WO2023157874A1 - 車両の制動制御装置 - Google Patents

車両の制動制御装置 Download PDF

Info

Publication number
WO2023157874A1
WO2023157874A1 PCT/JP2023/005211 JP2023005211W WO2023157874A1 WO 2023157874 A1 WO2023157874 A1 WO 2023157874A1 JP 2023005211 W JP2023005211 W JP 2023005211W WO 2023157874 A1 WO2023157874 A1 WO 2023157874A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
rear wheel
wheel
target
braking
Prior art date
Application number
PCT/JP2023/005211
Other languages
English (en)
French (fr)
Inventor
卓 海老根
俊哉 渡邊
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2023157874A1 publication Critical patent/WO2023157874A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • B60T8/28Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels responsive to deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration

Definitions

  • the present disclosure relates to a vehicle braking control device.
  • the applicant has developed a brake control device that has a reduced longitudinal dimension and that controls the brake fluid pressure of the front wheel system and the rear wheel system separately, as described in Patent Document 1. are doing.
  • the two-system pressure regulation in which the brake fluid pressure is controlled separately for the front and rear wheels, may be switched to a single-system pressure regulation, in which the brake fluid pressure is controlled in the same way for the front and rear wheels. . Smoothness is required for this switching.
  • An object of the present invention is to provide a braking control device for a vehicle that can smoothly switch from two-system pressure regulation to one-system pressure regulation.
  • a braking control device (SC) for a vehicle adjusts hydraulic pressures (Pwf, Pwr) of front wheel and rear wheel cylinders (CWf, CWr) according to a braking demand (Bs), "It has a supply chamber (Rm) partitioned by a cylinder (CM) and a piston (NM) inserted into the cylinder (CM) and sealed by a seal member (SL), and a servo chamber (Ru).
  • Rm supply chamber partitioned by a cylinder (CM) and a piston (NM) inserted into the cylinder (CM) and sealed by a seal member (SL), and a servo chamber (Ru).
  • an apply section which electrically adjusts the first and second servo pressures (P1, P2), supplies the first servo pressure (P1) to the servo chamber (Ru), and supplies the supply chamber;
  • the controller (EA) when selecting the two-system pressure regulation, controls the front wheel and rear wheel target pressures ( Ptf, Ptr) are individually calculated, and the pressure regulating unit (CA) is controlled so that the front and rear wheel supply pressures (Pm, Pv) match the front and rear wheel target pressures (Ptf, Ptr). .
  • the controller (EA) equalizes the front wheel and rear wheel target pressures (Ptf, Ptr) and then adds a predetermined pressure (ps) to the common target pressure ( Px), and controls the pressure regulating section (CA) so that the rear wheel supply pressure (Pv) coincides with the common target pressure (Px).
  • the predetermined pressure (ps) is set to a value corresponding to the sliding resistance of the seal member (SL).
  • the controller (EA) switches the two-system pressure regulation to the one-system pressure regulation at the time when execution of the antilock brake control is started.
  • the rear wheel supply pressure Pv is used for the control of the one-system pressure regulation. is added. According to the above configuration, switching from two-system pressure regulation to one-system pressure regulation is performed smoothly.
  • FIG. 1 is a schematic diagram for explaining the overall configuration of a vehicle JV equipped with a braking control device SC according to the present invention
  • FIG. FIG. 4 is a schematic diagram for explaining a configuration example of an upper braking unit SA
  • FIG. 5 is a flow diagram for explaining an example of pressure regulation control processing
  • FIG. 3 is a block diagram for explaining an example of drive control of upstream and downstream pressure regulating valves UJ and UK in two-system pressure regulating
  • FIG. 4 is a block diagram for explaining an example of drive control of a downstream side pressure regulating valve UK in one-system pressure regulation;
  • the side closer to the master cylinder CM (the side farther from the wheel cylinder CW) is referred to as the "upper”, and the side closer to the wheel cylinder CW (the side farther from the master cylinder CM) ) is referred to as “bottom”.
  • the side closer to the discharge portion of the fluid pump QA (the side farther from the suction portion) is called the "upstream side”
  • the side closer to the suction portion of the fluid pump QA (the side farther from the discharge portion) far side) is referred to as the "downstream side”.
  • the upper hydraulic unit YA of the upper braking unit SA (also referred to as “upper actuator")
  • the lower hydraulic unit YB (also referred to as “lower actuator") of the lower braking unit SB
  • the wheel cylinder CW are connected to fluid paths (communication paths HS).
  • various components UJ, UK, etc.
  • the "fluid path” is a path for moving the damping fluid BF, and corresponds to a pipe, a flow path in the actuator, a hose, and the like.
  • communication path HS, return path HK, reservoir path HR, input path HN, servo path HV, etc. are fluid paths.
  • the vehicle JV is a hybrid vehicle or an electric vehicle having an electric motor for driving.
  • the vehicle JV is provided with a regeneration device KG.
  • the regenerative device KG is composed of a generator GN and a regenerative device control unit EG (also referred to as a “regenerative controller”).
  • the generator GN is also the electric motor for driving.
  • the electric motor/generator GN operates as a generator, and the generated electric power is stored in the storage battery BG via the regenerative controller EG.
  • the regeneration device KG is provided for the front wheels WHf. In this configuration, the regenerative braking force Fg is generated at the front wheels WHf by the regenerative device KG.
  • the vehicle JV is controlled to automatically stop the vehicle (referred to as “automatic braking control") via the braking control device SC on behalf of the driver or to assist the driver.
  • a driving assistance device DS is provided.
  • the driving assistance device DS includes a distance sensor OB and a control unit ED (also referred to as a “driving assistance controller”) for the driving assistance device.
  • a distance Ob relative distance between an object (another vehicle, a fixed object, a person, a bicycle, a stop line, a sign, a signal, etc.) existing in front of the own vehicle JV and the own vehicle JV is determined by the distance sensor OB. It is detected and input to the driving assistance controller ED.
  • the driving assistance controller ED calculates a required deceleration Gs for automatically stopping the vehicle JV based on the relative distance Ob.
  • the required deceleration Gs is a target value of vehicle deceleration for executing automatic braking control.
  • Requested deceleration Gs is output to communication bus BS.
  • the braking device SX is composed of a brake caliper CP, a friction member MS (for example, brake pad), and a rotating member KT (for example, brake disc).
  • a wheel cylinder CW is provided in the brake caliper CP. Hydraulic pressure Pw (referred to as "wheel pressure") in the wheel cylinder CW presses the friction member MS against the rotating member KT fixed to each wheel WH. As a result, a frictional braking force Fm is generated on the wheels WH.
  • the "frictional braking force Fm" is the braking force generated by the wheel pressure Pw.
  • the vehicle JV is equipped with a braking operation member BP, a steering operation member SH, and various sensors (BA, etc.).
  • the braking operation member BP for example, brake pedal
  • the steering operation member SH eg, steering wheel
  • BA various sensors
  • the vehicle JV is equipped with various sensors listed below. Detection signals (Ba, etc.) of these sensors are input to either one of the upper and lower controllers EA and EB. Various controls are executed in the upper and lower controllers EA and EB based on sensor signals.
  • a braking operation amount sensor BA is provided for detecting an operation amount Ba (braking operation amount) of the braking operation member BP.
  • an operation displacement sensor SP for detecting an operation displacement Sp of the braking operation member BP is provided as the braking operation amount sensor BA.
  • a simulator pressure sensor PZ is employed to detect the hydraulic pressure Pz of the stroke simulator SS (referred to as "simulator pressure").
  • the braking operation amount Ba is a general term for signals representing the braking intention of the driver
  • the braking operation amount sensor BA is a general term for sensors that detect the braking operation amount Ba.
  • the braking operation amount Ba is input to the upper controller EA.
  • a wheel speed sensor VW is provided for detecting the rotational speed Vw (wheel speed) of the wheel WH.
  • the wheel speed Vw is input to the lower controller EB.
  • the lower controller EB calculates the vehicle body speed Vx based on the wheel speed Vw.
  • the lower controller EB executes antilock brake control (ABS control) to prevent the wheels WH from locking and traction control to prevent the driving wheels WH from spinning based on the wheel speed Vw and the vehicle body speed Vx. be done.
  • ABS control antilock brake control
  • a steering operation amount sensor SK is provided for detecting an operation amount Sk of the steering operation member SH (a steering operation amount, for example, a steering angle).
  • a vehicle JV (in particular, a vehicle body) is provided with a yaw rate sensor YR that detects a yaw rate Yr, a longitudinal acceleration sensor GX that detects a longitudinal acceleration Gx, and a lateral acceleration sensor GY that detects a lateral acceleration Gy. These sensor signals are input to the lower controller EB.
  • the vehicle JV is equipped with a braking control device SC.
  • the braking control device SC employs a front-rear type (also referred to as a "II type") as the two braking systems.
  • the actual wheel pressure Pw is regulated by the brake controller SC.
  • the braking control device SC is composed of two braking units SA and SB.
  • the upper braking unit SA is composed of an upper actuator YA (upper hydraulic unit) and an upper controller EA (upper control unit).
  • the upper actuator YA is controlled by an upper controller EA.
  • a lower braking unit SB is arranged between the upper braking unit SA and the wheel cylinder CW.
  • the lower braking unit SB is composed of a lower actuator YB (lower hydraulic unit) and a lower controller EB (lower control unit).
  • the lower actuator YB is controlled by a lower controller EB.
  • Communication bus BS has a network structure in which a plurality of controllers (control units) are suspended from communication lines.
  • a communication bus BS provides signaling between a plurality of controllers (EA, EB, EG, ED, etc.). That is, the plurality of controllers can transmit signals (detected values, calculated values, control flags, etc.) to the communication bus BS and receive signals from the communication bus BS.
  • the upper braking unit SA generates front and rear wheel supply pressures Pm and Pv according to the operation of a braking operation member BP (brake pedal).
  • the front and rear wheel supply pressures Pm and Pv are finally supplied to the front and rear wheel cylinders CWf and CWr via a communication path HS (fluid path) and a lower braking unit SB. That is, the hydraulic pressures Pwf and Pwr (front and rear wheel pressures) of the front and rear wheel cylinders CWf and CWr are adjusted by the front and rear wheel supply pressures Pm and Pv.
  • the upper braking unit SA is composed of an upper actuator YA and an upper controller EA.
  • the upper actuator YA is composed of an apply section AP, a pressure regulating section CA, and an input section NR.
  • a front wheel supply pressure Pm is output from the apply portion AP.
  • the apply part AP is composed of a single-type master cylinder CM and a master piston NM.
  • a master piston NM is inserted into the single-type master cylinder CM.
  • the interior of the master cylinder CM is partitioned into three hydraulic pressure chambers Rm, Ru, and Ro by the master piston NM.
  • a master chamber Rm (also referred to as a “supply chamber”) is defined by one side bottom of the master cylinder CM and the master piston NM.
  • the interior of the master cylinder CM is partitioned into a servo chamber Ru and a reaction force chamber Ro by a flange Tu of the master piston NM. That is, the master chamber Rm and the servo chamber Ru are arranged so as to face each other with the collar portion Tu interposed therebetween.
  • These hydraulic chambers Rm, Ru, and Ro are sealed by a seal member SL.
  • the master piston NM When not braking, the master piston NM is at the most retracted position (that is, the position where the volume of the master chamber Rm is maximized). In this state, the master chamber Rm of the master cylinder CM communicates with the master reservoir RV. Brake fluid BF is stored inside a master reservoir RV (atmospheric pressure reservoir).
  • the brake operating member BP When the brake operating member BP is operated, the master piston NM is moved in the forward direction Ha (the direction in which the volume of the master chamber Rm decreases). This movement cuts off communication between the master chamber Rm and the master reservoir RV. Then, when the master piston NM is further moved in the forward direction Ha, the front wheel supply pressure Pm is increased from "0 (atmospheric pressure)".
  • the brake fluid BF pressurized to the front wheel supply pressure Pm is output (pumped) from the master chamber Rm (supply chamber) of the master cylinder CM.
  • the front wheel supply pressure Pm is also referred to as "master pressure" because it is the hydraulic pressure in the master chamber Rm.
  • the pressure regulating section CA supplies the rear wheel supply pressure Pv to the rear wheel cylinder CWr, and supplies the downstream side servo pressure Pk to the servo chamber Ru of the apply section AP.
  • the pressure regulating section CA is composed of an electric motor MA, a fluid pump QA, and upstream and downstream pressure regulating valves UJ and UK.
  • the electric motor MA drives the fluid pump QA.
  • the suction portion and the discharge portion are connected by a return path HK (fluid path).
  • the suction portion of the fluid pump QA is also connected to the master reservoir RV via the reservoir passage HR.
  • a discharge portion of the fluid pump QA is provided with a check valve.
  • Two pressure regulating valves UJ and UK are provided in series in the return path HK.
  • the return path HK is provided with a normally open downstream pressure regulating valve UK.
  • a normally open upstream pressure regulating valve UJ is provided between the downstream pressure regulating valve UK and the discharge portion of the fluid pump QA. Therefore, in the circulating flow KN of the brake fluid BF, the upstream pressure regulating valve UJ is arranged upstream (closer to the discharge port of the fluid pump QA) than the downstream pressure regulating valve UK.
  • the upstream and downstream pressure regulating valves UJ and UK are linear electromagnetic valves whose opening amount (lift amount) is continuously controlled based on the energized state (for example, supply currents Ij and Ik).
  • the upstream and downstream side pressure regulating valves UJ and UK adjust the hydraulic pressure difference (differential pressure) between the upstream side and the downstream side, so they are also called “differential pressure valves”.
  • a circulating flow KN (indicated by dashed arrows) of the brake fluid BF including the fluid pump QA and the upstream and downstream pressure regulating valves UJ and UK is formed in the return passage HK. ) is generated.
  • a hydraulic pressure Pk (referred to as “downstream servo pressure") between the upstream pressure regulating valve UJ and the downstream pressure regulating valve UK is controlled by the downstream pressure regulating valve UK.
  • a fluid pressure Pj (referred to as "upstream servo pressure”) between the upstream pressure regulating valve UJ and the discharge portion of the fluid pump QA is controlled by the upstream pressure regulating valve UJ.
  • the downstream side servo pressure Pk is "0 (atmospheric pressure)".
  • the circulation flow KN flow of the brake fluid BF circulating in the return passage HK
  • the flow path of the return passage HK is narrowed by the downstream pressure regulating valve UK, and the orifice effect of the downstream pressure regulating valve UK is exhibited.
  • downstream differential pressure a differential pressure sPk (referred to as "downstream differential pressure") between the downstream side hydraulic pressure (atmospheric pressure) and the upstream side hydraulic pressure Pk (downstream servo pressure) is generated with respect to the downstream side pressure regulating valve UK.
  • the downstream differential pressure sPk is adjusted by the amount of energization (supply current Ik) to the downstream pressure regulating valve UK.
  • the upstream servo pressure Pj matches the downstream servo pressure Pk.
  • the circulation flow KN the flow of the brake fluid BF circulating in the return passage HK
  • the flow path of the return passage HK is narrowed by the upstream pressure regulating valve UJ, and the orifice effect of the upstream pressure regulating valve UJ is exhibited.
  • a differential pressure sPj (“upstream differential pressure ) is generated.
  • the upstream differential pressure sPj is adjusted by the amount of energization (supply current Ij) to the upstream pressure regulating valve UJ.
  • the upstream servo pressure Pj is always greater than or equal to the downstream servo pressure Pk (that is, "Pj ⁇ Pk").
  • the hydraulic pressure supplied from the upper braking unit SA to the lower braking unit SB is called "supply pressure".
  • the supply pressure transmission path differs between the braking system for the front wheels WHf and the braking system for the rear wheels WHr.
  • the return passage HK is connected to the servo chamber Ru via a servo passage HV (fluid passage) at a portion pk between the upstream pressure regulating valve UJ and the downstream pressure regulating valve UK. . Therefore, the downstream servo pressure Pk is introduced (supplied) into the servo chamber Ru.
  • the increase in the downstream side servo pressure Pk pushes the master piston NM in the forward direction Ha, increasing the internal hydraulic pressure Pm (front wheel supply pressure) in the master chamber Rm (supply chamber).
  • a front wheel connecting passage HSf is connected to the master chamber Rm.
  • the front wheel communication path HSf is connected to the front wheel cylinder CWf via the lower braking unit SB (in particular, the lower actuator YB). Therefore, in the braking system for the front wheels WHf of the braking control device SC, the downstream side servo pressure Pk is supplied as the front wheel supply pressure Pm to the front wheel cylinders CWf via the master cylinder CM.
  • a rear wheel supply pressure sensor PV is connected to the upper controller EA. Therefore, the signal of the rear wheel supply pressure Pv is directly input to the upper controller EA.
  • the input unit NR is composed of an input cylinder CN, an input piston NN, an introduction valve VA, a release valve VB, a stroke simulator SS, and a simulator hydraulic pressure sensor PZ.
  • the input cylinder CN is fixed to the master cylinder CM.
  • An input piston NN is inserted into the input cylinder CN.
  • the input piston NN is mechanically connected to the braking operation member BP via a clevis (U-shaped link) so as to interlock with the braking operation member BP (brake pedal).
  • a gap Ks (also referred to as "separation displacement") is provided between the end face of the input piston NN and the end face of the master piston NM.
  • Regenerative cooperative control is realized by adjusting the separation distance Ks by the downstream servo pressure Pk.
  • the input chamber Rn of the input unit NR is connected to the reaction force chamber Ro of the apply unit AP via an input channel HN (fluid channel).
  • the input path HN is provided with a normally closed introduction valve VA.
  • the input path HN is connected to the master reservoir RV via a reservoir path HR between the introduction valve VA and the reaction force chamber Ro.
  • a normally open release valve VB is provided in the reservoir passage HR.
  • the introduction valve VA and the release valve VB are on/off solenoid valves.
  • a stroke simulator SS (simply referred to as a "simulator") is connected to an input path HN between the introduction valve VA and the reaction force chamber Ro.
  • the introduction valve VA When power is not supplied to the introduction valve VA and the open valve VB, the introduction valve VA is closed and the open valve VB is opened. By closing the introduction valve VA, the input chamber Rn is sealed and fluidly locked. As a result, the master piston NM is displaced integrally with the braking operation member BP. Further, the simulator SS is communicated with the master reservoir RV by opening the open valve VB. When power is supplied to the introduction valve VA and the open valve VB, the introduction valve VA is opened and the open valve VB is closed. As a result, the master piston NM can be displaced separately from the braking operation member BP. At this time, since the input chamber Rn is connected to the stroke simulator SS, the operating force Fp of the braking operation member BP is generated by the simulator SS.
  • a simulator pressure sensor PZ is provided in the input path HN between the introduction valve VA and the reaction force chamber Ro so as to detect the fluid pressure Pz (simulator pressure) in the simulator SS. Since the simulator pressure Pz is also the internal pressure of the input chamber Rn, it is also a state quantity representing the operating force Fp of the brake operating member BP.
  • first mode A state in which the master piston NM and the braking operation member BP are displaced separately (when the solenoid valves VA and VB are energized) is called “first mode (or bi-wire mode)".
