JP3999712B2 - 多関節ロボット - Google Patents

多関節ロボット Download PDF

Info

Publication number
JP3999712B2
JP3999712B2 JP2003274371A JP2003274371A JP3999712B2 JP 3999712 B2 JP3999712 B2 JP 3999712B2 JP 2003274371 A JP2003274371 A JP 2003274371A JP 2003274371 A JP2003274371 A JP 2003274371A JP 3999712 B2 JP3999712 B2 JP 3999712B2
Authority
JP
Japan
Prior art keywords
arm
angular displacement
displacement axis
articulated robot
angularly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003274371A
Other languages
English (en)
Other versions
JP2005039047A (ja
Inventor
康彦 橋本
英一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2003274371A priority Critical patent/JP3999712B2/ja
Priority to US10/889,079 priority patent/US7383751B2/en
Priority to EP04016447A priority patent/EP1498228B1/en
Priority to AT04016447T priority patent/ATE372857T1/de
Priority to DE602004008837T priority patent/DE602004008837T2/de
Priority to KR1020040054862A priority patent/KR100592064B1/ko
Publication of JP2005039047A publication Critical patent/JP2005039047A/ja
Application granted granted Critical
Publication of JP3999712B2 publication Critical patent/JP3999712B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Fuel Cell (AREA)

