WO2023140259A1 - 搬送装置および搬送方法 - Google Patents

搬送装置および搬送方法 Download PDF

Info

Publication number
WO2023140259A1
WO2023140259A1 PCT/JP2023/001224 JP2023001224W WO2023140259A1 WO 2023140259 A1 WO2023140259 A1 WO 2023140259A1 JP 2023001224 W JP2023001224 W JP 2023001224W WO 2023140259 A1 WO2023140259 A1 WO 2023140259A1
Authority
WO
WIPO (PCT)
Prior art keywords
fork
opening
container
arm
base
Prior art date
Application number
PCT/JP2023/001224
Other languages
English (en)
French (fr)
Inventor
俊明 豊巻
紀彦 網倉
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023140259A1 publication Critical patent/WO2023140259A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/07Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers Not used, see H01L21/677
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • Various aspects and embodiments of the present disclosure relate to transport apparatuses and transport methods.
  • Patent Document 1 discloses a substrate transfer system that includes an atmospheric transfer module, a load lock module, a load port, and a substrate transfer robot.
  • the atmospheric transfer module has a first sidewall and a second sidewall opposite the first sidewall.
  • a load lock module is attached to the first sidewall.
  • a load port is attached to the second sidewall.
  • the substrate transfer robot is provided inside the atmosphere transfer module and has a base, a substrate transfer arm, and a straightening section.
  • the base reciprocates along the first side wall.
  • the substrate transfer arm is provided on the base.
  • the straightening section surrounds the base, and when the base is moved, creates an air flow obliquely downward with respect to the direction opposite to the moving direction of the base.
  • the present disclosure provides a conveying device and a conveying method that can reduce the installation area of the conveying device.
  • One aspect of the present disclosure is a transport device that includes a housing and a transport robot provided within the housing.
  • the housing has a first side wall in contact with the load lock module, and a second side wall provided at a position facing the first side wall and provided with a plurality of openings to which a plurality of containers containing substrates or consumable parts are connected.
  • the transfer robot includes a base, a fork, an articulated arm, and a drive section.
  • the base is secured within the housing.
  • a fork supports the member on the upper surface.
  • the articulated arm is connected between the base and the fork, has at least three joints, and pivots about a pivot axis predetermined on the base at the joint with the base.
  • the drive unit individually drives each joint of the arm to angularly displace it about the corresponding axis.
  • the footprint of the transport device can be reduced.
  • FIG. 1 is a plan view showing an example of a processing system according to an embodiment of the present disclosure
  • FIG. 2 is a plan view showing an example of a transfer robot inside the EFEM.
  • FIG. 3 is a plan view showing an example of movement of the transport robot when transporting the substrate.
  • FIG. 4 is a plan view showing an example of movement of the transport robot when transporting the substrate.
  • FIG. 5 is a diagram for explaining an example of the angles of the arms of the transfer robot.
  • FIG. 6 is a plan view showing an example of movement of the transport robot when transporting the substrate.
  • FIG. 7 is a plan view showing an example of movement of the transport robot when transporting the substrate.
  • FIG. 8 is a side view showing an example of EFEM in a comparative example.
  • FIG. 1 is a plan view showing an example of a processing system according to an embodiment of the present disclosure
  • FIG. 2 is a plan view showing an example of a transfer robot inside the EFEM.
  • FIG. 3 is a
  • FIG. 9 is a plan view showing an example of movement of the transport robot when transporting a substrate in a container located near the transport robot.
  • FIG. 10 is a plan view showing another example of EFEM.
  • FIG. 11 is a schematic cross-sectional view showing an example of EFEM.
  • FIG. 12 is a flow chart showing an example of gas control within the EFEM.
  • the entire substrate transfer robot moves inside the atmospheric transfer module when transferring the substrate, particles that are stirred up in the atmospheric transfer module as the substrate transfer robot moves may adhere to the substrate being transferred. Therefore, it is conceivable to prevent the entire substrate transfer robot from moving within the atmosphere transfer module when transferring the substrate. If the entire substrate transfer robot does not move within the atmospheric transfer module, the arm of the substrate transfer robot must be lengthened. If the arm of the substrate transfer robot is lengthened, it is necessary to widen the space in the atmospheric transfer module in order to secure the movement range of the arm, and the installation area of the atmospheric transfer module becomes large.
  • the present disclosure provides a technology capable of reducing the installation area of the transport device.
  • FIG. 1 is a plan view showing an example configuration of a processing system 1 according to an embodiment of the present disclosure. In FIG. 1, for the sake of convenience, some internal components of the apparatus are shown transparently.
  • the processing system 1 includes a main body 10 and a control device 100 that controls the main body 10 .
  • the main body 10 includes a vacuum transfer module 11 , multiple processing modules 12 , multiple load lock modules 13 , and an EFEM (Equipment Front End Module) 20 .
  • EFEM 20 is an example of a transport device.
  • a plurality of processing modules 12 are connected to the side wall of the vacuum transfer module 11 via gate valves G1.
  • four processing modules 12 are connected to the vacuum transfer module 11 .
  • the disclosed technique is not limited to this, and the number of processing modules 12 connected to the vacuum transfer module 11 may be more than four or less than four.
  • Each processing module 12 subjects the substrate W to processing such as etching and film formation.
  • the substrate W is an example of a member.
  • Each processing module 12 may be a module that executes the same process in the manufacturing process, or a module that executes a different process.
  • Each processing module 12 is provided with a stage on which the substrate W is placed, and the stage is provided with an edge ring so as to surround the substrate W. As shown in FIG. The edge ring is larger than the substrate W.
  • An edge ring is an example of a consumable part and an example of a member.
  • a plurality of load lock modules 13 are connected to the side wall of the vacuum transfer module 11 via gate valves G2.
  • two load lock modules 13 are connected to the vacuum transfer module 11 .
  • the technology disclosed is not limited to this, and the number of load lock modules 13 connected to the vacuum transfer module 11 may be more than two or less than two.
  • a transfer robot 110 is provided in the vacuum transfer module 11 .
  • the transport robot 110 transports substrates W between the processing modules 12 and the load lock modules 13 . Also, the transport robot 110 transports consumable parts between the processing module 12 and the load lock module 13 .
  • the inside of the vacuum transfer module 11 is kept at a predetermined pressure (hereinafter referred to as low pressure) lower than the atmospheric pressure.
  • one transfer robot 110 is provided inside the vacuum transfer module 11 .
  • the technology disclosed is not limited to this, and a plurality of transfer robots 110 may be provided in the vacuum transfer module 11 .
  • Each load lock module 13 is connected to the EFEM 20 via a gate valve G3.
  • the load lock module 13 closes the gate valve G3 when the substrate W or consumable parts are loaded from the EFEM 20 through the gate valve G3, and the pressure inside the load lock module 13 is lowered from a predetermined pressure (for example, atmospheric pressure) to a low pressure. Then, the load lock module 13 opens the gate valve G2, and the substrate W or consumable parts in the load lock module 13 is carried out into the vacuum transfer module 11 by the transfer robot 110.
  • a predetermined pressure for example, atmospheric pressure
  • the load lock module 13 closes the gate valve G2 when the substrate W or consumable parts are carried in by the transfer robot 110 from the vacuum transfer module 11 through the gate valve G2 while the inside of the load lock module 13 is at a low pressure. Then, the load lock module 13 raises the pressure inside the load lock module 13 from the low pressure to a predetermined pressure (for example, atmospheric pressure). Then, the load lock module 13 opens the gate valve G3, and the substrate W or consumable parts in the load lock module 13 is carried out into the EFEM 20 by the transfer robot.
  • a predetermined pressure for example, atmospheric pressure
  • the EFEM 20 includes a housing 200 and a transport robot 21 provided in the housing 200 and having an articulated arm.
  • a transport robot 21 provided in the EFEM 20 .
  • one transfer robot 21 is provided in the EFEM 20 .
  • the disclosed technology is not limited to this, and a plurality of transfer robots 21 may be provided within the EFEM 20 .
  • the housing 200 has side walls 201 and side walls 202 .
  • Sidewall 201 is an example of a first sidewall
  • sidewall 202 is an example of a second sidewall.
  • Side wall 201 contacts load lock module 13 .
  • Side wall 202 is provided at a position facing side wall 201 .
  • sidewall 201 is shorter than sidewall 202 when viewed from above.
  • the length ratio of sidewalls 201 and 202 is 3:4 or 3:5.
  • Side wall 202 is provided with a plurality of openings. Each opening is provided with a load port 14a to 14c to which a container such as a FOUP (Front Opening Unified Pod) for accommodating substrates W or consumable parts is connected.
  • FOUP Front Opening Unified Pod
  • the load port 14a and the load port 14e are provided at the furthest position from the transfer robot 21.
  • the EFEM 20 is provided with five load ports 14 .
  • the disclosed technology is not limited to this, and the number of load ports 14 provided in the EFEM 20 may be more than five or less than five.
  • a device 203 such as an aligner module, a storage module, or an inspection module is arranged in the EFEM 20 .
  • the transport robot 21 transports substrates W and consumable parts between a container connected to the load port 14 , the load lock module 13 and the device 203 .
  • a duct 22 for circulating the gas inside the EFEM 20 is provided inside the EFEM 20 .
  • the inside of the EFEM 20 is filled with an inert gas during the transfer of the substrate W, and the inert gas circulates inside the EFEM 20 .
  • Nitrogen (N 2 ) gas will be described below as an example of the inert gas.
  • the control device 100 has a memory, a processor, and an input/output interface. Data such as recipes, programs, and the like are stored in the memory.
  • the memory is, for example, RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), or the like.
  • the processor controls each part of the main body 10 via the input/output interface based on data such as recipes stored in the memory.