  • the braking control device SC functions as a brake-by-wire type device (that is, a device capable of independently generating the frictional braking force Fm in response to the driver's braking operation). Therefore, in the first mode, the wheel pressure Pw is generated independently of the operation of the braking operation member BP.
  • second mode or manual mode
  • the wheel pressure Pw is interlocked with the driver's braking operation.
  • one of the first mode (by-wire mode) and the second mode (manual mode) is selected depending on whether power is supplied to the introduction valve VA and the release valve VB.
  • An upper controller EA controls the upper actuator YA.
  • the upper controller EA is composed of a microprocessor MP and a drive circuit DR.
  • the upper controller EA is connected to a communication bus BS so as to share signals (detected values, calculated values, control flags, etc.) with various controllers (EB, EG, ED, etc.).
  • a braking operation amount Ba and a rear wheel supply pressure Pv are input to the upper controller EA.
  • the braking operation amount Ba is a general term for state quantities representing the amount of operation of the braking operation member BP.
  • a detection signal Sp (operation displacement) from the operation displacement sensor SP and a detection signal Pz (simulator pressure) from the simulator pressure sensor PZ are directly input to the upper controller EA.
  • a detection signal Pv (rear wheel supply pressure) from the rear wheel supply pressure sensor PV is directly input to the upper controller EA.
  • the front wheel supply pressure Pm, the limit regenerative braking force Fx, the required deceleration Gs, etc. are input to the upper controller EA via the communication bus BS.
  • the front wheel supply pressure Pm is detected by a supply pressure sensor PM provided in the lower actuator YB and transmitted from the lower controller EB.
  • the “limit regenerative braking force Fx” is the maximum value (limit value) of the regenerative braking force Fg that can be generated by the regenerative device KG.
  • the limit regenerative braking force Fx is calculated by the regenerative controller EG and transmitted from the regenerative controller EG.
  • the required deceleration Gs is a target value of vehicle deceleration in automatic braking control.
  • the required deceleration Gs is calculated by the driving assistance controller ED and transmitted from the driving assistance controller ED.
  • a pressure regulation control algorithm is programmed in the upper controller EA (particularly the microprocessor MP).
  • Pressure regulation control is control for adjusting the front and rear wheel supply pressures Pm and Pv (finally, the front and rear wheel pressures Pwf and Pwr), and includes regenerative cooperative control.
  • the pressure regulation control is executed based on the braking operation amount Ba (operation displacement Sp, simulator pressure Pz), required deceleration Gs, front and rear wheel supply pressures Pm, Pv, and maximum regenerative braking force Fx.
  • the braking operation amount Ba and the required deceleration Gs are collectively referred to as "braking required amount Bs". That is, the braking demand amount Bs is an input for instructing the wheel pressure Pw (resulting in the frictional braking force Fm) to be generated by the braking control device SC.
  • the drive circuit DR drives the electric motor MA that constitutes the upper actuator YA and various electromagnetic valves (UJ, UK, etc.).
  • an H-bridge circuit is configured with switching elements (for example, MOS-FETs) so as to drive the electric motor MA.
  • the drive circuit DR is provided with switching elements so as to drive various electromagnetic valves (UJ, UK, etc.).
  • the drive circuit DR includes a motor current sensor (not shown) that detects a current Im (actual value) supplied to the electric motor MA, and a current Ij supplied to the upstream and downstream pressure regulating valves UJ and UK.
  • Upstream and downstream current sensors are included to detect Ik (actual value, referred to as “upstream and downstream currents”).
  • the electric motor MA is provided with a rotation angle sensor (not shown) for detecting the rotation angle Ka (actual value) of the rotor of the electric motor MA. Then, the motor rotation speed Na is calculated based on the motor rotation angle Ka.
  • the upper controller EA calculates upstream and downstream target currents Itj and Itk, which are target values corresponding to the upstream and downstream currents Ij and Ik, based on the braking demand Bs. Then, the upstream and downstream currents Ij and Ik (actual values) are controlled to approach and match the upstream and downstream target currents Itj and Itk (target values). Further, the upper controller EA calculates a target rotational speed Nta (target value) corresponding to the actual rotational speed Na based on the braking demand Bs. Then, the motor supply current Im is controlled so that the actual rotational speed Na approaches and coincides with the target rotational speed Nta.
  • target rotational speed Nta target value
  • a drive signal Ma for controlling the electric motor MA and drive signals Uj, Uk, Va and Vb for controlling various solenoid valves UJ, UK, VA and VB are calculated.
  • the switching elements of the drive circuit DR are driven according to the drive signal (Ma etc.) to control the electric motor MA and the solenoid valves UJ, UK, VA and VB.
  • the lower braking unit SB is a general-purpose unit (device) for executing antilock brake control, traction control, skid prevention control, and the like. Since the wheel pressure Pw of each wheel cylinder CW is independently adjusted in antilock brake control, traction control, skid prevention control, etc., these are also collectively referred to as "independent control for each wheel”. In the lower braking unit SB, the wheel pressure Pw can be individually adjusted for each wheel cylinder CW so as to perform independent control for each wheel.
  • the lower braking unit SB is provided between the upper braking unit SA and the wheel cylinder CW. Front and rear wheel supply pressures Pm and Pv are supplied to the lower braking unit SB from the upper braking unit SA. Then, the lower braking unit SB adjusts (increases or decreases) the front and rear wheel supply pressures Pm and Pv, and outputs them as hydraulic pressures Pwf and Pwr (front and rear wheel pressures) of the front and rear wheel cylinders CWf and CWr. be done. When the lower braking unit SB is not in operation (when independent control of each wheel is not executed), the front and rear wheel pressures Pwf and Pwr are equal to the front and rear wheel supply pressures Pm and Pv.
  • a front wheel supply pressure sensor PM is provided to detect the actual hydraulic pressure Pm (front wheel supply pressure) supplied from the upper actuator YA (especially the master chamber Rm).
  • the front wheel supply pressure sensor PM is also called a "master pressure sensor” and is built into the lower actuator YB.
  • a signal of the front wheel supply pressure Pm is directly input to the lower controller EB and output to the communication bus BS.
  • Pressure regulation control is control of the front and rear wheel supply pressures Pm and Pv (resulting in front and rear wheel pressures Pwf and Pwr) based on the braking demand Bs (Ba, Gs, etc.).
  • the "two-system pressure regulation” is pressure regulation control in which the front and rear wheel pressures Pwf and Pwr are independently and individually adjusted.
  • pressure regulation control in which the front and rear wheel pressures Pwf and Pwr are equally adjusted is referred to as "single-system pressure regulation.”
  • the two-system pressure regulation improves the regeneration efficiency and makes the braking force distribution between the front and rear wheels more appropriate than the one-system pressure regulation.
  • a pressure regulation control algorithm is programmed in the microprocessor MP of the upper controller EA.
  • the description of the processing example assumes the following. -
  • the regeneration device KG is provided only on the front wheels WHf. Therefore, the regenerative braking force Fg acts on the front wheels WHf, but does not act on the rear wheels WHr.
  • the front wheel supply pressure sensor PM is housed in the lower brake unit SB and the front wheel supply pressure Pm is input to the upper brake unit SA via the communication bus BS.
  • the rear wheel supply pressure sensor PV is built in the upper braking unit SA, and the rear wheel supply pressure Pv is directly input to the upper braking unit SA.
  • Various braking forces are as follows. - "Vehicle total braking force Fu” is the actual braking force acting on the entire vehicle JV. A target value corresponding to the vehicle total braking force Fu is the “target vehicle system power Fv”. - “Friction braking force Fm” is the braking force that is actually generated according to the wheel pressure Pw. A target value corresponding to the frictional braking force Fm is the “target frictional braking force Fn”. - “Regenerative braking force Fg” is the braking force actually generated by the regenerative device KG. A target value corresponding to the regenerative braking force Fg is the "target regenerative braking force Fh”.
  • the target regenerative braking force Fh is calculated by the upper braking unit SA (especially the upper controller EA) or the lower braking unit SB (especially the lower controller EB), and is transmitted to the regenerative device KG (especially transmitted to the regenerative controller EG).
  • the regenerative controller EG controls the generator GN so that the actual regenerative braking force Fg approaches and matches the target regenerative braking force Fh.
  • "Limit regenerative braking force Fx" is the regenerative braking force Fg that can be generated by the regenerative device KG.
  • the limit regenerative braking force Fx is the maximum value (limit value) of the regenerative braking force Fg that can be generated by the regenerative device KG. Therefore, in the regenerative device KG, the regenerative braking force Fg is generated within a range (limit) up to the limit regenerative braking force Fx.
  • the limit regenerative braking force Fx is calculated by the regenerative device KG (particularly the regenerative controller EG) and transmitted to the upper braking unit SA (particularly the upper controller EA) via the communication bus BS.
  • step S110 power is supplied (powered) to the introduction valve VA and the release valve VB.
  • the normally closed introduction valve VA is opened, the normally open release valve VB is closed, and the first mode in which the master piston NM and the braking operation member BP can be displaced separately is selected.
  • the front and rear wheel supply pressures Pm and Pv are adjusted independently of the operation of the brake operating member BP.
  • the operating force Fp of the brake operating member BP is generated by the stroke simulator SS.
  • a braking operation amount Ba (Sp, Pz, etc.) is detected by a braking operation amount sensor BA (SP, PZ, etc.) and input to the upper controller EA.
  • the rear wheel supply pressure Pv is detected by a rear wheel supply pressure sensor PV and input to the upper controller EA.
  • the required deceleration Gs is obtained from the driving assistance controller ED via the communication bus BS.
  • the front wheel supply pressure Pm is obtained from the lower controller EB via the communication bus BS.
  • the limit regenerative braking force Fx is obtained from the regenerative controller EG via the communication bus BS.
  • the required braking amount Bs is calculated based on the braking operation amount Ba and the required deceleration Gs. For example, the braking operation amount Ba and the requested deceleration Gs are compared in terms of the vehicle deceleration, and the larger one of them is determined as the requested braking amount Bs.
  • a target vehicle system power Fv (a target value of braking force acting on the entire vehicle) is calculated based on the braking demand amount Bs and the calculation map Zfv. Target vehicle system power Fv is calculated so as to increase as braking demand Bs increases according to calculation map Zfv. That is, the target vehicle system power Fv is determined so as to increase as the braking demand amount Bs increases.
  • step S140 "whether or not to execute the 1-system pressure regulation" is determined.
  • This determination is called a "switching determination".
  • two-system pressure regulation is selected as initial control.
  • the switching determination is made based on the start of antilock brake control (control to suppress locking of the wheels WH based on the wheel speed Vw and the vehicle body speed Vx) in the lower braking unit SB.
  • the answer is affirmative, and the pressure regulation control is switched from two-system pressure regulation to one-system pressure regulation.
  • whether or not the antilock brake control (ABS control) is to be executed is transmitted from the lower controller EB by a control flag FA (also referred to as "execution flag").
  • the switching determination may be determined based on the operating state of the regeneration device KG. Specifically, when the regenerative braking force Fg is no longer generated by the regenerative device KG, the switch determination is affirmative. For example, when the storage battery BG is fully charged and the regenerative device KG cannot generate the regenerative braking force Fg, or when some kind of failure occurs in the regenerative device KG. Such operation information of the regenerative device KG is transmitted to the upper controller EA when the limit regenerative braking force Fx (that is, the regenerative braking force that can be generated) is "0".
  • step S140 When the switching determination in step S140 is negative, the process proceeds to step S150, and the two-system pressure regulation (processes in steps S150 to S170) is executed. On the other hand, when the switching determination is affirmative, the process proceeds to step S180, and 1-system pressure regulation (processes of steps S180 to S210) is executed.
  • the predetermined value hb is the ratio of the rear wheel frictional braking force Fmr to the front wheel frictional braking force Fmf when the regenerative braking force Fg is "0". Therefore, the predetermined value hb is a preset constant based on the specifications of the braking device SX.
  • the front wheel and rear wheel required braking forces Fqf and Fqr are determined by the following equation (1).
  • step S150 the target regenerative braking force Fh and the front and rear wheel target frictional braking forces Fnf and Fnr are calculated based on the front and rear wheel required braking forces Fqf and Fqr and the limit regenerative braking force Fx. be. Specifically, the target regenerative braking force Fh is determined as a value equal to or less than the limit regenerative braking force Fx.
  • the target regenerative braking force Fh is made equal to the front wheel required braking force Fqf
  • the front wheel target frictional braking force Fnf is set to "0”
  • the target regenerative braking force Fh is made equal to the limit regenerative braking force Fx
  • the front wheel target friction braking force Fnf is set to be the front wheel required braking force Fqf to the limit.
  • a value obtained by subtracting the regenerative braking force Fx ( Fh)”
  • the front and rear wheel target pressures Ptf and Ptr are the specifications of the braking device SX (pressure receiving area of the wheel cylinder CW, effective braking radius of the rotating member KT, coefficient of friction of the friction member MS, effective radius of the wheel (tire), etc.).
  • the target frictional braking force Fn is determined by converting the dimensions of the front and rear wheel supply pressures Pm and Pv (that is, the front and rear wheel pressures Pwf and Pwr).
  • the front wheel and rear wheel target pressures Ptf and Ptr are calculated based on the braking demand amount Bs and the limit regenerative braking force Fx (regenerative braking force that can be generated by the regenerative device KG). Since the front wheel supply pressure Pm is equal to the front wheel pressure Pwf and the rear wheel supply pressure Pv is equal to the rear wheel pressure Pwr, the front and rear wheel target pressures Ptf and Ptr are the target values of the front and rear wheel pressures Pwf and Pwr. But also.
  • step S170 the front and rear wheel pressures Pwf and Pwr (actual values) are adjusted based on the front and rear wheel target pressures Ptf and Ptr (target values).
  • the upper controller EA drives the first electric motor MA and the upstream and downstream pressure regulating valves UJ and UK, causing the front and rear wheel pressures Pwf and Pwr to approach the front and rear target pressures Ptf and Ptr, controlled to match.
  • the electric motor MA is driven to generate a circulating flow KN including the fluid pump QA and the upstream and downstream pressure regulating valves UJ and UK.
  • step S180 power supply to the upstream side pressure regulating valve UJ is stopped and the upstream side pressure regulating valve UJ is opened. Since the upstream side pressure regulating valve UJ is a normally open solenoid valve, it is fully opened when power supply is stopped. As a result, the two-system pressure regulation is switched to the one-system pressure regulation. Switching from two-system pressure regulation to one-system pressure regulation is called "pressure regulation switching".
  • step S190 the target regenerative braking force Fh and the target frictional braking force Fn sum Fnt (also referred to as “target sum”) is calculated based on the target vehicle system power Fv and the limit regenerative braking force Fx.
  • the target regenerative braking force Fh is determined as a value equal to or less than the limit regenerative braking force Fx, similarly to the processing in step S150.
  • Target regenerative braking force Fh is transmitted to communication bus BS.
  • a common target pressure Px is calculated based on the target sum Fnt.
  • the predetermined pressure ps is a value corresponding to the sliding resistance of the seal member SL, and is a preset predetermined value (constant).
  • the hydraulic pressure conversion of the target sum Fnt is based on the specifications of the braking device SX (pressure receiving area of the wheel cylinder CW, effective braking radius of the rotating member KT, friction coefficient of the friction member MS, wheel ( It is done based on the effective radius of the tire).
  • the “common target pressure Px” is a common target value that corresponds to the front and rear wheel supply pressures Pm and Pv and is unified in the braking systems for the front and rear wheels.
  • the actual regenerative braking force Fg may be set to "0" when the single-system pressure regulation is performed. This is achieved by setting the regenerative braking force Fx (limit regenerative braking force) that can be generated by the regenerative device KG or the target regenerative braking force Fh to "0".
  • Fx limit regenerative braking force
  • the upper braking unit SA determines that the switching is affirmative, the cooperative regenerative control can be terminated and the operation of the regenerative device KG can be stopped.
  • the upper actuator YA is driven based on the common target pressure Px and the rear wheel supply pressure Pv.
  • the braking control device SC is a brake-by-wire type device that can independently control the operation of the braking operation member BP (brake pedal) and the hydraulic pressure (wheel pressure Pw) of the wheel cylinder CW.
  • the upper braking unit SA is provided with a master chamber Rm (supply chamber) and a servo chamber Ru.
  • the master chamber Rm and the servo chamber Ru are sealed with a seal member SL and partitioned by a master cylinder CM and a master piston NM.
  • two linear solenoid valves UJ and UK upstream and downstream pressure regulating valves
  • the front wheel pressure Pwf is adjusted by the downstream side servo pressure Pk based on the braking demand Bs and the front wheel supply pressure Pm.
  • the front wheel supply pressure Pm is output from the master chamber Rm, and finally the front wheel pressure Pwf is adjusted. That is, the downstream side servo pressure Pk is transmitted as the front wheel supply pressure Pm (finally, the front wheel pressure Pwf) via the master cylinder CM and the master piston NM.
  • the rear wheel pressure Pwr is adjusted by the upstream servo pressure Pj based on the braking demand Bs and the rear wheel supply pressure Pv.
  • the upstream servo pressure Pj is supplied as the rear wheel supply pressure Pv (finally, the rear wheel pressure Pwr) from the pressure regulating unit CA to the rear wheel cylinder CWr without passing through the master cylinder CM and the master piston NM. , supplied directly.
  • the upstream and downstream pressure regulating valves UJ and UK perform feedback control so that the front and rear wheel supply pressures Pm and Pv approach and match the front and rear wheel target pressures Ptf and Ptr calculated based on the braking demand Bs. be done.
  • the two-system pressure regulation is switched to the one-system pressure regulation (that is, when the pressure regulation is switched)
  • power supply to the upstream side pressure regulating valve UJ is stopped, and the upstream side servo pressure Pj and the downstream side servo pressure Pj are stopped.
  • Pk is brought to be equal. That is, the individual adjustment of the front wheel supply pressure Pm and the rear wheel supply pressure Pv is eliminated.
  • the target values corresponding to the front and rear wheel supply pressures Pm and Pv are determined as the same target value Px (common target pressure) for the front and rear wheel systems.
  • a predetermined pressure ps is added to the common target pressure Px so that the influence of the sliding resistance of the seal member SL is taken into consideration.
  • the front and rear wheel pressures Pwf and Pwr are adjusted by the downstream servo pressure Pk.
  • the downstream pressure regulating valve UK is feedback-controlled so that the rear wheel supply pressure Pv approaches and matches the common target pressure Px.