Description

本発明は、多関節ロボットに関し、特に半導体ウェハなどの基板を搬送する多関節ロボットに関する。
図15は、従来技術の多関節ロボット1を示す平面図である。半導体ウェハ2を搬送する従来技術の多関節ロボットのうち、3つのアーム3〜5と、ウェハ2を保持するハンド部6とを有する多関節ロボット1が開示されている。(たとえば特許文献1参照)。このような多関節ロボット1は、ハンド部6に保持したウェハ2を予め定める第1方向Xに直線的に移動させる。
従来技術の多関節ロボット1は、第1〜第3アーム3〜5とハンド部6とを有する。第1アーム3は、基台7に一端部3aが連結される。第2アーム4は、第1アーム3の他端部3bに一端部4aが連結される。第3アーム5は、第2アームの他端部4bに一端部5aが連結される。またハンド部6は、その一端部6aが、第3アームの他端部5bに連結される。
基台7は、第1角変位軸線L1を有する。第1アーム3は、第1角変位軸線L1まわりに角変位可能であり、第2角変位軸線L2を有する。第2アーム4は、第2角変位軸線L2まわりに角変位可能であり、第3角変位軸線L3を有する。第3アーム5は、第3角変位軸線L3まわりに角変位可能であり、第4角変位軸線L4を有する。ハンド部6は、第4角変位軸線L4まわりに角変位可能である。
第1角変位軸線L1から第2角変位軸線L2までの長さN1と、第2角変位軸線L2から第3角変位軸線L3までの長さN2と、第3角変位軸線L3から第4角変位軸線L4までの長さN3との比は、1:2:1に形成される。
そして、ハンド部6が第1方向Xに直線移動する場合に、第2アーム4を移動方向に均等に2分割する中点8が、第1角変位軸線L1に垂直な基準線9に沿って移動する。言い換えると第1アーム3と、第2アーム4と、第3アーム5と、ハンド部6との角速度比は、1:2:2:1に設定される。
特開2001−137181号公報
図16は、従来技術の多関節ロボット1の変形状態を示す平面図である。多関節ロボット1は、ハンド部6が基台7から最も離反した状態で、各アーム3〜5が基準線9に沿って一列に並ぶ。第1方向は、この基準線9が延びる方向と平行な方向である。ウェハ2を第1方向Xに沿って基台7に近接または離反移動させる場合、第1アーム3と第2アーム4との第1連結部分11は、基台7に対して第2方向一方Y1に移動する。また第2アーム4と第3アーム5との第2連結部分12は、基台7に対して第2方向他方Y2に移動する。なお、第2方向Yは、基準阡9と第1角変位軸線L1とを含む平面に垂直な方向である。
ハンド部6と第3アーム5との第3連結部分13を基台7に近接させる場合には、第1連結部分11が基準線9から第2方向一方Y1に遠ざかり、第2連結部分12が基準線9から第2方向他方Y2に遠ざかる。この場合、図16(2)〜図16(4)に示すように、基準線9からウェハ2の外周部までの第2方向距離A1,A2よりも、基準線9から第1および第2連結部分11,12までの第2方向距離B1,B2のほうが大きくなる場合がある。この場合、多関節ロボット1は、第1連結部分11および第2連結部分12が第2方向両側Y1,Y2にそれぞれ移動しても、他の装置に干渉しないようにするために、多関節ロボット1の周囲には、第1連結部分11および第2連結部分12が基準線9から第2方向Y1に屈曲する第2方向距離B1,B2よりも大きい領域が動作占有領域として必要となる。
図17は、従来技術の多関節ロボット1の他の変形状態を示す平面図である。多関節ロボット1は、第1連結部分11が第2方向一方Y1に位置する左手系と、第2方向他方Y2に位置する右手系とに切換可能である場合がある。しかしながら図17(1)に示すように、第1角変位軸線L1まわりの旋回半径が最小となる状態では、右手系から左手系に切り替えることができない。
左手系から右手系に切換る場合には、図17(1)に示す状態から、図17(2)に示すように、各アーム3〜5を基準線9に沿って一列に配置する必要がある。したがって左手系から左手系に切り替える場合に余分な動作が生じ、短時間で右手系から左手系へ切り替えることができない。また右手系から左手系に切換る場合も同様である。
図17(2)に示すように、右手系から左手系に切換可能な状態では、各アーム3〜5が基準線9に沿って配置され、基台7から第3連結部分13までの第1方向距離Dが、最小旋回半径Cよりも大きくなる。したがって右手系と左手系を相互に切り替える場合には、他の装置に干渉しないようにするために、多関節ロボット1の周囲には、基台7から第3連結部分13までの第1方向距離Dよりも大きい領域が動作占有領域として必要となる。
このように従来技術の多関節ロボット1では、動作占有領域が大きくなるという問題がある。たとえば空気が清浄化されたハウジング内で、上述した多関節ロボットが用いられる場合、ハウジングが大型化してしまい、空気の清浄化効率が低下するという問題がある。またハウジング内の収容空間のうち、多関節ロボットの動作領域の占める割合が大きくなり、ハウジング内に収容される他の製造処理装置の設置スペースが小さくなるという問題がある。
したがって本発明の目的は、可動時の占有領域が小さい多関節ロボットを提供することである。
本発明は、予め定められる第1角変位軸線を有し、第1角変位軸線まわりに角変位自在に設けられるベース部と、
一端部がベース部に一体に連結され、他端部に第1角変位軸線に平行な第2角変位軸線を有する第1アームと、
一端部が前記第1アームの他端部に連結され、他端部に前記第1角変位軸線に平行な第3角変位軸線を有し、前記第2角変位軸線まわりに角変位自在に設けられる第2アームと、
一端部が前記第2アームの他端部に連結され、前記第3角変位軸線まわりに角変位自在に設けられる第3アームと、
第2アームと第3アームとを連動させ、第2アームが第1アームに対して第2角変位軸線まわりに周方向一方に角変位する角度の2倍の角度で、第3アームを第2アームに対して第3角変位軸線まわりに周方向他方に角変位させる連動手段と、
ベース部を第1角変位軸線まわりに角変位するベース部駆動手段と、
第2アームを第2角変位軸線まわりに角変位するアーム駆動手段と、
第3アームに第4角変位軸線まわりに角変位自在に連結され、ワークを保持するエンドエフェクタと、
前記エンドエフェクタを、前記第4角変位軸線まわりに角変位するエンドエフェクタ駆動手段とを含み、
第3角変位軸線が第1角変位軸線とほぼ同じ位置に配置され、第2角変位軸線と第4角変位軸線とが第1角変位軸線に関して対称な位置となるように、第1〜第3アームが角変位した状態で、ワークを保持したエンドエフェクタの前記ワークを含む領域が、第1角変位軸線から第2角変位軸線までの距離を半径として、第1角変位軸線を一回転したときの旋回領域内に配置されるように、前記第1〜第3アームおよびエンドエフェクタの長さが選ばれていることを特徴とする多関節ロボットである。
また本発明は、第1アームは、ベース部および第2アームに対して着脱可能に設けられ、
第2アームは、一端部がベース部に連結可能であって、第2アームとベース部とが連結された状態で、ベース部に対して前記第1角変位軸線まわりに角変位可能に設けられ、
連動手段は、第2アームがベース部に対して第1角変位軸線まわりに周方向一方に角変位する角度の2倍の角度で、第3アームを第2アームに対して第3角変位軸線まわりに周方向他方に角変位させることを特徴とする。
また本発明は、前記連動手段は、歯車伝達機構によってアーム駆動手段からの駆動力を第2アームおよび第3アームに伝達することを特徴とする。
また本発明は、限定された狭隘な空間に配置されことを特徴とする。
また本発明は、予め定められる雰囲気に保たれるハウジング内に配置され、半導体ウェハを搬送することを特徴とする。
本発明によれば、第2アームと第3アームとを角変位させることによって、ベース部と第3アームの他端部との距離を変更することができる。またベース部を第1角変位軸線まわりに角変位することによって、第3アームの他端部を第1角変位軸線まわりに角変位することができる。これによって第1角変位軸線に垂直な平面において、円筒座標系に従ってロボットアームの他端部を移動させる水平多関節型ロボットを実現することができる。たとえば第3アームの他端部には、ロボットハンドなどのエンドエフェクタが連結される。また第3アームの他端部には、エンドエフェクタが装着されなくてもよい。
各アームが予め定める基準線に一列に並び、基台から第3アームの他端部が最も離反した状態から、第1アームに対して第2角変位軸線まわりに周方向一方に第2アームを角変位させることによって、基準線および第1角変位軸線を含む仮想平面によって分割される2つの分割領域のうち一方の分割領域に第2アームおよび第3アームを配置して、第3アームの他端部を基準線に沿って移動させることができる。
また各アームが基準線に一列に並び、基台から第3アームの他端部が最も離反した状態から、第2角変位軸線まわりに周方向他方に第2アームを角変位させることによって、前記2つの分割領域のうち他方の分割領域に第2アームおよび第3アームを配置して、第3アームの他端部を基準線に沿って移動させることができる。
たとえば分割領域のうち、一方の分割領域に障害物および壁面がある場合などには、他方の分割領域に第2アームおよび第3アームを配置した状態で、エンドエフェクタを基準線に沿って移動させることができる。このように第2アームおよび第3アームが配置される領域を選択することによって、2つのうちいずれかの分割領域に動作占有領域が含まれることをなくすることができ、アームの占有領域を小さくすることができる。
これによって予め定められる収容空間に、ロボットとロボット以外の他の装置とが配置される場合に、ロボット以外の他の装置の設置スペースを大きくすることができる。また予め定める収容空間を小型化することができる。たとえば清浄化された空気で満たされるハウジングに、ロボットとロボット以外の他の装置とが収容される場合、ハウジングを小型化することができるので、ハウジング内を効率的に清浄化することができる。
また、第1アームが一端部から他方に延びる方向と、第2アームおよび第3アームが一端部から他端部に延びる方向との向きが逆方向となるように各アームを一列に配置すると、第1変位軸線まわりの各アームの旋回半径が最小となる。この状態で第2アームの角変位方向を切り替えることで、第2アームおよび第3アームが配置される分割領域を切り替えることができる。すなわち動作占有領域が最小となる状態で、第2アームおよび第3アームが、一方の分割領域にある右手系と、他方の分割領域にある左手系とに切り替えることができる。これによって第2および第3アームが配置される分割領域を切り替えるために、従来技術に比べて余分な動作占有領域を必要とせず、動作占有領域を小さくすることができる。
た、エンドエフェクタを第3アームに対して第4角変位軸線まわりに角変位させることができるので、エンドエフェクタを予め定める位置に配置した場合に、エンドエフェクタの姿勢を任意に選択することができる。これによってエンドエフェクタを予め定める位置に配置したときの姿勢が予め設定される場合に対応することができ、利便性を向上することができる。
また搬送ロボット、塗装ロボットなどのエンドエフェクタを有するロボットに好適に用いることができる。
このような第1〜第3アームおよびエンドエフェクタの長さは、第3角変位軸線が第1角変位軸線とほぼ同じ位置に配置され、第2角変位軸線と第4角変位軸線とが第1角変位軸線に関して対称な位置となるように、第1〜第3アームが角変位した状態で、ワークを保持したエンドエフェクタの前記ワークを含む領域が、第1角変位軸線から第2角変位軸線までの距離を半径として、第1角変位軸線を一回転したときの旋回領域内に配置されるように選ばれる。これによって、第1〜第3アームおよびエンドエフェクタが第1角変位軸線まわりに角変位しても、旋回領域から外方へ突出する部分がなく、動作時の占有領域を小さくすることができる。