  • the processor is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
  • FIG. 2 is a plan view showing an example of the transfer robot 21 inside the EFEM 20.
  • the transport robot 21 in this embodiment has three joints.
  • the transport robot 21 has a base 210 , a first joint 211 , a first arm 212 , a second joint 213 , a second arm 214 , a third joint 215 , a third arm 216 and a fork 217 .
  • the first arm 212 , the second arm 214 , and the third arm 216 are angularly displaced by a driving section provided within the base 210 .
  • the first arm 212 is a connecting portion with the base 210 and is rotated (angularly displaced) by the drive section around a first joint 211 that is a predetermined pivot axis of the base 210 .
  • the second arm 214 is rotated (driven by angular displacement) with respect to the first arm 212 with the second joint 213 as the center.
  • the third arm 216 is rotated (driven for angular displacement) with respect to the second arm 214 about the third joint 215 by the driving section.
  • the base 210 is fixed to the housing 200 and the transport robot 21 does not move inside the EFEM 20 . Therefore, it is possible to prevent particles, which are stirred up in the EFEM 20 as the transport robot 21 moves, from adhering to the substrate W while the substrate W is being transported.
  • the transport robot 21 may be configured to be able to move the EFEM 20 during a time period other than when the substrate W is being transported, provided that the transport robot 21 does not move within the EFEM 20 while the substrate W is being transported.
  • FIGS. 3 to 7 are plan views showing an example of movement of the transport robot 21 when transporting the substrate W.
  • FIG. The procedures illustrated in FIGS. 3 to 7 are an example of the transport method.
  • the container 15 containing the substrates W is connected to the load port 14, and the gate valve G4 is opened. Then, for example, as shown in FIG. 3, the posture of the fork 217 is changed so that the fork 217 is inclined with respect to the opening surface of the opening 218 of the side wall 202 .
  • the process of changing the attitude of the fork 217 to the oblique attitude with respect to the opening surface of the opening 218 is an example of the process (a).
  • the fork 217 is moved in a direction perpendicular to the opening surface of the opening 218 while the posture of the fork 217 remains oblique to the opening surface of the opening 218, thereby inserting the fork 217 into the container 15.
  • the fork 217 is inserted into the container 15 connected to the load port 14e.
  • the step of inserting the fork 217 into the container 15 by moving the fork 217 in a direction perpendicular to the opening surface of the opening 218 is an example of step (b).
  • the angle of the fork 217 with respect to the opening surface of the opening 218 when the fork 217 is inserted into the container 15 is, for example, the angle shown in FIG. That is, the angle of the fork 217 with respect to the opening surface of the opening 218 is such that the fork 217 and the third arm 216 do not come into contact with the opening 218 of the side wall 202 and the opening 15a of the container 15 when the substrate W is transferred.
  • the angle of the fork 217 with respect to the opening surface of the opening 218 is 25 degrees or more and 35 degrees or less between the straight line perpendicular to the opening surface and the fork 217 in plan view.
  • the fork 217 with the substrate W placed thereon is pulled out of the container 15 by moving the fork 217 in a direction perpendicular to the opening surface of the opening 218 while the posture of the fork 217 remains oblique to the opening surface of the opening 218.
  • the step of extracting the fork 217 with the substrate W placed thereon from the container 15 by moving the fork 217 in a direction perpendicular to the opening surface of the opening 218 is an example of step (d).
  • each arm of the transport robot 21 moves within the EFEM 20 except for the region R1, as shown in FIG. Therefore, a device 203 such as a storage module can be arranged in the area R1. Thereby, the space inside the EFEM 20 can be effectively used.
  • the turning range of the first arm 212 of the transfer robot 21 is the region R2.
  • the fork 217' moves in a direction perpendicular to the opening surface of the opening 218'.
  • the fork 217' moves in a direction perpendicular to the opening surface of the opening 218'.
  • the movement range of each arm of the transfer robot 21' interferes with the area R1
  • the length of each arm of the transfer robot 21' is longer than the length of each arm of the transfer robot 21 in this embodiment. Therefore, the region R3, which is the turning range of the first arm 212', is wider than the region R2, which is the turning range of the first arm 212 in this embodiment. Therefore, in the example of FIG. 8, the distance L2 between the sidewalls 201' and 202' is longer than the distance L1 between the sidewalls 201 and 202 in the EFEM 20 of this embodiment. Therefore, in the EFEM 20 of this embodiment, the distance L1 between the side wall 201 and the side wall 202 can be made shorter than the EFEM 20' of the comparative example shown in FIG. 8, and the installation area of the EFEM 20 can be reduced.
  • the movement of the fork 217 with the posture of the fork 217 oblique with respect to the opening surface of the opening 218 is preferably performed at least when transferring the substrate W in the container 15 connected to the opening 218 farthest from the transfer robot 21. Thereby, each arm of the transfer robot 21 can be shortened, and the installation area of the EFEM 20 can be reduced.
  • the posture of the fork 217 can be shared when transferring the substrates W in the container 15 connected to the plurality of openings 218 other than the opening 218 farthest from the transfer robot 21 .
  • the control of the transport robot 21 can be simplified.
  • a container 15' containing consumable parts larger than the substrate W may be connected to the opening 218 located farthest from the transport robot 21, as shown in FIG. 10, for example.
  • the opening 218 to which the container 15' containing consumable parts larger than the substrate W is connected is wider than the opening 218 to which the container 15 containing the substrate W is connected. Therefore, when the fork 217 is inserted into the container 15 ′ containing consumable parts, the inclination angle of the posture of the fork 217 with respect to the opening surface of the opening 218 can be increased. Thereby, the length of each arm of the transfer robot 21 can be shortened, and the installation area of the EFEM 20 can be further reduced.
  • FIG. 11 is a schematic cross-sectional view showing an example of the EFEM 20.
  • the housing 200 of the EFEM 20 is airtight.
  • An FFU (Fan Filter Unit) 23 is provided above the EFEM 20 .
  • the FFU 23 supplies gas from which particles and the like have been removed (hereinafter referred to as clean gas) from above the EFEM 20 via the perforated ceiling 24 to the space inside the EFEM 20 where the transfer robot 21 is arranged.
  • a perforated floor 25 is provided at the bottom of the EFEM 20 , and gas that has passed through the perforated floor 25 is sent to the duct 22 via a valve 27 .
  • the gas sent to duct 22 is sent to FFU 23 . This creates a clean gas downflow within the EFEM 20 . As a result, it is possible to suppress the particles and the like from rolling up inside the EFEM 20 .
  • a supply source of nitrogen gas is connected to the pipe between the valve 27 and the duct 22 via the valve 26a.
  • a CDA (Clean Dry Air) supply source is connected to the pipe between the valve 27 and the duct 22 via a valve 26b.
  • an exhaust valve 28a and an exhaust adjustment valve 28b connected in parallel are connected to the space below the perforated floor 25. As shown in FIG.
  • the EFEM 20 is provided with a sensor 29 .
  • the sensor 29 measures the state of the space inside the EFEM 20 in which the transfer robot 21 is arranged.
  • the sensor 29 is, for example, an oxygen concentration meter, a hygrometer, a pressure gauge, or the like.
  • FIG. 12 is a flow chart showing an example of gas control within the EFEM 20 .
  • Each process exemplified in FIG. 12 is realized by controlling each part of the main body 10 by the control device 100 .
  • control device 100 closes all the valves of the EFEM 20 (S100). Then, the control device 100 opens the valve 26b and starts supplying CDA into the EFEM 20 (S101). In step S101, CDA is supplied into the EFEM 20 at a flow rate of 130 slm, for example.
  • control device 100 refers to the measured value from the sensor 29 and determines whether the pressure inside the EFEM 20 has reached the first pressure within the first time after starting the supply of CDA (S102).
  • the first time is, for example, 3 minutes.
  • the first pressure is 460 Pa, for example.
  • the controller 100 If the pressure in the EFEM 20 does not reach the first pressure within the first time after starting the supply of CDA (S102: No), there is a possibility that CDA is leaking from the EFEM 20, so the controller 100 notifies the administrator of the processing system 1 of an error (S110). Then, the control device 100 stops the supply of CDA by closing the valve 26b (S111). Then, the control device 100 opens the exhaust valve 28a (S112) and terminates the processing shown in this flowchart.
  • the control device 100 replaces the gas inside the EFEM 20 from CDA with nitrogen gas (S103). In step S103, the control device 100 closes the valve 26b, opens the exhaust valve 28a, and opens the valve 26a.
  • the control device 100 refers to the measured value from the sensor 29, and starts circulation of nitrogen gas when the oxygen concentration in the EFEM 20 drops below a predetermined value (S104).
  • the control device 100 closes the exhaust valve 28a and opens the valve 27 when the oxygen concentration in the EFEM 20 has decreased to, for example, 0.8% or less.
  • the control device 100 supplies nitrogen gas at a predetermined flow rate (for example, 150 slm) into the EFEM 20 via the valve 26a.
  • the nitrogen gas in the EFEM 20 is supplied into the EFEM 20 through the perforated ceiling 24 after particles and the like are removed by the FFU 23 and passes through the perforated floor 25 . Nitrogen gas that has passed through perforated bed 25 is then returned to FFU 23 via valve 27 and duct 22 .
  • control device 100 starts operating the main body 10 including the EFEM 20 (S105). Then, the control device 100 refers to the measured value from the sensor 29 and determines whether or not the pressure inside the EFEM 20 is within a predetermined range (S106).
  • the predetermined range in step S106 is, for example, 330Pa to 1000Pa.
  • the control device 100 If the pressure inside the EFEM 20 is not within the predetermined range (S106: No), the control device 100 notifies the administrator of the processing system 1 or the like of an error (S113). Then, the control device 100 stops the supply of nitrogen gas by closing the valve 26a (S114). Then, the control device 100 opens the exhaust valve 28a (S115), opens the valve 26b (S116), and exhausts the nitrogen gas in the EFEM 20. FIG. Then, the control device 100 ends the processing shown in this flowchart.