  • the supply pressure signal related to the 1-system pressure regulation has a choice between the front wheel supply pressure Pm and the rear wheel supply pressure Pv.
  • the sliding resistance of the seal member SL may act as a disturbance
  • the front wheel supply pressure Pm includes the sliding resistance
  • the rear wheel supply pressure Pv does not. Since the front wheel supply pressure Pm is acquired through the communication bus BS, it includes communication delays, but the rear wheel supply pressure Pv is directly input to the upper controller EA and is not affected by communication delays. Further, when the communication bus BS is abnormal, the front wheel supply pressure Pm cannot be obtained, but the rear wheel supply pressure Pv can be obtained. Therefore, in the braking control device SC, the rear wheel supply pressure Pv is used for the one-system pressure regulation.
  • the control of the front wheel pressure Pwf includes sliding resistance (that is, , front wheel supply pressure Pm) to control without sliding resistance (that is, control based on rear wheel supply pressure Pv). Therefore, discontinuity in the front wheel pressure Pwf (resulting in change in hydraulic pressure) occurs when the pressure adjustment is switched. Specifically, since the rear wheel supply pressure Pv does not include the frictional resistance of the seal member SL, the front wheel pressure Pwf is reduced by this frictional resistance at the time of pressure regulation switching.
  • a predetermined pressure ps is added to the common target pressure Px so as to compensate for the fluid pressure component due to the friction of the seal member SL. This suppresses changes in the wheel pressure Pw (in particular, a decrease in the front wheel pressure Pwf due to sliding friction resistance) when switching from two-system pressure regulation to one-system pressure regulation, and achieves smooth pressure regulation switching.
  • the rear wheel pressure Pwr is increased by a predetermined pressure ps when the pressure regulation is switched. The effect of braking force change is slight.
  • the switching from 2-system pressure regulation to 1-system pressure regulation is performed when antilock brake control is executed in the lower braking unit SB.
  • it is switched when the regenerative device KG cannot generate the regenerative braking force Fg.
  • Fg regenerative braking force
  • the resistance compensation of the seal member SL based on the addition of the predetermined pressure ps is particularly effective when antilock brake control is started during braking.
  • a drive process related to the downstream side pressure regulating valve UK is composed of a downstream side instruction current calculation block ISK, a downstream side deviation calculation block HPK, a downstream side compensation current calculation block IHK, and a downstream side current feedback control block IFK.
  • the downstream side command current Isk is calculated based on the front wheel target pressure Ptf and a preset calculation map Zsk.
  • the "downstream side command current Isk” is a target value related to the supply current Ik (downstream side current) of the downstream side pressure regulating valve UK required to achieve the front wheel target pressure Ptf.
  • the downstream side command current Isk is determined to increase as the front wheel target pressure Ptf increases according to the calculation map Zsk.
  • the downstream command current calculation block ISK corresponds to feedforward control based on the front wheel target pressure Ptf.
  • the downstream compensation current calculation block IHK calculates the downstream compensation current Ihk based on the front wheel deviation hPf and a preset calculation map Zhk.
  • the downstream side command current Isk is calculated corresponding to the front wheel target pressure Ptf, but an error may occur between the front wheel target pressure Ptf and the front wheel supply pressure Pm.
  • the "downstream compensation current Ihk” is for compensating (reducing) this error and matching the front wheel supply pressure Pm with the front wheel target pressure Ptf.
  • Downstream compensation current Ihk is determined according to calculation map Zhk so as to increase as front wheel deviation hPf increases.
  • the downstream compensation current Ihk with a positive sign is determined such that the downstream command current Isk is increased. be done.
  • a negative downstream compensation current Ihk is determined so as to decrease the downstream command current Isk.
  • the calculation map Zhk is provided with a dead zone.
  • the downstream compensation current calculation block IHK corresponds to feedback control based on the front wheel supply pressure Pm.
  • the “downstream target current Itk” is the final target value of the current supplied to the downstream pressure regulating valve UK. Therefore, drive control of the downstream pressure regulating valve UK is composed of feedforward control and feedback control.
  • the downstream current feedback control block IFK controls the downstream current Ik to approach and match the downstream target current Itk based on the downstream target current Itk (target value) and the downstream current Ik (actual value). , the downstream drive signal Uk is calculated.
  • the downstream current Ik is detected by a downstream current sensor IK provided in the drive circuit DR.
  • the downstream current feedback control block IFK if "Itk>Ik”, the drive signal Uk is determined such that the downstream current Ik increases. On the other hand, if "Itk ⁇ Ik”, the drive signal Uk is determined such that the downstream current Ia decreases. That is, the downstream current feedback control block IFK executes feedback control related to the current.
  • the drive processing related to the upstream pressure regulating valve UJ includes a target differential pressure calculation block SPT, an upstream indicated current calculation block ISJ, an upstream deviation calculation block HPJ, an upstream compensation current calculation block IHJ, and an upstream current feedback control block IFJ. Consists of
  • the target differential pressure calculation block SPT calculates the target differential pressure sPt based on the front wheel and rear wheel target pressures Ptf and Ptr.
  • the upstream side indicated current calculation block ISJ calculates the upstream side indicated current Isj based on the target differential pressure sPt and a preset calculation map Zsj.
  • the “upstream indicated current Isj” is a target value related to the supply current Ij (upstream current) of the upstream pressure regulating valve UJ required to achieve the target differential pressure sPt. According to the calculation map Zsj, the upstream side indicated current Isj is determined to increase as the target differential pressure sPt increases.
  • the upstream command current calculation block ISJ corresponds to feedforward control based on the target differential pressure sPt.
  • the upstream compensation current calculation block IHJ calculates the upstream compensation current Ihj based on the rear wheel deviation hPr and a preset calculation map Zhj.
  • the "upstream compensation current Ihj" is for compensating for (reducing) the error between the rear wheel target pressure Ptr and the rear wheel supply pressure Pv, and matching the rear wheel supply pressure Pv with the rear wheel target pressure Ptr.
  • the upstream compensation current Ihj is determined according to the calculation map Zhj so as to increase as the rear wheel deviation hPr increases.
  • the upstream compensation current calculation block IHJ corresponds to feedback control based on the rear wheel supply pressure Pv.
  • the "upstream target current Itj” is the final target value of the current supplied to the upstream pressure regulating valve UJ. Therefore, drive control of the upstream side pressure regulating valve UJ is composed of feedforward control and feedback control.
  • the upstream current feedback control block IFJ controls the upstream current Ij to approach and match the upstream target current Itj.
  • the upstream drive signal Uj is calculated.
  • the upstream current Ij is detected by an upstream current sensor IJ provided in the drive circuit DR.
  • the common target pressure calculation block PX calculates the common target pressure Px based on the braking demand amount Bs.
  • the required braking amount Bs is a general term for the braking operation amount Ba and the required deceleration Gs, and is a required value for the wheel pressure Pw.
  • the common target pressure Px is calculated by equalizing the front wheel and rear wheel target pressures Ptf and Ptr and then adding a predetermined pressure ps. That is, the common target pressure Px is a target value unified with respect to the front wheel and rear wheel supply pressures Pm and Pv.
  • the downstream side command current Isk is calculated based on the common target pressure Px and the calculation map Zsk. Further, in the downstream compensation current calculation block IHK, the downstream compensation current Ihk is calculated based on the common deviation hPx and the calculation map Zhk. As in the two-system voltage regulation, also in the one-system voltage regulation, the downstream target current Itk is determined by adding the downstream side compensation current Ihk to the downstream side command current Isk. Then, the downstream current feedback control block IFK determines the drive signal Uk for the downstream pressure regulating valve UK based on the downstream target current Itk.
  • the functions of the blocks that is, SPT, ISJ, HPJ, IHJ, and IFJ
  • the common target pressure Px is used instead of the front wheel target pressure Ptf
  • the rear wheel supply pressure Pv is used instead of the front wheel supply pressure Pm.
  • a vehicle referred to as a "front wheel regeneration vehicle”
  • the braking control device SC may be applied to a vehicle (referred to as a "rear wheel regeneration vehicle") that is equipped with the regeneration device KG for the rear wheels WHr but not for the front wheels WHf. Differences will be described below.
  • the symbols in brackets [ ] in the block diagram of FIG. 4 correspond to the braking control device SC for the rear wheel regeneration vehicle.
  • the braking control device SC for a front wheel regeneration vehicle is applied to a vehicle in which the regeneration amount of the front wheel regeneration device KGf is greater than the regeneration amount of the rear wheel regeneration device KGf.
  • the braking control device SC for a rear wheel regeneration vehicle is applied to a vehicle in which the regeneration amount of the front wheel regeneration device KGf is smaller than the regeneration amount of the rear wheel regeneration device KGf.
  • the pressure regulating part CA of the braking control device SC applied to front wheel and rear wheel regenerative vehicles will be summarized.
  • normally open upstream and downstream pressure regulating valves UJ and UK are arranged in series in the circulating flow KN of the braking fluid BF containing the fluid pump QA.
  • the pressure of the brake fluid BF discharged from the fluid pump QA is adjusted to the upstream and downstream servo pressures Pj and Pk by the upstream and downstream pressure regulating valves UJ and UK.
  • first servo pressure P1 one of the upstream and downstream servo pressures Pj and Pk (referred to as “first servo pressure P1") is supplied to the servo chamber Ru, whereby the front wheel supply pressure Pm is Rm is output to the front wheel cylinder CWf. That is, the front wheel supply pressure Pm is adjusted by the first servo pressure P1, and the front wheel pressure Pwf is adjusted by the front wheel supply pressure Pm (hydraulic pressure transmission is in the order of "P1 ⁇ Pm ⁇ Pwf").
  • second servo pressure P2 is output to the rear wheel cylinder CWr as the rear wheel supply pressure Pv. That is, the rear wheel supply pressure Pv is adjusted by the second servo pressure P2, and the rear wheel pressure Pwr is adjusted by the rear wheel supply pressure Pv (hydraulic pressure transmission is in the order of "P2 ⁇ Pv ⁇ Pwr").
  • the first and second servo pressures P1 and P2 are adjusted individually, but in the one-system pressure regulation, the first and second servo pressures P1 and P2 are adjusted to be the same. That is, the front and rear wheel supply pressures Pm and Pv are equally adjusted by the first servo pressure P1 which is equal to the second servo pressure P2.
  • the front and rear wheel pressures Pwf and Pwr are equally adjusted by the front and rear wheel supply pressures Pm and Pv.
  • the pressure regulation state in the pressure regulation unit CA is either two-system pressure regulation or one-system pressure regulation.
  • the front wheel supply pressure sensor PM is built in the lower braking unit SB (in particular, the lower actuator YB).
  • the front wheel supply pressure sensor PM may be built in the upper braking unit SA (in particular, the upper actuator YA).
  • the front wheel supply pressure sensor PM is necessary for each wheel independent control such as antilock brake control, it is advantageous to incorporate it in the lower braking unit SB in terms of simplification of the entire system.
  • the front wheel supply pressure sensor PM is incorporated in the upper braking unit SA, independent control of each wheel cannot be executed when communication is abnormal. In this respect as well, it is advantageous to incorporate the front wheel supply pressure sensor PM into the lower braking unit SB.
  • the target values of various braking forces are calculated in terms of the longitudinal forces acting on the vehicle JV.
  • it may be calculated in the dimension of the deceleration of the vehicle JV or in the dimension of the torque of the wheels WH. This is based on the fact that the state quantities from longitudinal force to vehicle deceleration (referred to as "state quantity related to force") are equivalent. Therefore, the target pressures Ptf, Ptr, and Px are calculated based on state quantities related to forces from the longitudinal force acting on the vehicle JV to the deceleration of the vehicle JV.
  • the circulating flow KN of the brake fluid BF discharged by the fluid pump QA is throttled by the upstream and downstream pressure regulating valves UJ and UK in the pressure regulating section CA to adjust the front and rear wheel supply pressures Pm and Pv.
  • a regulating one (a so-called reflux type configuration) was exemplified.
  • the pressure regulating section CA may adjust the front wheel and rear wheel supply pressures Pm and Pv based on the pressure accumulated in the accumulator (so-called accumulator type configuration).
  • the volume in the cylinder may be increased or decreased by a piston directly driven by an electric motor to adjust the front and rear wheel supply pressures Pm and Pv (so-called electric cylinder type configuration).
  • the pressure receiving area rm (master area) of the master chamber Rm and the pressure receiving area ru (servo area) of the servo chamber Ru are set equal.
  • the master area rm and the servo area ru may not be equal.
  • braking control device SC in the transmission path of the front and rear wheel supply pressures Pm and Pv, fluid passages (brake fluid BF It is a movement route and is connected by a “communication path”).
  • a normally open solenoid valve (referred to as a "communication valve") is provided in the communication path.
  • the communication valve In the case of two-system pressure regulation, the communication valve is closed and the communication path is cut off. As a result, the front and rear wheel supply pressures Pm and Pv are individually adjusted.
  • the communication valve is opened, and the parts related to the front and rear wheel supply pressures Pm and Pv are brought into communication. As a result, the front and rear wheel supply pressures Pm and Pv are adjusted with the same hydraulic pressure.
  • the sites on which the front and rear wheel supply pressures Pm and Pv act include sources of the front and rear wheel supply pressures Pm and Pv, transmission paths (fluid passages, hydraulic chambers), and the like. Part applies.
  • the forces generated by the front and rear wheel supply pressures Pm and Pv act on members for example, the master piston NM. Includes sites that act via For example, in the configuration shown in FIG. 2, the sites pj and pk correspond to the action sites, and the upstream pressure regulating valve UJ corresponds to the communication valve.
  • the rear wheel supply pressure Pv directly acts on the portion pj
  • the front wheel supply pressure Pm indirectly acts on the portion pk via the master piston NM.
  • Embodiments of the braking control device SC are summarized below.
  • the braking control device SC is a brake-by-wire device that can independently adjust the hydraulic pressures Pwf and Pwr (front and rear wheel pressures) of the front and rear wheel cylinders CWf and CWr according to the braking demand Bs.
  • the braking control device SC is composed of an apply section AP, a pressure regulating section CA, a controller EA, a front wheel supply pressure sensor PM, and a rear wheel supply pressure sensor PV.
  • the apply part AP has a cylinder CM, a supply chamber Rm (master chamber) partitioned by a piston NM inserted into the cylinder CM, and a servo chamber Ru.
  • the supply chamber Rm and the servo chamber Ru are sealed with a seal member SL.
  • the first and second servo pressures P1 and P2 are electrically adjusted by the pressure adjusting section CA.
  • the first and second servo pressures P1 and P2 are generated using an electric motor as a power source.
  • the first servo pressure P1 is supplied to the servo chamber Ru.
  • the front wheel supply pressure Pm is output from the supply chamber Rm to the front wheel cylinder CWf. That is, the front wheel supply pressure Pm is adjusted by the first servo pressure P1, and the front wheel pressure Pwf is adjusted by the front wheel supply pressure Pm. Therefore, the front wheel pressure Pwf is adjusted by the first servo pressure P1.
  • the second servo pressure P2 is directly output to the rear wheel cylinder CWr as the rear wheel supply pressure Pv. That is, the rear wheel supply pressure Pv is adjusted by the second servo pressure P2, and the rear wheel pressure Pwr is adjusted by the rear wheel supply pressure Pv. Therefore, the rear wheel pressure Pwr is adjusted by the second servo pressure P2.
  • the controller EA either two-system pressure regulation for individually adjusting the first and second servo pressures P1 and P2, or one-system pressure regulation for equally adjusting the first and second servo pressures P1 and P2 one is selected.
  • the front and rear wheel supply pressures Pm and Pv are detected by front and rear wheel supply pressure sensors PM and PV.
  • the front wheel and rear wheel target pressures Ptf and Ptr are individually calculated based on the braking demand amount Bs. Then, the pressure regulating section CA is controlled so that the front wheel and rear wheel supply pressures Pm and Pv match the front and rear wheel target pressures Ptf and Ptr. Specifically, the first and second servo pressures P1 and P2 are controlled so that the front and rear wheel supply pressures Pm and Pv match the front and rear wheel target pressures Ptf and Ptr.
  • the front wheel target pressure Ptf and the rear wheel target pressure Ptr are different, so the first servo pressure P1 and the second servo pressure P2 are adjusted to be different.
  • the front wheel supply pressure Pm and the rear wheel supply pressure Pv are different, and the front wheel pressure Pwf and the rear wheel pressure Pwr are different.
  • the common target pressure Px is calculated.
  • the common target pressure Px is determined by equalizing the front wheel and rear wheel target pressures Ptf and Ptr and adding a predetermined pressure ps. Then, the pressure regulating section CA is controlled so that the rear wheel supply pressure Pv matches the common target pressure Px. Specifically, the first and second servo pressures P1 and P2 are controlled so that the rear wheel supply pressure Pv matches the common target pressure Px.
  • the predetermined pressure ps is a predetermined value (constant) corresponding to the sliding resistance of the seal member SL, and is set in advance.
  • the front wheel target pressure Ptf and the rear wheel target pressure Ptr are equal, so the first servo pressure P1 and the second servo pressure P2 are adjusted to be equal.
  • the front wheel supply pressure Pm and the rear wheel supply pressure Pv become equal, and the front wheel pressure Pwf and the rear wheel pressure Pwr become equal.
  • the first servo pressure P1 is transmitted to the front wheel cylinder CWf as the front wheel supply pressure Pm via the cylinder CM and the piston NM.
  • the second servo pressure P2 is directly transmitted to the rear wheel cylinder CWr as the rear wheel supply pressure Pv without going through the cylinder CM and the piston NM. Since the cylinder CM and the piston NM are sealed by the seal member SL, the front wheel supply pressure Pm is affected by the sliding resistance of the seal member SL, but the rear wheel supply pressure Pv is affected by this. does not reach
  • the signal of the rear wheel supply pressure Pv is adopted in the one-system pressure regulation.
  • the front wheel pressure Pwf changes (particularly decreases). This is because the front wheel pressure Pwf is controlled from the front wheel supply pressure Pm including the sliding resistance of the seal member SL to the rear wheel supply pressure Pv not including the sliding resistance.
  • the influence of sliding resistance is suppressed by adding a predetermined pressure ps to the target pressure Px (common target pressure) of the one-system pressure regulation. This suppresses the change in the front wheel pressure Pwf that occurs when the pressure regulation is switched.
  • Pressure regulation switching based on the common target pressure Px is particularly effective when execution of antilock brake control is started and the two-system pressure regulation is switched to the one-system pressure regulation. This is because antilock brake control is started in the course of a series of braking operations, so the driver can easily notice changes in the wheel pressure Pw.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