また本発明によれば、ベース部および第2アームから第1アームを取外し、第2アームをベース部に連結することによって、2つのアームを含むロボットに切り替えることができる。これによって3つのアームを有するロボットと、2つのアームを有するロボットとの各構成部品を共通化することができ、生産コストを低下することができる。また2つのアームを有するロボットから3つのアームを有するロボットに容易に変更することができるので、別途新しいロボットを導入する場合に比べて、設備費を低減することができる。
また本発明によれば、歯車伝達機構によって駆動力を伝達することによって、第2および第3アームの剛性を向上することができる。たとえば第2アームおよび第3アームを高速で各角変位軸線まわりに角変位させた場合であっても、角変位軸線まわりのぶれを少なくすることができ、移動速度を向上させることができる。
また本発明によれば、最小旋回半径となる状態から、第2アームを角変位することによって、第2アームと第3アームとを、第1アームの軸線と第1角変位軸線とを含む仮想線によって分割される一方の領域と他方の領域とのいずれかに配置可能であり、右手系と左手系とに切換可能である。適宜、右手系と左手系とに切り替えることによって、限定された狭隘な空間から逸脱することなく、多関節ロボットを動作させることができる。狭隘な空間は、たとえば、ロボットアームの最大動作可能領域よりも小さい空間である。最大動作可能領域は、ベース部から第2アームの他端部を最も離反させた状態で、第1角変位軸線まわりに回転したときに第2アームの他端部が描く円内の空間である。
また本発明によれば、アームのリーチを従来と同様に保った状態で、動作占有領域を小型化することができるので、半導体ウェハの搬送装置として好適に用いることができる。すなわちハウジング内の設置スペースが小さい場合であっても好適に用いることができる。またはハウジングを小型化することができる。
図1は、本発明の実施の一形態である多関節ロボット20を示す平面図である。また図2は、多関節ロボット20の側面図であり、図3は、多関節ロボットの背面図である。たとえば本発明の多関節ロボットは、シリコンウェハ、フォトマスク用各基板、液商用ガラス各基板などのワークをロボットハンドを用いて搬送する基板搬送装置となる。多関節ロボット20は、半導体ウェハ21を保持し、保持したウェハ21を予め定める移動経路に沿って移動させる。
多関節ロボット20は、基台22と、ベース部23と、3つのアーム24〜26と、ハンド部27とを含む。基台22は、多関節ロボット20が収容されるハウジングに一体に固定される。基台22は、第1角変位軸線L1を有する。ベース部23は、基台22に連結され、基台22に対して第1角変位軸線L1まわりに角変位自在に設けられる。第1角変位軸線L1は、本実施の形態では、鉛直方向に延びる。またベース部23は、基準線19を有する。基準線19は、第1角変位軸線L1に垂直に延び、ベース部23の角変位にともなって第1角変位軸線L1まわりを角変位する。
3つのアーム24〜26の外形形状は、それぞれ長尺状に形成される。3つのアーム24〜26のうちの第1アーム24は、ベース部23に着脱自在に一体に連結される。具体的には、第1アーム24は、基準線19に沿って延び、第1アーム24の長手方向一端部28がベース部23に連結される。第1アーム24は、その長手方向他端部29に第2角変位軸線L2を有する。第2角変位軸線L2は、第1角変位軸線L1と平行に延び、基準線19に対して垂直に延びる。
3つのアーム24〜26のうちの第2アーム25は、その長手方向一端部30が第1アーム24の長手方向他端部29に連結される。第2アーム25は、第1アーム24に対して第2角変位軸線L1まわりに角変位自在に設けられる。第2アーム25は、その長手方向他端部31に第3角変位軸線L3を有する。第3角変位軸線L3は、第1角変位軸線L1と平行に延びる。
3つのアーム24〜26のうちの第3アーム26は、その一端部32が第2アームの長手方向他端部31に連結される。第3アーム26は、第2アーム25に対して第3角変位軸線L3まわりに角変位自在に設けられる。第3アーム26は、その長手方向他端部33に第4角変位軸線L4を有する。第4角変位軸線L4は、第1角変位軸線L1と平行に延び、基準線19に対して垂直に延びる。
ハンド部27は、ウェハ21を下方から支持して乗載する。ハンド部27は、ロボットアームの先端に設けられるエンドエフェクタとなる。ハンド部27は、ウェハ21を保持する保持部分34と、第3アーム26に連結される連結部分35とを有する。また本実施の形態では、ハンド部27は、上下方向に並んで2つ設けられる。
保持部分34は、Y字状に形成され、ウェハ21の周縁部のうち少なくとも周方向に異なる3つの部分に下方から接触する。保持部分34は、ウェハ21を水平に乗載する。連結部分35は、長尺状に形成され、長手方向一端部36が第3アーム26の長手方向他端部33に連結され、長手方向他端部37が保持部分34に一体に連結される。ハンド部27は、第3アーム26に対して第4角変位軸線L4まわりに角変位自在である。
第1〜第3アーム24〜26の長尺方向の長さは、それぞれほぼ等しく選択される。具体的には、第2角変位軸線L2と第3角変位軸線L3との間の距離である第2距離R2と、第3角変位軸線L3と第4角変位軸線L4との間の距離である第3距離R3とが等しい長さに設定される。また第1角変位軸線L1と第2角変位軸線L2との間の距離である第1距離R1は、第2および第3距離とほぼ等しい長さに設定される。すなわちR1≒R2=R3に設定される。たとえば本実施の形態では、第1距離R1は、200mm、第2距離R2および第3距離R3は、208mmに設定される。
またハンド部27の保持部分34には、複数の当接片が設けられる。複数の当接片は、乗載されたウェハ21の周縁部に接触し、ウェハ21をウェハ半径方向内方に押圧することによって、協働してウェハ21を挟持する。複数の当接片のうち、少なくとも1つは、乗載したウェハ21の半径方向に変位可能に設けられる。
なお変位可能な当接片は、基準線19に沿って変位することが好ましい。この場合、半導体ウェハ21を基準線19両側から押圧して挟持することができる。これによってハンド部27が、基準線19に沿って移動して、ウェハ21に基準線19に沿う慣性力が与えられたとしても、ウェハ21がハンド部27から脱落することを防止することができる。これによってウェハ21を高速で移動させることができる。
図2および図3に示すように、第1アーム24は、ベース部23の上端部に連結される。また第2アーム25は、第1アーム24の上端部に連結される。また第3アーム26は、第2アーム25の上端部に連結される。またハンド部27は、第3アーム26の上端部に連結される。これによって互いに干渉することなく、各アーム24〜26およびハンド部27を角変位させることができる。
図4は、多関節ロボット20の電気的構成を示すブロック図である。多関節ロボット20は、ベース駆動手段50と、アーム駆動手段51と、上下駆動手段56と、ウェハ挟持手段57と、ハンド駆動手段100と、制御手段58とを含む。ベース駆動手段50、アーム駆動手段51およびハンド駆動手段100は、角変位量を調整可能な回転モータで実現される。たとえばエンコーダを内蔵するサーボモータによって実現される。
ベース駆動手段50は、ベース部23を基台22に対して第1角変位軸線L1まわりに角変位駆動する。言い換えると第1アーム24を基台22に対して、第1角変位軸線L1まわりに角変位駆動する。ベース駆動手段50は、ベース部23を周方向両側に角変位可能であることが好ましい。本実施の形態では、ベース駆動手段50は、基台22の内部空間に設けられる。
アーム駆動手段51は、第2アーム25を第1アーム24に対して、第2角変位軸線L2まわりに角変位駆動する。アーム駆動手段51は、第2アーム25を周方向両側に角変位可能であることが好ましい。本実施の形態では、アーム駆動手段51は、基台22の内部空間に設けられる。
ハンド駆動手段100は、ハンド部27を第3アーム26に対して、第4角変位軸線L4まわりに角変位駆動する。ハンド駆動手段100は、ハンド部27を周方向両側に角変位可能であることが好ましい。本実施の形態では、ハンド駆動手段100は、第3アーム26の内部空間に設けられる。ハンド駆動手段100は、エンドエフェクタであるハンド部27を角変位するエンドエフェクタ駆動手段となる。 多関節ロボット20は、第2アーム25の角変位に応じて、第3アーム26を連動して角変位する連動手段54を有する。連動手段54は、第2アーム25が第2角変位軸線L2まわりに角変位すると、その角変位量に連動させて第3アーム26を第2アーム25に対して第3角変位軸線L3まわりに角変位する。
またベース部23は、図3に示すように、基台22に対して第1角変位軸線L1に沿って変位可能である。すなわち本実施の形態では、ベース部23は、上下方向に変位可能に形成される。多関節ロボット20は、ベース部23を第1角変位軸線L1に沿って変位駆動する上下駆動手段56をさらに有する。ベース部23が第1角変位軸線L1に沿って変位駆動すると、ベース部23に連結される各アーム24〜26およびハンド部27を、第1角変位軸線L1に沿う方向、すなわち上下方向に変位駆動させることができる。
多関節ロボット20は、ウェハ21が保持される保持位置に下方から上方に近づくことで、ウェハ21をハンド部27に乗載させることができる。またウェハ21を保持した状態で、ウェハ21を載置すべき載置位置に上方から下方に近づくことで、保持したウェハ21を載置位置に載置させることができる。
上下駆動手段56は、たとえばサーボモータを用いたボールねじ機構によって実現される。この場合、上下方向に延び、外周部にねじ溝が形成されて軸線まわりに回転可能なねじ棒と、ねじ棒を回転駆動するサーボモータと、ねじ棒に螺合される螺合体とを含む。螺合体には、ベース部23が固定される。そしてねじ棒をサーボモータによって回転させることによって、螺合体とともにベース部23を上下方向に移動させることができる。なお、上下駆動手段56は、他の構成によって実現されてもよい。
またハンド部27は、乗載したウェハ21を挟持するために、ウェハ挟持手段57が設けられる。ウェハ挟持手段57は、前述した当接片のうち、少なくとも1つの当接片をウェハ21の半径方向に変位駆動する。たとえばウェハ挟持手段57は、エアシリンダを含んで実現される。エアシリンダは、そのピストンロッドの先端部に当接片が連結される。エアシリンダは、基台22から圧縮空気が供給されることによって、当接片をウェハ21の半径方向に変位駆動する。角変位した当接片は、ウェハ21を半径方向内方に押圧し、複数の当接片によって協働してウェハ21を挟持する。また当接片がウェハ21の半径方向外方に変位駆動することによって、ウェハ21の挟持を解除することができる。
また多関節ロボット20は、ベース駆動手段50、アーム駆動手段51、上下駆動手段56、ハンド駆動手段100およびウェハ挟持手段57を制御する制御手段58を有する。制御手段58は、予め定める搬送元位置にあるウェハを保持して、予め定める搬送先位置に搬送するように、各駆動手段50,51,56,100,57を制御する。制御手段58は、ベース駆動手段50、アーム駆動手段51、ハンド駆動手段100、上下駆動手段56を駆動させることによって、第1角変位軸線L1を中心とする円筒座標に従ってハンド部27を3次元の任意の位置に移動させることができる。
