形態と同様の作用効果が得られる。なお、搬送部、載置部群、中継載置部の配置については、任意に設定可能であり、移載ロボットで搬送可能な範囲に適宜各部を配置すればよい。
 基板搬送システム1は、1基のロードポート21と、4基の処理ポート22と、を備えるが、上記の構成に限定されず、例えば1基のロードポート21と3基の処理ポート22が備えられた構成でもよいし、ロードポート21及び処理ポート22がそれぞれ3基備えられた構成でもよいし、複数のロードポート21と1基の処理ポート22が備えられた構成でもよい。ロードポート21及び処理ポート22のいずれかが1基であり他方が2基以上である場合、移載ロボット5は2基以上の載置部のいずれか1基にY方向に対向するように配置してもよい。
 基板搬送システム1は、移載ロボット5を挟んでY方向の第一長壁2a側にロードポート21が配置され、Y方向の第二長壁2b側に処理ポート22が配置されているが、上記の構成に限定されず、例えばロードポート21及び処理ポート22をX方向またはY方向のいずれかの方向に並列配置した構成でもよい。上記の構成において、移載ロボット5をロードポート21及び処理ポート22の配置方向と同一方向に複数配置し、ロードポート21と処理ポート22との間に隣り合う移載ロボット5,5間でウェハ10を中継するためにウェハ10を一時的に載置する中継部を設ける構成としてもよい。上記の構成の場合、中継部は、搬送されたウェハ10を一時的に載置する際における第二載置部4となり、一時的に載置したウェハ10を取り出す際における第一載置部3となる。
 以上、図面を参照して、本発明の実施形態を詳述してきたが、具体的な構成は、この実施形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
 基板搬送システム及び移載ロボットを用いて、基板の搬送を効率よく実施できる。
1、100  基板搬送システム
2、102  搬送部
3  第一載置部
4  第二載置部
5、105A、105B  移載ロボット
10 ウェハ(基板)
51 本体部
52 旋回支持部
53 アーム支持部
54 アーム部
55 保持部
516 制御ユニット(ロボット制御ユニット)

Claims (10)