制動制御装置は、シール部材で封止される供給室及びサーボ室を有するアプライ部と、第1サーボ圧をサーボ室に供給して供給室から前輪ホイールシリンダに前輪供給圧を出力することで前輪ホイール圧を調整し、第2サーボ圧を後輪供給圧として後輪ホイールシリンダに出力することで後輪ホイール圧を調整する調圧部と、前輪、後輪供給圧を検出する前輪、後輪供給圧センサと、第1、第2サーボ圧を個別に調整する2系統調圧及び第1、第2サーボ圧を同じにする1系統調圧のうちの何れかを選択するコントローラと、を備える。コントローラは、2系統調圧では、前輪、後輪目標圧を個別演算し、前輪、後輪供給圧を前輪、後輪目標圧に一致させ、1系統調圧では、前輪、後輪目標圧を等しくした上で所定圧を加えて共通目標圧を演算し、後輪供給圧を共通目標圧に一致させる。

Description

車両の制動制御装置
 本開示は、車両の制動制御装置に関する。
 出願人は、特許文献1に記載されるような、長手方向の寸法が短縮されるとともに、前輪系統の制動液圧と後輪系統の制動液圧とが個別に制御される制動制御装置を開発している。該装置では、前輪、後輪系統で制動液圧が個別に制御される2系統調圧が、前輪、後輪系統で制動液圧が同一に制御される1系統調圧に切り替えられることがある。この切り替えには、滑らかさが求められている。
特開2019-137202号公報
 本発明の目的は、車両の制動制御装置において、2系統調圧から1系統調圧への切り替えが円滑に行われ得るものを提供することである。
 本発明に係る車両の制動制御装置(SC)は、制動要求量(Bs)に応じて前輪、後輪ホイールシリンダ(CWf、CWr)の液圧(Pwf、Pwr)を調整するものであって、「シリンダ(CM)、及び、該シリンダ(CM)に挿入されるピストン(NM)によって仕切られ、シール部材(SL)によって封止される供給室(Rm)、及び、サーボ室(Ru)を有するアプライ部(AP)」と、「電気的に第1、第2サーボ圧(P1、P2)を調整し、前記第1サーボ圧(P1)を前記サーボ室(Ru)に供給し、前記供給室(Rm)から前記前輪ホイールシリンダ(CWf)に前輪供給圧(Pm)を出力することで、前記前輪ホイールシリンダ(CWf)の液圧(Pwf)を調整するとともに、前記第2サーボ圧(P2)を後輪供給圧(Pv)として前記後輪ホイールシリンダ(CWr)に出力することで、前記後輪ホイールシリンダ(CWr)の液圧(Pwr)を調整する調圧部(CA)」と、「前記前輪、後輪供給圧(Pm、Pv)を検出する前輪、後輪供給圧センサ(PM、PV)」と、「前記第1、第2サーボ圧(P1、P2)を個別に調整する2系統調圧、及び、前記第1、第2サーボ圧(P1、P2)を同じに調整する1系統調圧のうちの何れか一方を選択するコントローラ(EA)」と、を備える。
 本発明に係る車両の制動制御装置(SC)では、前記コントローラ(EA)は、前記2系統調圧を選択する場合には、前記制動要求量(Bs)に基づいて前輪、後輪目標圧(Ptf、Ptr)を個別に演算し、前記前輪、後輪供給圧(Pm、Pv)を前記前輪、後輪目標圧(Ptf、Ptr)に一致させるように前記調圧部(CA)を制御する。一方、前記コントローラ(EA)は、前記1系統調圧を選択する場合には、前記前輪、後輪目標圧(Ptf、Ptr)を等しくした上で所定圧(ps)を加えて共通目標圧(Px)を演算し、前記後輪供給圧(Pv)を前記共通目標圧(Px)に一致させるように前記調圧部(CA)を制御する。例えば、前記所定圧(ps)は前記シール部材(SL)の摺動抵抗に相当する値に設定される。前記コントローラ(EA)は、アンチロックブレーキ制御の実行が開始される時点で、前記2系統調圧を前記1系統調圧に切り替える。
 制動制御装置SCでは、1系統調圧の制御に、後輪供給圧Pvが用いられるが、シール部材SLの摩擦抵抗分を補償するよう、1系統調圧の共通目標圧Pxには所定圧psが加えられる。上記構成によれば、2系統調圧から1系統調圧への切り替えが滑らかに行われる。
本発明に係る制動制御装置SCを搭載した車両JVの全体構成を説明するための概略図である。 上部制動ユニットSAの構成例を説明するための概略図である。 調圧制御の処理例を説明するためのフロー図である。 2系統調圧における上流側、下流側調圧弁UJ、UKの駆動制御例を説明するためのブロック図である。 1系統調圧における下流側調圧弁UKの駆動制御例を説明するためのブロック図である。
<構成部材等の記号、及び、記号末尾の添字>
 以下の説明において、「CW」等の如く、同一記号を付された構成部材、演算処理、信号、特性、及び、値は、同一機能のものである。各車輪に係る記号末尾に付された添字「f」、「r」は、それが前後輪の何れの系統に関するものであるかを示す包括記号である。例えば、各車輪に設けられたホイールシリンダCWにおいて、「前輪ホイールシリンダCWf」、「後輪ホイールシリンダCWr」と表記される。更に、記号末尾の添字「f」、「r」は省略され得る。添字「f」、「r」が省略された場合には、各記号は総称を表す。例えば、「CW」は、車両の前後車輪に設けられたホイールシリンダの総称である。
 マスタシリンダCMからホイールシリンダCWに至るまでの流体路において、マスタシリンダCMに近い側(ホイールシリンダCWから遠い側)が「上部」と称呼され、ホイールシリンダCWに近い側(マスタシリンダCMから遠い側)が「下部」と称呼される。また、制動液BFの循環流KNにおいて、流体ポンプQAの吐出部に近い側(吸入部から離れた側)が「上流側」と称呼され、流体ポンプQAの吸入部に近い側(吐出部から離れた側)が「下流側」と称呼される。
 上部制動ユニットSAの上部流体ユニットYA(「上部アクチュエータ」ともいう)、下部制動ユニットSBの下部流体ユニットYB(「下部アクチュエータ」ともいう)、及び、ホイールシリンダCWは、流体路(連絡路HS)にて接続される。更に、上部、下部アクチュエータYA、YBでは、各種構成要素(UJ、UK等)が流体路にて接続される。ここで、「流体路」は、制動液BFを移動するための経路であり、配管、アクチュエータ内の流路、ホース等が該当する。以下の説明で、連絡路HS、還流路HK、リザーバ路HR、入力路HN、サーボ路HV等は流体路である。
<制動制御装置SCを搭載した車両JV>
 図1の概略図を参照して、本発明に係る制動制御装置SCを搭載した車両JVの全体構成について説明する。車両JVは、駆動用の電気モータを備えたハイブリッド車両、又は、電気自動車である。車両JVには、回生装置KGが備えられる。回生装置KGは、ジェネレータGN、及び、回生装置用の制御ユニットEG(「回生コントローラ」ともいう)にて構成される。ジェネレータGNは、駆動用の電気モータでもある。回生制動では、電気モータ/ジェネレータGNが発電機として作動し、発電された電力が、回生コントローラEGを介して、蓄電池BGに蓄えられる。例えば、回生装置KGは、前輪WHfに備えられる。該構成では、回生装置KGによって、前輪WHfに回生制動力Fgが発生される。
 更に、車両JVには、運転者に代わって、或いは、運転者を補助して、制動制御装置SCを介して、車両を自動停止させる制御(「自動制動制御」という)が実行されるよう、運転支援装置DSが備えられる。運転支援装置DSは、距離センサOB、及び、運転支援装置用の制御ユニットED(「運転支援コントローラ」ともいう)にて構成される。距離センサOBによって、自車両JVの前方に存在する物体(他車両、固定物、人、自転車、停止線、標識、信号、等)と、自車両JVとの間の距離Ob(相対距離)が検出され、運転支援コントローラEDに入力される。運転支援コントローラEDでは、相対距離Obに基づいて、車両JVを自動停止させるための要求減速度Gsが演算される。要求減速度Gsは、自動制動制御を実行するための車両減速度の目標値である。要求減速度Gsは、通信バスBSに出力される。
 車両JVには、前輪、後輪制動装置SXf、SXr(=SX)が備えられる。制動装置SXは、ブレーキキャリパCP、摩擦部材MS(例えば、ブレーキパッド)、及び、回転部材KT(例えば、ブレーキディスク)にて構成される。ブレーキキャリパCPには、ホイールシリンダCWが設けられる。ホイールシリンダCW内の液圧Pw(「ホイール圧」という)によって、摩擦部材MSが、各車輪WHに固定された回転部材KTに押し付けられる。これにより、車輪WHには摩擦制動力Fmが発生される。「摩擦制動力Fm」は、ホイール圧Pwによって発生される制動力である。
 車両JVには、制動操作部材BP、操舵操作部材SH、及び、各種センサ(BA等)が備えられる。制動操作部材BP(例えば、ブレーキペダル)は、運転者が車両JVを減速するために操作する部材である。操舵操作部材SH(例えば、ステアリングホイール)は、運転者が車両JVを旋回させるために操作する部材である。
 車両JVには、以下に列挙される各種センサが備えられる。これらのセンサの検出信号(Ba等)は、上部、下部コントローラEA、EBのうちの何れかに入力される。上部、下部コントローラEA、EBでは、センサ信号に基づいて各種の制御が実行される。
- 制動操作部材BPの操作量Ba(制動操作量)を検出する制動操作量センサBAが設けられる。例えば、制動操作量センサBAとして、制動操作部材BPの操作変位Spを検出する操作変位センサSPが設けられる。加えて、ストロークシミュレータSSの液圧Pz(「シミュレータ圧」という)を検出するシミュレータ圧センサPZが採用される。制動制御装置SCにおいては、制動操作量Baは、運転者の制動意志を表す信号の総称であり、制動操作量センサBAは、制動操作量Baを検出するセンサの総称である。制動操作量Baは、上部コントローラEAに入力される。
- 車輪WHの回転速度Vw(車輪速度)を検出する車輪速度センサVWが設けられる。車輪速度Vwは、下部コントローラEBに入力される。下部コントローラEBでは、車輪速度Vwに基づいて、車体速度Vxが演算される。また、下部コントローラEBでは、車輪速度Vw、及び、車体速度Vxに基づいて、車輪WHのロックを防止するアンチロックブレーキ制御(ABS制御)、及び、駆動車輪WHの空転を防止するトラクション制御が実行される。
- 操舵操作部材SHの操作量Sk(操舵操作量であって、例えば、操舵角)を検出する操舵操作量センサSKが設けられる。車両JV(特に、車体)について、ヨーレイトYrを検出するヨーレイトセンサYR、前後加速度Gxを検出する前後加速度センサGX、及び、横加速度Gyを検出する横加速度センサGYが設けられる。これらのセンサ信号は、下部コントローラEBに入力される。下部コントローラEBでは、これらの信号(Sk、Yr、Gy等)に基づいて、オーバステア及びアンダステアを抑制し、車両JVのヨーイング挙動を安定化する横滑り防止制御(ESC:Electronic Stability Control)が実行される。
 車両JVには、制動制御装置SCが備えられる。制動制御装置SCでは、2つの制動系統として、前後型(「II型」ともいう)のものが採用される。制動制御装置SCによって、実際のホイール圧Pwが調整される。
 制動制御装置SCは、2つの制動ユニットSA、SBにて構成される。上部制動ユニットSAは、上部アクチュエータYA(上部流体ユニット)、及び、上部コントローラEA(上部制御ユニット)にて構成される。上部アクチュエータYAは、上部コントローラEAによって制御される。上部制動ユニットSAとホイールシリンダCWとの間には、下部制動ユニットSBが配置される。下部制動ユニットSBは、下部アクチュエータYB(下部流体ユニット)、及び、下部コントローラEB(下部制御ユニット)にて構成される。下部アクチュエータYBは、下部コントローラEBによって制御される。
 上部制動ユニットSA(特に、上部コントローラEA)、下部制動ユニットSB(特に、下部コントローラEB)、回生装置KG(特に、回生コントローラEG)、及び、運転支援装置DS(特に、運転支援コントローラED)は通信バスBSに接続されている。「通信バスBS」は、通信線に複数のコントローラ(制御ユニット)がぶら下がるネットワーク構造を有している。通信バスBSによって、複数のコントローラ(EA、EB、EG、ED等)の間で信号伝達が行われる。つまり、複数のコントローラは、通信バスBSに信号(検出値、演算値、制御フラグ等)を送信することができるとともに、通信バスBSから信号を受信することができる。
<上部制動ユニットSA>
 図2の概略図を参照して、制動制御装置SCの上部制動ユニットSAの構成例について説明する。上部制動ユニットSAは、制動操作部材BP(ブレーキペダル)の操作に応じて、前輪、後輪供給圧Pm、Pvを発生する。前輪、後輪供給圧Pm、Pvは、連絡路HS(流体路)、及び、下部制動ユニットSBを介して、最終的には、前輪、後輪ホイールシリンダCWf、CWrに供給される。つまり、前輪、後輪ホイールシリンダCWf、CWrの液圧Pwf、Pwr(前輪、後輪ホイール圧)は、前輪、後輪供給圧Pm、Pvによって調整される。上部制動ユニットSAは、上部アクチュエータYA、及び、上部コントローラEAにて構成される。
≪上部アクチュエータYA≫
 上部アクチュエータYAは、アプライ部AP、調圧部CA、及び、入力部NRにて構成される。
[アプライ部AP]
 アプライ部APから前輪供給圧Pmが出力される。アプライ部APは、シングル型のマスタシリンダCM、及び、マスタピストンNMにて構成される。
 シングル型マスタシリンダCMには、マスタピストンNMが挿入される。マスタシリンダCMの内部は、マスタピストンNMによって、3つの液圧室Rm、Ru、Roに区画される。マスタ室Rm(「供給室」ともいう)は、マスタシリンダCMの一方側底部、及び、マスタピストンNMによって区画される。更に、マスタシリンダCMの内部は、マスタピストンNMのつば部Tuによって、サーボ室Ruと反力室Roとに仕切られる。つまり、マスタ室Rmとサーボ室Ruとは、つば部Tuを挟んで、相対するように配置される。これらの液圧室Rm、Ru、Roは、シール部材SLによって封止されている。従って、マスタピストンNMが移動される際には、シール部材SLとシール部材SLが摺動する面(摺動面)との間で摩擦力が発生する。なお、マスタ室Rmの受圧面積rmとサーボ室Ruの受圧面積ruとは等しくされる。
 非制動時には、マスタピストンNMは、最も後退した位置(即ち、マスタ室Rmの体積が最大になる位置)にある。該状態では、マスタシリンダCMのマスタ室Rmは、マスタリザーバRVに連通している。マスタリザーバRV(大気圧リザーバ)の内部に制動液BFが貯蔵される。制動操作部材BPが操作されると、マスタピストンNMが前進方向Ha(マスタ室Rmの体積が減少する方向)に移動される。該移動により、マスタ室RmとマスタリザーバRVとの連通は遮断される。そして、マスタピストンNMが、更に、前進方向Haに移動されると、前輪供給圧Pmが「0(大気圧)」から増加される。これにより、マスタシリンダCMのマスタ室Rm(供給室)から、前輪供給圧Pmに加圧された制動液BFが出力(圧送)される。前輪供給圧Pmは、マスタ室Rmの液圧であるため、「マスタ圧」とも称呼される。
[調圧部CA]
 調圧部CAは、後輪ホイールシリンダCWrに対して後輪供給圧Pvを供給し、アプライ部APのサーボ室Ruに対して下流側サーボ圧Pkを供給する。調圧部CAは、電気モータMA、流体ポンプQA、及び、上流側、下流側調圧弁UJ、UKにて構成される。
 電気モータMAによって、流体ポンプQAが駆動される。流体ポンプQAにおいて、吸入部と吐出部とは、還流路HK(流体路)によって接続される。また、流体ポンプQAの吸入部は、リザーバ路HRを介して、マスタリザーバRVとも接続される。流体ポンプQAの吐出部には、逆止弁が設けられる。
 還流路HKには、2つの調圧弁UJ、UKが直列に設けられる。具体的には、還流路HKには、常開型の下流側調圧弁UKが設けられる。そして、下流側調圧弁UKと流体ポンプQAの吐出部との間に、常開型の上流側調圧弁UJが設けられる。従って、制動液BFの循環流KNにおいて、上流側調圧弁UJは、下流側調圧弁UKに対して上流側(流体ポンプQAの吐出部に近い側)に配置される。上流側、下流側調圧弁UJ、UKは、通電状態(例えば、供給電流Ij、Ik)に基づいて開弁量(リフト量)が連続的に制御されるリニア型の電磁弁である。上流側、下流側調圧弁UJ、UKは、それらの上流側と下流側との液圧差(差圧)を調整するので、「差圧弁」とも称呼される。
 電気モータMAによって、流体ポンプQAが駆動されると、還流路HKには、流体ポンプQA、及び、上流側、下流側調圧弁UJ、UKを含む制動液BFの循環流KN(破線矢印で表示)が発生される。上流側調圧弁UJと下流側調圧弁UKとの間の液圧Pk(「下流側サーボ圧」という)が、下流側調圧弁UKによって制御される。上流側調圧弁UJと流体ポンプQAの吐出部との間の液圧Pj(「上流側サーボ圧」という)が、上流側調圧弁UJによって制御される。
 下流側調圧弁UKが全開状態にある場合(下流側調圧弁UKは常開型であるため、非通電時)には、下流側サーボ圧Pkは、「0(大気圧)」である。下流側調圧弁UKへの通電量(供給電流Ik)が増加されると、下流側調圧弁UKによって循環流KN(還流路HK内で循環する制動液BFの流れ)が絞られる。換言すれば、下流側調圧弁UKによって還流路HKの流路が狭められて、下流側調圧弁UKによるオリフィス効果が発揮される。これにより、下流側調圧弁UKに対して、下流側の液圧(大気圧)と上流側の液圧Pk(下流側サーボ圧)との間に差圧sPk(「下流側差圧」という)が発生される。下流側差圧sPkは、下流側調圧弁UKへの通電量(供給電流Ik)によって調節される。
 同様に、上流側調圧弁UJが全開状態にある場合(上流側調圧弁UJは常開型であるため、非通電時)には、上流側サーボ圧Pjは、下流側サーボ圧Pkに一致する。上流側調圧弁UJへの通電量(供給電流Ij)が増加されると、上流側調圧弁UJによって循環流KN(還流路HK内で循環する制動液BFの流れ)が絞られる。換言すれば、上流側調圧弁UJによって還流路HKの流路が狭められて、上流側調圧弁UJによるオリフィス効果が発揮される。これにより、上流側調圧弁UJに対して、下流側の液圧Pk(下流側サーボ圧)と上流側の液圧Pj(上流側サーボ圧)との間に差圧sPj(「上流側差圧」という)が発生される。上流側差圧sPjは、上流側調圧弁UJへの通電量(供給電流Ij)によって調節される。なお、上流側サーボ圧Pjと下流側サーボ圧Pkとの大小関係では、常に、上流側サーボ圧Pjは、下流側サーボ圧Pk以上である(即ち、「Pj≧Pk」)。ここで、上流側調圧弁UJに電力供給が行われず、それが全開状態である場合には、上流側、下流側サーボ圧Pj、Pkは等しくされる(即ち、「Pj=Pk」)。