制御手段58は、ベース駆動手段50、アーム駆動手段51、ハンド駆動手段100、上下駆動手段56をそれぞれ実現するサーボモータに設けられるエンコーダから各サーボモータの角度位置を取得することによって、各駆動手段50,51,100,56をフィードバック制御することができ、目的位置に精度よく位置合わせすることができる。
制御手段58は、搬送元位置にハンド部27を移動させる。次に搬送元位置でウェハ挟持手段57を駆動してウェハ21を挟持して保持する。そしてウェハ21を保持したハンド部27を搬送先位置に移動させ、搬送先位置でウェハ21の保持を解除する。このようにして多関節ロボット20は、搬送元位置から搬送先位置にウェハ21を搬送する。
制御手段58は、たとえばコンピュータによって実現される。制御手段は、予め定められる搬送動作プログラムを記憶する記憶部と、記憶部から搬送動作プログラムを実行して、エンコーダからの情報に基づいて各駆動手段50,51,56,100,57を制御する演算部とを含む。たとえば、搬送動作プログラムは、入力部によって記憶部に入力される。
図5は、動力伝達機構を説明するために多関節ロボット20を簡略化して示す断面図である。本実施の形態の多関節ロボット20は、第1サーボモータ150と第2サーボモータ151とを有し、それらのサーボモータ150が、基台22に内蔵される。また多関節ロボット20は、第1サーボモータ150の動力をベース部23に伝達する第1動力伝達手段と、第2サーボモータ151の動力を第2アーム25に伝達する第2動力伝達手段23を有する。
第1動力伝達手段52は、歯車動力伝達機構を用いて、ベース部23に第1サーボモータ150からの動力を伝達する。さらに第1動力伝達手段52は、減速器(図示せず)を有する。
第1サーボモータ150は、減速器の入力部に回転力として動力を伝達する。減速器の入力部に伝達された回転力は、そのトルクが予め定める増幅比で増幅されるとともに、その回転速度が予め定める減速比で減速されて、出力部から出力される。出力部から出力された動力は、ベース用歯車群52を介して、ベース部23に伝達される。これによってベース部23は、第1角変位軸線L1まわりに角変位し、ベース部23に一体に固定される第1アーム24もまた第1角変位軸線L1まわりに角変位する。
第2動力伝達手段53は、歯車動力伝達機構を用いて、第2アーム25に第2サーボモータ151からの動力を伝達する。さらに第2動力伝達手段53は、減速器(図示せず)を有する。
第2サーボモータ151は、減速器の入力部に回転力として動力を伝達する。減速器の入力部に伝達された回転力は、そのトルクが予め定める増幅比で増幅されるとともに、その回転速度が予め定める減速比で減速されて出力部から出力される。出力部から出力された動力は、歯車群53を介して、第2アームに伝達される。これによって第2アーム25は、第2角変位軸線L2まわりに角変位する。
第2サーボモータ151からの動力を伝達する歯車群53は、第1トルク伝達軸60と、第1軸支歯車群62〜64と、第1連結軸61とを含む。第1トルク伝達軸60は、ベース部23の内部空間に配置され、第1角変位軸L1に同軸となる円筒形状に形成される。第1トルク伝達軸60は、ベース部23に対して第1角変位軸線L1まわりに角変位自在に設けられる。
第1トルク伝達軸60に形成される内部空間は、基台22の内部空間と第1アーム24の内部空間とを連通する。第1トルク伝達軸60の一端部は、基台22の内部空間に配置され、他端部は、第1アーム24の内部空間に配置され、外周部に歯車70が連結される。第1トルク伝達軸60は、一端部が減速器の出力軸に噛合し、他端部の歯車70が第1アーム一端部側の歯車62に噛合する。この歯車70は、第1トルク伝達軸60に対して着脱自在に設けられる。
第1軸支歯車群62〜64は、第1アーム24の内部空間に配置され、第1アーム24に軸支される複数の歯車である。各歯車62〜64は、第1アーム24の一端部から他端部に向けて並ぶ。各歯車62〜64は、第1アーム一端部側の歯車62から第1アーム他端部側の歯車64に動力伝達可能に噛合わされて配置される。
第1連結軸61は、第1アーム24の内部空間に配置され、第2角変位軸線L2に同軸となる円筒状に形成される。第1連結軸61は、第1アーム24に対して第2角変位軸線L2まわりに角変位自在に設けられる。第1連結軸61は、軸線方向一端部が、第1アーム他端部側の歯車64に噛合し、他端部が第2アーム25と一体に連結される。第1連結軸61は、第2アーム25に対して着脱自在に設けられる。
減速器を介して第2サーボモータ51から与えられる動力は、トルク伝達軸60に伝達される。トルク伝達軸60は、ベース部23に対して、第1角変位軸線L1まわりに角変位する。そしてトルク伝達軸60は、第1アーム一端部側の歯車62に動力を伝達する。そしてトルク伝達軸60からの回転力は、第1アーム24に軸支される軸支歯車群に順次伝達され、第1アーム他端部側の歯車64から第1連結軸61に伝達される。第1連結軸61は、第2角変位軸線L2まわりに回転し、その動力を第2アーム25に動力を伝達する。
これによって第2アーム25は、第1アーム24に対して第2角変位軸線L2まわりに角変位する。なお、本実施の形態では、減速器を介して第2サーボモータ151からの動力を第2アーム25に伝達したが、減速器を設けなくて動力を伝達してもよい。
連動手段54は、歯車動力伝達機構を用いて、第3アーム26に動力を伝達して、第2アーム25の角変位ともに第3アーム26を連動して角変位する。連動手段54は、第2トルク伝達軸65と、第2軸支歯車群66,67と、第2連結軸69とを含む。
第1連結軸61に形成される内部空間は、第1アーム24の内部空間と第2アーム25の内部空間とを連通する。第2トルク伝達軸65は、第1連結軸61の内部空間に配置され、第2角変位軸L2に同軸な円筒状に形成される。第2トルク伝達軸65は、一端部が第1アーム24に固定され、他端部が第2アーム25の内部空間に配置され、外周部に歯車68が連結される。この歯車68は、第2トルク伝達軸65に対して着脱自在に設けられる。
第2軸支歯車群66,67は、第2アーム25に内蔵され、第2アーム25に軸支される複数の歯車である。各歯車66,67は、第2アーム25の一端部から他端部に向けて並ぶ。各歯車66,67は、第2アーム一端部側の歯車66から第2アーム他端部側の歯車67に動力伝達可能に噛合わされて配置される。
第2連結軸69は、第2アーム25の内部空間に配置され、第3角変位軸線L2に同軸となる円筒状に形成される。第2連結軸69は、第2アーム25に対して第3角変位軸線L3まわりに角変位自在に設けられる。第2連結軸69は、軸線方向一端部が、第2アーム他端部側の歯車67に噛合し、他端部が第3アーム25と一体に連結される。第2連結軸69に形成される内部空間は、第2アーム25の内部空間と第3アーム26の内部空間とを連通する。
第1アーム24に対して第2アーム25が角変位すると、第2トルク伝達軸65から回転力が、第2アーム一端部側の歯車66に与えられ、第2アーム一端部側の歯車66が角変位する。そして第2アーム一端部側の歯車66に与えられた回転力は、第2アーム25に軸支される軸支歯車群に順次伝達され、第2アーム他端部側の歯車67から第2連結軸69に伝達される。第2連結軸69は、第3角変位軸線L3まわりに回転し、その動力を第3アーム26に動力を伝達する。これによって第3アーム26は、第2アーム25に対して第3角変位軸線L3まわりに角変位する。
第3アーム26の内部空間には、第3サーボモータ110と、第3サーボモータからハンド部に動力を伝達する歯車群71,74が設けられる。歯車群71,74は、第3サーボモータ150の出力軸に噛合する歯車71と、その歯車71に噛合する第3連結軸74とを含む。この歯車71は、第3アーム26に軸支される。
第3連結軸201は、第3アーム26の内部空間に配置され、第4角変位軸線L4に同軸な円筒状に形成される。第3連結軸201は、第3アーム26の内部空間とハンド部27の内部空間とを連通する。第3連結軸301は、第3アーム26に対して第4角変位軸線L4まわりに角変位自在に設けられる。第3連結軸201は、軸線方向一端部が第3サーボモータ150の動力を伝達する歯車71に噛合し、他端部がハンド部27と一体に連結される。また第3連結軸201に形成される内部空間は、第3アーム26の内部空間と、ハンド部27の内部空間を連通する。
第3サーボモータ150の出力軸が角変位すると、その回転力が、歯車群200,201を伝達し、その動力をハンド部27に動力を伝達する。これによってハンド部27は、第3アーム26に対して第4角変位軸線L4まわりに角変位する。
第2サーボモータ151の角変位を停止した状態で、第1サーボモータ150を角変位させると、ベース部23の角変位とともに第1アーム24に対して第2アーム25が周方向一方に角変位する。したがって第1サーボモータ150の角変位に対応して、第2アーム25が第1アームに対して角変位することを打ち消すように、第2サーボモータ151を角変位させることによって、第1アームに対して、第2アームの姿勢を保った状態で、第1角変位軸線まわりに角変位させることができる。したがって第1サーボモータ150によって、ベース駆動手段50を実現することができ、第1サーボモータ150および第2サーボモータ151の両方によってアーム駆動手段51を実現することができる。また第3サーボモータ110によって、ハンド駆動手段100を実現することができる。 また連動手段54を設けることによって、第3アームを変位駆動するためのサーボモータを別途必要とすることなく、第2アーム25と第3アーム26とを同時に連動して動作させることができる。
連動手段54は、第2アーム25に内蔵される各歯車66〜67、第2トルク伝達軸65に連結される歯車68および第2連結軸69の歯車比が設定される。具体的には、第2アーム25が第1アーム24に対して第2角変位軸線L2まわりに周方向一方に角変位する場合、第2アーム25の2倍の角変位量で、周方向他方に角変位するように、歯車比が設定される。
すなわち第2アーム25が第1アーム24に対して、第2角変位軸線L2まわりに周方向一方に角変位する角度をθ1とし、第3アーム26が第2アーム25に対して、第3角変位軸線L3まわりに周方向他方に角変位する角度をθ2とすると、多関節ロボット20は、θ1:2×θ2となるように連動手段54の歯車比が設定される。またハンド部27を第4角変位軸線L3まわりに周方向一方に角変位する角度θ3とすると、θ1:θ3とすることで、第1アーム24に対するハンド部27の姿勢を一定に保つことができる。
このような関節構造を有することによって、第2アーム25を角変位させることで、第3アームの他端部をベース部23に対して基準線19に沿って直線的に移動させることができる。またベース部23を第1角変位軸線L1まわりに角変位することによって、第3アームの他端部を第1角変位軸線L1まわりに角変位することができる。これによって第1角変位軸線L1に垂直な平面において、円筒座標に従ってハンド部27を移動させる水平多関節型ロボットを実現することができる。またハンド駆動手段100によって、第3アーム26に対して、ハンド部27を第4角変位軸線L4まわりに角変位することによって、ハンド部27の姿勢を変更することができる。さらに上下駆動手段56によってハンド部27を上下方向に変位することによって、ハンド部27を3次元の任意の位置に移動させることができる。図5に示す本実施の形態では、第1サーボモータ150と第2サーボモータ151とを動作させることによって、第1アーム24に対する第2アーム25および第3アーム26の姿勢を保った状態で、各アームを第1角変位軸線まわりに角変位させることができる。