  • the control device 100 refers to the measured value from the sensor 29 and determines whether the oxygen concentration in the EFEM 20 is below a predetermined value (S107).
  • the predetermined value in step S107 is, for example, 1%. If the oxygen concentration in the EFEM 20 is greater than the predetermined value (S107: No), the control device 100 executes the process shown in step S113.
  • the control device 100 refers to the measured value from the sensor 29 and determines whether the humidity in the EFEM 20 is equal to or lower than the predetermined value (S108).
  • the predetermined value in step S108 is, for example, 1%. If the humidity inside the EFEM 20 is greater than the predetermined value (S108: No), the control device 100 executes the process shown in step S113.
  • the control device 100 determines whether or not to end the operation of the main body 10 (S109). If the operation of the main body 10 is not to be ended (S109: No), the control device 100 executes the process shown in step S106 again. On the other hand, when the operation of the main body 10 is terminated (S109: Yes), the control device 100 terminates the processing shown in this flowchart.
  • the control device 100 does not make the determination in step S106 for a predetermined time (for example, 10 seconds) after opening the gate valve G3 and for a predetermined time (for example, 10 seconds) after opening the gate valve G4.
  • the EFEM 20 in this embodiment includes the housing 200 and the transport robot 21 provided in the housing 200 and having an articulated arm.
  • the housing 200 has a side wall 201 that contacts the load lock module 13, and a side wall 202 that is provided at a position facing the side wall 201 and provided with an opening 218 to which the container 15 that stores the substrate W or the consumable member is connected.
  • the transport robot 21 has a fork 217 provided at the tip of the arm and on which members are placed.
  • the fork 217 is inserted into the container 15 by moving in a direction perpendicular to the opening surface of the opening 218 while the posture of the fork 217 is slanted with respect to the opening surface of the opening 218 when carrying out the members in the container 15 connected to the opening 218. Thereby, the installation area of EFEM20 can be reduced.
  • the side wall 202 is provided with a plurality of openings 218 , and the container 15 is connected to each opening 218 .
  • the fork 217 is inserted into the container 15 by moving in a direction perpendicular to the opening surface of the opening 218 while the posture of the fork 217 is oblique with respect to the opening surface of the opening 218 when carrying out the member in the container 15 connected to the opening 218 provided at the farthest position from the transfer robot 21.
  • the length of the arm of the transfer robot 21 can be shortened when carrying out the member in the container 15 connected to the opening 218 provided farthest from the transfer robot 21, and the installation area of the EFEM 20 can be reduced.
  • the fork 217 is inserted into the container 15 by moving in a direction perpendicular to the opening surface of the opening 218 while the fork 217 is perpendicular to the opening surface of the opening 218 when carrying out the members in the container 15 connected to the opening 218 other than the opening 218 provided at the farthest position from the transfer robot 21.
  • the posture of the fork 217 can be shared when transferring the substrates W in the container 15 connected to the plurality of openings 218 other than the opening 218 farthest from the transfer robot 21 .
  • the control of the transport robot 21 can be simplified.
  • consumable parts larger than the substrate W are accommodated in the container 15 connected to the opening 218 provided at the furthest position from the transfer robot 21 .
  • the substrates W are accommodated in the containers 15 connected to the openings 218 other than the opening 218 provided at the farthest position from the transfer robot 21 .
  • the side wall 201 is shorter than the side wall 202 when viewed from above. Thereby, the installation area of EFEM20 can be reduced.
  • the angle of the fork 217 with respect to the opening surface of the opening 218 when the fork 217 is inserted into the container 15 is such an angle that the fork 217 and the third arm 216 connected to the fork 217 do not come into contact with the opening 218 when the fork 217 is inserted into the container 15.
  • the transfer robot 21 can smoothly carry out the members such as the substrates W from the container 15 and smoothly carry in the members such as the substrates W into the container 15 .
  • the transport robot 21 has three joints. As a result, the transfer robot 21 can smoothly carry out the members such as the substrates W from the container 15 and smoothly carry in the members such as the substrates W into the container 15 .
  • the transfer method in the above-described embodiment is a transfer method in the EFEM 20 including the housing 200 and the transfer robot 21 provided in the housing 200 and having a multi-joint arm.
  • the housing 200 has a side wall 201 that contacts the load lock module 13, and a side wall 202 that is provided at a position facing the side wall 201 and provided with an opening 218 to which the container 15 that stores the substrate W or the consumable member is connected.
  • the transport robot 21 has a fork 217 provided at the tip of the arm and on which members are placed.
  • the conveying method includes steps (a), (b), (c), and (d).
  • step (a) the posture of the fork 217 is changed so that the fork 217 is slanted with respect to the opening surface of the opening 218 .
  • step (b) the fork 217 is inserted into the container 15 by moving the fork 217 in a direction perpendicular to the opening surface of the opening 218 while the posture of the fork 217 is oblique to the opening surface of the opening 218 .
  • step (c) the members in container 15 are placed on fork 217 .
  • step (d) the fork 217 on which the member is placed is pulled out from the container 15 by moving the fork 217 in a direction perpendicular to the opening surface of the opening 218 while the posture of the fork 217 is oblique to the opening surface of the opening 218. Thereby, the installation area of EFEM20 can be reduced.
  • the transfer robot 21 in the EFEM 20 unloads a member such as the substrate W from the container 15, the fork 217 is obliquely inserted into the container 15 with respect to the opening surface of the opening 218, but the technology disclosed is not limited to this.
  • the transfer robot 110 in the vacuum transfer module 11 unloads a member such as the substrate W from the processing module 12
  • the fork of the transfer robot 110 may be inserted obliquely into the processing module 12 .
  • the fork of the transfer robot 110 is placed obliquely with respect to the opening planes of the vacuum transfer module 11 and the processing module 12, and the fork is moved in the direction perpendicular to the opening plane to insert the fork into the processing module 12.
  • the installation area of the vacuum transfer module 11 can be reduced.
  • (Appendix 1) a housing; A transport robot provided in the housing, The housing is a first sidewall contacting the load lock module; a second side wall provided at a position facing the first side wall and provided with a plurality of openings to which a plurality of containers containing members that are substrates or consumable parts are connected;
  • the transport robot is a base fixed within the housing; a fork supporting the member on the upper surface; a multi-joint arm that is connected between the base and the fork, has at least three joints, and rotates about a pivot axis predetermined on the base at a connection portion with the base; a driving unit for individually driving each joint of the arm for angular displacement about a corresponding axis;
  • the fork is When entering the container connected to the opening provided at the position closest to the base, the fork moves in a direction perpendicular to the opening surface of the opening with the posture of the fork vertical to the opening surface of the opening By moving into the container, When entering the container connected to the opening provided at the
  • the transport robot is a first arm that connects the base with a first joint and pivots about the first joint as the pivot; a second arm connected to the first arm by a second joint; A third arm connected to the second arm by a third joint,
  • the angle of the fork with respect to the opening surface of the opening when the fork enters the container is The conveying device according to appendix 2, wherein the angle is such that the fork and the third arm do not come into contact with the opening when the fork enters the container. (Appendix 4) 4.
  • the conveying device according to appendix 2 or 3, wherein the radius of rotation of the first arm is less than the distance between the first side wall and the second side wall.
  • Appendix 5 5.
  • the conveying device according to any one of appendices 2 to 4, wherein the first joint is provided on the second side wall side in a space between the first side wall and the second side wall.
  • Appendix 6 The third joint is when the fork enters the container connected to the opening closest to the base, it follows a vertical trajectory from the center of the container toward the second sidewall; 6.
  • the conveying device according to any one of Appendices 2 to 5, which passes through the base side of the center of the container when the fork enters the container connected to the opening provided at the farthest position from the base.
  • (Appendix 9) a housing;
  • a transport robot provided in the housing, The housing is a first sidewall contacting the load lock module; a second side wall provided at a position facing the first side wall and provided with a plurality of openings to which a plurality of containers containing members that are substrates or consumable parts are connected;
  • the transport robot is a base fixed within the housing; a fork supporting the member on the upper surface; a multi-joint arm that is connected between the base and the fork, has at least three joints, and rotates about a pivot axis predetermined on the base at a connection portion with the base;
  • a transfer method in a transfer device including a driving unit for individually driving each joint of the arm for angular displacement about a corresponding axis, (a) changing the posture of the fork so that, when the fork is inserted into the container connected to the opening provided at the farthest position from the base, the fork assumes an oblique posture with respect to the opening surface of the opening; (
  • the transport robot is a first arm that connects the base with a first joint and pivots about the first joint as the pivot; a second arm connected to the first arm by a second joint; A third arm connected to the second arm by a third joint,
  • the angle of the fork with respect to the opening surface of the opening when the fork enters the container is 11.
  • the transfer method according to appendix 10 wherein the angle is such that the fork and the third arm do not come into contact with the opening when the fork enters the container.
  • Appendix 12 12.