 上部制動ユニットSAから下部制動ユニットSBに供給される液圧が「供給圧」と称呼される。制動制御装置SCでは、供給圧の伝達経路が、前輪WHfに係る制動系統と後輪WHrに係る制動系統とでは異なる。前輪WHfに係る制動系統では、還流路HKは、上流側調圧弁UJと下流側調圧弁UKとの間の部位pkにて、サーボ路HV(流体路)を介してサーボ室Ruに接続される。従って、下流側サーボ圧Pkは、サーボ室Ruに導入(供給)される。下流側サーボ圧Pkの増加によって、マスタピストンNMが前進方向Haに押圧され、マスタ室Rm(供給室)の内部液圧Pm(前輪供給圧)が増加される。マスタ室Rmには、前輪連絡路HSfが接続される。前輪連絡路HSfは、下部制動ユニットSB(特に、下部アクチュエータYB)を経由して、前輪ホイールシリンダCWfに接続される。従って、制動制御装置SCの前輪WHfに係る制動系統では、下流側サーボ圧Pkが、マスタシリンダCMを介して、前輪供給圧Pmとして、前輪ホイールシリンダCWfに供給される。但し、「ru=rm」であるため、「Pk=Pm=Pwf」である。つまり、前輪供給圧Pm(最終的には、前輪ホイール圧Pwf)は、下流側サーボ圧Pkによって調整される。
 後輪WHrに係る制動系統では、還流路HKは、流体ポンプQAの吐出部と上流側調圧弁UJとの間の部位pjにて、後輪連絡路HSr(流体路)、及び、下部制動ユニットSB(特に、下部アクチュエータYB)を介して後輪ホイールシリンダCWrに接続される。従って、制動制御装置SCの後輪WHrに係る制動系統では、上流側サーボ圧Pjが、後輪供給圧Pvとして、後輪ホイールシリンダCWrに直接供給される(即ち、「Pj=Pv=Pwr」)。つまり、後輪供給圧Pv(最終的には、後輪ホイール圧Pwr)は、上流側サーボ圧Pjによって調整される。
 後輪供給圧Pv(=Pj)を検出するよう、後輪連絡路HSrには、後輪供給圧センサPV(「サーボ圧センサ」ともいう)が設けられる。後輪供給圧センサPVは上部コントローラEAに接続される。従って、後輪供給圧Pvの信号は、上部コントローラEAに直接入力される。
[入力部NR]
 入力部NRによって、回生協調制御を実現するよう、制動操作部材BPは操作されるが、ホイール圧Pwが発生しない状態が生み出される。「回生協調制御」は、制動時に、車両JVが有する運動エネルギを効率良く電気エネルギに回収できるよう、摩擦制動力Fm(ホイール圧Pwによる制動力)と回生制動力Fg(ジェネレータGNによる制動力)とを協働させるものである。入力部NRは、入力シリンダCN、入力ピストンNN、導入弁VA、開放弁VB、ストロークシミュレータSS、及び、シミュレータ液圧センサPZにて構成される。
 入力シリンダCNは、マスタシリンダCMに固定される。入力シリンダCNには、入力ピストンNNが挿入される。入力ピストンNNは、制動操作部材BP(ブレーキペダル)に連動するよう、クレビス(U字リンク)を介して、制動操作部材BPに機械的に接続される。入力ピストンNNの端面とマスタピストンNMの端面とは隙間Ks(「離間変位」ともいう)を有している。離間距離Ksが下流側サーボ圧Pkによって調節されることで、回生協調制御が実現される。
 入力部NRの入力室Rnは、入力路HN(流体路)を介して、アプライ部APの反力室Roに接続される。入力路HNには、常閉型の導入弁VAが設けられる。入力路HNは、導入弁VAと反力室Roとの間にて、リザーバ路HRを介して、マスタリザーバRVに接続される。リザーバ路HRには、常開型の開放弁VBが設けられる。導入弁VA、及び、開放弁VBは、オン・オフ型の電磁弁である。導入弁VAと反力室Roとの間で、入力路HNにストロークシミュレータSS(単に、「シミュレータ」ともいう)が接続される。
 導入弁VA、及び、開放弁VBに電力供給(給電)が行われない場合には、導入弁VAは閉弁され、開放弁VBは開弁される。導入弁VAの閉弁により、入力室Rnは封止され、流体ロックされる。これにより、マスタピストンNMは、制動操作部材BPと一体で変位する。また、開放弁VBの開弁により、シミュレータSSは、マスタリザーバRVに連通される。導入弁VA、及び、開放弁VBに給電(電力供給)が行われる場合には、導入弁VAは開弁され、開放弁VBは閉弁される。これにより、マスタピストンNMは、制動操作部材BPとは別体で変位することが可能になる。このとき、入力室RnはストロークシミュレータSSに接続されるので、制動操作部材BPの操作力FpがシミュレータSSによって発生される。シミュレータSS内の液圧Pz(シミュレータ圧)を検出するよう、入力路HNには、導入弁VAと反力室Roとの間で、シミュレータ圧センサPZが設けられる。なお、シミュレータ圧Pzは、入力室Rnの内圧でもあるため、制動操作部材BPの操作力Fpを表す状態量でもある。
 マスタピストンNMと制動操作部材BPとが別体で変位する状態(電磁弁VA、VBの通電時)が「第1モード(又は、バイワイヤモード)」と称呼される。第1モードでは、制動制御装置SCはブレーキバイワイヤ型の装置(即ち、運転者の制動操作に対して、摩擦制動力Fmが独立で発生可能な装置)として機能する。このため、第1モードでは、制動操作部材BPの操作とは独立でホイール圧Pwは発生される。一方、マスタピストンNMと制動操作部材BPとが一体で変位する状態(電磁弁VA、VBの非通電時)が「第2モード(又は、マニュアルモード)」と称呼される。第2モードでは、ホイール圧Pwは運転者の制動操作に連動する。入力部NRでは、導入弁VA、及び、開放弁VBへの給電の有無によって、第1モード(バイワイヤモード)、及び、第2モード(マニュアルモード)のうちの一方の作動モードが選択される。
≪上部コントローラEA≫
 上部コントローラEAによって、上部アクチュエータYAが制御される。上部コントローラEAは、マイクロプロセッサMP、及び、駆動回路DRにて構成される。上部コントローラEAは、各種コントローラ(EB、EG、ED等)との間で信号(検出値、演算値、制御フラグ等)を共有できるよう、通信バスBSに接続される。
 上部コントローラEAには、制動操作量Ba、及び、後輪供給圧Pvが入力される。制動操作量Baは、制動操作部材BPの操作量を表す状態量の総称である。制動操作量Baとして、操作変位センサSPの検出信号Sp(操作変位)、及び、シミュレータ圧センサPZの検出信号Pz(シミュレータ圧)が、上部コントローラEAに直接入力される。また、後輪供給圧センサPVの検出信号Pv(後輪供給圧)が、上部コントローラEAに直接入力される。
 上部コントローラEAには、通信バスBSを介して、前輪供給圧Pm、限界回生制動力Fx、要求減速度Gs等が入力される。前輪供給圧Pmは、下部アクチュエータYBに設けられる供給圧センサPMによって検出され、下部コントローラEBから送信される。「限界回生制動力Fx」は、回生装置KGが発生し得る回生制動力Fgの最大値(限界値)である。限界回生制動力Fxは、回生コントローラEGにて演算され、回生コントローラEGから送信される。要求減速度Gsは、自動制動制御における車両減速度の目標値である。要求減速度Gsは、運転支援コントローラEDにて演算され、運転支援コントローラEDから送信される。
 上部コントローラEA(特に、マイクロプロセッサMP)には、調圧制御のアルゴリズムがプログラムされている。「調圧制御」は、前輪、後輪供給圧Pm、Pv(最終的には、前輪、後輪ホイール圧Pwf、Pwr)を調節するための制御であり、回生協調制御を含んでいる。調圧制御は、制動操作量Ba(操作変位Sp、シミュレータ圧Pz)、要求減速度Gs、前輪、後輪供給圧Pm、Pv、及び、最大回生制動力Fxに基づいて実行される。ここで、制動操作量Ba、及び、要求減速度Gsが、「制動要求量Bs」と総称される。即ち、制動要求量Bsは、制動制御装置SCによって発生されるべきホイール圧Pw(結果、摩擦制動力Fm)を指示するための入力である。
 調圧制御のアルゴリズムに基づいて、駆動回路DRによって、上部アクチュエータYAを構成する電気モータMA、及び、各種電磁弁(UJ、UK等)が駆動される。駆動回路DRには、電気モータMAを駆動するよう、スイッチング素子(例えば、MOS-FET)にてHブリッジ回路が構成される。また、駆動回路DRには、各種電磁弁(UJ、UK等)を駆動するよう、スイッチング素子が備えられる。加えて、駆動回路DRには、電気モータMAへの供給電流Im(実際値)を検出するモータ電流センサ(非図示)、及び、上流側、下流側調圧弁UJ、UKへの供給電流Ij、Ik(実際値であり、「上流側、下流側電流」という)を検出する上流側、下流側電流センサ(非図示)が含まれる。なお、電気モータMAには、電気モータMAの回転子の回転角Ka(実際値)を検出する回転角センサ(非図示)が設けられる。そして、モータ回転角Kaに基づいて、モータ回転数Naが演算される。
 上部コントローラEAでは、制動要求量Bsに基づいて、上流側、下流側電流Ij、Ikに対応した目標値である上流側、下流側目標電流Itj、Itkが演算される。そして、上流側、下流側電流Ij、Ik(実際値)が、上流側、下流側目標電流Itj、Itk(目標値)に近付き、一致するように制御される。また、上部コントローラEAでは、制動要求量Bsに基づいて、実際の回転数Naに対応する目標回転数Nta(目標値)が演算される。そして、実際の回転数Naが、目標回転数Ntaに近付き、一致するように、モータ供給電流Imが制御される。これらの制御アルゴリズムに基づいて、電気モータMAを制御するための駆動信号Ma、及び、各種電磁弁UJ、UK、VA、VBを制御するための駆動信号Uj、Uk、Va、Vbが演算される。そして、駆動信号(Ma等)に応じて、駆動回路DRのスイッチング素子が駆動され、電気モータMA、及び、電磁弁UJ、UK、VA、VBが制御される。
<下部制動ユニットSB>
 下部制動ユニットSBは、アンチロックブレーキ制御、トラクション制御、横滑り防止制御等を実行するための汎用のユニット(装置)である。アンチロックブレーキ制御、トラクション制御、横滑り防止制御等では、各ホイールシリンダCWのホイール圧Pwが独立で調整されるので、これらは「各輪独立制御」とも総称される。下部制動ユニットSBでは、各輪独立制御を実行するよう、ホイール圧Pwが、ホイールシリンダCW毎に個別で調節可能である。
 下部制動ユニットSBは、上部制動ユニットSAとホイールシリンダCWとの間に設けられる。下部制動ユニットSBには、上部制動ユニットSAから、前輪、後輪供給圧Pm、Pvが供給される。そして、下部制動ユニットSBにて、前輪、後輪供給圧Pm、Pvが調整(増減)され、前輪、後輪ホイールシリンダCWf、CWrの液圧Pwf、Pwr(前輪、後輪ホイール圧)として出力される。なお、下部制動ユニットSBが作動していない場合(各輪独立制御の非実行時)には、前輪、後輪ホイール圧Pwf、Pwrは、前輪、後輪供給圧Pm、Pvに等しい。
 前輪供給圧センサPMが、上部アクチュエータYA(特に、マスタ室Rm)から供給される実際の液圧Pm(前輪供給圧)を検出するために設けられる。前輪供給圧センサPMは、「マスタ圧センサ」とも称呼され、下部アクチュエータYBに内蔵される。前輪供給圧Pmの信号は、下部コントローラEBに直接入力され、通信バスBSに出力される。
<調圧制御の処理>
 図3のフロー図を参照して、調圧制御の処理例について説明する。調圧制御は、制動要求量Bs(Ba、Gs等)に基づく前輪、後輪供給圧Pm、Pv(結果、前輪、後輪ホイール圧Pwf、Pwr)の制御である。調圧制御では、上部制動ユニットSAによって、2系統調圧が実現される。「2系統調圧」は、前輪、後輪ホイール圧Pwf、Pwrが、独立且つ個別に調節される調圧制御である。なお、2系統調圧とは逆に、前輪、後輪ホイール圧Pwf、Pwrが等しく調節される調圧制御が「1系統調圧」と称呼される。回生協調制御において、2系統調圧は、1系統調圧に比較して、回生効率が向上されるとともに、前後車輪間の制動力配分が適正にされる。調圧制御のアルゴリズムは、上部コントローラEAのマイクロプロセッサMPにプログラムされている。
 処理例の説明では、以下のことが想定されている。
-回生装置KGは、前輪WHfのみに備えられる。従って、回生制動力Fgは、前輪WHfには作用するが、後輪WHrには作用しない。
-上部アクチュエータYAでは、マスタ室Rmの受圧面積rm(「マスタ面積」ともいう)とサーボ室Ruの受圧面積ru(「サーボ面積」ともいう)とが等しく設定される。従って、「rm=ru」であり、静的な状態では、「Pk=Pm」である(ここで、シール部材SLの摩擦等は無視している)。
-前輪供給圧センサPMは下部制動ユニットSBに内蔵されていて、前輪供給圧Pmは、通信バスBSを介して、上部制動ユニットSAに入力される。一方、後輪供給圧センサPVは上部制動ユニットSAに内蔵されていて、後輪供給圧Pvは上部制動ユニットSAに直接入力される。
 各種の制動力は、以下の通りである。
-「車体総制動力Fu」は、車両JVの全体に作用する実際の制動力である。車体総制動力Fuに対応する目標値が、「目標車体制動力Fv」である。
-「摩擦制動力Fm」は、ホイール圧Pwに応じて実際に発生する制動力である。摩擦制動力Fmに対応する目標値が、「目標摩擦制動力Fn」である。
-「回生制動力Fg」は、回生装置KGによって実際に発生される制動力である。回生制動力Fgに対応する目標値が「目標回生制動力Fh」である。目標回生制動力Fhは、上部制動ユニットSA(特に、上部コントローラEA)、若しくは、下部制動ユニットSB(特に、下部コントローラEB)にて演算され、通信バスBSを介して、回生装置KG(特に、回生コントローラEG)に送信される。回生装置KGでは、回生コントローラEGによって、実際の回生制動力Fgが、目標回生制動力Fhに近付き、一致するように、ジェネレータGNが制御される。
-「限界回生制動力Fx」は、回生装置KGが発生可能な回生制動力Fgである。換言すれば、限界回生制動力Fxは、回生装置KGが発生できる回生制動力Fgの最大値(限界値)である。従って、回生装置KGでは、限界回生制動力Fxまでの範囲(限度)で、回生制動力Fgが発生される。限界回生制動力Fxは、回生装置KG(特に、回生コントローラEG)にて演算され、通信バスBSを介して、上部制動ユニットSA(特に、上部コントローラEA)に送信される。
 ステップS110にて、導入弁VA、及び、開放弁VBに電力供給(給電)が行われる。これにより、常閉型の導入弁VAが開弁され、常開型の開放弁VBが閉弁され、マスタピストンNMと制動操作部材BPとが別体で変位可能な第1モードが選択される。第1モードでは、前輪、後輪供給圧Pm、Pv(即ち、前輪、後輪ホイール圧Pwf、Pwr)は、制動操作部材BPの操作とは独立で調整される。このとき、制動操作部材BPの操作力Fpは、ストロークシミュレータSSによって発生される。
 ステップS120にて、各種信号(Ba等)が読み込まれる。制動操作量Ba(Sp、Pz等)は、制動操作量センサBA(SP、PZ等)によって検出され、上部コントローラEAに入力される。後輪供給圧Pvは、後輪供給圧センサPVによって検出され、上部コントローラEAに入力される。要求減速度Gsは、通信バスBSを介して、運転支援コントローラEDから取得される。前輪供給圧Pmは、通信バスBSを介して、下部コントローラEBから取得される。限界回生制動力Fxは、通信バスBSを介して、回生コントローラEGから取得される。
 ステップS130にて、制動操作量Ba、及び、要求減速度Gsに基づいて、制動要求量Bsが演算される。例えば、制動操作量Ba、及び、要求減速度Gsが、車両減速度の次元で比較され、それらのうちで大きい方が制動要求量Bsとして決定される。制動要求量Bsは、制動制御装置SCに要求される供給圧Pm、Pv(=Pw)についての指示値である。更に、ステップS130では、制動要求量Bs、及び、演算マップZfvに基づいて、目標車体制動力Fv(車両全体に作用する制動力の目標値)が演算される。目標車体制動力Fvは、演算マップZfvに応じて、制動要求量Bsの増加に従い、増加するように演算される。つまり、目標車体制動力Fvは、制動要求量Bsが大きいほど、大きくなるように決定される。
 ステップS140にて、「1系統調圧を実行するか、否か」が判定される。該判定は、「切替判定」と称呼される。調圧制御では、初期制御として、2系統調圧が選択されている。例えば、下部制動ユニットSBにて、アンチロックブレーキ制御(車輪速度Vw、及び、車体速度Vxに基づいて、車輪WHのロックを抑制する制御)の実行が開始されたことに基づいて、切替判定が肯定され、調圧制御が2系統調圧から1系統調圧に切り替えられる。ここで、アンチロックブレーキ制御(ABS制御)の実行の有無は、下部コントローラEBから、制御フラグFA(「実行フラグ」ともいう)にて伝達される。実行フラグFAでは、「0」で「ABS制御が実行されていないこと」が表示され、「1」で「ABS制御の実行中」が表示される。従って、切替判定は、実行フラグFAが「0(非実行)」から「1(実行)」に切り替わる時点(該当する演算周期)にて肯定される。
 切替判定は、回生装置KGの作動状態に基づいて判定されてもよい。具体的には、回生装置KGによる回生制動力Fgが発生されなくなる場合に、切替判定が肯定される。例としては、蓄電池BGが満充電状態になり、回生装置KGが回生制動力Fgを発生できなくなる場合、或いは、回生装置KGにおいて、何らかの故障が発生した場合である。このような回生装置KGの作動情報は、限界回生制動力Fx(即ち、発生可能な回生制動力)が「0」であることによって、上部コントローラEAに伝達される。
 ステップS140の切替判定が否定される場合には、処理はステップS150に進められ、2系統調圧(ステップS150~S170の処理)が実行される。一方、切替判定が肯定される場合には、処理はステップS180に進められ、1系統調圧(ステップS180~S210の処理)が実行される。
≪2系統調圧の処理≫
 ステップS150にて、目標車体制動力Fvに基づいて、前輪、後輪要求制動力Fqf、Fqr(=Fq)が演算される。具体的には、以下の2つの条件が満足されるように、前輪、後輪要求制動力Fqf、Fqrが演算される。「前輪要求制動力Fqf」は、前輪WHfに作用する制動力全体の目標値である。従って、前輪要求制動力Fqfは、目標回生制動力Fhと前輪目標摩擦制動力Fnfとの和に一致する(即ち、「Fqf=Fh+Fnf」)。「後輪要求制動力Fqr」は、後輪WHrに作用する制動力全体の目標値である。従って、後輪要求制動力Fqrは、後輪目標摩擦制動力Fnrに一致する(即ち、「Fqr=Fnf」)。