以上のようにハンド部27の姿勢を変更可能に、ハンド部27を基準線19に沿う方向に移動させることができるので、搬送ロボット、塗装ロボットなどのエンドエフェクタを有する多関節ロボットに好適に用いることができる。
図6は、多関節ロボット20の動作の一例を示す平面図である。図6は、各アーム24〜26が基準線19に一列に並んで基台22からハンド部27が最も離反した状態から、第2角変位軸線L2まわりに周方向一方に第2アーム25が角変位する変形状態を示す。
図6(1)に示すように、多関節ロボット20は、ハンド部27を第1角変位軸線L1から最も離反するように、各アーム24〜26およびハンド部27を角変位した状態で、各アーム24〜26およびハンド部27は、基準線19に沿って一列に並ぶ。すなわち第1〜第4角変位軸線L1〜L4が基準線19を挿通して配置可能である。
この状態からアーム駆動手段51によって、第2アーム25が第1アーム24に対して第2角変位軸線L2まわりに周方向一方に角変位する。このとき連動手段54によって、第2アーム25が角変位する角度の2倍の角度で、第3アーム26が第2アーム25に対して第3角変位軸線L3まわりに周方向他方に角変位する。またハンド駆動手段100によって、第1アームに対してハンド部27の姿勢を保つように第3アーム25に対して第4角変位軸線L4まわりに周方向一方に角変位する。
これによって図6(1)〜図6(4)に示すように、ハンド部27の姿勢を保った状態で、ハンド部27を基準線19に沿う第1方向Xに直線的に移動させることができる。また第1方向Xおよび第1角変位軸線L1に垂直な方向を第2方向Yとする。
図6に示すような場合、基準線19および第1角変位軸線L1を含む仮想平面によって分割される2つの分割領域80,81のうち一方の分割領域80に第2アーム25および第3アーム26を配置して、ハンド部27を基準線19に沿って移動させることができる。このとき2つの分割領域80,81のうち他方の分割領域81には、第2アーム25および第3アーム26が配置されることがない。
したがって一方の分割領域80を第2アーム25および第3アーム26が移動するので、他方の分割領域81に障害物などがある場合であっても、第2アーム25および第3アーム26が接触することがない。言い換えると多関節ロボット20の動作占有領域を第2方向他方Y2に小さくすることができる。このように一方の分割領域80に第2アーム25および第3アーム26が配置される状態を右手系と称する場合がある。
図7は、多関節ロボット20の他の動作の一例を示す平面図である。図7は、各アーム24〜26が基準線19に一列に並んで基台22からハンド部27が最も離反した状態から、第2角変位軸線L2まわりに周方向他方に第2アーム25が角変位する変形状態を示す。
この場合、図6と同様に、前記2つの分割領域80,81のうち他方の領域81に第2アーム25および第3アーム26を配置して、ハンド部27を基準線19に沿って移動させることができる。このように他方の分割領域81に第2アーム25および第3アーム26が配置される状態を左手系と称する場合がある。
図6および図7に示すように、第2アーム25の角変位方向を切り替えることによって、2つの分割領域80,81のうちのいずれかの分割領域に各アーム24〜26の動作占有領域が含まれることをなくすることができる。
図8は、多関節ロボット20の旋回半径が最小となるように、第1〜第3アーム24〜26およびハンド部27を屈曲させた状態を示す平面図である。多関節ロボット20の第1角変位軸線L1まわりの旋回半径が最小となる状態は、各アーム24〜26およびハンド部27が基準線19に沿って一列に並び、第1アーム24の一端部28から他端部29に延びる方向C1と、第2アーム25の一端部30から他端部31に延びる方向および第3アーム26が一端部36から他端部37に延びる方向C2との向きが逆となる状態である。
言い換えると各角変位軸線L1〜L4が基準線19に沿って並び、第3角変位軸線L3が第1角変位軸線L1とほぼ同じ位置に配置され、第2角変位軸線L2と第4角変位軸線L4とが第1角変位軸線L1に関して対称な位置となるように、各アーム24〜26が角変位した状態である。
さらに第1角変位軸線L1に垂直な仮想平面において、保持したウェハ21を含むハンド部27のウェハ保持ハンド領域83が、第1角変位軸線L1から第2角変位軸線L2までの距離Eを半径として、第1角変位軸線L1を一回転する旋回領域82の内に配置されるように、各アーム24〜26およびハンド部27の長さが決定される。
このような状態となるように、各アーム24〜26およびハンド部27が角変位された場合、多関節ロボット20は、第1角変位軸線L1まわりに角変位したとしても、前記旋回領域82の外方に移動することがない。
図9は、多関節ロボット20のさらに他の動作の一例を示す平面図である。図9は、搬送元位置84に配置されるウェハ21を搬送先位置85に配置する場合であって、搬送先位置85が、搬送先位置84に対して第1角変位軸線まわりに90度角変位した位置に配置される場合における多関節ロボット20の動作の一例を示す。
制御手段58は、ベース駆動手段50によって、第1アーム23が搬送元位置84に向かうように角変位する。そしてアーム駆動手段51によって、第2アーム25および第3アーム26が一方の分割領域80に配置される状態、すなわち右手系の状態を保ち、ハンド部27を搬送先位置84に移動させる。そして図9(1)に示すように、ハンド部27が搬送元位置84に移動すると、ウェハ挟持手段57によって、ウェハ21を保持する。
制御手段58は、ウェハ21をハンド部27に保持させると、アーム駆動手段51によって、ハンド部27を基台22に向けて直線移動させる。このとき図9(1)〜図9(3)に示すように、各アーム24〜26は、右手系の状態に保った状態で角変位される。したがって第2アーム25および第3アーム26は、他方の分割領域81、すなわち図9(1)〜図9(3)に示す基準線19の左側の領域に移動することなく、ウェハ21を保持して搬送することができる。
制御手段58は、図9(4)に示すように、旋回半径が最小となる状態に第2および第3アーム25,26を角変位させた後、ベース駆動手段50によって、図9(5)に示すように、第1アーム23が搬送先位置85に向くように、ベース部23を角変位する。
次に制御手段58は、アーム駆動手段51によって、ハンド部27を搬送先位置85に直線移動させる。このとき図9(6)〜図9(8)に示すように、第2アーム25および第3アーム26が他方の分割領域81に配置される状態、すなわち左手系の状態を保ち、ハンド部27を搬送先位置85に直線移動させる。したがって第2アーム25および第3アーム26は、一方の分割領域80、すなわち図9(5)〜図9(8)に示す基準線19の下側の領域に移動することなく、ウェハ21を保持して搬送することができる。
これによって多関節ロボット20は、図9に斜線で示す基台22よりも左側の領域90および図9に斜線で示す基台22よりも下側の領域91に、第2アーム25および第3アーム26が、配置されることがない。これによって動作占有領域を小さくすることができる。
さらに図9(4)〜図9(5)に示すように、各アーム24〜26およびハンド部27が基準線19に沿って一列に並び、かつハンド部27が基台22に近接した状態で、旋回半径が最小となるので、右手系から左手系への切換を容易に行うことができる。
これに対して従来技術の場合には、旋回半径が最小となる状態から、図17(2)に示すように、第3アーム5とハンド部6との連結部分12を基台7から第1方向に離反させて、各アーム3〜5を基準線9に沿って配置した後でないと、右手系から左手系または左手系から右手系に切り替えることができず、余分な動作が必要となる。
また右手系から左手系または左手系から右手系に切り替える場合には、図17(2)に示すように、第1方向距離Dの領域が必要である。すなわち目標とする移動位置に対して、基台を挟んで反対側に余分な動作占有領域が必要となる。さらに右手系から左手系に変換したとしても、第2アームまたは第3アームが分割領域の両方に配置されており、本発明の実施の一形態の多関節ロボットに比べて動作占有領域が大きくなる。
このように本発明の多関節ロボット20は、従来技術の多関節ロボット1に比べて、動作占有領域を小さくすることができるとともに、右手系から左手系へ切り替えにおける動作を短縮化することができ、かつ切換に必要な動作占有面積を小さくすることができる。
また本発明の多関節ロボット20は、3つのアームを有して構成される。したがってウェハ21を搬送する距離が決定されている場合、2つのアームを有する場合に比べて、アームの長さを短くすることができる。これによって動作占有領域を小さくすることができる。
逆に各アームの長さが決定されている場合には、2つのアームを有する場合に比べて、ウェハ21の搬送距離を大きくすることができる。また基台22を移動させる走向レールを有する他の多関節ロボットに比べて、フットプリントを小さくすることができるとともに、発塵の可能性を低減することができる。このように本発明の多関節ロボット20は、動作占有領域およびフットプリントを小さくし、さらに発塵の可能性を低減することによって、半導体ウェハ21の搬送に好適に用いることができる。
また本発明の多関節ロボット20は、第2アーム25および第3アーム26を連動して角変位することができるので、駆動手段の数を低減することができる。これによって生産コストを低下することができる。また基台22に駆動手段が内蔵されることによって、各アーム24〜26のいずれかにアーム駆動手段51を内蔵する必要がなく、各アーム24〜26を小型化および軽量化することができる。
本実施の形態では、歯車を用いたいわゆるギアトレインによって、アーム駆動手段51からの動力を第2アーム25、第3アーム26およびハンド部27に伝達する。これによってベルトを用いたベルト動力伝達機構の場合比べて、各アーム24〜26の剛性を向上することができる。たとえばベルト動力伝達機構では、各アーム24〜26を急速移動または急速停止させた場合に、ベルトの伸びによって、アーム24〜26に角変位方向のぶれが生じる可能性が大きい。これによって正確な位置決めができない場合がある。またウェハ21の保持不良の原因となる場合がある。
これに対して本発明では、可及的にバックラッシが少ない状態で歯車をかみ合わせることによって、ベルトに比べてアームのぶれを低減することができる。アームが3つである場合には、ぶれの影響が大きくなるが、歯車を用いることによってそのぶれを低減することができる。
またハンド部27のエアシリンダに圧縮空気を供給するハーネスが多関節ロボット20を挿通する。具体的には、ハーネスは、基台22から第1トルク伝達軸60、第1アーム25、第2トルク伝達軸65、第2アーム26、第3トルク伝達軸70、第3アーム27、第3連結軸74を挿通してエアシリンダに接続される。ハーネスがアーム内に内蔵されることによって、発塵の可能性をさらに低下することができる。また第2アーム25が角変位するにあたって、上述のような関節構造とすることによって、従来技術に比べてハーネスの移動代を短くすることができ、ハーネスの長さを短くすることができる。