Abstract

搬送装置は、筐体と、筐体内に設けられ、多関節のアームを有する搬送ロボットとを備える。筐体は、ロードロックモジュールと接する第1の側壁と、第1の側壁に対向する位置に設けられ、基板または消耗部品である部材を収容する容器が接続される開口部が設けられた第2の側壁とを有する。搬送ロボットは、アームの先端に設けられ、部材が載せられるフォークを有する。フォークは、開口部に接続された容器内の部材を搬出する際に、開口部の開口面に対してフォークの姿勢が斜めの状態で開口面に対して垂直な方向に移動することにより容器内に挿入される。

Description

搬送装置および搬送方法
 本開示の種々の側面および実施形態は、搬送装置および搬送方法に関する。
 下記の特許文献1には、大気搬送モジュールと、ロードロックモジュールと、ロードポートと、基板搬送ロボットとを備える基板搬送システムが開示されている。大気搬送モジュールは、第1の側壁と第1の側壁の反対側にある第2の側壁とを有する。ロードロックモジュールは、第1の側壁に取り付けられている。ロードポートは、第2の側壁に取り付けられている。基板搬送ロボットは、大気搬送モジュール内に設けられており、基台と、基板搬送アームと、整流部とを有する。基台は、第1の側壁に沿って往復移動する。基板搬送アームは、基台上に設けられている。整流部は、基台を取り囲み、基台が移動する際に、基台の移動方向と反対方向に対して斜め下の方向への空気の流れを作る。
特開2021-141136号公報
 本開示は、搬送装置の設置面積を削減することができる搬送装置および搬送方法を提供する。
 本開示の一側面は、搬送装置であって、筐体と、筐体内に設けられる搬送ロボットとを備える。筐体は、ロードロックモジュールと接する第1の側壁と、第1の側壁に対向する位置に設けられ、基板または消耗部品である部材を収容する複数の容器が接続される複数の開口部が設けられた第2の側壁とを有する。搬送ロボットは、基台と、フォークと、多関節のアームと、駆動部とを含む。基台は、筐体内に固定される。フォークは、上面で部材を支持する。多関節アームは、基台とフォークとの間で連結され、少なくとも3つの関節を有し、基台との連結部分において、基台に予め定められた旋回軸を中心に旋回する。駆動部は、アームの各関節を、対応する軸線まわりにそれぞれ個別に角変位駆動する。フォークは、基台から最も近い位置に設けられた開口部に接続された容器内に進入する場合、開口部の開口面に対してフォークの姿勢が垂直の状態で開口面に対して垂直な方向に移動することにより容器内に進入し、基台から最も遠い位置に設けられた開口部に接続された容器内に進入する場合に、開口部の開口面に対してフォークの姿勢が斜めの状態で開口面に対して垂直な方向に移動することにより容器内に進入する。
 本開示の種々の側面および実施形態によれば、搬送装置の設置面積を削減することができる。
図1は、本開示の一実施形態における処理システムの一例を示す平面図である。 図2は、EFEM内の搬送ロボットの一例を示す平面図である。 図3は、基板を搬送する際の搬送ロボットの動きの一例を示す平面図である。 図4は、基板を搬送する際の搬送ロボットの動きの一例を示す平面図である。 図5は、搬送ロボットのアームの角度の一例を説明するための図である。 図6は、基板を搬送する際の搬送ロボットの動きの一例を示す平面図である。 図7は、基板を搬送する際の搬送ロボットの動きの一例を示す平面図である。 図8は、比較例におけるEFEMの一例を示す側面図である。 図9は、搬送ロボットに近い位置の容器内の基板を搬送する際の搬送ロボットの動きの一例を示す平面図である。 図10は、EFEMの他の例を示す平面図である。 図11は、EFEMの一例を示す概略断面図である。 図12は、EFEM内のガスの制御の一例を示すフローチャートである。
 以下に、搬送装置および搬送方法の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示される搬送装置および搬送方法が限定されるものではない。
 基板の搬送を行う際に、基板搬送ロボット全体が大気搬送モジュール内を移動すると、基板搬送ロボットの移動に伴って大気搬送モジュール内で巻き上げられたパーティクルが、搬送中の基板に付着する場合がある。そのため、基板の搬送を行う際に、基板搬送ロボット全体が大気搬送モジュール内で移動しないようにすることが考えられる。基板搬送ロボット全体が大気搬送モジュール内で移動しないようにすると、基板搬送ロボットのアームを長くする必要がある。基板搬送ロボットのアームを長くすると、アームの移動範囲を確保するために、大気搬送モジュール内の空間を広くする必要があり、大気搬送モジュールの設置面積が大きくなる。
 そこで、本開示は、搬送装置の設置面積を削減することができる技術を提供する。
[処理システム1の構成]
 図1は、本開示の一実施形態における処理システム1の構成の一例を示す平面図である。図1では、便宜的に一部の装置の内部の構成要素が透過するように図示されている。処理システム1は、本体10と、本体10を制御する制御装置100とを備える。
 本体10は、真空搬送モジュール11、複数の処理モジュール12、複数のロードロックモジュール13、およびEFEM(Equipment Front End Module)20を備える。EFEM20は、搬送装置の一例である。
 真空搬送モジュール11の側壁には、ゲートバルブG1を介して複数の処理モジュール12が接続されている。図1の例では、真空搬送モジュール11に4台の処理モジュール12が接続されている。しかし、開示の技術はこれに限られず、真空搬送モジュール11に接続される処理モジュール12の数は、4台より多くてもよく、4台より少なくてもよい。
 それぞれの処理モジュール12は、基板Wに対して、エッチングや成膜等の処理を施す。基板Wは、部材の一例である。それぞれの処理モジュール12は、製造工程の中で同一の工程を実行するモジュールであってもよく、異なる工程を実行するモジュールであってもよい。それぞれの処理モジュール12内には、基板Wが載置されるステージが設けられており、ステージには基板Wを囲むようにエッジリングが設けられている。エッジリングは、基板Wより大きい。エッジリングは、消耗部品の一例であり、部材の一例である。
 また、真空搬送モジュール11の側壁には、ゲートバルブG2を介して複数のロードロックモジュール13が接続されている。図1の例では、真空搬送モジュール11に2台のロードロックモジュール13が接続されている。しかし、開示の技術はこれに限られず、真空搬送モジュール11に接続されるロードロックモジュール13の数は、2台より多くてもよく、2台より少なくてもよい。
 真空搬送モジュール11内には、搬送ロボット110が設けられている。搬送ロボット110は、処理モジュール12とロードロックモジュール13との間で基板Wを搬送する。また、搬送ロボット110は、処理モジュール12とロードロックモジュール13との間で消耗部品を搬送する。真空搬送モジュール11内は、大気圧よりも低い予め定められた圧力(以下、低圧と記載する)に保たれている。図1の例では、真空搬送モジュール11内に1台の搬送ロボット110が設けられている。しかし、開示の技術はこれに限られず、真空搬送モジュール11内には、複数の搬送ロボット110が設けられていてもよい。
 それぞれのロードロックモジュール13は、ゲートバルブG3を介してEFEM20に接続されている。ロードロックモジュール13は、ゲートバルブG3を介してEFEM20から基板Wまたは消耗部品が搬入された場合に、ゲートバルブG3を閉じて、ロードロックモジュール13内の圧力を予め定められた圧力(例えば大気圧)から低圧まで下げる。そして、ロードロックモジュール13はゲートバルブG2を開き、ロードロックモジュール13内の基板Wまたは消耗部品が、搬送ロボット110によって真空搬送モジュール11内へ搬出される。
 また、ロードロックモジュール13は、ロードロックモジュール13内が低圧となっている状態で、ゲートバルブG2を介して真空搬送モジュール11から、搬送ロボット110によって基板Wまたは消耗部品が搬入された場合に、ゲートバルブG2を閉じる。そして、ロードロックモジュール13は、ロードロックモジュール13内の圧力を低圧から予め定められた圧力(例えば大気圧)まで上げる。そして、ロードロックモジュール13はゲートバルブG3を開き、ロードロックモジュール13内の基板Wまたは消耗部品が、搬送ロボットによってEFEM20内へ搬出される。
 EFEM20は、筐体200と、筐体200内に設けられ、多関節のアームを有する搬送ロボット21とを備える。なお、図1の例では、EFEM20内に1台の搬送ロボット21が設けられている。しかし、開示の技術はこれに限られず、EFEM20内には、複数の搬送ロボット21が設けられていてもよい。
 筐体200は、側壁201と側壁202とを有する。側壁201は、第1の側壁の一例であり、側壁202は、第2の側壁の一例である。側壁201は、ロードロックモジュール13と接する。側壁202は、側壁201に対向する位置に設けられている。本実施形態において、上から見た場合、側壁201は、側壁202より短い。一例として、上から見た場合、側壁201と側壁202の長さの比は、3:4または3:5である。側壁202には、複数の開口部が設けられている。それぞれの開口部には、基板Wまたは消耗部品である部材を収容するFOUP(Front Opening Unified Pod)等の容器が接続されるロードポート14a~14cが設けられている。なお、以下では、ロードポート14a~14cのそれぞれを区別することなく総称する場合にロードポート14と記載する。
 図1の例では、ロードポート14a~14cの中でロードポート14aおよびロードポート14eが搬送ロボット21から一番遠い位置に設けられている。また、図1の例では、EFEM20に5台のロードポート14が設けられている。しかし、開示の技術はこれに限られず、EFEM20に設けられるロードポート14の数は、5台より多くてもよく、5台より少なくてもよい。
 EFEM20内には、アライナモジュール、ストレージモジュール、または検査モジュール等の機器203が配置されている。搬送ロボット21は、ロードポート14に接続された容器と、ロードロックモジュール13と、機器203との間で、基板Wおよび消耗部品を搬送する。
 また、EFEM20内には、EFEM20内のガスを循環するためのダクト22が設けられている。本実施形態において、基板Wの搬送の際、EFEM20内は不活性ガスで満たされており、その不活性ガスはEFEM20内を循環している。以下では、窒素(N2)ガスを不活性ガスの一例として説明する。
 制御装置100は、メモリ、プロセッサ、および入出力インターフェイスを有する。メモリ内には、レシピ等のデータやプログラム等が格納される。メモリは、例えばRAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、またはSSD(Solid State Drive)等である。プロセッサは、メモリから読み出されたプログラムを実行することにより、メモリ内に格納されたレシピ等のデータに基づいて、入出力インターフェイスを介して本体10の各部を制御する。プロセッサは、CPU(Central Processing Unit)またはDSP(Digital Signal Processor)等である。
[搬送ロボット21の構成]
 図2は、EFEM20内の搬送ロボット21の一例を示す平面図である。本実施形態における搬送ロボット21は、3つの関節を有する。搬送ロボット21は、基台210、第1関節211、第1アーム212、第2関節213、第2アーム214、第3関節215、第3アーム216、およびフォーク217を有する。第1アーム212、第2アーム214、および第3アーム216は、基台210内に設けられた駆動部により角変位駆動される。例えば、第1アーム212は、基台210との連結部分であって、基台210に予め定められた旋回軸である第1関節211を中心として駆動部により旋回(角変位駆動)される。また、第2アーム214は、第1アーム212に対して、第2関節213を中心として駆動部により旋回(角変位駆動)される。また、第3アーム216は、第2アーム214に対して、第3関節215を中心として駆動部により旋回(角変位駆動)される。
 本実施形態において、基台210は、筐体200に固定されており、搬送ロボット21は、EFEM20内を移動しない。そのため、基板Wの搬送中に、搬送ロボット21の移動に伴ってEFEM20内で巻き上げられたパーティクルが基板Wに付着することを防止することができる。なお、搬送ロボット21は、基板Wの搬送中にEFEM20内で移動しなければ、基板Wの搬送中以外の時間帯にEFEM20を移動することができるように構成されていてもよい。
[搬送ロボット21の動き]
 図3~図7は、基板Wを搬送する際の搬送ロボット21の動きの一例を示す平面図である。図3~図7に例示された手順は、搬送方法の一例である。
 まず、基板Wが収容された容器15がロードポート14に接続され、ゲートバルブG4が開けられる。そして、例えば図3に示されるように、側壁202の開口部218の開口面に対してフォーク217が斜めの姿勢になるようにフォーク217の姿勢が変更される。フォーク217の姿勢が開口部218の開口面に対して斜めの姿勢に変更される工程は、工程(a)の一例である。