  条件1:前輪要求制動力Fqfと後輪要求制動力Fqrとを合算した値が、目標車体制動力Fvに一致すること(即ち、「Fv=Fqf+Fqr」)。
  条件2:前輪要求制動力Fqfに対する後輪要求制動力Fqrの比率が所定値hbに一致すること(即ち、「Fqr/Fqf=hb」)。ここで、所定値hbは、回生制動力Fgが「0」の場合である場合の前輪摩擦制動力Fmfに対する後輪摩擦制動力Fmrの比率である。従って、所定値hbは、制動装置SXの諸元に基づいて、予め設定された定数である。
 条件1、2を満足するよう、前輪、後輪要求制動力Fqf、Fqrは、以下の式(1)で決定される。
  Fqf=Fv/(1+hb)、及び、Fqr=Fv・hb/(1+hb)  …式(1)
 更に、ステップS150では、前輪、後輪要求制動力Fqf、Fqr、及び、限界回生制動力Fxに基づいて、目標回生制動力Fh、及び、前輪、後輪目標摩擦制動力Fnf、Fnrが演算される。具体的には、目標回生制動力Fhが、限界回生制動力Fx以下の値として決定される。例えば、前輪要求制動力Fqfが限界回生制動力Fx以下の場合には、目標回生制動力Fhは前輪要求制動力Fqfに等しくされ、前輪目標摩擦制動力Fnfは「0」にされ、後輪摩擦制動力Fnrは後輪要求制動力Fqrに等しくされる(即ち、「Fqf≦Fx」の場合には「Fh=Fqf、Fnf=0、Fnr=Fqr」)。一方、前輪要求制動力Fqfが限界回生制動力Fxよりも大きい場合には、目標回生制動力Fhは限界回生制動力Fxに等しくされ、前輪目標摩擦制動力Fnfは「前輪要求制動力Fqfから限界回生制動力Fx(=Fh)を減じた値」にされ、後輪摩擦制動力Fnrは後輪要求制動力Fqrに等しくされる(即ち、「Fqf>Fx」の場合には「Fh=Fx、Fnf=Fqf-Fx=Fqf-Fh、Fnr=Fqr」)。
 ステップS160にて、前輪、後輪目標摩擦制動力Fnf、Fnr(=Fn)に基づいて、前輪、後輪目標圧Ptf、Ptrが演算される。前輪、後輪目標圧Ptf、Ptrは、制動装置SX等の諸元(ホイールシリンダCWの受圧面積、回転部材KTの有効制動半径、摩擦部材MSの摩擦係数、車輪(タイヤ)の有効半径等)に基づいて、目標摩擦制動力Fnが、前輪、後輪供給圧Pm、Pv(即ち、前輪、後輪ホイール圧Pwf、Pwr)の次元に換算されることで決定される。つまり、前輪、後輪目標圧Ptf、Ptrは、制動要求量Bs、及び、限界回生制動力Fx(回生装置KGが発生可能な回生制動力)に基づいて演算される。前輪供給圧Pmは前輪ホイール圧Pwfに等しく、後輪供給圧Pvは後輪ホイール圧Pwrに等しいので、前輪、後輪目標圧Ptf、Ptrは、前輪、後輪ホイール圧Pwf、Pwrの目標値でもある。
 ステップS170にて、前輪、後輪目標圧Ptf、Ptr(目標値)に基づいて、前輪、後輪ホイール圧Pwf、Pwr(実際値)が調整される。上部コントローラEAによって、第1電気モータMA、及び、上流側、下流側調圧弁UJ、UKが駆動され、前輪、後輪ホイール圧Pwf、Pwrが、前輪、後輪目標圧Ptf、Ptrに近付き、一致するように制御される。具体的には、ステップS170では、電気モータMAが駆動され、流体ポンプQA、及び、上流側、下流側調圧弁UJ、UKを含む循環流KNが発生される。そして、前輪目標圧Ptf、及び、前輪供給圧Pmに基づいて、前輪供給圧Pm(=Pwf)が、前輪目標圧Ptfに一致するように、下流側調圧弁UKが液圧フィードバック制御される。つまり、前輪供給圧Pmと前輪目標圧Ptfとの偏差hPf(「前輪偏差」という)が「0」になるように、下流側調圧弁UKへの供給電流Ik(実際値であり、「下流側電流」ともいう)が調節される。また、後輪目標圧Ptr、及び、後輪供給圧Pvに基づいて、後輪供給圧Pv(=Pwr)が、後輪目標圧Ptrに一致するように、上流側調圧弁UJが液圧フィードバック制御される。つまり、後輪供給圧Pvと後輪目標圧Ptrとの偏差hPr(「後輪偏差」という)が「0」になるように、上流側調圧弁UJへの供給電流Ij(実際値であり、「上流側電流」ともいう)が調節される。
≪1系統調圧の処理≫
 ステップS140の切替判定が肯定されると、ステップS180にて、上流側調圧弁UJへの電力供給が停止され、上流側調圧弁UJが開弁される。上流側調圧弁UJは、常開型電磁弁であるため、給電停止により全開状態にされる。これにより、2系統調圧から1系統調圧への切り替えが行われる。2系統調圧が1系統調圧に切り替えられることが「調圧切り替え」と称呼される。
 ステップS190にて、目標車体制動力Fv、及び、限界回生制動力Fxに基づいて、目標回生制動力Fh、及び、目標摩擦制動力Fnの総和Fnt(「目標総和」ともいう)が演算される。ここで、「目標総和Fnt」は、前輪目標摩擦制動力Fnfと後輪目標摩擦制動力Fnrとの和である(即ち、「Fnt=Fnf+Fnr」)。ステップS190では、ステップS150の処理と同様に、目標回生制動力Fhが、限界回生制動力Fx以下の値として決定される。例えば、目標車体制動力Fvが限界回生制動力Fx以下である場合には、目標回生制動力Fhは目標車体制動力Fvに等しくされ、目標摩擦制動力Fnの総和Fntは「0」にされる(即ち、「Fv≦Fx」の場合には「Fh=Fv、Fnt=0」)。また、目標車体制動力Fvが限界回生制動力Fxよりも大きい場合には、目標回生制動力Fhは限界回生制動力Fxに等しくされ、目標総和Fntは「目標車体制動力Fvから目標回生制動力Fh(=Fx)が減算された値」にされる(即ち、「Fv>Fx」の場合には「Fh=Fx、Fnt=Fv-Fh=Fv-Fx」)。目標回生制動力Fhは、通信バスBSに送信される。
 ステップS200にて、目標総和Fntに基づいて、共通目標圧Pxが演算される。具体的には、共通目標圧Pxは、目標総和Fnt、及び、「Ptf=Ptr」の2つの条件が満足された上で、更に、所定圧psが加算されて、決定される。ここで、所定圧psは、シール部材SLの摺動抵抗に相当する値であり、予め設定された所定値(定数)である。なお、共通目標圧Pxにおいても、目標総和Fntの液圧換算は、制動装置SX等の諸元(ホイールシリンダCWの受圧面積、回転部材KTの有効制動半径、摩擦部材MSの摩擦係数、車輪(タイヤ)の有効半径等)に基づいて行われる。
 「共通目標圧Px」は、前輪、後輪供給圧Pm、Pvに対応する、前後輪に係る制動系統で統一された共通の目標値である。「Fv≦Fx」の場合には、共通目標圧Px(=Ptf=Ptr)は「0」に決定される。「Fv>Fx」の場合には、共通目標圧Pxは、「Ptf=Ptr」の条件で、共通目標圧Pxに対応する目標摩擦制動力Fnの合計Fnt(目標総和)が値「Fv-Fh」に等しくなるように演算され、更に、所定圧psが加算されて決定される。
 ステップS200では、1系統調圧が行われる場合には、実際の回生制動力Fgが「0」にされてもよい。これは、回生装置KGが発生可能な回生制動力Fx(限界回生制動力)、又は、目標回生制動力Fhが、「0」にされることで実現される。上部制動ユニットSAにて切替判定が肯定される場合には、回生協調制御が終了され、回生装置KGの作動が停止され得る。「Fg=0(Fx=0、又は、Fh=0)」の場合でも、上記同様に、共通目標圧Pxは、制動装置SX等の諸元に基づいて、「Ptf=Ptr、Fnf+Fnr=Fv」が満足された上で、所定圧psが加えられて決定される。
 ステップS210にて、共通目標圧Px、及び、後輪供給圧Pvに基づいて、上部アクチュエータYAが駆動される。調圧部CAでは、上流側調圧弁UJが全開状態にされているので、上流側サーボ圧Pjと下流側サーボ圧Pkとは等しくされる。即ち、「Pk=Pm=Pwf=Pj=Pv=Pwr」の状態であるため、後輪供給圧Pvが、共通目標圧Pxに近付き、一致するように、下流側調圧弁UKが液圧フィードバック制御される。具体的には、後輪供給圧Pvと共通目標圧Pxとの偏差hPx(「共通偏差」という)が「0」になるように、下流側調圧弁UKへの供給電流Ik(下流側電流)が調節される。
 制動制御装置SCは、制動操作部材BP(ブレーキペダル)の操作とホイールシリンダCWの液圧(ホイール圧Pw)とが独立して制御可能なブレーキバイワイヤ型の装置である。上部制動ユニットSAには、マスタ室Rm(供給室)、及び、サーボ室Ruが設けられる。マスタ室Rm、及び、サーボ室Ruは、シール部材SLによって封止された上で、マスタシリンダCMとマスタピストンNMとによって区画される。上部制動ユニットSA(特に、調圧部CA)では、2つのリニア型電磁弁UJ、UK(上流側、下流側調圧弁)によって、上流側、下流側サーボ圧Pj、Pkが、電気的に個別調整される。
 2系統調圧では、前輪ホイール圧Pwfは、制動要求量Bs、及び、前輪供給圧Pmに基づいて、下流側サーボ圧Pkによって調整される。下流側サーボ圧Pkがサーボ室Ruに供給されることで、マスタ室Rmから前輪供給圧Pmが出力され、最終的には前輪ホイール圧Pwfが調整される。つまり、下流側サーボ圧Pkは、マスタシリンダCMとマスタピストンNMとを介して、前輪供給圧Pm(最終的には、前輪ホイール圧Pwf)として伝達される。一方、後輪ホイール圧Pwrは、制動要求量Bs、及び、後輪供給圧Pvに基づいて、上流側サーボ圧Pjによって調整される。上流側サーボ圧Pjは、後輪供給圧Pv(最終的には、後輪ホイール圧Pwr)として、調圧部CAから後輪ホイールシリンダCWrに、マスタシリンダCMとマスタピストンNMとを介さずに、直接供給される。上流側、下流側調圧弁UJ、UKは、制動要求量Bsに基づいて演算された前輪、後輪目標圧Ptf、Ptrに、前輪、後輪供給圧Pm、Pvが近付き一致するよう、フィードバック制御される。
 2系統調圧から1系統調圧に切り替えられる場合(即ち、調圧切り替えが行われる場合)には、上流側調圧弁UJへの給電が停止されて、上流側サーボ圧Pjと下流側サーボ圧Pkとが等しくなる状態にされる。つまり、前輪供給圧Pmと後輪供給圧Pvとの個別調整が解消される。1系統調圧では、前輪、後輪供給圧Pm、Pvに対応する目標値は、前後輪系統で同じ目標値Px(共通目標圧)として決定される。ここで、共通目標圧Pxには、シール部材SLの摺動抵抗の影響が考慮されるよう、所定圧psが加算されている。そして、共通目標圧Px、及び、後輪供給圧Pvに基づいて、前輪、後輪ホイール圧Pwf、Pwrは、下流側サーボ圧Pkによって調整される。下流側調圧弁UKは、後輪供給圧Pvが、共通目標圧Pxに近付き一致するよう、フィードバック制御される。
 1系統調圧に係る供給圧の信号には、前輪供給圧Pm、又は、後輪供給圧Pvの選択肢がある。シール部材SLの摺動抵抗は外乱として作用することがあるが、前輪供給圧Pmは摺動抵抗分を含み、後輪供給圧Pvはそれを含まない。前輪供給圧Pmは、通信バスBSを通して取得されるので、通信遅れを含むが、後輪供給圧Pvは、上部コントローラEAに直接入力されるので、通信遅れの影響を受けない。また、通信バスBSが異常である場合には、前輪供給圧Pmが取得できないが、後輪供給圧Pvは取得できる。このため、制動制御装置SCでは、1系統調圧には、後輪供給圧Pvが用いられる。
 後輪供給圧Pvが採用されると、2系統調圧から1系統調圧に切り替えられる場合(即ち、調圧切り替え時)に、前輪ホイール圧Pwfの制御は、摺動抵抗を含むもの(即ち、前輪供給圧Pmによる制御)から、摺動抵抗を含まないもの(即ち、後輪供給圧Pvによる制御)に遷移する。このため、調圧切り替え時に前輪ホイール圧Pwfの不連続(結果、液圧変化)が発生する。具体的には、後輪供給圧Pvには、シール部材SLの摩擦抵抗が含まれていないので、調圧切り替えの際には、この摩擦抵抗の分だけ、前輪ホイール圧Pwfが減少する。
 制動制御装置SCでは、シール部材SLの摩擦による液圧成分を補償するよう、共通目標圧Pxには所定圧psが加えられる。これにより、2系統調圧から1系統調圧に切り替えられる場合のホイール圧Pwの変化(特に、摺動摩擦抵抗による前輪ホイール圧Pwfの低下)が抑制され、滑らかな調圧切り替えが達成される。なお、後輪ホイール圧Pwrは、調圧切り替えに際して所定圧psの分だけ増加されるが、車両全体の制動力においては、前輪制動力の影響が支配的であるため、車両減速度に対する後輪制動力変化の影響は軽微である。
 2系統調圧から1系統調圧への切り替えは、下部制動ユニットSBにて、アンチロックブレーキ制御が実行される場合に行われる。或いは、回生装置KGが回生制動力Fgを発生できなくなる場合に切り替えられる。例えば、これは、回生装置KGの蓄電池BGが満充電になる場合である。蓄電池BGの充電状態は常に監視されているので、満充電に近付く際には、制動作動の開始前に(即ち、「Bs=0」の状態の非制動時に)、2系統調圧から1系統調圧への切り替えが完了されるとよい。これにより、制動作動の途中では、ホイール圧Pwの変化が生じないため、運転者は違和を感じ難い。一方、アンチロックブレーキ制御の実行は、制動作動の途中で行われるので、運転者は異和を感じ易い。このため、所定圧psの加算に基づく、シール部材SLの抵抗補償は、特に、制動中に開始されるアンチロックブレーキ制御の実行時に効果が大きい。
<2系統調圧の駆動制御>
 図4のブロック図を参照して、2系統調圧の駆動制御例(特に、ステップS170の処理)の詳細について説明する。該制御処理は、上部コントローラEAによって実行される。2系統調圧では、電気モータMAが駆動され、上流側、下流側調圧弁UJ、UK、及び、流体ポンプQAと含む制動液BFの循環流KNが発生される。
≪下流側調圧弁UKの駆動制御≫
 下流側調圧弁UKの駆動制御について説明する。下流側調圧弁UKに係る駆動処理は、下流側指示電流演算ブロックISK、下流側偏差演算ブロックHPK、下流側補償電流演算ブロックIHK、及び、下流側電流フィードバック制御ブロックIFKにて構成される。
 下流側指示電流演算ブロックISKでは、前輪目標圧Ptf、及び、予め設定された演算マップZskに基づいて、下流側指示電流Iskが演算される。「下流側指示電流Isk」は、前輪目標圧Ptfが達成されるために必要な、下流側調圧弁UKの供給電流Ik(下流側電流)に係る目標値である。演算マップZskに応じて、前輪目標圧Ptfの増加に従って、下流側指示電流Iskが増加するように決定される。下流側指示電流演算ブロックISKは、前輪目標圧Ptfに基づくフィードフォワード制御に相当する。
 下流側偏差演算ブロックHPKでは、前輪目標圧Ptfと前輪供給圧Pm(即ち、ホイール圧Pwf)との偏差hPf(前輪偏差)が演算される。具体的には、前輪目標圧Ptfから前輪供給圧Pmが減算されて、前輪偏差hPfが演算される(即ち、「hPf=Ptf-Pm」)。
 下流側補償電流演算ブロックIHKでは、前輪偏差hPf、及び、予め設定された演算マップZhkに基づいて、下流側補償電流Ihkが演算される。下流側指示電流Iskは、前輪目標圧Ptfに対応して演算されるが、前輪目標圧Ptfと前輪供給圧Pmとの間に誤差が生じる場合がある。「下流側補償電流Ihk」は、この誤差を補償(減少)し、前輪供給圧Pmを前輪目標圧Ptfに一致させるためのものである。下流側補償電流Ihkは、演算マップZhkに応じて、前輪偏差hPfの増加に従って、増加するように決定される。具体的には、前輪目標圧Ptfが前輪供給圧Pmよりも大きく、前輪偏差hPfが正符号の場合には、下流側指示電流Iskが増加されるよう、正符号の下流側補償電流Ihkが決定される。一方、前輪目標圧Ptfが前輪供給圧Pmよりも小さく、前輪偏差hPfが負符号の場合には、下流側指示電流Iskが減少されるよう、負符号の下流側補償電流Ihkが決定される。ここで、演算マップZhkには、不感帯が設けられる。下流側補償電流演算ブロックIHKは、前輪供給圧Pmに基づくフィードバック制御に相当する。
下流側指示電流Iskに対して、下流側補償電流Ihkが加えられて、下流側目標電流Itkが演算される(即ち、「Itk=Isk+Ihk」)。「下流側目標電流Itk」は、下流側調圧弁UKに供給される電流の最終的な目標値である。従って、下流側調圧弁UKの駆動制御は、フィードフォワード制御、及び、フィードバック制御によって構成される。
 下流側電流フィードバック制御ブロックIFKでは、下流側目標電流Itk(目標値)、及び、下流側電流Ik(実際値)に基づいて、下流側電流Ikが、下流側目標電流Itkに近付き、一致するように、下流側駆動信号Ukが演算される。ここで、下流側電流Ikは、駆動回路DRに設けられた下流側電流センサIKによって検出される。下流側電流フィードバック制御ブロックIFKでは、「Itk>Ik」であれば、下流側電流Ikが増加するように駆動信号Ukが決定される。一方、「Itk<Ik」であれば、下流側電流Iaが減少するように駆動信号Ukが決定される。つまり、下流側電流フィードバック制御ブロックIFKでは、電流に係るフィードバック制御が実行される。従って、下流側調圧弁UKの駆動制御には、液圧に係るフィードバック制御に加え、電流に係るフィードバック制御が備えられ、下流側サーボ圧Pk(=Pm=Pwf)が、前輪目標圧Ptfに一致するように制御される。
≪上流側調圧弁UJの駆動制御≫
 上流側調圧弁UJの駆動制御について説明する。下流側調圧弁UKは、前輪目標圧Ptfに基づいて制御されたが、上流側調圧弁UJは、前輪目標圧Ptfと後輪目標圧Ptrとの差sPtに基づいて制御される。加えて、上流側調圧弁UJは、後輪供給圧Pvに係るフィードバック制御に基づいて制御される。これらのこと以外は、下流側調圧弁UKと同様であるため、共通部分については簡単に説明する。上流側調圧弁UJに係る駆動処理は、目標差圧演算ブロックSPT、上流側指示電流演算ブロックISJ、上流側偏差演算ブロックHPJ、上流側補償電流演算ブロックIHJ、及び、上流側電流フィードバック制御ブロックIFJにて構成される。
 目標差圧演算ブロックSPTでは、前輪、後輪目標圧Ptf、Ptrに基づいて、目標差圧sPtが演算される。「目標差圧sPt」は、上流側調圧弁UJによって発生されるべき差圧(上流側調圧弁UJに対して、上流側液圧と下流側液圧との差)の目標値である。具体的には、目標差圧sPtは、後輪目標圧Ptrから前輪目標圧Ptfが減算されて決定される(即ち、「sPt=Ptr-Ptf(≧0)」)。上流側調圧弁UJによって、下流側サーボ圧Pk(=Pm)から目標差圧sPtに相当する分だけ増加されて、上流側サーボ圧Pj(=Pv)が発生される。