また図8に示すように、第1アーム24が一端部28から他端部29に延びる方向C1と、第2アーム25が一端部30から他端部31に延びる方向および第3アーム26が一端部32から他端部33に延びる方向C2との向きが逆方向となるように各アーム24〜26が基準線19に沿って一列となるように角変位した状態で、旋回半径Eが最小となるように、第1〜第3アーム24〜26およびハンド部27の長さが決定される。
これによって図9に示すように、ハンド部27を移動中に、右手系から左手系に切換えた場合であっても、従来技術のように動作占有領域が大きくなることがない。したがって第2アーム25と第3アーム26とが配置される分割領域を切り替えるために、余分な動作占有領域を必要とせず、従来技術に比べて動作占有領域を小さくすることができる。さらに図17(2)に示すような従来技術の動作を必要とせず、短時間でウェハ21を目標位置に搬送することができる。
以上のように本発明の実施の一形態によれば、各アーム24〜26の動作占有領域を小さくすることができる。これによって予め定められるハウジングの収容空間に、ロボットとロボット以外の他の装置とが配置される場合に、ロボット以外の他の装置の設置スペースを大きくすることができる。また予め定める収容空間を小型化することができ、ハウジング内を効率的に清浄化することができる。
図10は、本発明の多関節ロボット20の他の使用状態を示す平面図であり、図11は、多関節ロボット20の他の使用状態を示す側面図である。本発明の実施の一形態の多関節ロボット20は、ベース部23および第2アーム25から第1アーム24を取外して、第2アーム25をベース部23に連結することができる。
このように第1アーム24を取外すことによって、第2アーム25および第3アーム26を有する多関節ロボットを実現することができる。この場合、第2アーム25は、ベース部23に着脱自在に一体に連結される。具体的には、第2アーム25は、長手方向一端部30がベース部23に連結される。第2アーム25は、基台22に対して第1角変位軸線L1まわりに角変位自在にベース部23に連結される。また、第2アーム25に連結される第3アーム26および第3アーム26に連結されるハンド部27は、上述した構成と同様である。
第2アーム25は、ベース部駆動手段50によってベース部23とともに、基台22に対して第1角変位軸線L1まわりを角変位する。また第2アーム25は、アーム駆動手段51によってベース部23に対して第1角変位軸線L1まわりに角変位する。
図12は、動力伝達機構を説明するために他の使用例の多関節ロボット20を簡略化して示す断面図である。他の使用例の多関節ロボット20は、第2アーム25とベース部23との連結状態が、図5に示す場合と異なる。
具体的には、第2アーム25の一端部がベース部23に一体に連結される。そして第1トルク伝達軸60は、基台22の内部空間と、第2アーム25の内部空間とを連通する。第1トルク伝達軸60の外周部には、第2アーム25の内部空間に配置される歯車68が連結される。第2アームは、第2角変位軸線L2が第1角変位軸線L1と同軸となる状態で、ベース部23に連結される。また第1トルク伝達軸60は、第2角変位軸線L2まわりに角変位自在に設けられる。
第2サーボモータ150によって第1トルク伝達軸60が第1角変位軸線L1まわりに角変位する場合には、第1トルク伝達軸60から第2アーム内の歯車68、66,67を開して、第2連結軸69に回転力が伝達される。回転力が伝達されて第2連結軸69が角変位することによって、第3アーム26が第2アーム25に対して第3角変位軸線L3まわりに角変位する。
このような歯車伝達機構とすることによって第3アーム26は、第2アームの2倍の角変位量で、第2アームが角変位する周方向と反対方向に角変位する。したがって各アーム内の歯車を変更することなく、第1アーム24を着脱するだけで、3つのアームを有する多関節ロボットと、2つのアームを有する多関節ロボットに容易に変更することができ、利便性を向上することができる。
たとえば2つのアームを有する多関節ロボットと3つのアームを有する多関節ロボットとで、各構成部品を共通化することができ、生産コストを低減することができる。また多関節ロボットを設置したあとで、アームの数を容易に変更することができ、別途多関節ロボットを設置しなおす必要がない。
図13および図14は、多関節ロボット20の他の動作状態を示す図である。多関節ロボット20は、塵や埃などがない清浄な状態に保たれたハウジング105内の清浄領域101に配置される。多関節ロボット20は、清浄領域101内で、カセットの保持位置103にあるウェハ21を取出し、予め定められる処理位置102にウェハを搬送する。処理位置102に搬送されたウェハ21は、処理装置によってプロセス処理、たとえばエッチング処理が施される。
また多関節ロボット20は、プロセス処理されて処理位置102に保持されるウェハ21を保持し、カセットの保持位置103に再び収容する。カセットは、フープ104に収容される。フープ104は、その内部空間にカセットを有し、内部空間と外部空間を開放および遮蔽可能に形成される。フープ104は、内部空間と外部空間とを遮蔽した状態で、ハウジング105に隣接して連結される。そして開放状態とすることで、フープ104の内部空間を清浄領域101に開放する。本実施の形態では、複数、たとえば3つのフープ104が並んでハウジングに連結される。
図14(1)に示すように、多関節ロボット20は、複数のうち1つのフープ104のカセットに収容されるウェハ21を取出す。多関節ロボット20の制御手段58は、フープ104に予め定められる移動方向106に沿ってハンド部27が移動するように、アーム駆動手段50およびハンド駆動手段100を制御する。すなわちハウジング105に対するハンド部27の姿勢を保ち、言い換えると、基台22に対するハンド部27の姿勢を変更して、ウェハ21の保持位置103に近接移動する。
そしてウェハ21を保持した後、図14(2)〜(3)、図15(1)〜図15(3)に示すように、予め定める経路に従ってウェハ21を処理位置102に移動させる。このときハンド駆動手段100によって、ハンド部27の基台22に対する姿勢を変更しながら、ウェハ21を搬送することによって、さらに小さい動作占有領域107で動作させることができる。また処理位置102にあるウェハ21をカセットの保持位置103に搬送する場合も同様である。
本実施の形態では、上述したように3つのアームを有するので、ハンド部を移動可能な移動範囲が2つのアームを有する場合に比べて大きい。これによって複数のフープ104がハウジング105に連結される場合であっても、任意のフープ104のカセットに収容されるウェハ21を処理位置に搬送することができる。
これに対して2つのアームを有する多関節ロボットを用いた場合には、各アームの長さが長くなり、動作占有領域が大きくなる。また2つのアームと基台を移動させる移動機構を有する場合には、動作占有領域とともにフットプリントが大きくなるという問題がある。本発明の多関節ロボットは、動作占有領域およびフットプリントを小さくすることができる。
またウェハ21の目標処理数、処理工程の変更に応じて、ハウジングに連結されるフープ104の数が低減される場合がある。この場合、ハンド部27が移動すべき移動距離が短くなる。この場合には、第1アームを取外すことで、第2アームと第3アームを有する多関節ロボットに容易に変更することができる。これによって別途多関節ロボットを準備することなく、ハウジングに連結されるフープ数の変更に柔軟に対応することができる。
またハンド部27を第3アーム26に対して角変位させることができるので、ハンド部27を予め定める位置に配置した場合に、ハンド部27の姿勢を任意に選択することができる。これによってハンド部27を予め定める位置に配置したときの姿勢が予め設定される場合に対応することができ、利便性を向上することができる。
またハウジング内の空間は、狭隘な空間であって、ハウジングの壁面にアームが衝突することを防ぐために、基台と搬送先と搬送元との位置に基づいて、多関節ロボットを右手系および左手系に随時変更する必要がある。本実施の形態では、右手系と左手系に切換可能な状態で、ベース部23を第1角変位軸線L1まわりに角変位させることができ、動作占有領域を小さくすることができる。
上述した本発明の形態は、実施の一形態であって発明に範囲内において構成を変更することができる。ハンド部27を有してウェハ21を搬送する多関節ロボットの形態を説明したが他の用途に用いられてもよい。たとえばハンド部に換えて他のエンドエフェクタを装着することによって、接着装置または塗装装置など他の装置として実現することができる。このように本発明は、エンドエフェクタを変位駆動する多関節アクチュエータの関節構造に用いることができ、占有動作範囲を小さくすることができる。なお、本発明の多関節ロボットは、上述したように占有動作範囲を小さくすることができるので、ハウジング内の空間のように、限定された狭隘な空間に配置することができる。狭隘な空間は、たとえば、ロボットアームの最大動作可能領域よりも小さい空間である。最大動作可能領域は、ベース部から第2アームの他端部を最も離反させた状態で、第1角変位軸線まわりに回転したときに第2アームの他端部が描く円内の空間である。 また上述したように第2角変位軸線L2と第3角変位軸線L3との間の距離である第2距離R2と、第3角変位軸線L3と第4角変位軸線L4との間の距離である第3距離R3とが等しい長さに設定されればよく、第1角変位軸線L1と第2角変位軸線L2との長さは、第2および第3距離R2、R3に対して少々ずれていてもよい。また本実施の形態では、第1角変位軸線L1は、鉛直方向に延びるとしたが、その他の方向に延びてもよい。
また本実施の形態では、ハンド部27を角変位駆動するハンド駆動手段100が設けられたが、前記連動手段と同様にして第3アームの角変位に連動して、ハンド部27を角変位してもよい。
本発明の実施の一形態である多関節ロボット20を示す平面図である。 多関節ロボット20の側面図である。 多関節ロボットの背面図である。 多関節ロボット20の電気的構成を示すブロック図である。 動力伝達機構を説明するために多関節ロボット20を簡略化して示す断面図である。 多関節ロボット20の動作の一例を示す平面図である。 多関節ロボット20の他の動作の一例を示す平面図である。 多関節ロボット20の旋回半径が最小となるように、第1〜第3アームおよびハンド部を屈曲させた状態を示す平面図である。 多関節ロボット20のさらに他の動作の一例を示す平面図である。 本発明の多関節ロボット20の他の使用状態を示す平面図である。 多関節ロボット20の他の使用状態を示す側面図である。 動力伝達機構を説明するために他の使用例の多関節ロボット20を簡略化して示す断面図である。 多関節ロボット20の他の動作状態を示す図である。 多関節ロボット20の他の動作状態を示す図である。 従来技術の多関節ロボット1を示す平面図である。 従来技術の多関節ロボット1の変形状態を示す平面図である。 従来技術の多関節ロボット1の他の変形状態を示す平面図である。
符号の説明
19 基準直線
20 多関節ロボット
21 半導体ウェハ
22 基台
23 ベース部
24 第1アーム
25 第2アーム
26 第3アーム
27 ハンド部
50 ベース駆動手段
51 アーム駆動手段
54 連動手段
L1 第1角変位軸線
L2 第2角変位軸線
L3 第3角変位軸線
L4 第4角変位軸線