  1.  基板が搬送される範囲が規定される搬送部と、
     基板が載置される第一載置部及び第二載置部と、
     前記搬送部の内部に設けられ、前記基板を前記第一載置部から前記第二載置部に搬送する移載ロボットと、
    を備え、
     前記搬送部の範囲は、第一方向に前記第一載置部及び前記第二載置部を複数並べて配置可能な所定の第一の長さ、および、前記第一方向と直交し、前記第一の長さより短い第二の長さに設定され、
    前記移載ロボットは、
     前記搬送部内に配置される本体部と、
     前記本体部に連結され、前記本体部に対して回転する旋回支持部と、
     前記旋回支持部に連結され、前記旋回支持部に対して回転するアーム支持部と、
     前記アーム支持部に連結され、前記アーム支持部に対して回転するアーム部と、
     前記アーム部に連結され、前記基板を保持する保持部と、
    を備え、
     前記アーム部は、前記旋回支持部に連結される第一アームと、前記保持部が連結する第二アームと、を備え、
     前記第一アームは、
      第一端部が前記アーム支持部に回転可能に連結される第一のアーム基端部と、
      第二端部が前記第二アームを回転可能に支持する第一のアーム移動端部と、
    を備え、
     前記第二アームは、
      第一端部が前記第一のアーム移動端部に回動可能に連結される第二のアーム基端部と、
      第二端部が前記保持部を回転可能に支持する第二のアーム移動端部と、
    を備え、
     前記旋回支持部は、前記本体部との連結部を回転軸として平面視で回転し、
     前記アーム部は、前記アーム支持部を回転軸として平面視で回転し、
     前記移載ロボットは、前記本体部に支持される前記旋回支持部の中心部が前記搬送部の範囲の中央部に位置するように前記本体部が配置される、
    基板搬送システム。
  2.  前記搬送部は、
      前記移載ロボットの前記本体部を支持するロボット支持部と、
      前記第一載置部及び前記第二載置部が設けられる複数の載置設置部と、を備える、
    請求項1に記載の基板搬送システム。
  3.  前記本体部に前記移載ロボットの駆動を制御するロボット制御ユニットを備える、
    請求項1または2に記載の基板搬送システム。
  4.  前記保持部は、第一保持ハンドと、前記第一保持ハンドの下部に設けられる第二保持ハンドと、を備え、
     前記第一保持ハンド及び前記第二保持ハンドはそれぞれ前記基板を保持するハンド先端部と、前記第二のアーム移動端部に対してそれぞれ回転可能にそれぞれ支持されるハンド基端部と、を備える、
    請求項1から3のいずれか一項に記載の基板搬送システム。
  5.  前記第一載置部及び前記第二載置部は、前記搬送部の周囲に沿って配置されると共に、前記移載ロボットが前記第一載置部と前記第二載置部との間に配置される、
    請求項1から4のいずれか一項に記載の基板搬送システム。
  6.  前記第一載置部及び前記第二載置部は、平面視で前記移載ロボットを挟んで前記搬送部の周囲に沿って対向して複数設けられ、
     前記複数の第一載置部及び前記複数の第二載置部は、前記第一方向に一定の間隔でそれぞれ配置される、
    請求項1から5のいずれか一項に記載の基板搬送システム。
  7.  前記移載ロボットが前記搬送部に複数備えられ、
     第一の移載ロボットで搬送可能な第一の搬送部と、
     第二の移載ロボットで搬送可能な第二の搬送部と、を備え、
     前記第一の搬送部に設けられ、前記基板を載置する第一載置部群と、
     前記第二の搬送部に設けられ、前記基板を載置する第二載置部群と、を備え、
     前記第一の移載ロボットと、前記第二の移載ロボットとの間で前記基板の受け渡しが行われる中継載置部を備え、
     前記中継載置部は、前記第一載置部群と前記第二載置部群との間に設けられている、
    請求項1から6のいずれか一項に記載の基板搬送システム。
  8.  基板が搬送される範囲が規定される搬送部に沿って設けられる第一載置部から第二載置部に基板を搬送する移載ロボットであって、
     前記搬送部の内部に配置される本体部と、
     前記本体部に連結され、前記本体部に対して回転する旋回支持部と、
     前記旋回支持部に連結され、前記旋回支持部に対して回転するアーム支持部と、
     前記アーム支持部に連結され、前記アーム支持部に対して回転するアーム部と、
     前記アーム部に連結され、前記基板を保持する保持部と、
    を備え、
     前記アーム部は、
      前記旋回支持部に連結される第一アームと、
      前記保持部が連結する第二アームと、
    を備え、
     前記第一アームは、
      第一端部が前記アーム支持部に回転可能に連結される第一のアーム基端部と、
      第二端部が前記第二アームを回転可能に支持する第一のアーム移動端部と、
    を備え、
     前記第二アームは、
      第一端部が前記第一のアーム移動端部に回動可能に連結される第二のアーム基端部と、
      第一端部が前記保持部を回転可能に支持する第二のアーム移動端部と、
    を備え、
     前記旋回支持部は、前記本体部との連結部を回転軸として平面視で回転し、
     前記アーム部は、前記アーム支持部を回転軸として平面視で回転し、
     前記本体部に支持される前記旋回支持部の中心部が、前記搬送部の範囲の中央部に位置するように前記本体部が配置される、
    移載ロボット。
  9.  前記本体部に前記移載ロボットの駆動を制御するロボット制御ユニットを備える、
    請求項8に記載の移載ロボット。
  10.  前記保持部は、第一保持ハンドと、前記第一保持ハンドの下部に設けられる第二保持ハンドと、を備え、
     前記第一保持ハンド及び前記第二保持ハンドはそれぞれ前記基板を保持するハンド先端部と、前記第二のアーム移動端部に対してそれぞれ回転可能にそれぞれ支持されるハンド基端部と、を備える、
    請求項8または9に記載の移載ロボット。
PCT/JP2022/016244 2022-03-30 2022-03-30 基板搬送システム及び移載ロボット WO2023188181A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/016244 WO2023188181A1 (ja) 2022-03-30 2022-03-30 基板搬送システム及び移載ロボット
PCT/JP2023/013176 WO2023190868A1 (ja) 2022-03-30 2023-03-30 基板搬送システム及び移載ロボット
TW112112160A TW202402482A (zh) 2022-03-30 2023-03-30 基板搬送系統及移載機器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016244 WO2023188181A1 (ja) 2022-03-30 2022-03-30 基板搬送システム及び移載ロボット

Publications (1)

Publication Number Publication Date
WO2023188181A1 true WO2023188181A1 (ja) 2023-10-05

Family

ID=88199748

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/016244 WO2023188181A1 (ja) 2022-03-30 2022-03-30 基板搬送システム及び移載ロボット
PCT/JP2023/013176 WO2023190868A1 (ja) 2022-03-30 2023-03-30 基板搬送システム及び移載ロボット

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013176 WO2023190868A1 (ja) 2022-03-30 2023-03-30 基板搬送システム及び移載ロボット

Country Status (2)