 上流側指示電流演算ブロックISJでは、目標差圧sPt、及び、予め設定された演算マップZsjに基づいて、上流側指示電流Isjが演算される。「上流側指示電流Isj」は、目標差圧sPtが達成されるために必要な、上流側調圧弁UJの供給電流Ij(上流側電流)に係る目標値である。演算マップZsjに応じて、目標差圧sPtの増加に従って、上流側指示電流Isjが増加するように決定される。上流側指示電流演算ブロックISJは、目標差圧sPtに基づくフィードフォワード制御に相当する。
 上流側偏差演算ブロックHPJでは、後輪目標圧Ptrと後輪供給圧Pv(即ち、後輪ホイール圧Pwr)との偏差hPr(後輪偏差)が演算される。具体的には、後輪目標圧Ptrから後輪供給圧Pvが減算されて、後輪偏差hPrが演算される(即ち、「hPr=Ptr-Pv」)。
 上流側補償電流演算ブロックIHJでは、後輪偏差hPr、及び、予め設定された演算マップZhjに基づいて、上流側補償電流Ihjが演算される。「上流側補償電流Ihj」は、後輪目標圧Ptrと後輪供給圧Pvとの誤差を補償(減少)し、後輪供給圧Pvを後輪目標圧Ptrに一致させるためのものである。上流側補償電流Ihjは、演算マップZhjに応じて、後輪偏差hPrの増加に従って、増加するように決定される。上流側補償電流演算ブロックIHJは、後輪供給圧Pvに基づくフィードバック制御に相当する。
 上流側指示電流Isjに対して、上流側補償電流Ihjが加えられて、上流側目標電流Itjが演算される(即ち、「Itj=Isj+Ihj」)。「上流側目標電流Itj」は、上流側調圧弁UJに供給される電流の最終的な目標値である。従って、上流側調圧弁UJの駆動制御は、フィードフォワード制御、及び、フィードバック制御によって構成される。
 上流側電流フィードバック制御ブロックIFJでは、上流側目標電流Itj(目標値)、及び、上流側電流Ij(実際値)に基づいて、上流側電流Ijが、上流側目標電流Itjに近付き、一致するように、上流側駆動信号Ujが演算される。ここで、上流側電流Ijは、駆動回路DRに設けられた上流側電流センサIJによって検出される。上流側電流フィードバック制御ブロックIFJでは、電流に係るフィードバック制御が実行される。従って、上流側調圧弁UJの駆動制御には、液圧に係るフィードバック制御に加え、電流に係るフィードバック制御が備えられ、上流側サーボ圧Pj(=Pv=Pwr)が、後輪目標圧Ptrに一致するように制御される。
<1系統調圧の駆動制御>
 図5のブロック図を参照して、1系統調圧の駆動制御例(特に、ステップS210の処理)の詳細について説明する。該制御処理も、2系統調圧と同様に、上部コントローラEAによって実行される。1系統調圧では、電気モータMAが駆動され、上流側、下流側調圧弁UJ、UK、及び、流体ポンプQAと含む制動液BFの循環流KNが発生される。ここで、上流側調圧弁UJは、非通電状態であり、全開状態にされる。なお、2系統調圧と同じ記号が付された処理(ISK、IHK、IFK)は、上述した処理と同様であるため、詳細説明を省略する。
 共通目標圧演算ブロックPXにて、制動要求量Bsに基づいて、共通目標圧Pxが演算される。制動要求量Bsは、制動操作量Ba、及び、要求減速度Gsの総称であり、ホイール圧Pwに対する要求値である。共通目標圧Pxは、前輪、後輪目標圧Ptf、Ptrが等しくされた上で、所定圧psが加えられて演算される。即ち、共通目標圧Pxは、前輪、後輪供給圧Pm、Pvに対して、統一された目標値である。
 共通偏差演算ブロックHPXにて、共通目標圧Px、及び、後輪供給圧Pvに基づいて、共通偏差hPxが演算される。具体的には、共通目標圧Pxから後輪供給圧Pvが減算されて、共通偏差hPxが決定される(即ち、「hPx=Px-Pv」)。
 下流側指示電流演算ブロックISKでは、共通目標圧Px、及び、演算マップZskに基づいて、下流側指示電流Iskが演算される。また、下流側補償電流演算ブロックIHKでは、共通偏差hPx、及び、演算マップZhkに基づいて、下流側補償電流Ihkが演算される。2系統調圧と同様に、1系統調圧でも、下流側指示電流Iskに下流側補償電流Ihkが加算されて、下流側目標電流Itkが決定される。そして、下流側電流フィードバック制御ブロックIFKにて、下流側目標電流Itkに基づいて、下流側調圧弁UKの駆動信号Ukが決定される。
 1系統調圧では、上流側調圧弁UJに係るブロック(即ち、SPT、ISJ、HPJ、IHJ、IFJ)の機能が停止され、上流側調圧弁UJへの通電が停止される(即ち、「Ij=0」)。下流側調圧弁UKに係るブロック(特に、ISK、HPK)では、前輪目標圧Ptfに代えて共通目標圧Pxが採用され、前輪供給圧Pmに代えて後輪供給圧Pvが採用される。
<回生装置KGが後輪WHrに備えられる車両JVへの適用>
 上述の実施形態では、回生装置KGが前輪WHfに備えられるが、後輪WHrには備えらない車両(「前輪回生車両」という)が想定された。これに代えて、回生装置KGが後輪WHrに備えられるが、前輪WHfには備えらない車両(「後輪回生車両」という)に、制動制御装置SCが適用されてもよい。以下、相違点について説明する。なお、図4のブロック図の[ ]内の記号が、後輪回生車両用の制動制御装置SCに対応している。
 後輪回生車両に適用される制動制御装置SCでは、図2の概略図において、サーボ路HVが部位pjにて還流路HKに接続され、後輪連絡路HSrが、部位pkにて還流路HKに接続される。つまり、上流側サーボ圧Pjがサーボ室Ruに供給され、下流側サーボ圧Pkが後輪ホイールシリンダCWrに供給される(即ち、「Pj=Pm=Pwf、Pk=Pv=Pwr」)。また、図4、5の調圧制御(特に、2系統調圧)の処理では、前輪、後輪目標摩擦制動力Fnf、Fnrの演算において、「Fqr≦Fx」の場合には「Fh=Fqr、Fnf=Fqf、Fnr=0」が決定される。これに対して、「Fqf>Fx」の場合には「Fh=Fx、Fnf=Fqf、Fnr=Fqr-Fx=Fqr-Fh」が決定される。そして、前輪、後輪目標摩擦制動力Fnf、Fnrが、前輪、後輪目標圧Ptf、Ptrに換算される(ここで、「Ptf≧Ptr」)。
 更に、図4のブロック図において、下流側指示電流演算ブロックISK、及び、下流側偏差演算ブロックHPKには、前輪目標圧Ptfに代えて、後輪目標圧Ptrが入力される。つまり、下流側指示電流Iskは、後輪目標圧Ptr、及び、演算マップZskに基づいて決定され、下流側偏差演算ブロックHPKでは、後輪偏差hPrが「hPr=Ptr-Pv」にて演算される。そして、下流側補償電流演算ブロックIHKにて、後輪偏差hPrに基づいて、下流側補償電流Ihkが演算される。また、目標偏差演算ブロックSPTでは、目標差圧sPtが「sPt=Ptf-Ptr(≧0)」にて演算される。上流側偏差演算ブロックHPJには、後輪目標圧Ptrに代えて、前輪目標圧Ptfが入力される。従って、上流側偏差演算ブロックHPJでは、前輪偏差hPfは、「hPf=Ptf-Pm」にて演算される。そして、上流側補償電流演算ブロックIHJにて、前輪偏差hPfに基づいて、上流側補償電流Ihjが演算される。なお、1系統調圧の処理は、前輪、後輪回生車両で同じである。
 回生装置KG(=KGf、KGr)が前後輪WHf、WHrの両方に備えられる車両においては、それらの回生量の大小によって、上述した2つの構成のうちの何れか一方が採用される。具体的には、前輪回生装置KGfの回生量が、後輪回生装置KGfの回生量よりも大きい車両には、前輪回生車両の制動制御装置SCが適用される。逆に、前輪回生装置KGfの回生量が、後輪回生装置KGfの回生量よりも小さい車両には、後輪回生車両の制動制御装置SCが適用される。
 前輪、後輪回生車両に適用される制動制御装置SCの調圧部CAについてまとめる。調圧部CAでは、流体ポンプQAを含む制動液BFの循環流KNに、常開型の上流側、下流側調圧弁UJ、UKが直列に配置される。そして、上流側、下流側調圧弁UJ、UKによって、該流体ポンプQAが吐出する制動液BFの圧力が上流側、下流側サーボ圧Pj、Pkに調節される。2系統調圧では、上流側、下流側サーボ圧Pj、Pkのうちの一方側(「第1サーボ圧P1」という)がサーボ室Ruに供給されることによって、前輪供給圧Pmが、供給室Rmから前輪ホイールシリンダCWfに出力される。つまり、第1サーボ圧P1によって前輪供給圧Pmが調節され、前輪供給圧Pmによって前輪ホイール圧Pwfが調節される(液圧伝達は「P1→Pm→Pwf」の順である)。また、上流側、下流側サーボ圧Pj、Pkのうちの他方側(「第2サーボ圧P2」という)が、後輪供給圧Pvとして後輪ホイールシリンダCWrに出力される。つまり、第2サーボ圧P2によって後輪供給圧Pvが調節され、後輪供給圧Pvによって後輪ホイール圧Pwrが調節される(液圧伝達は「P2→Pv→Pwr」の順である)。
 2系統調圧では、第1、第2サーボ圧P1、P2が個別に調整されるが、1系統調圧では、第1、第2サーボ圧P1、P2は同じに調整される。つまり、第2サーボ圧P2に等しい第1サーボ圧P1によって前輪、後輪供給圧Pm、Pvが等しく調節される。そして、前輪、後輪供給圧Pm、Pvによって前輪、後輪ホイール圧Pwf、Pwrが等しく調節される。この液圧伝達は「(P1=P2)→(Pm=Pv)→(Pwf=Pwr)」の順である。但し、前輪供給圧Pmには摩擦抵抗分が含まれ、後輪供給圧Pvには摩擦抵抗分が含まれていないので、その分の差は発生している。なお、調圧部CAでの調圧状態は、2系統調圧、及び、1系統調圧のうちの何れか一方である。
<他の実施形態>
 以下、他の実施形態について説明する。他の実施形態においても、上記同様の効果(2系統調圧から1系統調圧への滑らかな調圧切り替え等)を奏する。
 上述の実施形態では、制動制御装置SCでは、前輪供給圧センサPMが、下部制動ユニットSB(特に、下部アクチュエータYB)に内蔵された。前輪供給圧センサPMは、上部制動ユニットSA(特に、上部アクチュエータYA)に内蔵されてもよい。しかし、前輪供給圧センサPMは、アンチロックブレーキ制御等の各輪独立制御に必要であるため、下部制動ユニットSBに内蔵される方が、装置全体の簡素化の点では有利である。加えて、前輪供給圧センサPMが、上部制動ユニットSAに内蔵されると、通信異常時に、各輪独立制御が実行できなくなる。この点においても、前輪供給圧センサPMが、下部制動ユニットSBに内蔵される方が有利である。
 上述の実施形態では、各種制動力の目標値(Fv、Fx、Fh、Fn等)が車両JVに作用する前後力の次元で演算された。これに代えて、車両JVの減速度の次元、或いは、車輪WHのトルクの次元で演算されてもよい。これは、前後力から車両減速度に至る状態量(「力に係る状態量」という)は、等価であることに基づく。従って、目標圧Ptf、Ptr、Pxは、車両JVに作用する前後力から車両JVの減速度に至るまでの力に係る状態量に基づいて演算される。
 上述の実施形態では、調圧部CAとして、流体ポンプQAが吐出する制動液BFの循環流KNを上流側、下流側調圧弁UJ、UKで絞ることによって前輪、後輪供給圧Pm、Pvを調節するもの(所謂、還流型の構成)が例示された。これに代えて、調圧部CAでは、アキュムレータに蓄圧された圧力を元に、前輪、後輪供給圧Pm、Pvが調節されてもよい(所謂、アキュムレータ型の構成)。また、電気モータで直接駆動されるピストンによって、シリンダ内の体積が増減されて、前輪、後輪供給圧Pm、Pvが調整されてもよい(所謂、電動シリンダ型の構成)。
 上述の実施形態では、アプライ部APにおいて、マスタ室Rmの受圧面積rm(マスタ面積)とサーボ室Ruの受圧面積ru(サーボ面積)とが等しく設定された。マスタ面積rmとサーボ面積ruとは等しくなくてもよい。マスタ面積rmとサーボ面積ruとが異なる構成では、サーボ面積ruとマスタ面積rmとの比率に基づいて、前輪供給圧Pmと下流側サーボ圧Pk(又は、上流側サーボ圧Pj)との変換演算が可能である(即ち、「Pm・rm=Pk・ru(又は、Pj・ru)」に基づく換算)。
 制動制御装置SCには、前輪、後輪供給圧Pm、Pvの伝達経路において、前輪供給圧Pmが作用する部位と後輪供給圧Pvが作用する部位との間が流体路(制動液BFの移動経路であり、「連通路」という)にて接続される。連通路には、常開型電磁弁(「連通弁」という)が設けられる。そして、2系統調圧の場合には、連通弁は閉弁され、連通路は遮断される。これにより、前輪、後輪供給圧Pm、Pvが個別に調節される。一方、1系統調圧の場合には、連通弁が開弁されて、前輪、後輪供給圧Pm、Pvに係る部位が連通状態にされる。これにより、前輪、後輪供給圧Pm、Pvが同一液圧で調節される。ここで、前輪、後輪供給圧Pm、Pvが作用する部位(「作用部位」という)として、前輪、後輪供給圧Pm、Pvの発生源、伝達経路(流体路、液圧室)等の部位が該当する。また、作用部位には、前輪、後輪供給圧Pm、Pvが直接作用する部位だけでなく、前輪、後輪供給圧Pm、Pvによって発生された力が、部材(例えば、マスタピストンNM)を介して作用する部位が含まれる。例えば、図2に示す構成では、部位pj、pkが作用部位に相当し、上流側調圧弁UJが連通弁に相当する。ここで、部位pjには、後輪供給圧Pvが直接的に作用するが、部位pkには、前輪供給圧PmがマスタピストンNMを介して間接的に作用する。
<実施形態のまとめ>
 以下、制動制御装置SCの実施形態についてまとめる。制動制御装置SCは、制動要求量Bsに応じて前輪、後輪ホイールシリンダCWf、CWrの液圧Pwf、Pwr(前輪、後輪ホイール圧)を独立で調整可能なブレーキバイワイヤ型の装置である。
 制動制御装置SCは、アプライ部AP、調圧部CA、コントローラEA、前輪供給圧センサPM、及び、後輪供給圧センサPVにて構成される。アプライ部APは、シリンダCM、及び、シリンダCMに挿入されるピストンNMによって仕切られる供給室Rm(マスタ室)、及び、サーボ室Ruを有する。ここで、供給室Rm、及び、サーボ室Ruは、シール部材SLによって封止されている。
 調圧部CAによって、第1、第2サーボ圧P1、P2が、電気的に調整される。例えば、第1、第2サーボ圧P1、P2は、電気モータを動力源にして発生される。第1サーボ圧P1は、サーボ室Ruに供給される。これにより、供給室Rmから前輪ホイールシリンダCWfに前輪供給圧Pmが出力される。つまり、第1サーボ圧P1によって前輪供給圧Pmが調整され、前輪供給圧Pmによって前輪ホイール圧Pwfが調整される。従って、前輪ホイール圧Pwfは、第1サーボ圧P1によって調整される。
 第2サーボ圧P2は、後輪供給圧Pvとして後輪ホイールシリンダCWrに直接出力される。つまり、第2サーボ圧P2によって後輪供給圧Pvが調整され、後輪供給圧Pvによって後輪ホイール圧Pwrが調整される。従って、後輪ホイール圧Pwrは、第2サーボ圧P2によって調節される。コントローラEAでは、第1、第2サーボ圧P1、P2を個別に調整する2系統調圧、及び、第1、第2サーボ圧P1、P2を同じに調整する1系統調圧のうちの何れか一方が選択される。前輪、後輪供給圧Pm、Pvは、前輪、後輪供給圧センサPM、PVによって検出される。
 コントローラEAでは、2系統調圧が選択される場合には、制動要求量Bsに基づいて前輪、後輪目標圧Ptf、Ptrが個別に演算される。そして、前輪、後輪供給圧Pm、Pvを前輪、後輪目標圧Ptf、Ptrに一致させるように調圧部CAが制御される。具体的には、前輪、後輪供給圧Pm、Pvが前輪、後輪目標圧Ptf、Ptrに一致するよう、第1、第2サーボ圧P1、P2が制御される。2系統調圧では、前輪目標圧Ptfと後輪目標圧Ptrとが異なるので、第1サーボ圧P1と第2サーボ圧P2とは異なるように調整される。結果、前輪供給圧Pmと後輪供給圧Pvとは異なり、前輪ホイール圧Pwfと後輪ホイール圧Pwrとは異なる。
 一方、1系統調圧が選択される場合には、共通目標圧Pxが演算される。共通目標圧Pxは、前輪、後輪目標圧Ptf、Ptrが等しくされ、更に、所定圧psが加算されることで決定される。そして、後輪供給圧Pvを共通目標圧Pxに一致させるように調圧部CAが制御される。具体的には、後輪供給圧Pvが共通目標圧Pxに一致するよう、第1、第2サーボ圧P1、P2が制御される。なお、所定圧psはシール部材SLの摺動抵抗に相当する所定値(定数)であり、予め設定されている。1系統調圧では、前輪目標圧Ptfと後輪目標圧Ptrとは等しいので、第1サーボ圧P1と第2サーボ圧P2とは等しく調整される。結果、前輪供給圧Pmと後輪供給圧Pvとは等しくなり、前輪ホイール圧Pwfと後輪ホイール圧Pwrとは等しくなる。但し、シール部材SLの摩擦抵抗分の差は存在する。
 第1サーボ圧P1は、前輪ホイールシリンダCWfに、シリンダCMとピストンNMとを介して、前輪供給圧Pmとして伝達される。一方、第2サーボ圧P2は、後輪ホイールシリンダCWrに、シリンダCMとピストンNMとを介さずに、後輪供給圧Pvとして直接伝達される。シリンダCMとピストンNMとは、シール部材SLにて封止されているので、前輪供給圧Pmにはシール部材SLの摺動抵抗分の影響が及んでいるが、後輪供給圧Pvにはそれが及ばない。
 制動制御装置SCでは、1系統調圧において、後輪供給圧Pvの信号が採用される。該構成では、2系統調圧から1系統調圧に切り替えられる場合(調圧切り替え時)に、前輪ホイール圧Pwfの変化(特に、低下)が発生する。これは、前輪ホイール圧Pwfの制御が、シール部材SLの摺動抵抗を含む前輪供給圧Pmによるものから、この摺動抵抗を含まない後輪供給圧Pvによるものに移行するためである。制動制御装置SCでは、1系統調圧の目標圧Px(共通目標圧)に、所定圧psが足されることで、摺動抵抗の影響が抑制される。これにより、調圧切り替え時に発生する前輪ホイール圧Pwfの変化が抑制される。
 調圧切り替えに際しては、前輪ホイール圧Pwfの変化が抑制されるが、後輪ホイール圧Pwrには変化が生じる。しかし、車両全体の制動力(結果、車両JVの減速度)においては、前輪制動力の影響は、後輪制動力の影響に比較して非常に大きい。従って、後輪ホイール圧Pwrの変化による後輪制動力の変化は車両全体への影響は軽微である。このため、車両全体としては、所定圧ps(例えば、シール部材SLの摺動抵抗に相当する値)が加算された共通目標圧Pxによって、2系統調圧から1系統調圧への切り替えが円滑に行われる。
 共通目標圧Pxに基づく調圧切り替えは、アンチロックブレーキ制御の実行が開始され、2系統調圧から1系統調圧に切り替えられる場合に、特に効果的である。これは、アンチロックブレーキ制御の実行開始は、一連の制動作動の過程で行われるので、運転者はホイール圧Pwの変化に気付き易いことが理由である。
 