 次に、例えば図4に示されるように、開口部218の開口面に対してフォーク217の姿勢が斜めの状態のまま、開口部218の開口面に対してフォーク217を垂直な方向に移動させることによりフォーク217が容器15内に挿入される。図4の例では、フォーク217は、ロードポート14eに接続された容器15内に挿入されている。開口部218の開口面に対してフォーク217を垂直な方向に移動させることによりフォーク217が容器15内に挿入される工程は、工程(b)の一例である。
 ここで、フォーク217が容器15内に挿入される際の開口部218の開口面に対するフォーク217の角度は、例えば図5に示されるような角度となる。即ち、開口部218の開口面に対するフォーク217の角度は、基板Wを搬送する際に、フォーク217および第3アーム216が側壁202の開口部218および容器15の開口部15aに接触しない角度である。一例として、開口部218の開口面に対するフォーク217の角度は、平面視において、開口面に直交する直線とフォーク217とのなす角度が25度以上35度以下である。
 次に、例えば図6に示されるように、容器15内の基板Wがフォーク217に載せられる。基板Wがフォーク217に載せられる工程は、工程(c)の一例である。
 次に、例えば図7に示されるように、開口部218の開口面に対してフォーク217の姿勢が斜めの状態のまま、開口部218の開口面に対してフォーク217を垂直な方向に移動することにより、基板Wを載せたフォーク217が容器15内から抜き出される。開口部218の開口面に対してフォーク217を垂直な方向に移動することにより、基板Wを載せたフォーク217が容器15内から抜き出される工程は、工程(d)の一例である。
 ここで、各ロードポート14に接続された容器15内の基板Wを搬送する際に、搬送ロボット21の各アームは、例えば図7に示されるように、EFEM20内において領域R1を除く領域内を移動する。そのため、領域R1内には、ストレージモジュール等の機器203を配置することができる。これにより、EFEM20内の空間を有効利用することができる。
 また、図7に示されるように、搬送ロボット21の第1アーム212の旋回範囲は、領域R2である。また、搬送ロボット21の各アームの移動範囲を小さくするためには、搬送ロボット21の各アームの長さ(ただし、第3アーム216については、第3アーム216とフォーク217の合計の長さ)を等しくすることが好ましい。従って、搬送ロボット21の各アームの長さが等しい場合、側壁201と側壁202との間の距離L1は、領域R2によって制限される。
 ここで、例えば図8に示されるように、側壁202’の開口部218’の開口面に対してフォーク217’の姿勢が垂直な状態で、フォーク217’が開口部218’の開口面に対して垂直な方向に移動する場合を考える。この場合、搬送ロボット21’の各アームの移動範囲は領域R1と干渉するため、領域R1内にストレージモジュール等の機器203を配置することが難しい。そのため、EFEM20’内にストレージモジュール等の機器203を配置する場合、搬送ロボット21からより離れた位置に配置することになる。これにより、図8のEFEM20’では、接地面積の削減が難しい。
 また、開口部218’の開口面に対してフォーク217’の姿勢が垂直な状態で、フォーク217’が容器15内に垂直に挿入される場合、搬送ロボット21’の各アームの長さは、本実施形態における搬送ロボット21の各アームの長さより長い。そのため、第1アーム212’の旋回範囲である領域R3は、本実施形態における第1アーム212の旋回範囲である領域R2より広い。そのため、図8の例では、側壁201’と側壁202’との間の距離L2は、本実施形態のEFEM20における側壁201と側壁202との間の距離L1より長くなる。従って、本実施形態のEFEM20では、側壁201と側壁202との間の距離L1を、図8に示された比較例のEFEM20’よりも短くすることができ、EFEM20の設置面積を削減することができる。
 なお、開口部218の開口面に対してフォーク217の姿勢を斜めにした状態で、フォーク217を移動させることは、少なくとも、搬送ロボット21から最も遠い位置の開口部218に接続された容器15内の基板Wを搬送する際に行われることが好ましい。これにより、搬送ロボット21の各アームを短くすることができ、EFEM20の設置面積を削減することができる。
 また、搬送ロボット21から最も遠い位置の開口部218以外の開口部218に接続された容器15内の基板Wを搬送する際には、例えば図9に示されるように、開口部218の開口面に対してフォーク217の姿勢を垂直な状態にしてもよい。これにより、搬送ロボット21から最も遠い位置の開口部218以外の複数の開口部218に接続された容器15内の基板Wを搬送する際のフォーク217の姿勢を共通化することができる。これにより、搬送ロボット21の制御を簡略化することができる。
 また、搬送ロボット21から最も遠い位置の開口部218には、例えば図10に示されるように、基板Wよりも大きい消耗部品が収容された容器15’が接続されてもよい。基板Wよりも大きい消耗部品が収容された容器15’が接続される開口部218は、基板Wが収容された容器15が接続される開口部218よりも広い。そのため、消耗部品が収容された容器15’内にフォーク217が挿入される際に、開口部218の開口面に対してフォーク217の姿勢の傾斜角度をより大きくすることができる。これにより、搬送ロボット21の各アームの長さをより短くすることができ、EFEM20の設置面積をさらに削減することができる。
[EFEM20内のガスの循環]
 図11は、EFEM20の一例を示す概略断面図である。本実施形態において、EFEM20の筐体200は、気密性を有する。EFEM20の上部には、FFU(Fan Filter Unit)23が設けられている。FFU23は、パーティクル等が除去されたガス(以下、清浄ガスと記載する)を、EFEM20の上部から有孔天井24を介して搬送ロボット21が配置されたEFEM20内の空間に供給する。
 EFEM20の底部には、有孔床25が設けられており、有孔床25を通過したガスは、バルブ27を介してダクト22へ送られる。ダクト22へ送られたガスは、FFU23へ送られる。これにより、EFEM20内には、清浄ガスのダウンフローが形成される。これにより、EFEM20内でのパーティクル等の巻き上がりを抑制することができる。
 バルブ27とダクト22との間の配管には、バルブ26aを介して窒素ガスの供給源が接続されている。また、バルブ27とダクト22との間の配管には、バルブ26bを介してCDA(Clean Dry Air)の供給源が接続されている。また、有孔床25の下方の空間には、並列に接続された排気バルブ28aおよび排気調整バルブ28bが接続されている。
 また、EFEM20には、センサ29が設けられている。センサ29は、搬送ロボット21が配置されたEFEM20内の空間の状態を測定する。センサ29は、例えば酸素濃度計、湿度計、および圧力計等である。
[EFEM20内のガスの制御]
 図12は、EFEM20内のガスの制御の一例を示すフローチャートである。図12に例示された各処理は、制御装置100が本体10の各部を制御することにより実現される。
 まず、制御装置100は、EFEM20の全てのバルブをクローズする(S100)。そして、制御装置100は、バルブ26bをオープンし、EFEM20内にCDAの供給を開始する(S101)。ステップS101では、例えば130slmの流量でEFEM20内にCDAが供給される。
 次に、制御装置100は、センサ29からの測定値を参照し、CDAの供給を開始してから第1の時間以内にEFEM20内の圧力が第1の圧力に達したか否かを判定する(S102)。第1の時間は、例えば3分である。また、第1の圧力は、例えば460Paである。
 CDAの供給を開始してから第1の時間以内にEFEM20内の圧力が第1の圧力に達しなかった場合(S102:No)、EFEM20からCDAが漏れている可能性があるため、制御装置100は、処理システム1の管理者等にエラーを通知する(S110)。そして、制御装置100は、バルブ26bをクローズすることにより、CDAの供給を停止する(S111)。そして、制御装置100は、排気バルブ28aをオープンし(S112)、本フローチャートに示された処理を終了する。
 一方、CDAの供給を開始してから第1の時間以内にEFEM20内の圧力が第1の圧力に達した場合(S102:Yes)、制御装置100は、EFEM20内のガスをCDAから窒素ガスに置換する(S103)。ステップS103では、制御装置100は、バルブ26bをクローズし、排気バルブ28aをオープンし、バルブ26aをオープンする。
 そして、制御装置100は、センサ29からの測定値を参照し、EFEM20内の酸素濃度が予め定められた値以下に低下した場合に、窒素ガスの循環を開始する(S104)。ステップS104では、EFEM20内の酸素濃度が例えば0.8%以下に低下した場合に、制御装置100は、排気バルブ28aをクローズし、バルブ27をオープンする。そして、制御装置100は、バルブ26aを介して、予め定められた流量(例えば150slm)の窒素ガスをEFEM20内に供給する。EFEM20内の窒素ガスは、FFU23によってパーティクル等が除去された後、有孔天井24を介してEFEM20内に供給され、有孔床25を通過する。そして、有孔床25を通過した窒素ガスは、バルブ27およびダクト22を介してFFU23に戻される。
 次に、制御装置100は、EFEM20を含む本体10の運用を開始する(S105)。そして、制御装置100は、センサ29からの測定値を参照し、EFEM20内の圧力が予め定められた範囲内か否かを判定する(S106)。ステップS106における予め定められた範囲は、例えば330Pa~1000Paである。
 EFEM20内の圧力が予め定められた範囲内ではない場合(S106:No)、制御装置100は、処理システム1の管理者等にエラーを通知する(S113)。そして、制御装置100は、バルブ26aをクローズすることにより、窒素ガスの供給を停止する(S114)。そして、制御装置100は、排気バルブ28aをオープンし(S115)、バルブ26bをオープンし(S116)、EFEM20内の窒素ガスを排気する。そして、制御装置100は、本フローチャートに示された処理を終了する。
 一方、EFEM20内の圧力が予め定められた範囲内である場合(S106:Yes)、制御装置100は、センサ29からの測定値を参照し、EFEM20内の酸素濃度が予め定められた値以下か否かを判定する(S107)。ステップS107における予め定められた値は、例えば1%である。EFEM20内の酸素濃度が予め定められた値より大きい場合(S107:No)、制御装置100は、ステップS113に示された処理を実行する。
 一方、EFEM20内の酸素濃度が予め定められた値以下である場合(S107:Yes)、制御装置100は、センサ29からの測定値を参照し、EFEM20内の湿度が予め定められた値以下か否かを判定する(S108)。ステップS108における予め定められた値は、例えば1%である。EFEM20内の湿度が予め定められた値より大きい場合(S108:No)、制御装置100は、ステップS113に示された処理を実行する。
 一方、EFEM20内の湿度が予め定められた値以下である場合(S108:Yes)、制御装置100は、本体10の運用を終了するか否かを判定する(S109)。本体10の運用を終了しない場合(S109:No)、制御装置100は、再びステップS106に示された処理を実行する。一方、本体10の運用を終了する場合(S109:Yes)、制御装置100は、本フローチャートに示された処理を終了する。
 なお、ロードロックモジュール13のゲートバルブG3がオープンされたり、開口部218のゲートバルブG4がオープンされたりすると、EFEM20内の圧力が一時的に低下する。そのため、制御装置100は、ゲートバルブG3のオープンから予め定められた時間(例えば10秒間)、および、ゲートバルブG4のオープンから予め定められた時間(例えば10秒間)については、ステップS106の判定を行わない。
 以上、実施形態ついて説明した。上記したように、本実施形態におけるEFEM20は、筐体200と、筐体200内に設けられ、多関節のアームを有する搬送ロボット21とを備える。筐体200は、ロードロックモジュール13と接する側壁201と、側壁201に対向する位置に設けられ、基板Wまたは消耗部品である部材を収容する容器15が接続される開口部218が設けられた側壁202とを有する。搬送ロボット21は、アームの先端に設けられ、部材が載せられるフォーク217を有する。フォーク217は、開口部218に接続された容器15内の部材を搬出する際に、開口部218の開口面に対してフォーク217の姿勢が斜めの状態で開口面に対して垂直な方向に移動することにより容器15内に挿入される。これにより、EFEM20の設置面積を削減することができる。