Country Link
TW (1) TW202402482A (ja)
WO (2) WO2023188181A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522238A (ja) * 1998-08-04 2002-07-23 ジェンマーク・オートメーション・インコーポレーテッド 多自由度を有するロボット
JP2011230256A (ja) * 2010-04-28 2011-11-17 Nidec Sankyo Corp 産業用ロボット
JP2013065894A (ja) * 2010-03-31 2013-04-11 Yaskawa Electric Corp 基板搬送システム、基板処理システムおよび基板搬送ロボット
JP2020507938A (ja) * 2017-02-15 2020-03-12 パーシモン テクノロジーズ コーポレイションPersimmon Technologies, Corp. 複数のエンドエフェクタを備えた材料取り扱いロボット
JP2021503720A (ja) * 2017-11-16 2021-02-12 ラム リサーチ コーポレーションLam Research Corporation 回転関節エンコーダを備えるウエハハンドリングロボット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852719B2 (ja) * 2005-12-05 2012-01-11 日本電産サンキョー株式会社 多関節型ロボット
JP4746027B2 (ja) * 2007-12-10 2011-08-10 川崎重工業株式会社 基板搬送方法
JP5621796B2 (ja) * 2012-01-31 2014-11-12 株式会社安川電機 搬送システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522238A (ja) * 1998-08-04 2002-07-23 ジェンマーク・オートメーション・インコーポレーテッド 多自由度を有するロボット
JP2013065894A (ja) * 2010-03-31 2013-04-11 Yaskawa Electric Corp 基板搬送システム、基板処理システムおよび基板搬送ロボット
JP2011230256A (ja) * 2010-04-28 2011-11-17 Nidec Sankyo Corp 産業用ロボット
JP2020507938A (ja) * 2017-02-15 2020-03-12 パーシモン テクノロジーズ コーポレイションPersimmon Technologies, Corp. 複数のエンドエフェクタを備えた材料取り扱いロボット
JP2021503720A (ja) * 2017-11-16 2021-02-12 ラム リサーチ コーポレーションLam Research Corporation 回転関節エンコーダを備えるウエハハンドリングロボット

Also Published As

Publication number Publication date
WO2023190868A1 (ja) 2023-10-05
TW202402482A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP6898403B2 (ja) 基板搬送システム、基板処理装置、及び基板搬送方法
US9334127B2 (en) Systems, apparatus and methods for transporting substrates in electronic device manufacturing
KR101192288B1 (ko) 진공 처리 장치 및 진공 반송 장치
JP3999712B2 (ja) 多関節ロボット
KR102199674B1 (ko) 이격된 상부 암들 및 인터리빙된 리스트들을 포함하는 듀얼 로봇, 및 이를 포함하는 시스템들 및 방법들
KR102153608B1 (ko) 전자 디바이스 제조 시스템들에서 기판들을 운송하기 위한 붐 구동 장치, 멀티-아암 로봇 장치, 전자 디바이스 프로세싱 시스템들, 및 방법들
JP7121445B2 (ja) 電子デバイス製造において複数の基板を移送するように適合されたマルチブレードロボット装置、電子デバイス製造装置、及び方法
TW202129825A (zh) 多指機器人設備、電子元件製造設備及適於在電子元件製造過程中運輸多個基板的方法
WO2001001454A2 (en) Atmospheric wafer transfer module with nest for wafer transport robot and method of implementing same
WO2021245956A1 (ja) ウエハ搬送装置、およびウエハ搬送方法
US20220005726A1 (en) Robot apparatus, systems, and methods for transporting substrates in electronic device manufacturing
JP3437812B2 (ja) 基板搬送装置
TWI386353B (zh) 搬運設備、具有該搬運設備之搬運室及包含該搬運設備之真空處理系統
WO2023188181A1 (ja) 基板搬送システム及び移載ロボット
JP2012248778A (ja) ダイボンダ及びボンディング方法
KR20090058709A (ko) 웨이퍼 이송장치 및 그 이송방법
WO2023190882A1 (ja) 基板搬送システム及び移載ロボット制御装置
JP4199432B2 (ja) ロボット装置及び処理装置
JP7240980B2 (ja) 基板処理装置及び基板搬送方法
TW202404754A (zh) 基板搬送系統及移載機器人控制裝置
KR100706381B1 (ko) 기판반송장치
JP4489999B2 (ja) 搬送装置及び真空処理装置
JP7469385B2 (ja) 電子デバイス製造において複数の基板を移送するように適合されたマルチブレードロボット装置、電子デバイス製造装置、及び方法
WO2019230711A1 (ja) ロボットシステム
WO2023140259A1 (ja) 搬送装置および搬送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935326

Country of ref document: EP

Kind code of ref document: A1