Claims (5)

  1. 予め定められる第1角変位軸線を有し、第1角変位軸線まわりに角変位自在に設けられるベース部と、
    一端部がベース部に一体に連結され、他端部に第1角変位軸線に平行な第2角変位軸線を有する第1アームと、
    一端部が前記第1アームの他端部に連結され、他端部に前記第1角変位軸線に平行な第3角変位軸線を有し、前記第2角変位軸線まわりに角変位自在に設けられる第2アームと、
    一端部が前記第2アームの他端部に連結され、前記第3角変位軸線まわりに角変位自在に設けられる第3アームと、
    第2アームと第3アームとを連動させ、第2アームが第1アームに対して第2角変位軸線まわりに周方向一方に角変位する角度の2倍の角度で、第3アームを第2アームに対して第3角変位軸線まわりに周方向他方に角変位させる連動手段と、
    ベース部を第1角変位軸線まわりに角変位するベース部駆動手段と、
    第2アームを第2角変位軸線まわりに角変位するアーム駆動手段と、
    第3アームに第4角変位軸線まわりに角変位自在に連結され、ワークを保持するエンドエフェクタと、
    前記エンドエフェクタを、前記第4角変位軸線まわりに角変位するエンドエフェクタ駆動手段とを含み、
    第3角変位軸線が第1角変位軸線とほぼ同じ位置に配置され、第2角変位軸線と第4角変位軸線とが第1角変位軸線に関して対称な位置となるように、第1〜第3アームが角変位した状態で、ワークを保持したエンドエフェクタの前記ワークを含む領域が、第1角変位軸線から第2角変位軸線までの距離を半径として、第1角変位軸線を一回転したときの旋回領域内に配置されるように、前記第1〜第3アームおよびエンドエフェクタの長さが選ばれていることを特徴とする多関節ロボット。
  2. 第1アームは、ベース部および第2アームに対して着脱可能に設けられ、
    第2アームは、一端部がベース部に連結可能であって、第2アームとベース部とが連結された状態で、ベース部に対して前記第1角変位軸線まわりに角変位可能に設けられ、
    連動手段は、第2アームがベース部に対して第1角変位軸線まわりに周方向一方に角変位する角度の2倍の角度で、第3アームを第2アームに対して第3角変位軸線まわりに周方向他方に角変位させることを特徴とする請求項1記載の多関節ロボット。
  3. 前記連動手段は、歯車伝達機構によってアーム駆動手段からの駆動力を第2アームおよび第3アームに伝達することを特徴とする請求項1または2記載の多関節ロボット。
  4. 限定された狭隘な空間に配置されることを特徴とする請求項1〜3のいずれかに記載の多関節ロボット。
  5. 予め定められる雰囲気に保たれるハウジング内に配置され、半導体ウェハを搬送することを特徴とする請求項1〜4のいずれかに記載の多関節ロボット。
JP2003274371A 2003-07-14 2003-07-14 多関節ロボット Expired - Lifetime JP3999712B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003274371A JP3999712B2 (ja) 2003-07-14 2003-07-14 多関節ロボット
US10/889,079 US7383751B2 (en) 2003-07-14 2004-07-13 Articulated robot
EP04016447A EP1498228B1 (en) 2003-07-14 2004-07-13 Articulated robot
AT04016447T ATE372857T1 (de) 2003-07-14 2004-07-13 Gelenkarmroboter
DE602004008837T DE602004008837T2 (de) 2003-07-14 2004-07-13 Gelenkarmroboter
KR1020040054862A KR100592064B1 (ko) 2003-07-14 2004-07-14 다관절 로봇