 また、上記した実施形態において、側壁202には、複数の開口部218が設けられており、それぞれの開口部218に容器15が接続される。フォーク217は、搬送ロボット21から最も遠い位置に設けられた開口部218に接続された容器15内の部材を搬出する際に、開口部218の開口面に対してフォーク217の姿勢が斜めの状態で開口部218の開口面に対して垂直な方向に移動することにより容器15内に挿入される。これにより、搬送ロボット21から最も遠い位置に設けられた開口部218に接続された容器15内の部材を搬出する際の搬送ロボット21のアームの長さを短くすることができ、EFEM20の設置面積を削減することができる。
 また、上記した実施形態において、フォーク217は、搬送ロボット21から最も遠い位置に設けられた開口部218以外の開口部218に接続された容器15内の部材を搬出する際に、開口部218の開口面に対してフォーク217の姿勢が垂直の状態で開口部218の開口面に対して垂直な方向に移動することにより容器15内に挿入される。これにより、搬送ロボット21から最も遠い位置の開口部218以外の複数の開口部218に接続された容器15内の基板Wを搬送する際のフォーク217の姿勢を共通化することができる。これにより、搬送ロボット21の制御を簡略化することができる。
 また、上記した実施形態において、搬送ロボット21から最も遠い位置に設けられた開口部218に接続される容器15には、基板Wよりも大きい消耗部品が収容される。また、搬送ロボット21から最も遠い位置に設けられた開口部218以外の開口部218に接続される容器15には、基板Wが収容される。これにより、消耗部品が収容された容器15’内にフォーク217が挿入される際に、開口部218の開口面に対してフォーク217の姿勢の傾斜角度をより大きくすることができる。これにより、搬送ロボット21の各アームの長さをより短くすることができ、EFEM20の設置面積をさらに削減することができる。
 また、上記した実施形態において、上から見た場合、側壁201は、側壁202より短い。これにより、EFEM20の設置面積を削減することができる。
 また、上記した実施形態において、フォーク217が容器15内に挿入される際の開口部218の開口面に対するフォーク217の角度は、フォーク217が容器15内に挿入された状態で、フォーク217およびフォーク217に接続されている第3アーム216が開口部218に接触しない角度である。これにより、搬送ロボット21は、容器15内の基板W等の部材をスムーズに搬出することができ、基板W等の部材を容器15内にスムーズに搬入することができる。
 また、上記した実施形態において、搬送ロボット21は、3つの関節を有する。これにより、搬送ロボット21は、容器15内の基板W等の部材をスムーズに搬出することができ、基板W等の部材を容器15内にスムーズに搬入することができる。
 また、上記した実施形態における搬送方法は、筐体200と、筐体200内に設けられ、多関節のアームを有する搬送ロボット21とを備えるEFEM20における搬送方法である。筐体200は、ロードロックモジュール13と接する側壁201と、側壁201に対向する位置に設けられ、基板Wまたは消耗部品である部材を収容する容器15が接続される開口部218が設けられた側壁202とを有する。搬送ロボット21は、アームの先端に設けられ、部材が載せられるフォーク217を有する。搬送方法は、工程(a)、工程(b)、工程(c)、および工程(d)を含む。工程(a)では、開口部218の開口面に対してフォーク217が斜めの姿勢になるようにフォーク217の姿勢が変更される。工程(b)では、開口部218の開口面に対してフォーク217の姿勢が斜めの状態のまま、開口部218の開口面に対してフォーク217を垂直な方向に移動させることによりフォーク217が容器15内に挿入される。工程(c)では、容器15内の部材をフォーク217に載せられる。工程(d)では、開口部218の開口面に対してフォーク217の姿勢が斜めの状態のまま、開口部218の開口面に対してフォーク217フォークを垂直な方向に移動することにより、部材を載せたフォーク217が容器15内から抜き出される。これにより、EFEM20の設置面積を削減することができる。
[その他]
 なお、本願に開示された技術は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
 例えば、上記した実施形態では、EFEM20内の搬送ロボット21が基板W等の部材を容器15から搬出する際に、開口部218の開口面に対してフォーク217を斜めの姿勢にして容器15内に挿入するが、開示の技術はこれに限られない。例えば、真空搬送モジュール11内の搬送ロボット110が基板W等の部材を処理モジュール12から搬出する際にも、搬送ロボット110のフォークを斜めに処理モジュール12内に挿入してもよい。この場合も、真空搬送モジュール11と処理モジュール12の開口部の開口面に対して搬送ロボット110のフォークを斜めの姿勢にして、開口面に対してフォークを垂直な方向に移動させることによりフォークが処理モジュール12内に挿入される。これにより、真空搬送モジュール11の設置面積を削減することができる。
 なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 また、上記の実施形態に関し、さらに以下の付記を開示する。
(付記1)
 筐体と、
 前記筐体内に設けられる搬送ロボットと
を備え、
 前記筐体は、
 ロードロックモジュールと接する第1の側壁と、
 前記第1の側壁に対向する位置に設けられ、基板または消耗部品である部材を収容する複数の容器が接続される複数の開口部が設けられた第2の側壁と
を有し、
 前記搬送ロボットは、
 前記筐体内に固定される基台と、
 上面で前記部材を支持するフォークと、
 前記基台と前記フォークとの間で連結され、少なくとも3つの関節を有し、前記基台との連結部分において、前記基台に予め定められた旋回軸を中心に旋回する多関節のアームと、
 前記アームの各関節を、対応する軸線まわりにそれぞれ個別に角変位駆動する駆動部と
を含み、
 前記フォークは、
 前記基台から最も近い位置に設けられた前記開口部に接続された前記容器内に進入する場合、前記開口部の開口面に対して前記フォークの姿勢が垂直の状態で前記開口面に対して垂直な方向に移動することにより前記容器内に進入し、
 前記基台から最も遠い位置に設けられた前記開口部に接続された前記容器内に進入する場合に、前記開口部の開口面に対して前記フォークの姿勢が斜めの状態で前記開口面に対して垂直な方向に移動することにより前記容器内に進入する搬送装置。
(付記2)
 前記搬送ロボットは、
 第1関節によりと前記基台とを連結し、前記第1関節を前記旋回軸として旋回する第1アームと、
 第2関節により前記第1アームと連結する第2アームと、
 第3関節により第2アームと連結する第3アームと
を備え、
 前記フォークは、前記第3アームに設けられる付記1に記載の搬送装置。
(付記3)
 前記フォークが前記容器内に進入する際の前記開口部の前記開口面に対する前記フォークの角度は、
 前記フォークが前記容器内に進入した状態で、前記フォークおよび前記第3アームが前記開口部に接触しない角度である付記2に記載の搬送装置。
(付記4)
 前記第1アームの回転半径は、前記第1の側壁と前記第2の側壁との間の距離未満である付記2または3に記載の搬送装置。
(付記5)
 前記第1関節は、前記第1の側壁と前記第2の側壁との間の空間において、前記第2の側壁側に設けられる付記2から4のいずれか一つに記載の搬送装置。
(付記6)
 前記第3関節は、
 前記フォークが前記基台から最も近い位置に設けられた前記開口部に接続された前記容器内に進入する場合、該容器の中心から前記第2の側壁に向かって垂直な軌跡を通り、
 前記フォークが前記基台から最も遠い位置に設けられた前記開口部に接続された前記容器内に進入する場合、該容器の中心よりも前記基台側を通る付記2から5のいずれか一つに記載の搬送装置。
(付記7)
 前記搬送ロボットから最も遠い位置に設けられた前記開口部に接続される前記容器には、前記基板よりも大きい消耗部品が収容され、
 前記搬送ロボットから最も遠い位置に設けられた前記開口部以外の前記開口部に接続される前記容器には、前記基板が収容される付記1から6のいずれか一つに記載の搬送装置。
(付記8)
 上から見た場合、前記第1の側壁は、前記第2の側壁より短い付記1から7のいずれか一つに記載の搬送装置。
(付記9)
 筐体と、
 前記筐体内に設けられる搬送ロボットと
を備え、
 前記筐体は、
 ロードロックモジュールと接する第1の側壁と、
 前記第1の側壁に対向する位置に設けられ、基板または消耗部品である部材を収容する複数の容器が接続される複数の開口部が設けられた第2の側壁と
を有し、
 前記搬送ロボットは、
 前記筐体内に固定される基台と、
 上面で前記部材を支持するフォークと、
 前記基台と前記フォークとの間で連結され、少なくとも3つの関節を有し、前記基台との連結部分において、前記基台に予め定められた旋回軸を中心に旋回する多関節のアームと、
 前記アームの各関節を、対応する軸線まわりにそれぞれ個別に角変位駆動する駆動部と
を含む搬送装置における搬送方法において、
(a) 前記基台から最も遠い位置に設けられた前記開口部に接続された前記容器内に前記フォークを進入させる場合、前記開口部の開口面に対して前記フォークが斜めの姿勢になるように前記フォークの姿勢を変更する工程と、
(b) 前記基台から最も遠い位置に設けられた前記開口部に接続された前記容器内に前記フォークを進入させる場合、前記開口面に対して前記フォークの姿勢が斜めの状態で前記開口面に対して前記フォークを垂直な方向に移動させることにより前記フォークを前記容器内に挿入する工程と、
(c) 前記容器内の前記部材を前記フォークに載せる工程と、
(d) 前記開口面に対して前記フォークの姿勢が斜めの状態で前記開口面に対して前記フォークを垂直な方向に移動することにより、前記部材が載せられた前記フォークを前記容器内から抜き出す工程と
を含み、
 前記工程(a)において、前記基台から最も近い位置に設けられた前記開口部に接続された前記容器内に前記フォークを進入させる場合、前記開口部の開口面に対して前記フォークが垂直の姿勢になるように前記フォークの姿勢を変更し、
 前記工程(b)において、前記基台から最も近い位置に設けられた前記開口部に接続された前記容器内に前記フォークを進入させる場合、前記開口面に対して前記フォークの姿勢が垂直の状態で前記開口面に対して前記フォークを垂直な方向に移動させることにより前記フォークを前記容器内に挿入する搬送方法。
(付記10)
 前記搬送ロボットは、
 第1関節によりと前記基台とを連結し、前記第1関節を前記旋回軸として旋回する第1アームと、
 第2関節により前記第1アームと連結する第2アームと、
 第3関節により第2アームと連結する第3アームと
を備え、
 前記フォークは、前記第3アームに設けられる付記9に記載の搬送方法。
(付記11)
 前記フォークが前記容器内に進入する際の前記開口部の前記開口面に対する前記フォークの角度は、
 前記フォークが前記容器内に進入した状態で、前記フォークおよび前記第3アームが前記開口部に接触しない角度である付記10に記載の搬送方法。
(付記12)
 前記第1アームの回転半径は、前記第1の側壁と前記第2の側壁との間の距離未満である付記10または11に記載の搬送方法。
(付記13)
 前記第1関節は、前記第1の側壁と前記第2の側壁との間の空間において、前記第2の側壁側に設けられる付記10から12のいずれか一つに記載の搬送方法。
(付記14)
 前記第3関節は、
 前記フォークが前記基台から最も近い位置に設けられた前記開口部に接続された前記容器内に進入する場合、該容器の中心から前記第2の側壁に向かって垂直な軌跡を通り、
 前記フォークが前記基台から最も遠い位置に設けられた前記開口部に接続された前記容器内に進入する場合、該容器の中心よりも前記基台側を通る付記10から13のいずれか一つに記載の搬送方法。
(付記15)
 前記搬送ロボットから最も遠い位置に設けられた前記開口部に接続される前記容器には、前記基板よりも大きい消耗部品が収容され、
 前記搬送ロボットから最も遠い位置に設けられた前記開口部以外の前記開口部に接続される前記容器には、前記基板が収容される付記9から14のいずれか一つに記載の搬送方法。
(付記16)
 上から見た場合、前記第1の側壁は、前記第2の側壁より短い付記9から15のいずれか一つに記載の搬送方法。
G ゲートバルブ
R 領域
W 基板
1 処理システム
10 本体
110 搬送ロボット
11 真空搬送モジュール
12 処理モジュール
13 ロードロックモジュール
14 ロードポート
15 容器
15a 開口部
100 制御装置
20 EFEM
200 筐体
201 側壁
202 側壁
203 機器
21 搬送ロボット
210 基台
211 第1関節
212 第1アーム
213 第2関節
214 第2アーム
215 第3関節
216 第3アーム
217 フォーク
218 開口部
22 ダクト
23 FFU
24 有孔天井
25 有孔床
26 バルブ
27 バルブ
28a 排気バルブ
28b 排気調整バルブ
29 センサ