Claims (3)

  1.  制動要求量に応じて前輪、後輪ホイールシリンダの液圧を調整する車両の制動制御装置であって、
     シリンダ、及び、該シリンダに挿入されるピストンによって仕切られ、シール部材によって封止される供給室、及び、サーボ室を有するアプライ部と、
     電気的に第1、第2サーボ圧を調整し、前記第1サーボ圧を前記サーボ室に供給し、前記供給室から前記前輪ホイールシリンダに前輪供給圧を出力することで、前記前輪ホイールシリンダの液圧を調整するとともに、前記第2サーボ圧を後輪供給圧として前記後輪ホイールシリンダに出力することで、前記後輪ホイールシリンダの液圧を調整する調圧部と、
     前記前輪、後輪供給圧を検出する前輪、後輪供給圧センサと、
     前記第1、第2サーボ圧を個別に調整する2系統調圧、及び、前記第1、第2サーボ圧を同じに調整する1系統調圧のうちの何れか一方を選択するコントローラと、
    を備え、
     前記コントローラは、
     前記2系統調圧を選択する場合には、前記制動要求量に基づいて前輪、後輪目標圧を個別に演算し、前記前輪、後輪供給圧を前記前輪、後輪目標圧に一致させるように前記調圧部を制御し、
     前記1系統調圧を選択する場合には、前記前輪、後輪目標圧を等しくした上で所定圧を加えて共通目標圧を演算し、前記後輪供給圧を前記共通目標圧に一致させるように前記調圧部を制御する、車両の制動制御装置。
  2.  請求項1に記載される車両の制動制御装置において、
     前記所定圧は前記シール部材の摺動抵抗に相当する値として設定される、車両の制動制御装置。
  3.  請求項1又は請求項2に記載される車両の制動制御装置において、
     前記コントローラは、アンチロックブレーキ制御の実行が開始される時点で、前記2系統調圧を前記1系統調圧に切り替える、車両の制動制御装置。
     
PCT/JP2023/005211 2022-02-21 2023-02-15 車両の制動制御装置 WO2023157874A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-024487 2022-02-21
JP2022024487A JP2023121252A (ja) 2022-02-21 2022-02-21 車両の制動制御装置

Publications (1)

Publication Number Publication Date
WO2023157874A1 true WO2023157874A1 (ja) 2023-08-24

Family

ID=87578270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005211 WO2023157874A1 (ja) 2022-02-21 2023-02-15 車両の制動制御装置

Country Status (2)

Country Link
JP (1) JP2023121252A (ja)
WO (1) WO2023157874A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014004945A (ja) * 2012-06-26 2014-01-16 Advics Co Ltd 車両用制動装置
JP2019137202A (ja) * 2018-02-09 2019-08-22 株式会社アドヴィックス 車両の制動制御装置
JP2020032833A (ja) * 2018-08-29 2020-03-05 株式会社アドヴィックス 車両の制動制御装置
JP2020090131A (ja) * 2018-12-04 2020-06-11 株式会社アドヴィックス 車両の制動制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014004945A (ja) * 2012-06-26 2014-01-16 Advics Co Ltd 車両用制動装置
JP2019137202A (ja) * 2018-02-09 2019-08-22 株式会社アドヴィックス 車両の制動制御装置
JP2020032833A (ja) * 2018-08-29 2020-03-05 株式会社アドヴィックス 車両の制動制御装置
JP2020090131A (ja) * 2018-12-04 2020-06-11 株式会社アドヴィックス 車両の制動制御装置

Also Published As

Publication number Publication date
JP2023121252A (ja) 2023-08-31

Similar Documents

Publication Publication Date Title
JP4535103B2 (ja) ブレーキ制御装置
KR102357637B1 (ko) 전동 배력 장치 및 브레이크 제어 장치
CN111683845B (zh) 车辆的制动控制装置
WO2020004347A1 (ja) 車両の制動制御装置
WO2019156035A1 (ja) 車両の制動制御装置
WO2020004240A1 (ja) 車両の制動制御装置
CN112313124B (zh) 车辆制动控制装置
WO2023157874A1 (ja) 車両の制動制御装置
WO2023120652A1 (ja) 車両の制動制御装置
WO2023120653A1 (ja) 車両の制動制御装置
WO2023120650A1 (ja) 車両の制動制御装置
WO2023120651A1 (ja) 車両の制動制御装置
WO2024111655A1 (ja) 車両の制動制御装置
JP2023093200A (ja) 車両の制動制御装置
JP2023093198A (ja) 車両の制動制御装置
JP2023093199A (ja) 車両の制動制御装置
WO2023033021A1 (ja) 車両の制動制御装置
WO2023171814A1 (ja) 車両の制動制御装置
JP2023093201A (ja) 車両の制動制御装置
WO2023171812A1 (ja) 車両の制動制御装置
WO2023171810A1 (ja) 車両の制動制御装置
WO2023171813A1 (ja) 車両の制動制御装置
WO2023171811A1 (ja) 車両の制動制御装置
JP2024033554A (ja) 車両の制動制御装置
WO2022202763A1 (ja) 車両の制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756399

Country of ref document: EP

Kind code of ref document: A1