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274371A JP3999712B2 (ja) 2003-07-14 2003-07-14 多関節ロボット

Publications (2)

Publication Number Publication Date
JP2005039047A JP2005039047A (ja) 2005-02-10
JP3999712B2 true JP3999712B2 (ja) 2007-10-31

Family

ID=33475550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274371A Expired - Lifetime JP3999712B2 (ja) 2003-07-14 2003-07-14 多関節ロボット

Country Status (6)

Country Link
US (1) US7383751B2 (ja)
EP (1) EP1498228B1 (ja)
JP (1) JP3999712B2 (ja)
KR (1) KR100592064B1 (ja)
AT (1) ATE372857T1 (ja)
DE (1) DE602004008837T2 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269297A1 (en) * 2003-11-10 2007-11-22 Meulen Peter V D Semiconductor wafer handling and transport
US10086511B2 (en) * 2003-11-10 2018-10-02 Brooks Automation, Inc. Semiconductor manufacturing systems
JP5459817B2 (ja) * 2004-11-29 2014-04-02 川崎重工業株式会社 多関節型ロボットを備えた自動細胞培養装置
US9248568B2 (en) 2005-07-11 2016-02-02 Brooks Automation, Inc. Unequal link SCARA arm
JP4098338B2 (ja) 2006-07-20 2008-06-11 川崎重工業株式会社 ウェハ移載装置および基板移載装置
US7531979B2 (en) * 2006-09-18 2009-05-12 Asm Technology Singapore Pte Ltd. Direct drive robotic manipulator
JP4980127B2 (ja) * 2007-04-24 2012-07-18 川崎重工業株式会社 基板搬送ロボット
US8777547B2 (en) 2009-01-11 2014-07-15 Applied Materials, Inc. Systems, apparatus and methods for transporting substrates
JP5504641B2 (ja) * 2009-02-13 2014-05-28 株式会社安川電機 基板搬送用ロボット及びそれを備えた基板搬送装置、半導体製造装置
JP2011119556A (ja) * 2009-12-07 2011-06-16 Yaskawa Electric Corp 水平多関節ロボットおよびそれを備えた搬送装置
JP5462064B2 (ja) * 2010-04-28 2014-04-02 日本電産サンキョー株式会社 産業用ロボット
DE102011077546A1 (de) * 2011-06-15 2012-12-20 Technische Universität Berlin Verfahren zum Betreiben eines Roboters, Roboter und Robotersystem
US9076829B2 (en) * 2011-08-08 2015-07-07 Applied Materials, Inc. Robot systems, apparatus, and methods adapted to transport substrates in electronic device manufacturing
US8768513B2 (en) * 2011-08-08 2014-07-01 Applied Materials, Inc. Systems having multi-linkage robots and methods to correct positional and rotational alignment in multi-linkage robots
KR20130017379A (ko) * 2011-08-10 2013-02-20 금오공과대학교 산학협력단 다관절 로봇
US9076830B2 (en) 2011-11-03 2015-07-07 Applied Materials, Inc. Robot systems and apparatus adapted to transport dual substrates in electronic device manufacturing with wrist drive motors mounted to upper arm
KR20130096072A (ko) * 2012-02-21 2013-08-29 삼성전자주식회사 기판 반송 장치
WO2014024690A1 (ja) * 2012-08-09 2014-02-13 日本電産サンキョー株式会社 産業用ロボット
JP6173677B2 (ja) 2012-08-09 2017-08-02 日本電産サンキョー株式会社 産業用ロボットの原点位置復帰方法
JP5853991B2 (ja) * 2013-05-22 2016-02-09 株式会社安川電機 基板搬送ロボット、基板搬送システムおよび基板搬送方法
US10780586B2 (en) 2013-08-09 2020-09-22 Nidec Sankyo Corporation Horizontal articulated robot with bevel gears
JP6509487B2 (ja) 2013-08-09 2019-05-08 日本電産サンキョー株式会社 産業用ロボット
WO2015020089A1 (ja) * 2013-08-09 2015-02-12 日本電産サンキョー株式会社 水平多関節ロボットおよび水平多関節ロボットの製造方法
JP6468804B2 (ja) * 2014-10-30 2019-02-13 ライフロボティクス株式会社 ロボットアーム機構
JP6374295B2 (ja) * 2014-10-30 2018-08-15 日本電産サンキョー株式会社 産業用ロボット
EP3238885B1 (en) * 2014-12-26 2022-05-04 Kawasaki Jukogyo Kabushiki Kaisha Dual-arm robot
JP6027661B2 (ja) * 2015-09-30 2016-11-16 川崎重工業株式会社 基板搬送ロボット
JP6681646B2 (ja) * 2015-11-27 2020-04-15 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
JP6492271B2 (ja) 2016-04-08 2019-04-03 株式会社安川電機 搬送システムおよびロボット
EP3251806B1 (en) * 2016-05-30 2021-03-10 Seiko Epson Corporation Motor unit and robot
JP2018019471A (ja) * 2016-07-26 2018-02-01 セイコーエプソン株式会社 ロボット及びモーター
JP1619125S (ja) * 2018-03-29 2018-11-26
USD892881S1 (en) * 2018-03-29 2020-08-11 Daihen Corporation Power transmission unit and power receiving unit of an industrial robot arm
JP1612908S (ja) * 2018-03-29 2018-09-03
JP1612912S (ja) * 2018-03-29 2018-09-03
JP1612766S (ja) * 2018-03-29 2018-09-03
US11535460B2 (en) * 2018-05-31 2022-12-27 Brooks Automation Us, Llc Substrate processing apparatus
JP6649995B2 (ja) * 2018-06-22 2020-02-19 川崎重工業株式会社 基板搬送ロボット
JP7078479B2 (ja) 2018-07-13 2022-05-31 株式会社安川電機 搬送ロボットおよびロボットシステム
JP2020074440A (ja) * 2020-01-17 2020-05-14 川崎重工業株式会社 基板搬送ロボット
KR102394121B1 (ko) * 2021-10-08 2022-05-04 (주) 티로보틱스 기판 이송 로봇을 챔버 내에서 주행하기 위한 주행 로봇
WO2023188177A1 (ja) * 2022-03-30 2023-10-05 平田機工株式会社 基板搬送システム及び移載ロボット制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272474A (ja) * 1987-04-30 1988-11-09 日本電子株式会社 試料搬送ア−ム
US5064340A (en) * 1989-01-20 1991-11-12 Genmark Automation Precision arm mechanism
JPH0492446A (ja) * 1990-08-07 1992-03-25 Plasma Syst:Kk 基板搬送ロボット
IT1251017B (it) * 1991-05-21 1995-04-28 Ugo Crippa Meccanismo per compiere traiettorie prefissate assimilabili ad ellittiche
JP3098809B2 (ja) * 1991-07-25 2000-10-16 東京応化工業株式会社 ウェハ処理方法
JPH08172121A (ja) * 1994-12-20 1996-07-02 Hitachi Ltd 基板搬送装置
US5765444A (en) * 1995-07-10 1998-06-16 Kensington Laboratories, Inc. Dual end effector, multiple link robot arm system with corner reacharound and extended reach capabilities
JPH09102526A (ja) * 1995-10-05 1997-04-15 Kokusai Electric Co Ltd 真空内基板搬送装置
US6121743A (en) * 1996-03-22 2000-09-19 Genmark Automation, Inc. Dual robotic arm end effectors having independent yaw motion
US6059517A (en) * 1996-09-17 2000-05-09 Begin; Robert George End effector assembly for inclusion in a system for producing uniform deposits on a wafer
JPH10329062A (ja) * 1997-06-03 1998-12-15 Tokico Ltd 工業用ロボット
US5993142A (en) * 1997-07-10 1999-11-30 Genmark Automation, Inc. Robot having multiple degrees of freedom in an isolated environment
US6491491B1 (en) * 1997-10-30 2002-12-10 Sankyo Seiki Mfg. Co., Ltd. Articulated robot
JPH11138472A (ja) 1997-11-07 1999-05-25 Yaskawa Electric Corp 水平多関節ロボット
JP3725355B2 (ja) * 1999-02-17 2005-12-07 三菱電機株式会社 ロボット装置のアーム駆動機構
JP2001137181A (ja) 1999-11-16 2001-05-22 Olympus Optical Co Ltd 内視鏡
JP2001310287A (ja) * 2000-04-28 2001-11-06 Shinko Electric Co Ltd ロボット用アーム装置
JP2002066966A (ja) * 2000-08-25 2002-03-05 Ishii Hyoki Corp 搬送ロボット
JP2003220586A (ja) * 2002-01-22 2003-08-05 Nissin Electric Co Ltd 物品搬送ロボット及び真空処理装置
JP2004235538A (ja) * 2003-01-31 2004-08-19 Tokyo Electron Ltd 搬送装置,真空処理装置およびoリング

Also Published As

Publication number Publication date
KR20050008523A (ko) 2005-01-21
KR100592064B1 (ko) 2006-06-21
EP1498228A1 (en) 2005-01-19
US20050011294A1 (en) 2005-01-20
EP1498228B1 (en) 2007-09-12
ATE372857T1 (de) 2007-09-15
JP2005039047A (ja) 2005-02-10
US7383751B2 (en) 2008-06-10
DE602004008837D1 (de) 2007-10-25
DE602004008837T2 (de) 2008-06-12

Similar Documents

Publication Publication Date Title
JP3999712B2 (ja) 多関節ロボット
US11613002B2 (en) Dual arm robot
JP6051021B2 (ja) 産業用ロボットおよび産業用ロボットの制御方法
US20020066330A1 (en) Double arm substrate transport unit
US10850390B2 (en) Dual robot including spaced upper arms and interleaved wrists and systems and methods including same
JP6607661B2 (ja) 水平多関節ロボット
JP4852719B2 (ja) 多関節型ロボット
WO2006109791A1 (ja) 多関節型ロボット
US20110135437A1 (en) Horizontal multi-joint robot and transportation apparatus including the same
TWI675728B (zh) 機器人及機器人系統
KR101182600B1 (ko) 실린더 형태의 큰 작업영역을 갖는 병렬형 로봇기구
JP5545337B2 (ja) ロボットアームおよびロボット
JP2006289555A (ja) 多関節型ロボット
TWI581929B (zh) Substrate transfer robot and its operation method
JP6630727B2 (ja) 水平多関節ロボット
KR101161056B1 (ko) 다관절 로봇
JP2008264881A (ja) 作業装置
JP2005150575A (ja) ダブルアーム型ロボット
WO1992001537A1 (en) Densely disposed robot
TW201347074A (zh) 搬送裝置
JP2002299413A (ja) ロボット装置及び処理装置
JP2017185625A (ja) ロボット
WO2019207687A1 (ja) 水平多関節ロボット
JP2018183836A (ja) パラレルリンクロボット
Hosek et al. Reduced-Complexity Dual-Arm Robotic Manipulator for Compact Substrate-Handling Platforms

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Ref document number: 3999712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140817

Year of fee payment: 7

EXPY Cancellation because of completion of term