Claims (16)

  1.  筐体と、
     前記筐体内に設けられる搬送ロボットと
    を備え、
     前記筐体は、
     ロードロックモジュールと接する第1の側壁と、
     前記第1の側壁に対向する位置に設けられ、基板または消耗部品である部材を収容する複数の容器が接続される複数の開口部が設けられた第2の側壁と
    を有し、
     前記搬送ロボットは、
     前記筐体内に固定される基台と、
     上面で前記部材を支持するフォークと、
     前記基台と前記フォークとの間で連結され、少なくとも3つの関節を有し、前記基台との連結部分において、前記基台に予め定められた旋回軸を中心に旋回する多関節のアームと、
     前記アームの各関節を、対応する軸線まわりにそれぞれ個別に角変位駆動する駆動部と
    を含み、
     前記フォークは、
     前記基台から最も近い位置に設けられた前記開口部に接続された前記容器内に進入する場合、前記開口部の開口面に対して前記フォークの姿勢が垂直の状態で前記開口面に対して垂直な方向に移動することにより前記容器内に進入し、
     前記基台から最も遠い位置に設けられた前記開口部に接続された前記容器内に進入する場合に、前記開口部の開口面に対して前記フォークの姿勢が斜めの状態で前記開口面に対して垂直な方向に移動することにより前記容器内に進入する搬送装置。
  2.  前記搬送ロボットは、
     第1関節によりと前記基台とを連結し、前記第1関節を前記旋回軸として旋回する第1アームと、
     第2関節により前記第1アームと連結する第2アームと、
     第3関節により第2アームと連結する第3アームと
    を備え、
     前記フォークは、前記第3アームに設けられる請求項1に記載の搬送装置。
  3.  前記フォークが前記容器内に進入する際の前記開口部の前記開口面に対する前記フォークの角度は、
     前記フォークが前記容器内に進入した状態で、前記フォークおよび前記第3アームが前記開口部に接触しない角度である請求項2に記載の搬送装置。
  4.  前記第1アームの回転半径は、前記第1の側壁と前記第2の側壁との間の距離未満である請求項2または3に記載の搬送装置。
  5.  前記第1関節は、前記第1の側壁と前記第2の側壁との間の空間において、前記第2の側壁側に設けられる請求項2に記載の搬送装置。
  6.  前記第3関節は、
     前記フォークが前記基台から最も近い位置に設けられた前記開口部に接続された前記容器内に進入する場合、該容器の中心から前記第2の側壁に向かって垂直な軌跡を通り、
     前記フォークが前記基台から最も遠い位置に設けられた前記開口部に接続された前記容器内に進入する場合、該容器の中心よりも前記基台側を通る請求項2に記載の搬送装置。
  7.  前記搬送ロボットから最も遠い位置に設けられた前記開口部に接続される前記容器には、前記基板よりも大きい消耗部品が収容され、
     前記搬送ロボットから最も遠い位置に設けられた前記開口部以外の前記開口部に接続される前記容器には、前記基板が収容される請求項1に記載の搬送装置。
  8.  上から見た場合、前記第1の側壁は、前記第2の側壁より短い請求項1に記載の搬送装置。
  9.  筐体と、
     前記筐体内に設けられる搬送ロボットと
    を備え、
     前記筐体は、
     ロードロックモジュールと接する第1の側壁と、
     前記第1の側壁に対向する位置に設けられ、基板または消耗部品である部材を収容する複数の容器が接続される複数の開口部が設けられた第2の側壁と
    を有し、
     前記搬送ロボットは、
     前記筐体内に固定される基台と、
     上面で前記部材を支持するフォークと、
     前記基台と前記フォークとの間で連結され、少なくとも3つの関節を有し、前記基台との連結部分において、前記基台に予め定められた旋回軸を中心に旋回する多関節のアームと、
     前記アームの各関節を、対応する軸線まわりにそれぞれ個別に角変位駆動する駆動部と
    を含む搬送装置における搬送方法において、
    (a) 前記基台から最も遠い位置に設けられた前記開口部に接続された前記容器内に前記フォークを進入させる場合、前記開口部の開口面に対して前記フォークが斜めの姿勢になるように前記フォークの姿勢を変更する工程と、
    (b) 前記基台から最も遠い位置に設けられた前記開口部に接続された前記容器内に前記フォークを進入させる場合、前記開口面に対して前記フォークの姿勢が斜めの状態で前記開口面に対して前記フォークを垂直な方向に移動させることにより前記フォークを前記容器内に挿入する工程と、
    (c) 前記容器内の前記部材を前記フォークに載せる工程と、
    (d) 前記開口面に対して前記フォークの姿勢が斜めの状態で前記開口面に対して前記フォークを垂直な方向に移動することにより、前記部材が載せられた前記フォークを前記容器内から抜き出す工程と
    を含み、
     前記工程(a)において、前記基台から最も近い位置に設けられた前記開口部に接続された前記容器内に前記フォークを進入させる場合、前記開口部の開口面に対して前記フォークが垂直の姿勢になるように前記フォークの姿勢を変更し、
     前記工程(b)において、前記基台から最も近い位置に設けられた前記開口部に接続された前記容器内に前記フォークを進入させる場合、前記開口面に対して前記フォークの姿勢が垂直の状態で前記開口面に対して前記フォークを垂直な方向に移動させることにより前記フォークを前記容器内に挿入する搬送方法。
  10.  前記搬送ロボットは、
     第1関節によりと前記基台とを連結し、前記第1関節を前記旋回軸として旋回する第1アームと、
     第2関節により前記第1アームと連結する第2アームと、
     第3関節により第2アームと連結する第3アームと
    を備え、
     前記フォークは、前記第3アームに設けられる請求項9に記載の搬送方法。
  11.  前記フォークが前記容器内に進入する際の前記開口部の前記開口面に対する前記フォークの角度は、
     前記フォークが前記容器内に進入した状態で、前記フォークおよび前記第3アームが前記開口部に接触しない角度である請求項10に記載の搬送方法。
  12.  前記第1アームの回転半径は、前記第1の側壁と前記第2の側壁との間の距離未満である請求項10または11に記載の搬送方法。
  13.  前記第1関節は、前記第1の側壁と前記第2の側壁との間の空間において、前記第2の側壁側に設けられる請求項10に記載の搬送方法。
  14.  前記第3関節は、
     前記フォークが前記基台から最も近い位置に設けられた前記開口部に接続された前記容器内に進入する場合、該容器の中心から前記第2の側壁に向かって垂直な軌跡を通り、
     前記フォークが前記基台から最も遠い位置に設けられた前記開口部に接続された前記容器内に進入する場合、該容器の中心よりも前記基台側を通る請求項10に記載の搬送方法。
  15.  前記搬送ロボットから最も遠い位置に設けられた前記開口部に接続される前記容器には、前記基板よりも大きい消耗部品が収容され、
     前記搬送ロボットから最も遠い位置に設けられた前記開口部以外の前記開口部に接続される前記容器には、前記基板が収容される請求項9に記載の搬送方法。
  16.  上から見た場合、前記第1の側壁は、前記第2の側壁より短い請求項9に記載の搬送方法。
PCT/JP2023/001224 2022-01-21 2023-01-17 搬送装置および搬送方法 WO2023140259A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-007987 2022-01-21
JP2022007987 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023140259A1 true WO2023140259A1 (ja) 2023-07-27

Family

ID=87348835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001224 WO2023140259A1 (ja) 2022-01-21 2023-01-17 搬送装置および搬送方法

Country Status (2)

Country Link
TW (1) TW202342351A (ja)
WO (1) WO2023140259A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138474A (ja) * 1997-11-06 1999-05-25 Sankyo Seiki Mfg Co Ltd 多関節ロボット
JP2003517717A (ja) * 1998-09-30 2003-05-27 ブルックス オートメーション インコーポレイテッド 基板搬送装置
JP2005509277A (ja) * 2001-07-13 2005-04-07 ブルックス オートメーション インコーポレイテッド 二次元3自由度ロボットアームの軌道プラニング及び移動制御戦略
JP2017076710A (ja) * 2015-10-15 2017-04-20 株式会社安川電機 搬送システム、ロボットおよび搬送方法
JP2018010992A (ja) * 2016-07-14 2018-01-18 東京エレクトロン株式会社 フォーカスリング交換方法
JP2018046115A (ja) * 2016-09-13 2018-03-22 川崎重工業株式会社 基板搬送ハンド、基板搬送ロボット、及び基板移載装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138474A (ja) * 1997-11-06 1999-05-25 Sankyo Seiki Mfg Co Ltd 多関節ロボット
JP2003517717A (ja) * 1998-09-30 2003-05-27 ブルックス オートメーション インコーポレイテッド 基板搬送装置
JP2005509277A (ja) * 2001-07-13 2005-04-07 ブルックス オートメーション インコーポレイテッド 二次元3自由度ロボットアームの軌道プラニング及び移動制御戦略
JP2017076710A (ja) * 2015-10-15 2017-04-20 株式会社安川電機 搬送システム、ロボットおよび搬送方法
JP2018010992A (ja) * 2016-07-14 2018-01-18 東京エレクトロン株式会社 フォーカスリング交換方法
JP2018046115A (ja) * 2016-09-13 2018-03-22 川崎重工業株式会社 基板搬送ハンド、基板搬送ロボット、及び基板移載装置

Also Published As

Publication number Publication date
TW202342351A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
JP5853991B2 (ja) 基板搬送ロボット、基板搬送システムおよび基板搬送方法
JP5268126B2 (ja) デュアルロボット搬送システム
JP5570775B2 (ja) 基板処理装置のセットアップ方法、基板処理装置により実施される半導体装置の製造方法及び基板処理装置
JP6774276B2 (ja) 基板移載装置
TWI773092B (zh) 具有整合的暫存區之晶圓傳送組件
KR101453189B1 (ko) 반송 장치
JPH10144757A (ja) 基板処理システム
JP4961893B2 (ja) 基板搬送装置及び基板搬送方法
JP2008507153A (ja) 処理ツール内のウエハハンドリングシステム
JP2011124565A (ja) 半導体被処理基板の真空処理システム及び半導体被処理基板の真空処理方法
JP7474325B2 (ja) ウエハ搬送装置、およびウエハ搬送方法
US11823934B2 (en) Wafer stocker
KR20220094158A (ko) 반송 장치
KR100553685B1 (ko) 반도체 기판을 컨테이너로부터 언로딩하는 이송장치 및이송방법
KR20240013830A (ko) 기판을 반송하는 장치 및 기판을 처리하는 시스템 그리고 기판을 반송하는 방법
WO2023140259A1 (ja) 搬送装置および搬送方法
WO2021187319A1 (ja) 基板搬送モジュール、処理システム及び基板搬送方法
JP2000058619A (ja) 基板処理装置及び基板処理方法
TW202234562A (zh) 基板搬送裝置、基板搬送方法、及基板處理系統
KR20220139945A (ko) 로봇 및 이를 구비한 기판 반송 시스템
JP2021145017A (ja) 基板搬送システム、真空基板搬送モジュール、および基板搬送方法
US20230080991A1 (en) Wafer processing apparatus including efem and method of processing wafer
TW202401639A (zh) 異常偵測方法及搬運裝置
US20220238359A1 (en) Controlling method and substrate transport module
WO2022239538A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743253

Country of ref document: EP

Kind code of ref document: A1